Aqueous Zinc‐Bromine Battery with Highly Reversible Bromine Conversion Chemistry

Br2/Br− conversion reaction with a high operating potential (1.85 V vs. Zn2+/Zn) is promising for designing high‐energy cathodes in aqueous Zn batteries. However, the ultrahigh solubility of polybromides causes significant shuttle effects, capacity deterioration, and self‐discharge, rendering the st...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 64; no. 20; pp. e202502386 - n/a
Main Authors Zhao, Xun, Hao, Junnan, Chen, Qianru, Zhang, Shao‐Jian, Wu, Han, Mao, Lei, Qiao, Shi‐Zhang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 12.05.2025
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Br2/Br− conversion reaction with a high operating potential (1.85 V vs. Zn2+/Zn) is promising for designing high‐energy cathodes in aqueous Zn batteries. However, the ultrahigh solubility of polybromides causes significant shuttle effects, capacity deterioration, and self‐discharge, rendering the study of static zinc‐bromine batteries still in its infancy. Here, various aqueous zinc salt electrolytes are first screened, showing that, compared to other salts, ZnSO4 is more suitable for Br‐based cathodes benefiting from its higher negative charge density and lower cost. Nevertheless, the significant shuttle effect of polybromides remains in such an electrolyte. We further develop a targeted sequestration strategy to fundamentally confine polybromide migration from KBr cathode into electrolyte. In high‐mass‐loading (22 mgKBr cm−2) pouch cells, the average Coulombic efficiency enhances from 92.3 % to 99.8 %, and self‐discharge performance dramatically improves from 17.4 % capacity retention to 85.2 % after 72 h of resting, indicating the effectiveness of our strategy in confining the shuttle effects. Furthermore, an Ah‐scale pouch cell delivers an average Coulombic efficiency of 99.88 % and a zinc utilization of 22 % at a high rate of 3 C. Our findings also pave the way for the design of advanced Br‐based cathodes. ZnSO4 solution is initially screened as the electrolyte for bromide cathodes. Subsequently, a targeted sequestration strategy is proposed to modify KBr cathode, achieving high‐reversibility bromine conversion chemistry. In situ Raman spectra reveal a Br3−/Br−‐dominated conversion mechanism. A large‐capacity Zn−Br pouch cell exhibits a high capacity retention of 98.46 % and an average Coulombic efficiency of 99.92 % after 775 cycles at 3 C.
AbstractList Br2/Br− conversion reaction with a high operating potential (1.85 V vs. Zn2+/Zn) is promising for designing high‐energy cathodes in aqueous Zn batteries. However, the ultrahigh solubility of polybromides causes significant shuttle effects, capacity deterioration, and self‐discharge, rendering the study of static zinc‐bromine batteries still in its infancy. Here, various aqueous zinc salt electrolytes are first screened, showing that, compared to other salts, ZnSO4 is more suitable for Br‐based cathodes benefiting from its higher negative charge density and lower cost. Nevertheless, the significant shuttle effect of polybromides remains in such an electrolyte. We further develop a targeted sequestration strategy to fundamentally confine polybromide migration from KBr cathode into electrolyte. In high‐mass‐loading (22 mgKBr cm−2) pouch cells, the average Coulombic efficiency enhances from 92.3 % to 99.8 %, and self‐discharge performance dramatically improves from 17.4 % capacity retention to 85.2 % after 72 h of resting, indicating the effectiveness of our strategy in confining the shuttle effects. Furthermore, an Ah‐scale pouch cell delivers an average Coulombic efficiency of 99.88 % and a zinc utilization of 22 % at a high rate of 3 C. Our findings also pave the way for the design of advanced Br‐based cathodes. ZnSO4 solution is initially screened as the electrolyte for bromide cathodes. Subsequently, a targeted sequestration strategy is proposed to modify KBr cathode, achieving high‐reversibility bromine conversion chemistry. In situ Raman spectra reveal a Br3−/Br−‐dominated conversion mechanism. A large‐capacity Zn−Br pouch cell exhibits a high capacity retention of 98.46 % and an average Coulombic efficiency of 99.92 % after 775 cycles at 3 C.
Br2/Br− conversion reaction with a high operating potential (1.85 V vs. Zn2+/Zn) is promising for designing high‐energy cathodes in aqueous Zn batteries. However, the ultrahigh solubility of polybromides causes significant shuttle effects, capacity deterioration, and self‐discharge, rendering the study of static zinc‐bromine batteries still in its infancy. Here, various aqueous zinc salt electrolytes are first screened, showing that, compared to other salts, ZnSO4 is more suitable for Br‐based cathodes benefiting from its higher negative charge density and lower cost. Nevertheless, the significant shuttle effect of polybromides remains in such an electrolyte. We further develop a targeted sequestration strategy to fundamentally confine polybromide migration from KBr cathode into electrolyte. In high‐mass‐loading (22 mgKBr cm−2) pouch cells, the average Coulombic efficiency enhances from 92.3 % to 99.8 %, and self‐discharge performance dramatically improves from 17.4 % capacity retention to 85.2 % after 72 h of resting, indicating the effectiveness of our strategy in confining the shuttle effects. Furthermore, an Ah‐scale pouch cell delivers an average Coulombic efficiency of 99.88 % and a zinc utilization of 22 % at a high rate of 3 C. Our findings also pave the way for the design of advanced Br‐based cathodes.
Br2/Br- conversion reaction with a high operating potential (1.85 V vs. Zn2+/Zn) is promising for designing high-energy cathodes in aqueous Zn batteries. However, the ultrahigh solubility of polybromides causes significant shuttle effects, capacity deterioration, and self-discharge, rendering the study of static zinc-bromine batteries still in its infancy. Here, various aqueous zinc salt electrolytes are first screened, showing that, compared to other salts, ZnSO4 is more suitable for Br-based cathodes benefiting from its higher negative charge density and lower cost. Nevertheless, the significant shuttle effect of polybromides remains in such an electrolyte. We further develop a targeted sequestration strategy to fundamentally confine polybromide migration from KBr cathode into electrolyte. In high-mass-loading (22 mgKBr cm-2) pouch cells, the average Coulombic efficiency enhances from 92.3 % to 99.8 %, and self-discharge performance dramatically improves from 17.4 % capacity retention to 85.2 % after 72 h of resting, indicating the effectiveness of our strategy in confining the shuttle effects. Furthermore, an Ah-scale pouch cell delivers an average Coulombic efficiency of 99.88 % and a zinc utilization of 22 % at a high rate of 3 C. Our findings also pave the way for the design of advanced Br-based cathodes.Br2/Br- conversion reaction with a high operating potential (1.85 V vs. Zn2+/Zn) is promising for designing high-energy cathodes in aqueous Zn batteries. However, the ultrahigh solubility of polybromides causes significant shuttle effects, capacity deterioration, and self-discharge, rendering the study of static zinc-bromine batteries still in its infancy. Here, various aqueous zinc salt electrolytes are first screened, showing that, compared to other salts, ZnSO4 is more suitable for Br-based cathodes benefiting from its higher negative charge density and lower cost. Nevertheless, the significant shuttle effect of polybromides remains in such an electrolyte. We further develop a targeted sequestration strategy to fundamentally confine polybromide migration from KBr cathode into electrolyte. In high-mass-loading (22 mgKBr cm-2) pouch cells, the average Coulombic efficiency enhances from 92.3 % to 99.8 %, and self-discharge performance dramatically improves from 17.4 % capacity retention to 85.2 % after 72 h of resting, indicating the effectiveness of our strategy in confining the shuttle effects. Furthermore, an Ah-scale pouch cell delivers an average Coulombic efficiency of 99.88 % and a zinc utilization of 22 % at a high rate of 3 C. Our findings also pave the way for the design of advanced Br-based cathodes.
Br 2 /Br − conversion reaction with a high operating potential (1.85 V vs . Zn 2+ /Zn) is promising for designing high‐energy cathodes in aqueous Zn batteries. However, the ultrahigh solubility of polybromides causes significant shuttle effects, capacity deterioration, and self‐discharge, rendering the study of static zinc‐bromine batteries still in its infancy. Here, various aqueous zinc salt electrolytes are first screened, showing that, compared to other salts, ZnSO 4 is more suitable for Br‐based cathodes benefiting from its higher negative charge density and lower cost. Nevertheless, the significant shuttle effect of polybromides remains in such an electrolyte. We further develop a targeted sequestration strategy to fundamentally confine polybromide migration from KBr cathode into electrolyte. In high‐mass‐loading (22 mg KBr cm −2 ) pouch cells, the average Coulombic efficiency enhances from 92.3 % to 99.8 %, and self‐discharge performance dramatically improves from 17.4 % capacity retention to 85.2 % after 72 h of resting, indicating the effectiveness of our strategy in confining the shuttle effects. Furthermore, an Ah‐scale pouch cell delivers an average Coulombic efficiency of 99.88 % and a zinc utilization of 22 % at a high rate of 3 C. Our findings also pave the way for the design of advanced Br‐based cathodes.
Br /Br conversion reaction with a high operating potential (1.85 V vs. Zn /Zn) is promising for designing high-energy cathodes in aqueous Zn batteries. However, the ultrahigh solubility of polybromides causes significant shuttle effects, capacity deterioration, and self-discharge, rendering the study of static zinc-bromine batteries still in its infancy. Here, various aqueous zinc salt electrolytes are first screened, showing that, compared to other salts, ZnSO is more suitable for Br-based cathodes benefiting from its higher negative charge density and lower cost. Nevertheless, the significant shuttle effect of polybromides remains in such an electrolyte. We further develop a targeted sequestration strategy to fundamentally confine polybromide migration from KBr cathode into electrolyte. In high-mass-loading (22 mg cm ) pouch cells, the average Coulombic efficiency enhances from 92.3 % to 99.8 %, and self-discharge performance dramatically improves from 17.4 % capacity retention to 85.2 % after 72 h of resting, indicating the effectiveness of our strategy in confining the shuttle effects. Furthermore, an Ah-scale pouch cell delivers an average Coulombic efficiency of 99.88 % and a zinc utilization of 22 % at a high rate of 3 C. Our findings also pave the way for the design of advanced Br-based cathodes.
Author Wu, Han
Zhang, Shao‐Jian
Zhao, Xun
Hao, Junnan
Qiao, Shi‐Zhang
Chen, Qianru
Mao, Lei
Author_xml – sequence: 1
  givenname: Xun
  surname: Zhao
  fullname: Zhao, Xun
  organization: The University of Adelaide
– sequence: 2
  givenname: Junnan
  surname: Hao
  fullname: Hao, Junnan
  organization: The University of Adelaide
– sequence: 3
  givenname: Qianru
  surname: Chen
  fullname: Chen, Qianru
  organization: The University of Adelaide
– sequence: 4
  givenname: Shao‐Jian
  surname: Zhang
  fullname: Zhang, Shao‐Jian
  organization: The University of Adelaide
– sequence: 5
  givenname: Han
  surname: Wu
  fullname: Wu, Han
  organization: The University of Adelaide
– sequence: 6
  givenname: Lei
  surname: Mao
  fullname: Mao, Lei
  organization: The University of Adelaide
– sequence: 7
  givenname: Shi‐Zhang
  orcidid: 0000-0002-4568-8422
  surname: Qiao
  fullname: Qiao, Shi‐Zhang
  email: s.qiao@adelaide.edu.au
  organization: The University of Adelaide
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40001169$$D View this record in MEDLINE/PubMed
BookMark eNqFkb1OwzAUhS0E4n9lRJFYWFJ8bcdOxlLxJyGQECwsVuLeUKPUATsFZeMReEaeBJcWkFiYfGV_5957fLbIqmsdErIHdACUsqPSWRwwyjLKeC5XyCZkDFKuFF-NteA8VXkGG2QrhMfI5zmV62RDUEoBZLFJbobPM2xnIbm3zny8vR_7dmodJsdl16Hvk1fbTZJz-zBp-uQGX9AHWzXxeYmNWvd117pkNMGpDZ3vd8haXTYBd5fnNrk7PbkdnaeX12cXo-FlarjMZSq4oqVgoGQmRA2qVpiZKs9Qmgo5LxSMi7imkQbByKpAEU3VYyUqAZCZMd8mh4u-T76NJkKn43yDTVO6uSPNQQFX0TCP6MEf9LGdeRe305yxvFAMiixS-0tqVk1xrJ-8nZa-19-_FYHBAjC-DcFj_YMA1fM49DwO_RNHFBQLwattsP-H1sOri5Nf7Sdvg41n
Cites_doi 10.1002/adma.202309726
10.1016/j.xcrp.2021.100620
10.1002/adma.201904524
10.1039/D1SE01749G
10.1007/s40820-023-01174-7
10.1016/j.scriptamat.2023.115883
10.1002/anie.202009871
10.1002/adma.201902025
10.1021/jacs.4c03518
10.1039/D3EE01639K
10.1246/bcsj.20210182
10.1002/adma.202206754
10.1039/D2EE03077B
10.1021/acs.chemmater.4c00535
10.1016/0263-7855(96)00018-5
10.1126/sciadv.aba4098
10.1002/anie.202301467
10.1016/j.ensm.2024.103331
10.1038/s41578-022-00511-3
10.1021/acs.chemrev.9b00628
10.1002/smll.202401916
10.1016/j.gee.2022.11.007
10.1002/jcc.22885
10.1016/j.cej.2022.138915
10.1039/D3EE04515C
10.1039/D3CS00771E
10.1002/adma.202309038
10.1002/anie.202308397
10.1002/adfm.202306952
10.1039/D4EE02096K
10.1016/j.jpowsour.2022.232243
10.1039/C5CP06913K
10.1002/advs.202204908
10.1002/adma.202404011
10.1021/acsnano.2c06220
10.1016/j.jpowsour.2023.233212
10.1016/j.isci.2020.101348
10.1016/j.cej.2023.142624
10.1126/sciadv.abo6688
10.1021/acs.jpcb.2c00858
10.1002/anie.202319125
10.1039/C9CS00349E
10.1016/j.ensm.2022.03.052
10.1016/j.ensm.2024.103532
10.1002/anie.202401555
10.1038/s41578-020-00241-4
10.1039/D3CC02893C
10.1021/ic100869r
10.1002/adma.202003021
10.1039/D0RA10721B
10.1002/anie.202413703
10.1039/D1CP02805G
10.1002/batt.202300474
10.1002/adma.202201716
10.1039/D3EE01580G
10.1002/advs.202305561
10.1039/D3SC06155H
10.1016/j.ensm.2024.103553
10.1021/acsnano.0c09380
10.1002/adma.202108856
10.1002/adfm.202001263
10.1016/j.electacta.2015.09.097
10.1016/j.jechem.2021.05.036
10.1002/cssc.201801657
10.1016/j.joule.2020.03.002
10.1002/aenm.202304516
10.1016/j.joule.2024.07.013
10.1038/s41570-024-00597-z
10.1021/acsenergylett.4c01657
10.1002/sstr.202200270
10.1016/j.snb.2014.03.089
10.1039/D0EE02162H
10.1002/aenm.202302187
10.1002/adma.202004553
10.1016/j.nanoen.2022.107278
10.1016/j.mtener.2017.12.012
10.1016/j.coelec.2021.100898
10.1016/j.est.2024.110449
ContentType Journal Article
Copyright 2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH
2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH.
2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH
– notice: 2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH.
– notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.202502386
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage n/a
ExternalDocumentID 40001169
10_1002_anie_202502386
ANIE202502386
Genre article
Journal Article
GrantInformation_xml – fundername: Australian Research Council
  funderid: DP220102596, CE230100032, DE230100471, and IL230100039
– fundername: Australian Research Council
  grantid: DP220102596, CE230100032, DE230100471, and IL230100039
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c3686-4370a42176544f17f7e5cb85e6cbe33971d9000c6ce1c6b9e4773fd74b4115cd3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 22:20:36 EDT 2025
Sat Jul 26 13:10:45 EDT 2025
Mon Jul 21 06:08:28 EDT 2025
Wed Aug 13 23:52:17 EDT 2025
Sun Jul 06 04:45:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords polybromide sequestration
KBr cathode
suppressed shuttle
static Zn−Br battery
electrolyte screen
Language English
License Attribution
2025 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3686-4370a42176544f17f7e5cb85e6cbe33971d9000c6ce1c6b9e4773fd74b4115cd3
Notes These authors contributed equally
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4568-8422
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202502386
PMID 40001169
PQID 3228972195
PQPubID 946352
PageCount 10
ParticipantIDs proquest_miscellaneous_3171378063
proquest_journals_3228972195
pubmed_primary_40001169
crossref_primary_10_1002_anie_202502386
wiley_primary_10_1002_anie_202502386_ANIE202502386
PublicationCentury 2000
PublicationDate May 12, 2025
PublicationDateYYYYMMDD 2025-05-12
PublicationDate_xml – month: 05
  year: 2025
  text: May 12, 2025
  day: 12
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 184
2023; 33
2021; 23
2023; 4
2020; 120
2023; 580
2023; 8
2023; 464
2024; 81
2020; 13
2022; 65
2024; 146
2024; 36
2020; 6
2023; 62
2018; 8
2020; 4
2024; 8
2024; 7
2024; 9
2024; 70
2023; 451
2022; 34
2020; 49
2024; 63
2024; 20
2022; 32
2024; 68
2025; 64
2022; 126
2021; 6
2023; 13
2021; 2
2019; 31
2023; 15
2023; 59
2023; 16
2024; 241
2024; 53
2024; 11
2020; 32
2021; 94
1996; 14
2016; 18
2024; 14
2014; 199
2024; 15
2024; 17
2012; 33
2022; 49
2021; 15
2010; 49
2021; 11
2020; 30
2022; 6
2023; 553
2022; 8
2022; 9
2022; 15
2020; 23
2022; 98
2021; 60
2018; 11
2022; 16
e_1_2_8_28_2
e_1_2_8_49_2
e_1_2_8_24_2
e_1_2_8_45_2
e_1_2_8_26_1
e_1_2_8_68_1
e_1_2_8_47_2
e_1_2_8_9_2
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_7_2
e_1_2_8_89_1
e_1_2_8_20_2
e_1_2_8_66_2
e_1_2_8_87_1
e_1_2_8_22_2
e_1_2_8_43_2
e_1_2_8_64_2
e_1_2_8_85_1
e_1_2_8_62_2
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_2
e_1_2_8_19_2
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_13_2
e_1_2_8_38_1
e_1_2_8_15_2
e_1_2_8_57_2
e_1_2_8_78_2
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_30_2
e_1_2_8_55_2
e_1_2_8_34_1
e_1_2_8_76_1
e_1_2_8_11_2
e_1_2_8_32_2
e_1_2_8_53_2
e_1_2_8_74_2
e_1_2_8_51_2
e_1_2_8_72_1
e_1_2_8_70_2
e_1_2_8_93_1
e_1_2_8_27_2
e_1_2_8_29_2
e_1_2_8_46_2
e_1_2_8_69_2
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_67_2
e_1_2_8_2_2
e_1_2_8_80_1
e_1_2_8_4_2
e_1_2_8_6_2
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_88_1
e_1_2_8_21_2
e_1_2_8_63_2
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_86_1
e_1_2_8_61_2
e_1_2_8_84_1
e_1_2_8_40_2
e_1_2_8_82_1
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_18_2
e_1_2_8_12_2
e_1_2_8_58_2
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_56_2
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_92_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_77_2
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_33_2
e_1_2_8_52_2
e_1_2_8_75_2
e_1_2_8_54_1
e_1_2_8_73_2
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 126
  start-page: 3889
  year: 2022
  publication-title: J. Phys. Chem. B
– volume: 8
  start-page: 3054
  year: 2024
  publication-title: Joule
– volume: 6
  start-page: 109
  year: 2021
  publication-title: Nat. Rev. Mater.
– volume: 464
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 16
  start-page: 13554
  year: 2022
  publication-title: ACS Nano
– volume: 59
  start-page: 11536
  year: 2023
  publication-title: Chem. Commun.
– volume: 2
  year: 2021
  publication-title: Cell Rep. Phys. Sci.
– volume: 36
  year: 2024
  publication-title: Adv. Mater.
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 553
  year: 2023
  publication-title: J. Power Sources
– volume: 9
  start-page: 4102
  year: 2024
  publication-title: ACS Energy Lett.
– volume: 9
  start-page: 1035
  year: 2024
  publication-title: Green Energy & Environ.
– volume: 62
  year: 2023
  publication-title: Angew. Chem. Int. Ed.
– volume: 49
  start-page: 11
  year: 2022
  publication-title: Energy Storage Mater.
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 60
  start-page: 12636
  year: 2021
  publication-title: Angew. Chem. Int. Ed.
– volume: 33
  year: 2023
  publication-title: Adv. Funct. Mater.
– volume: 33
  start-page: 580
  year: 2012
  publication-title: J. Comput. Chem.
– volume: 451
  year: 2023
  publication-title: Chem. Eng. J.
– volume: 53
  start-page: 4312
  year: 2024
  publication-title: Chem. Soc. Rev.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 1718
  year: 2021
  publication-title: ACS Nano
– volume: 11
  start-page: 5218
  year: 2021
  publication-title: RSC Adv.
– volume: 49
  start-page: 8684
  year: 2010
  publication-title: Inorg. Chem.
– volume: 36
  start-page: 6805
  year: 2024
  publication-title: Chem. Mater.
– volume: 23
  year: 2020
  publication-title: iScience
– volume: 23
  start-page: 20323
  year: 2021
  publication-title: Phys. Chem. Chem. Phys.
– volume: 16
  start-page: 4073
  year: 2023
  publication-title: Energy Environ. Sci.
– volume: 199
  start-page: 101
  year: 2014
  publication-title: Sens. Actuators B
– volume: 146
  start-page: 16601
  year: 2024
  publication-title: J. Am. Chem. Soc.
– volume: 20
  year: 2024
  publication-title: Small
– volume: 68
  year: 2024
  publication-title: Energy Storage Mater.
– volume: 17
  start-page: 1975
  year: 2024
  publication-title: Energy Environ. Sci.
– volume: 98
  year: 2022
  publication-title: Nano Energy
– volume: 4
  start-page: 771
  year: 2020
  publication-title: Joule
– volume: 63
  year: 2024
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  year: 2023
  publication-title: Small Structures
– volume: 15
  start-page: 209
  year: 2023
  publication-title: Nano-Micro Lett.
– volume: 15
  start-page: 3357
  year: 2024
  publication-title: Chem. Sci.
– volume: 70
  year: 2024
  publication-title: Energy Storage Mater.
– volume: 49
  start-page: 4203
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 109
  year: 2023
  publication-title: Nat. Rev. Mater.
– volume: 65
  start-page: 89
  year: 2022
  publication-title: J. Energy Chem.
– volume: 17
  start-page: 5552
  year: 2024
  publication-title: Energy Environ. Sci.
– volume: 7
  year: 2024
  publication-title: Batteries & Supercaps
– volume: 32
  year: 2022
  publication-title: Curr. Opin. Electrochem.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 18
  start-page: 7251
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 120
  start-page: 7795
  year: 2020
  publication-title: Chem. Rev.
– volume: 64
  year: 2025
  publication-title: Angew. Chem. Int. Ed.
– volume: 13
  year: 2023
  publication-title: Adv. Energy Mater.
– volume: 9
  year: 2022
  publication-title: Adv. Sci.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 11
  start-page: 3996
  year: 2018
  publication-title: ChemSusChem
– volume: 6
  start-page: 1148
  year: 2022
  publication-title: Sustain. Energy Fuels
– volume: 184
  start-page: 483
  year: 2015
  publication-title: Electrochim. Acta
– volume: 580
  year: 2023
  publication-title: J. Power Sources
– volume: 11
  year: 2024
  publication-title: Adv. Sci.
– volume: 241
  year: 2024
  publication-title: Scr. Mater.
– volume: 14
  start-page: 33
  year: 1996
  publication-title: J. Mol. Graphics
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 94
  start-page: 2036
  year: 2021
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 14
  year: 2024
  publication-title: Adv. Energy Mater.
– volume: 81
  year: 2024
  publication-title: J. Energy Storage
– volume: 13
  start-page: 3917
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 16
  start-page: 4572
  year: 2023
  publication-title: Energy Environ. Sci.
– volume: 15
  start-page: 5217
  year: 2022
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 80
  year: 2018
  publication-title: Mater. Today Energy
– volume: 8
  start-page: 359
  year: 2024
  publication-title: Nat. Chem. Rev.
– ident: e_1_2_8_70_2
  doi: 10.1002/adma.202309726
– ident: e_1_2_8_31_1
– ident: e_1_2_8_76_1
– ident: e_1_2_8_79_1
  doi: 10.1016/j.xcrp.2021.100620
– ident: e_1_2_8_71_1
  doi: 10.1002/adma.201904524
– ident: e_1_2_8_14_1
– ident: e_1_2_8_40_2
  doi: 10.1039/D1SE01749G
– ident: e_1_2_8_33_2
  doi: 10.1007/s40820-023-01174-7
– ident: e_1_2_8_54_1
– ident: e_1_2_8_89_1
  doi: 10.1016/j.scriptamat.2023.115883
– ident: e_1_2_8_18_2
  doi: 10.1002/anie.202009871
– ident: e_1_2_8_27_2
  doi: 10.1002/adma.201902025
– ident: e_1_2_8_81_1
  doi: 10.1021/jacs.4c03518
– ident: e_1_2_8_83_1
  doi: 10.1039/D3EE01639K
– ident: e_1_2_8_25_2
  doi: 10.1246/bcsj.20210182
– ident: e_1_2_8_44_1
– ident: e_1_2_8_57_2
  doi: 10.1002/adma.202206754
– ident: e_1_2_8_67_2
  doi: 10.1039/D2EE03077B
– ident: e_1_2_8_59_1
  doi: 10.1021/acs.chemmater.4c00535
– ident: e_1_2_8_63_2
  doi: 10.1016/0263-7855(96)00018-5
– ident: e_1_2_8_2_2
  doi: 10.1126/sciadv.aba4098
– ident: e_1_2_8_84_1
  doi: 10.1002/anie.202301467
– ident: e_1_2_8_10_1
– ident: e_1_2_8_43_2
  doi: 10.1016/j.ensm.2024.103331
– ident: e_1_2_8_4_2
  doi: 10.1038/s41578-022-00511-3
– ident: e_1_2_8_11_2
  doi: 10.1021/acs.chemrev.9b00628
– ident: e_1_2_8_35_1
  doi: 10.1002/smll.202401916
– ident: e_1_2_8_95_1
  doi: 10.1016/j.gee.2022.11.007
– ident: e_1_2_8_61_2
  doi: 10.1002/jcc.22885
– ident: e_1_2_8_72_1
– ident: e_1_2_8_91_1
  doi: 10.1016/j.cej.2022.138915
– ident: e_1_2_8_56_2
  doi: 10.1039/D3EE04515C
– ident: e_1_2_8_13_2
  doi: 10.1039/D3CS00771E
– ident: e_1_2_8_23_1
– ident: e_1_2_8_21_2
  doi: 10.1002/adma.202309038
– ident: e_1_2_8_15_2
  doi: 10.1002/anie.202308397
– ident: e_1_2_8_50_1
– ident: e_1_2_8_58_2
  doi: 10.1002/adfm.202306952
– ident: e_1_2_8_26_1
– ident: e_1_2_8_46_2
  doi: 10.1039/D4EE02096K
– ident: e_1_2_8_48_2
  doi: 10.1016/j.jpowsour.2022.232243
– ident: e_1_2_8_74_2
  doi: 10.1039/C5CP06913K
– ident: e_1_2_8_42_2
  doi: 10.1002/advs.202204908
– ident: e_1_2_8_85_1
  doi: 10.1002/adma.202404011
– ident: e_1_2_8_17_2
  doi: 10.1021/acsnano.2c06220
– ident: e_1_2_8_49_2
  doi: 10.1016/j.jpowsour.2023.233212
– ident: e_1_2_8_51_2
  doi: 10.1016/j.isci.2020.101348
– ident: e_1_2_8_65_1
– ident: e_1_2_8_92_1
  doi: 10.1016/j.cej.2023.142624
– ident: e_1_2_8_45_2
  doi: 10.1126/sciadv.abo6688
– ident: e_1_2_8_78_2
  doi: 10.1021/acs.jpcb.2c00858
– ident: e_1_2_8_37_1
  doi: 10.1002/anie.202319125
– ident: e_1_2_8_12_2
  doi: 10.1039/C9CS00349E
– ident: e_1_2_8_93_1
  doi: 10.1016/j.ensm.2022.03.052
– ident: e_1_2_8_30_2
  doi: 10.1016/j.ensm.2024.103532
– ident: e_1_2_8_66_2
  doi: 10.1002/anie.202401555
– ident: e_1_2_8_3_2
  doi: 10.1038/s41578-020-00241-4
– ident: e_1_2_8_1_1
– ident: e_1_2_8_34_1
  doi: 10.1039/D3CC02893C
– ident: e_1_2_8_73_2
  doi: 10.1021/ic100869r
– ident: e_1_2_8_8_2
  doi: 10.1002/adma.202003021
– ident: e_1_2_8_75_2
  doi: 10.1039/D0RA10721B
– ident: e_1_2_8_22_2
  doi: 10.1002/anie.202413703
– ident: e_1_2_8_62_2
  doi: 10.1039/D1CP02805G
– ident: e_1_2_8_88_1
  doi: 10.1002/batt.202300474
– ident: e_1_2_8_5_1
– ident: e_1_2_8_20_2
  doi: 10.1002/adma.202201716
– ident: e_1_2_8_36_1
  doi: 10.1039/D3EE01580G
– ident: e_1_2_8_60_1
– ident: e_1_2_8_29_2
  doi: 10.1002/advs.202305561
– ident: e_1_2_8_86_1
  doi: 10.1039/D3SC06155H
– ident: e_1_2_8_47_2
  doi: 10.1016/j.ensm.2024.103553
– ident: e_1_2_8_41_1
– ident: e_1_2_8_82_1
  doi: 10.1021/acsnano.0c09380
– ident: e_1_2_8_16_2
  doi: 10.1002/adma.202108856
– ident: e_1_2_8_7_2
  doi: 10.1002/adfm.202001263
– ident: e_1_2_8_38_1
– ident: e_1_2_8_80_1
  doi: 10.1016/j.electacta.2015.09.097
– ident: e_1_2_8_52_2
  doi: 10.1016/j.jechem.2021.05.036
– ident: e_1_2_8_69_2
  doi: 10.1002/cssc.201801657
– ident: e_1_2_8_6_2
  doi: 10.1016/j.joule.2020.03.002
– ident: e_1_2_8_90_1
  doi: 10.1002/aenm.202304516
– ident: e_1_2_8_87_1
  doi: 10.1016/j.joule.2024.07.013
– ident: e_1_2_8_24_2
  doi: 10.1038/s41570-024-00597-z
– ident: e_1_2_8_55_2
  doi: 10.1021/acsenergylett.4c01657
– ident: e_1_2_8_64_2
  doi: 10.1002/sstr.202200270
– ident: e_1_2_8_77_2
  doi: 10.1016/j.snb.2014.03.089
– ident: e_1_2_8_9_2
  doi: 10.1039/D0EE02162H
– ident: e_1_2_8_19_2
  doi: 10.1002/aenm.202302187
– ident: e_1_2_8_39_2
  doi: 10.1002/adma.202004553
– ident: e_1_2_8_68_1
– ident: e_1_2_8_94_1
  doi: 10.1016/j.nanoen.2022.107278
– ident: e_1_2_8_28_2
  doi: 10.1016/j.mtener.2017.12.012
– ident: e_1_2_8_32_2
  doi: 10.1016/j.coelec.2021.100898
– ident: e_1_2_8_53_2
  doi: 10.1016/j.est.2024.110449
SSID ssj0028806
Score 2.4884095
Snippet Br2/Br− conversion reaction with a high operating potential (1.85 V vs. Zn2+/Zn) is promising for designing high‐energy cathodes in aqueous Zn batteries....
Br 2 /Br − conversion reaction with a high operating potential (1.85 V vs . Zn 2+ /Zn) is promising for designing high‐energy cathodes in aqueous Zn batteries....
Br /Br conversion reaction with a high operating potential (1.85 V vs. Zn /Zn) is promising for designing high-energy cathodes in aqueous Zn batteries....
Br2/Br- conversion reaction with a high operating potential (1.85 V vs. Zn2+/Zn) is promising for designing high-energy cathodes in aqueous Zn batteries....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e202502386
SubjectTerms Aqueous electrolytes
Bromine
Cathodes
Charge density
Discharge
electrolyte screen
Electrolytes
Electrolytic cells
KBr cathode
polybromide sequestration
static Zn−Br battery
suppressed shuttle
Zinc
Zinc salts
Zinc sulfate
Title Aqueous Zinc‐Bromine Battery with Highly Reversible Bromine Conversion Chemistry
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202502386
https://www.ncbi.nlm.nih.gov/pubmed/40001169
https://www.proquest.com/docview/3228972195
https://www.proquest.com/docview/3171378063
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB7Ui158P-qjRBA8RZPsJps9lmJRD0WKheIl7G42INYotj3oyZ_gb_SXOJM00epB0FtCss-ZzXyzmf0G4Ehknq_9WLoh97XLVRy5xAniylAoI2VGWeQo2qIbnff55SAcfDnFX_JD1BtutDKK7zUtcKVHp5-koXQCG_07NOFodYhzmwK2CBX1av6oAJWzPF7EmEtZ6CvWRi84nS0-a5V-QM1Z5FqYns4KqKrTZcTJ3clkrE_Myzc-x_-MahWWp7jUaZWKtAZzNl-HxXaVDm4Dei3s7MNk5Nzc5ub99Q3993tszSkJOp8d2tB1KGpk-Oz0bBHsoYf4ePpam6Lbi605p650E_qds-v2uTtNyOAaFqEUOROe4ujERCHnmS8yYUOj49BGRluGyMZPKQepiYz1TaSl5UKwLBVccwSeJmVbsJA_5HYHnJCl6JkiQFAq5sbLYukpLdNUMOLnMWEDjiuBJI8l70ZSMiwHCc1RUs9RA_YreSXT9TdKqBbiJZJY0WH9GAdHv0NUTtOVIHLymUANYQ3YLuVcN8ULrBzJBgSFtH7pQ9LqXpzVd7t_KbQHS3RNgQl-sA8L46eJPUC8M9ZNmA_4VbPQ7A-7EPaC
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BOYRLy6OlKYUaCaknp7Z3ves9RlGihIYcokRCXFbe9VqqCA4iySGc-hP6G_tLOmPHRoEDUjn6sc-Z9X4znv0G4KPMg9CEifJjHhqfp4nwiRPEV7FMrVI5ZZGjaIuJGM75py9xHU1IZ2EqfojG4UYro_xe0wInh_TVb9ZQOoKNBh7u4bjtiKfwjNJ6l1bVtGGQilA9qwNGjPmUh77mbQyiq_3y-_vSX2BzH7uWm8_gCEzd7Srm5FtnszYd--sPRsf_GtcLONxBU69b6dJLeOKKV9Dq1RnhXsO0i71dblbe15vC3t_eoQn_HZvzKo7OrUc-XY8CRxZbb-rKeA-zwMe713oU4F5657ym0mOYD_qz3tDf5WTwLRMoSM5kkHK0Y0TMeR7KXLrYmiR2whrHENyEGaUhtcK60AqjHJeS5ZnkhiP2tBk7gYNiWbhT8GKWoXGKGCFNE26DPFFBalSWSUYUPTZuw2UtEf2jot7QFclypGmOdDNHbTivBaZ3S3ClqRaiJlJY0YfmMQ6O_oikBU2XRvAUMokqwtrwphJ00xQv4bJQbYhKcf2jD7o7GfWbq7PHFLqA1nD2eazHo8n1W3hO9ylOIYzO4WD9c-PeIfxZm_elgj8AW1T5xg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5RkNpeoO8GKA1SpZ6yJLFjx8fVLqtdWq3QqkioFyt2HKkCAiq7BzjxE_iN_BJm8oIth0rtMQ8_Z5z5xhl_A_BFFmFkolQFCY9MwLNUBMQJEqhEZlapgrLIUbTFVIyP-MFxcvzoFH_ND9FtuNHKqL7XtMAv8mLvgTSUTmCjf4cmHK2OeAZrXIQp6fVw1hFIxaid9fkixgJKQ9_SNobx3nL5ZbP0BGsuQ9fK9ow2IGt7XYecnPQWc9Oz138QOv7PsF7BegNM_X6tSa9hxZVv4MWgzQf3FmZ97Oz54tL_-au0dze36MCfYWt-zdB55dOOrk9hI6dX_sxV0R7mFB83rw0ovL3am_O7St_B0Wj_x2AcNBkZAssEipEzGWYcvRiRcF5EspAusSZNnLDGMYQ2UU5JSK2wLrLCKMelZEUuueGIPG3O3sNqeV66j-AnLEfXFBFClqXchkWqwsyoPJeMCHps4sHXViD6oibe0DXFcqxpjnQ3Rx5st_LSzQK81FQLERMprGi3e4yDo_8hWUnTpRE6RUyihjAPPtRy7priFVgWyoO4ktZf-qD708l-d7X5L4U-w_PD4Uh_n0y_bcFLuk1BClG8Davz3wv3CbHP3OxU6n0Php34fg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aqueous+Zinc-Bromine+Battery+with+Highly+Reversible+Bromine+Conversion+Chemistry&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhao%2C+Xun&rft.au=Hao%2C+Junnan&rft.au=Chen%2C+Qianru&rft.au=Zhang%2C+Shao-Jian&rft.date=2025-05-12&rft.issn=1521-3773&rft.eissn=1521-3773&rft.spage=e202502386&rft_id=info:doi/10.1002%2Fanie.202502386&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon