Aqueous Zinc‐Bromine Battery with Highly Reversible Bromine Conversion Chemistry
Br2/Br− conversion reaction with a high operating potential (1.85 V vs. Zn2+/Zn) is promising for designing high‐energy cathodes in aqueous Zn batteries. However, the ultrahigh solubility of polybromides causes significant shuttle effects, capacity deterioration, and self‐discharge, rendering the st...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 64; no. 20; pp. e202502386 - n/a |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
12.05.2025
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Br2/Br− conversion reaction with a high operating potential (1.85 V vs. Zn2+/Zn) is promising for designing high‐energy cathodes in aqueous Zn batteries. However, the ultrahigh solubility of polybromides causes significant shuttle effects, capacity deterioration, and self‐discharge, rendering the study of static zinc‐bromine batteries still in its infancy. Here, various aqueous zinc salt electrolytes are first screened, showing that, compared to other salts, ZnSO4 is more suitable for Br‐based cathodes benefiting from its higher negative charge density and lower cost. Nevertheless, the significant shuttle effect of polybromides remains in such an electrolyte. We further develop a targeted sequestration strategy to fundamentally confine polybromide migration from KBr cathode into electrolyte. In high‐mass‐loading (22 mgKBr cm−2) pouch cells, the average Coulombic efficiency enhances from 92.3 % to 99.8 %, and self‐discharge performance dramatically improves from 17.4 % capacity retention to 85.2 % after 72 h of resting, indicating the effectiveness of our strategy in confining the shuttle effects. Furthermore, an Ah‐scale pouch cell delivers an average Coulombic efficiency of 99.88 % and a zinc utilization of 22 % at a high rate of 3 C. Our findings also pave the way for the design of advanced Br‐based cathodes.
ZnSO4 solution is initially screened as the electrolyte for bromide cathodes. Subsequently, a targeted sequestration strategy is proposed to modify KBr cathode, achieving high‐reversibility bromine conversion chemistry. In situ Raman spectra reveal a Br3−/Br−‐dominated conversion mechanism. A large‐capacity Zn−Br pouch cell exhibits a high capacity retention of 98.46 % and an average Coulombic efficiency of 99.92 % after 775 cycles at 3 C. |
---|---|
AbstractList | Br2/Br− conversion reaction with a high operating potential (1.85 V vs. Zn2+/Zn) is promising for designing high‐energy cathodes in aqueous Zn batteries. However, the ultrahigh solubility of polybromides causes significant shuttle effects, capacity deterioration, and self‐discharge, rendering the study of static zinc‐bromine batteries still in its infancy. Here, various aqueous zinc salt electrolytes are first screened, showing that, compared to other salts, ZnSO4 is more suitable for Br‐based cathodes benefiting from its higher negative charge density and lower cost. Nevertheless, the significant shuttle effect of polybromides remains in such an electrolyte. We further develop a targeted sequestration strategy to fundamentally confine polybromide migration from KBr cathode into electrolyte. In high‐mass‐loading (22 mgKBr cm−2) pouch cells, the average Coulombic efficiency enhances from 92.3 % to 99.8 %, and self‐discharge performance dramatically improves from 17.4 % capacity retention to 85.2 % after 72 h of resting, indicating the effectiveness of our strategy in confining the shuttle effects. Furthermore, an Ah‐scale pouch cell delivers an average Coulombic efficiency of 99.88 % and a zinc utilization of 22 % at a high rate of 3 C. Our findings also pave the way for the design of advanced Br‐based cathodes.
ZnSO4 solution is initially screened as the electrolyte for bromide cathodes. Subsequently, a targeted sequestration strategy is proposed to modify KBr cathode, achieving high‐reversibility bromine conversion chemistry. In situ Raman spectra reveal a Br3−/Br−‐dominated conversion mechanism. A large‐capacity Zn−Br pouch cell exhibits a high capacity retention of 98.46 % and an average Coulombic efficiency of 99.92 % after 775 cycles at 3 C. Br2/Br− conversion reaction with a high operating potential (1.85 V vs. Zn2+/Zn) is promising for designing high‐energy cathodes in aqueous Zn batteries. However, the ultrahigh solubility of polybromides causes significant shuttle effects, capacity deterioration, and self‐discharge, rendering the study of static zinc‐bromine batteries still in its infancy. Here, various aqueous zinc salt electrolytes are first screened, showing that, compared to other salts, ZnSO4 is more suitable for Br‐based cathodes benefiting from its higher negative charge density and lower cost. Nevertheless, the significant shuttle effect of polybromides remains in such an electrolyte. We further develop a targeted sequestration strategy to fundamentally confine polybromide migration from KBr cathode into electrolyte. In high‐mass‐loading (22 mgKBr cm−2) pouch cells, the average Coulombic efficiency enhances from 92.3 % to 99.8 %, and self‐discharge performance dramatically improves from 17.4 % capacity retention to 85.2 % after 72 h of resting, indicating the effectiveness of our strategy in confining the shuttle effects. Furthermore, an Ah‐scale pouch cell delivers an average Coulombic efficiency of 99.88 % and a zinc utilization of 22 % at a high rate of 3 C. Our findings also pave the way for the design of advanced Br‐based cathodes. Br2/Br- conversion reaction with a high operating potential (1.85 V vs. Zn2+/Zn) is promising for designing high-energy cathodes in aqueous Zn batteries. However, the ultrahigh solubility of polybromides causes significant shuttle effects, capacity deterioration, and self-discharge, rendering the study of static zinc-bromine batteries still in its infancy. Here, various aqueous zinc salt electrolytes are first screened, showing that, compared to other salts, ZnSO4 is more suitable for Br-based cathodes benefiting from its higher negative charge density and lower cost. Nevertheless, the significant shuttle effect of polybromides remains in such an electrolyte. We further develop a targeted sequestration strategy to fundamentally confine polybromide migration from KBr cathode into electrolyte. In high-mass-loading (22 mgKBr cm-2) pouch cells, the average Coulombic efficiency enhances from 92.3 % to 99.8 %, and self-discharge performance dramatically improves from 17.4 % capacity retention to 85.2 % after 72 h of resting, indicating the effectiveness of our strategy in confining the shuttle effects. Furthermore, an Ah-scale pouch cell delivers an average Coulombic efficiency of 99.88 % and a zinc utilization of 22 % at a high rate of 3 C. Our findings also pave the way for the design of advanced Br-based cathodes.Br2/Br- conversion reaction with a high operating potential (1.85 V vs. Zn2+/Zn) is promising for designing high-energy cathodes in aqueous Zn batteries. However, the ultrahigh solubility of polybromides causes significant shuttle effects, capacity deterioration, and self-discharge, rendering the study of static zinc-bromine batteries still in its infancy. Here, various aqueous zinc salt electrolytes are first screened, showing that, compared to other salts, ZnSO4 is more suitable for Br-based cathodes benefiting from its higher negative charge density and lower cost. Nevertheless, the significant shuttle effect of polybromides remains in such an electrolyte. We further develop a targeted sequestration strategy to fundamentally confine polybromide migration from KBr cathode into electrolyte. In high-mass-loading (22 mgKBr cm-2) pouch cells, the average Coulombic efficiency enhances from 92.3 % to 99.8 %, and self-discharge performance dramatically improves from 17.4 % capacity retention to 85.2 % after 72 h of resting, indicating the effectiveness of our strategy in confining the shuttle effects. Furthermore, an Ah-scale pouch cell delivers an average Coulombic efficiency of 99.88 % and a zinc utilization of 22 % at a high rate of 3 C. Our findings also pave the way for the design of advanced Br-based cathodes. Br 2 /Br − conversion reaction with a high operating potential (1.85 V vs . Zn 2+ /Zn) is promising for designing high‐energy cathodes in aqueous Zn batteries. However, the ultrahigh solubility of polybromides causes significant shuttle effects, capacity deterioration, and self‐discharge, rendering the study of static zinc‐bromine batteries still in its infancy. Here, various aqueous zinc salt electrolytes are first screened, showing that, compared to other salts, ZnSO 4 is more suitable for Br‐based cathodes benefiting from its higher negative charge density and lower cost. Nevertheless, the significant shuttle effect of polybromides remains in such an electrolyte. We further develop a targeted sequestration strategy to fundamentally confine polybromide migration from KBr cathode into electrolyte. In high‐mass‐loading (22 mg KBr cm −2 ) pouch cells, the average Coulombic efficiency enhances from 92.3 % to 99.8 %, and self‐discharge performance dramatically improves from 17.4 % capacity retention to 85.2 % after 72 h of resting, indicating the effectiveness of our strategy in confining the shuttle effects. Furthermore, an Ah‐scale pouch cell delivers an average Coulombic efficiency of 99.88 % and a zinc utilization of 22 % at a high rate of 3 C. Our findings also pave the way for the design of advanced Br‐based cathodes. Br /Br conversion reaction with a high operating potential (1.85 V vs. Zn /Zn) is promising for designing high-energy cathodes in aqueous Zn batteries. However, the ultrahigh solubility of polybromides causes significant shuttle effects, capacity deterioration, and self-discharge, rendering the study of static zinc-bromine batteries still in its infancy. Here, various aqueous zinc salt electrolytes are first screened, showing that, compared to other salts, ZnSO is more suitable for Br-based cathodes benefiting from its higher negative charge density and lower cost. Nevertheless, the significant shuttle effect of polybromides remains in such an electrolyte. We further develop a targeted sequestration strategy to fundamentally confine polybromide migration from KBr cathode into electrolyte. In high-mass-loading (22 mg cm ) pouch cells, the average Coulombic efficiency enhances from 92.3 % to 99.8 %, and self-discharge performance dramatically improves from 17.4 % capacity retention to 85.2 % after 72 h of resting, indicating the effectiveness of our strategy in confining the shuttle effects. Furthermore, an Ah-scale pouch cell delivers an average Coulombic efficiency of 99.88 % and a zinc utilization of 22 % at a high rate of 3 C. Our findings also pave the way for the design of advanced Br-based cathodes. |
Author | Wu, Han Zhang, Shao‐Jian Zhao, Xun Hao, Junnan Qiao, Shi‐Zhang Chen, Qianru Mao, Lei |
Author_xml | – sequence: 1 givenname: Xun surname: Zhao fullname: Zhao, Xun organization: The University of Adelaide – sequence: 2 givenname: Junnan surname: Hao fullname: Hao, Junnan organization: The University of Adelaide – sequence: 3 givenname: Qianru surname: Chen fullname: Chen, Qianru organization: The University of Adelaide – sequence: 4 givenname: Shao‐Jian surname: Zhang fullname: Zhang, Shao‐Jian organization: The University of Adelaide – sequence: 5 givenname: Han surname: Wu fullname: Wu, Han organization: The University of Adelaide – sequence: 6 givenname: Lei surname: Mao fullname: Mao, Lei organization: The University of Adelaide – sequence: 7 givenname: Shi‐Zhang orcidid: 0000-0002-4568-8422 surname: Qiao fullname: Qiao, Shi‐Zhang email: s.qiao@adelaide.edu.au organization: The University of Adelaide |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40001169$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkb1OwzAUhS0E4n9lRJFYWFJ8bcdOxlLxJyGQECwsVuLeUKPUATsFZeMReEaeBJcWkFiYfGV_5957fLbIqmsdErIHdACUsqPSWRwwyjLKeC5XyCZkDFKuFF-NteA8VXkGG2QrhMfI5zmV62RDUEoBZLFJbobPM2xnIbm3zny8vR_7dmodJsdl16Hvk1fbTZJz-zBp-uQGX9AHWzXxeYmNWvd117pkNMGpDZ3vd8haXTYBd5fnNrk7PbkdnaeX12cXo-FlarjMZSq4oqVgoGQmRA2qVpiZKs9Qmgo5LxSMi7imkQbByKpAEU3VYyUqAZCZMd8mh4u-T76NJkKn43yDTVO6uSPNQQFX0TCP6MEf9LGdeRe305yxvFAMiixS-0tqVk1xrJ-8nZa-19-_FYHBAjC-DcFj_YMA1fM49DwO_RNHFBQLwattsP-H1sOri5Nf7Sdvg41n |
Cites_doi | 10.1002/adma.202309726 10.1016/j.xcrp.2021.100620 10.1002/adma.201904524 10.1039/D1SE01749G 10.1007/s40820-023-01174-7 10.1016/j.scriptamat.2023.115883 10.1002/anie.202009871 10.1002/adma.201902025 10.1021/jacs.4c03518 10.1039/D3EE01639K 10.1246/bcsj.20210182 10.1002/adma.202206754 10.1039/D2EE03077B 10.1021/acs.chemmater.4c00535 10.1016/0263-7855(96)00018-5 10.1126/sciadv.aba4098 10.1002/anie.202301467 10.1016/j.ensm.2024.103331 10.1038/s41578-022-00511-3 10.1021/acs.chemrev.9b00628 10.1002/smll.202401916 10.1016/j.gee.2022.11.007 10.1002/jcc.22885 10.1016/j.cej.2022.138915 10.1039/D3EE04515C 10.1039/D3CS00771E 10.1002/adma.202309038 10.1002/anie.202308397 10.1002/adfm.202306952 10.1039/D4EE02096K 10.1016/j.jpowsour.2022.232243 10.1039/C5CP06913K 10.1002/advs.202204908 10.1002/adma.202404011 10.1021/acsnano.2c06220 10.1016/j.jpowsour.2023.233212 10.1016/j.isci.2020.101348 10.1016/j.cej.2023.142624 10.1126/sciadv.abo6688 10.1021/acs.jpcb.2c00858 10.1002/anie.202319125 10.1039/C9CS00349E 10.1016/j.ensm.2022.03.052 10.1016/j.ensm.2024.103532 10.1002/anie.202401555 10.1038/s41578-020-00241-4 10.1039/D3CC02893C 10.1021/ic100869r 10.1002/adma.202003021 10.1039/D0RA10721B 10.1002/anie.202413703 10.1039/D1CP02805G 10.1002/batt.202300474 10.1002/adma.202201716 10.1039/D3EE01580G 10.1002/advs.202305561 10.1039/D3SC06155H 10.1016/j.ensm.2024.103553 10.1021/acsnano.0c09380 10.1002/adma.202108856 10.1002/adfm.202001263 10.1016/j.electacta.2015.09.097 10.1016/j.jechem.2021.05.036 10.1002/cssc.201801657 10.1016/j.joule.2020.03.002 10.1002/aenm.202304516 10.1016/j.joule.2024.07.013 10.1038/s41570-024-00597-z 10.1021/acsenergylett.4c01657 10.1002/sstr.202200270 10.1016/j.snb.2014.03.089 10.1039/D0EE02162H 10.1002/aenm.202302187 10.1002/adma.202004553 10.1016/j.nanoen.2022.107278 10.1016/j.mtener.2017.12.012 10.1016/j.coelec.2021.100898 10.1016/j.est.2024.110449 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH 2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH. 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH – notice: 2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH. – notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.202502386 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | n/a |
ExternalDocumentID | 40001169 10_1002_anie_202502386 ANIE202502386 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Australian Research Council funderid: DP220102596, CE230100032, DE230100471, and IL230100039 – fundername: Australian Research Council grantid: DP220102596, CE230100032, DE230100471, and IL230100039 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAYXX CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c3686-4370a42176544f17f7e5cb85e6cbe33971d9000c6ce1c6b9e4773fd74b4115cd3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 22:20:36 EDT 2025 Sat Jul 26 13:10:45 EDT 2025 Mon Jul 21 06:08:28 EDT 2025 Wed Aug 13 23:52:17 EDT 2025 Sun Jul 06 04:45:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | polybromide sequestration KBr cathode suppressed shuttle static Zn−Br battery electrolyte screen |
Language | English |
License | Attribution 2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3686-4370a42176544f17f7e5cb85e6cbe33971d9000c6ce1c6b9e4773fd74b4115cd3 |
Notes | These authors contributed equally ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4568-8422 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202502386 |
PMID | 40001169 |
PQID | 3228972195 |
PQPubID | 946352 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3171378063 proquest_journals_3228972195 pubmed_primary_40001169 crossref_primary_10_1002_anie_202502386 wiley_primary_10_1002_anie_202502386_ANIE202502386 |
PublicationCentury | 2000 |
PublicationDate | May 12, 2025 |
PublicationDateYYYYMMDD | 2025-05-12 |
PublicationDate_xml | – month: 05 year: 2025 text: May 12, 2025 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 184 2023; 33 2021; 23 2023; 4 2020; 120 2023; 580 2023; 8 2023; 464 2024; 81 2020; 13 2022; 65 2024; 146 2024; 36 2020; 6 2023; 62 2018; 8 2020; 4 2024; 8 2024; 7 2024; 9 2024; 70 2023; 451 2022; 34 2020; 49 2024; 63 2024; 20 2022; 32 2024; 68 2025; 64 2022; 126 2021; 6 2023; 13 2021; 2 2019; 31 2023; 15 2023; 59 2023; 16 2024; 241 2024; 53 2024; 11 2020; 32 2021; 94 1996; 14 2016; 18 2024; 14 2014; 199 2024; 15 2024; 17 2012; 33 2022; 49 2021; 15 2010; 49 2021; 11 2020; 30 2022; 6 2023; 553 2022; 8 2022; 9 2022; 15 2020; 23 2022; 98 2021; 60 2018; 11 2022; 16 e_1_2_8_28_2 e_1_2_8_49_2 e_1_2_8_24_2 e_1_2_8_45_2 e_1_2_8_26_1 e_1_2_8_68_1 e_1_2_8_47_2 e_1_2_8_9_2 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_3_2 e_1_2_8_7_2 e_1_2_8_89_1 e_1_2_8_20_2 e_1_2_8_66_2 e_1_2_8_87_1 e_1_2_8_22_2 e_1_2_8_43_2 e_1_2_8_64_2 e_1_2_8_85_1 e_1_2_8_62_2 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_2 e_1_2_8_19_2 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_13_2 e_1_2_8_38_1 e_1_2_8_15_2 e_1_2_8_57_2 e_1_2_8_78_2 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_30_2 e_1_2_8_55_2 e_1_2_8_34_1 e_1_2_8_76_1 e_1_2_8_11_2 e_1_2_8_32_2 e_1_2_8_53_2 e_1_2_8_74_2 e_1_2_8_51_2 e_1_2_8_72_1 e_1_2_8_70_2 e_1_2_8_93_1 e_1_2_8_27_2 e_1_2_8_29_2 e_1_2_8_46_2 e_1_2_8_69_2 e_1_2_8_25_2 e_1_2_8_48_2 e_1_2_8_67_2 e_1_2_8_2_2 e_1_2_8_80_1 e_1_2_8_4_2 e_1_2_8_6_2 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_88_1 e_1_2_8_21_2 e_1_2_8_63_2 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_86_1 e_1_2_8_61_2 e_1_2_8_84_1 e_1_2_8_40_2 e_1_2_8_82_1 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_18_2 e_1_2_8_12_2 e_1_2_8_58_2 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_56_2 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_92_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_77_2 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_33_2 e_1_2_8_52_2 e_1_2_8_75_2 e_1_2_8_54_1 e_1_2_8_73_2 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 126 start-page: 3889 year: 2022 publication-title: J. Phys. Chem. B – volume: 8 start-page: 3054 year: 2024 publication-title: Joule – volume: 6 start-page: 109 year: 2021 publication-title: Nat. Rev. Mater. – volume: 464 year: 2023 publication-title: Chem. Eng. J. – volume: 16 start-page: 13554 year: 2022 publication-title: ACS Nano – volume: 59 start-page: 11536 year: 2023 publication-title: Chem. Commun. – volume: 2 year: 2021 publication-title: Cell Rep. Phys. Sci. – volume: 36 year: 2024 publication-title: Adv. Mater. – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 553 year: 2023 publication-title: J. Power Sources – volume: 9 start-page: 4102 year: 2024 publication-title: ACS Energy Lett. – volume: 9 start-page: 1035 year: 2024 publication-title: Green Energy & Environ. – volume: 62 year: 2023 publication-title: Angew. Chem. Int. Ed. – volume: 49 start-page: 11 year: 2022 publication-title: Energy Storage Mater. – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 60 start-page: 12636 year: 2021 publication-title: Angew. Chem. Int. Ed. – volume: 33 year: 2023 publication-title: Adv. Funct. Mater. – volume: 33 start-page: 580 year: 2012 publication-title: J. Comput. Chem. – volume: 451 year: 2023 publication-title: Chem. Eng. J. – volume: 53 start-page: 4312 year: 2024 publication-title: Chem. Soc. Rev. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 15 start-page: 1718 year: 2021 publication-title: ACS Nano – volume: 11 start-page: 5218 year: 2021 publication-title: RSC Adv. – volume: 49 start-page: 8684 year: 2010 publication-title: Inorg. Chem. – volume: 36 start-page: 6805 year: 2024 publication-title: Chem. Mater. – volume: 23 year: 2020 publication-title: iScience – volume: 23 start-page: 20323 year: 2021 publication-title: Phys. Chem. Chem. Phys. – volume: 16 start-page: 4073 year: 2023 publication-title: Energy Environ. Sci. – volume: 199 start-page: 101 year: 2014 publication-title: Sens. Actuators B – volume: 146 start-page: 16601 year: 2024 publication-title: J. Am. Chem. Soc. – volume: 20 year: 2024 publication-title: Small – volume: 68 year: 2024 publication-title: Energy Storage Mater. – volume: 17 start-page: 1975 year: 2024 publication-title: Energy Environ. Sci. – volume: 98 year: 2022 publication-title: Nano Energy – volume: 4 start-page: 771 year: 2020 publication-title: Joule – volume: 63 year: 2024 publication-title: Angew. Chem. Int. Ed. – volume: 4 year: 2023 publication-title: Small Structures – volume: 15 start-page: 209 year: 2023 publication-title: Nano-Micro Lett. – volume: 15 start-page: 3357 year: 2024 publication-title: Chem. Sci. – volume: 70 year: 2024 publication-title: Energy Storage Mater. – volume: 49 start-page: 4203 year: 2020 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 109 year: 2023 publication-title: Nat. Rev. Mater. – volume: 65 start-page: 89 year: 2022 publication-title: J. Energy Chem. – volume: 17 start-page: 5552 year: 2024 publication-title: Energy Environ. Sci. – volume: 7 year: 2024 publication-title: Batteries & Supercaps – volume: 32 year: 2022 publication-title: Curr. Opin. Electrochem. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 18 start-page: 7251 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 120 start-page: 7795 year: 2020 publication-title: Chem. Rev. – volume: 64 year: 2025 publication-title: Angew. Chem. Int. Ed. – volume: 13 year: 2023 publication-title: Adv. Energy Mater. – volume: 9 year: 2022 publication-title: Adv. Sci. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 11 start-page: 3996 year: 2018 publication-title: ChemSusChem – volume: 6 start-page: 1148 year: 2022 publication-title: Sustain. Energy Fuels – volume: 184 start-page: 483 year: 2015 publication-title: Electrochim. Acta – volume: 580 year: 2023 publication-title: J. Power Sources – volume: 11 year: 2024 publication-title: Adv. Sci. – volume: 241 year: 2024 publication-title: Scr. Mater. – volume: 14 start-page: 33 year: 1996 publication-title: J. Mol. Graphics – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 94 start-page: 2036 year: 2021 publication-title: Bull. Chem. Soc. Jpn. – volume: 14 year: 2024 publication-title: Adv. Energy Mater. – volume: 81 year: 2024 publication-title: J. Energy Storage – volume: 13 start-page: 3917 year: 2020 publication-title: Energy Environ. Sci. – volume: 16 start-page: 4572 year: 2023 publication-title: Energy Environ. Sci. – volume: 15 start-page: 5217 year: 2022 publication-title: Energy Environ. Sci. – volume: 8 start-page: 80 year: 2018 publication-title: Mater. Today Energy – volume: 8 start-page: 359 year: 2024 publication-title: Nat. Chem. Rev. – ident: e_1_2_8_70_2 doi: 10.1002/adma.202309726 – ident: e_1_2_8_31_1 – ident: e_1_2_8_76_1 – ident: e_1_2_8_79_1 doi: 10.1016/j.xcrp.2021.100620 – ident: e_1_2_8_71_1 doi: 10.1002/adma.201904524 – ident: e_1_2_8_14_1 – ident: e_1_2_8_40_2 doi: 10.1039/D1SE01749G – ident: e_1_2_8_33_2 doi: 10.1007/s40820-023-01174-7 – ident: e_1_2_8_54_1 – ident: e_1_2_8_89_1 doi: 10.1016/j.scriptamat.2023.115883 – ident: e_1_2_8_18_2 doi: 10.1002/anie.202009871 – ident: e_1_2_8_27_2 doi: 10.1002/adma.201902025 – ident: e_1_2_8_81_1 doi: 10.1021/jacs.4c03518 – ident: e_1_2_8_83_1 doi: 10.1039/D3EE01639K – ident: e_1_2_8_25_2 doi: 10.1246/bcsj.20210182 – ident: e_1_2_8_44_1 – ident: e_1_2_8_57_2 doi: 10.1002/adma.202206754 – ident: e_1_2_8_67_2 doi: 10.1039/D2EE03077B – ident: e_1_2_8_59_1 doi: 10.1021/acs.chemmater.4c00535 – ident: e_1_2_8_63_2 doi: 10.1016/0263-7855(96)00018-5 – ident: e_1_2_8_2_2 doi: 10.1126/sciadv.aba4098 – ident: e_1_2_8_84_1 doi: 10.1002/anie.202301467 – ident: e_1_2_8_10_1 – ident: e_1_2_8_43_2 doi: 10.1016/j.ensm.2024.103331 – ident: e_1_2_8_4_2 doi: 10.1038/s41578-022-00511-3 – ident: e_1_2_8_11_2 doi: 10.1021/acs.chemrev.9b00628 – ident: e_1_2_8_35_1 doi: 10.1002/smll.202401916 – ident: e_1_2_8_95_1 doi: 10.1016/j.gee.2022.11.007 – ident: e_1_2_8_61_2 doi: 10.1002/jcc.22885 – ident: e_1_2_8_72_1 – ident: e_1_2_8_91_1 doi: 10.1016/j.cej.2022.138915 – ident: e_1_2_8_56_2 doi: 10.1039/D3EE04515C – ident: e_1_2_8_13_2 doi: 10.1039/D3CS00771E – ident: e_1_2_8_23_1 – ident: e_1_2_8_21_2 doi: 10.1002/adma.202309038 – ident: e_1_2_8_15_2 doi: 10.1002/anie.202308397 – ident: e_1_2_8_50_1 – ident: e_1_2_8_58_2 doi: 10.1002/adfm.202306952 – ident: e_1_2_8_26_1 – ident: e_1_2_8_46_2 doi: 10.1039/D4EE02096K – ident: e_1_2_8_48_2 doi: 10.1016/j.jpowsour.2022.232243 – ident: e_1_2_8_74_2 doi: 10.1039/C5CP06913K – ident: e_1_2_8_42_2 doi: 10.1002/advs.202204908 – ident: e_1_2_8_85_1 doi: 10.1002/adma.202404011 – ident: e_1_2_8_17_2 doi: 10.1021/acsnano.2c06220 – ident: e_1_2_8_49_2 doi: 10.1016/j.jpowsour.2023.233212 – ident: e_1_2_8_51_2 doi: 10.1016/j.isci.2020.101348 – ident: e_1_2_8_65_1 – ident: e_1_2_8_92_1 doi: 10.1016/j.cej.2023.142624 – ident: e_1_2_8_45_2 doi: 10.1126/sciadv.abo6688 – ident: e_1_2_8_78_2 doi: 10.1021/acs.jpcb.2c00858 – ident: e_1_2_8_37_1 doi: 10.1002/anie.202319125 – ident: e_1_2_8_12_2 doi: 10.1039/C9CS00349E – ident: e_1_2_8_93_1 doi: 10.1016/j.ensm.2022.03.052 – ident: e_1_2_8_30_2 doi: 10.1016/j.ensm.2024.103532 – ident: e_1_2_8_66_2 doi: 10.1002/anie.202401555 – ident: e_1_2_8_3_2 doi: 10.1038/s41578-020-00241-4 – ident: e_1_2_8_1_1 – ident: e_1_2_8_34_1 doi: 10.1039/D3CC02893C – ident: e_1_2_8_73_2 doi: 10.1021/ic100869r – ident: e_1_2_8_8_2 doi: 10.1002/adma.202003021 – ident: e_1_2_8_75_2 doi: 10.1039/D0RA10721B – ident: e_1_2_8_22_2 doi: 10.1002/anie.202413703 – ident: e_1_2_8_62_2 doi: 10.1039/D1CP02805G – ident: e_1_2_8_88_1 doi: 10.1002/batt.202300474 – ident: e_1_2_8_5_1 – ident: e_1_2_8_20_2 doi: 10.1002/adma.202201716 – ident: e_1_2_8_36_1 doi: 10.1039/D3EE01580G – ident: e_1_2_8_60_1 – ident: e_1_2_8_29_2 doi: 10.1002/advs.202305561 – ident: e_1_2_8_86_1 doi: 10.1039/D3SC06155H – ident: e_1_2_8_47_2 doi: 10.1016/j.ensm.2024.103553 – ident: e_1_2_8_41_1 – ident: e_1_2_8_82_1 doi: 10.1021/acsnano.0c09380 – ident: e_1_2_8_16_2 doi: 10.1002/adma.202108856 – ident: e_1_2_8_7_2 doi: 10.1002/adfm.202001263 – ident: e_1_2_8_38_1 – ident: e_1_2_8_80_1 doi: 10.1016/j.electacta.2015.09.097 – ident: e_1_2_8_52_2 doi: 10.1016/j.jechem.2021.05.036 – ident: e_1_2_8_69_2 doi: 10.1002/cssc.201801657 – ident: e_1_2_8_6_2 doi: 10.1016/j.joule.2020.03.002 – ident: e_1_2_8_90_1 doi: 10.1002/aenm.202304516 – ident: e_1_2_8_87_1 doi: 10.1016/j.joule.2024.07.013 – ident: e_1_2_8_24_2 doi: 10.1038/s41570-024-00597-z – ident: e_1_2_8_55_2 doi: 10.1021/acsenergylett.4c01657 – ident: e_1_2_8_64_2 doi: 10.1002/sstr.202200270 – ident: e_1_2_8_77_2 doi: 10.1016/j.snb.2014.03.089 – ident: e_1_2_8_9_2 doi: 10.1039/D0EE02162H – ident: e_1_2_8_19_2 doi: 10.1002/aenm.202302187 – ident: e_1_2_8_39_2 doi: 10.1002/adma.202004553 – ident: e_1_2_8_68_1 – ident: e_1_2_8_94_1 doi: 10.1016/j.nanoen.2022.107278 – ident: e_1_2_8_28_2 doi: 10.1016/j.mtener.2017.12.012 – ident: e_1_2_8_32_2 doi: 10.1016/j.coelec.2021.100898 – ident: e_1_2_8_53_2 doi: 10.1016/j.est.2024.110449 |
SSID | ssj0028806 |
Score | 2.4884095 |
Snippet | Br2/Br− conversion reaction with a high operating potential (1.85 V vs. Zn2+/Zn) is promising for designing high‐energy cathodes in aqueous Zn batteries.... Br 2 /Br − conversion reaction with a high operating potential (1.85 V vs . Zn 2+ /Zn) is promising for designing high‐energy cathodes in aqueous Zn batteries.... Br /Br conversion reaction with a high operating potential (1.85 V vs. Zn /Zn) is promising for designing high-energy cathodes in aqueous Zn batteries.... Br2/Br- conversion reaction with a high operating potential (1.85 V vs. Zn2+/Zn) is promising for designing high-energy cathodes in aqueous Zn batteries.... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e202502386 |
SubjectTerms | Aqueous electrolytes Bromine Cathodes Charge density Discharge electrolyte screen Electrolytes Electrolytic cells KBr cathode polybromide sequestration static Zn−Br battery suppressed shuttle Zinc Zinc salts Zinc sulfate |
Title | Aqueous Zinc‐Bromine Battery with Highly Reversible Bromine Conversion Chemistry |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202502386 https://www.ncbi.nlm.nih.gov/pubmed/40001169 https://www.proquest.com/docview/3228972195 https://www.proquest.com/docview/3171378063 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7Ui158P-qjRBA8RZPsJps9lmJRD0WKheIl7G42INYotj3oyZ_gb_SXOJM00epB0FtCss-ZzXyzmf0G4Ehknq_9WLoh97XLVRy5xAniylAoI2VGWeQo2qIbnff55SAcfDnFX_JD1BtutDKK7zUtcKVHp5-koXQCG_07NOFodYhzmwK2CBX1av6oAJWzPF7EmEtZ6CvWRi84nS0-a5V-QM1Z5FqYns4KqKrTZcTJ3clkrE_Myzc-x_-MahWWp7jUaZWKtAZzNl-HxXaVDm4Dei3s7MNk5Nzc5ub99Q3993tszSkJOp8d2tB1KGpk-Oz0bBHsoYf4ePpam6Lbi605p650E_qds-v2uTtNyOAaFqEUOROe4ujERCHnmS8yYUOj49BGRluGyMZPKQepiYz1TaSl5UKwLBVccwSeJmVbsJA_5HYHnJCl6JkiQFAq5sbLYukpLdNUMOLnMWEDjiuBJI8l70ZSMiwHCc1RUs9RA_YreSXT9TdKqBbiJZJY0WH9GAdHv0NUTtOVIHLymUANYQ3YLuVcN8ULrBzJBgSFtH7pQ9LqXpzVd7t_KbQHS3RNgQl-sA8L46eJPUC8M9ZNmA_4VbPQ7A-7EPaC |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BOYRLy6OlKYUaCaknp7Z3ves9RlGihIYcokRCXFbe9VqqCA4iySGc-hP6G_tLOmPHRoEDUjn6sc-Z9X4znv0G4KPMg9CEifJjHhqfp4nwiRPEV7FMrVI5ZZGjaIuJGM75py9xHU1IZ2EqfojG4UYro_xe0wInh_TVb9ZQOoKNBh7u4bjtiKfwjNJ6l1bVtGGQilA9qwNGjPmUh77mbQyiq_3y-_vSX2BzH7uWm8_gCEzd7Srm5FtnszYd--sPRsf_GtcLONxBU69b6dJLeOKKV9Dq1RnhXsO0i71dblbe15vC3t_eoQn_HZvzKo7OrUc-XY8CRxZbb-rKeA-zwMe713oU4F5657ym0mOYD_qz3tDf5WTwLRMoSM5kkHK0Y0TMeR7KXLrYmiR2whrHENyEGaUhtcK60AqjHJeS5ZnkhiP2tBk7gYNiWbhT8GKWoXGKGCFNE26DPFFBalSWSUYUPTZuw2UtEf2jot7QFclypGmOdDNHbTivBaZ3S3ClqRaiJlJY0YfmMQ6O_oikBU2XRvAUMokqwtrwphJ00xQv4bJQbYhKcf2jD7o7GfWbq7PHFLqA1nD2eazHo8n1W3hO9ylOIYzO4WD9c-PeIfxZm_elgj8AW1T5xg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RkNpeoO8GKA1SpZ6yJLFjx8fVLqtdWq3QqkioFyt2HKkCAiq7BzjxE_iN_BJm8oIth0rtMQ8_Z5z5xhl_A_BFFmFkolQFCY9MwLNUBMQJEqhEZlapgrLIUbTFVIyP-MFxcvzoFH_ND9FtuNHKqL7XtMAv8mLvgTSUTmCjf4cmHK2OeAZrXIQp6fVw1hFIxaid9fkixgJKQ9_SNobx3nL5ZbP0BGsuQ9fK9ow2IGt7XYecnPQWc9Oz138QOv7PsF7BegNM_X6tSa9hxZVv4MWgzQf3FmZ97Oz54tL_-au0dze36MCfYWt-zdB55dOOrk9hI6dX_sxV0R7mFB83rw0ovL3am_O7St_B0Wj_x2AcNBkZAssEipEzGWYcvRiRcF5EspAusSZNnLDGMYQ2UU5JSK2wLrLCKMelZEUuueGIPG3O3sNqeV66j-AnLEfXFBFClqXchkWqwsyoPJeMCHps4sHXViD6oibe0DXFcqxpjnQ3Rx5st_LSzQK81FQLERMprGi3e4yDo_8hWUnTpRE6RUyihjAPPtRy7priFVgWyoO4ktZf-qD708l-d7X5L4U-w_PD4Uh_n0y_bcFLuk1BClG8Davz3wv3CbHP3OxU6n0Php34fg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aqueous+Zinc-Bromine+Battery+with+Highly+Reversible+Bromine+Conversion+Chemistry&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhao%2C+Xun&rft.au=Hao%2C+Junnan&rft.au=Chen%2C+Qianru&rft.au=Zhang%2C+Shao-Jian&rft.date=2025-05-12&rft.issn=1521-3773&rft.eissn=1521-3773&rft.spage=e202502386&rft_id=info:doi/10.1002%2Fanie.202502386&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |