An Optimal Linear Transformation for Data Assimilation

Linear transformations are widely used in data assimilation for covariance modeling, for reducing dimensionality (such as averaging dense observations to form “superobs”), and for managing sampling error in ensemble data assimilation. Here we describe a linear transformation that is optimal in the s...

Full description

Saved in:
Bibliographic Details
Published inJournal of advances in modeling earth systems Vol. 14; no. 6
Main Authors Snyder, Chris, Hakim, Gregory J.
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 01.06.2022
American Geophysical Union (AGU)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Linear transformations are widely used in data assimilation for covariance modeling, for reducing dimensionality (such as averaging dense observations to form “superobs”), and for managing sampling error in ensemble data assimilation. Here we describe a linear transformation that is optimal in the sense that, in the transformed space, the state variables and observations have uncorrelated errors, and a diagonal gain matrix in the update step. We conjecture, and provide numerical evidence, that the transformation is the best possible to precede covariance localization in an ensemble Kalman filter. A central feature of this transformation in the update step are scalars, which we term canonical observation operators (COOs), that relate pairs of transformed observations and state variables and rank‐order those pairs by their influence in the update. We show for an idealized problem that sample‐based estimates of the COOs, in conjunction with covariance localization for the sample covariance, can approximate well the true values, but a practical implementation of the transformation for high‐dimensional applications remains a subject for future research. The COOs also completely describe important properties of the update step, such as observation‐state mutual information, signal‐to‐noise and degrees of freedom for signal, and so give new insights, including relations among reduced‐rank approximations to variational schemes, particle‐filter weight degeneracy, and the local ensemble transform Kalman filter. Plain Language Summary Good estimates of the state of the Earth system rely on combining the latest observations with recent forecasts through a technique called data assimilation. To some degree, there is freedom to choose which variables are used in data assimilation and, before performing assimilation, to combine and transform the observations. Careful choices of variables and transformations of the observations not only have practical benefits, but also, by greatly simplifying the mathematical formulation of data assimilation, yield insights into how new observations influence Earth‐system state estimates and common measures of the information provided by observations. Key Points A linear transformation for observations and state variables uniquely diagonalizes the Kalman filter update equation A set of positive real numbers rank order the importance of transformed observations and state variables in the update In the new variables, optimal covariance localization consists of setting covariances to zero and retaining variances
AbstractList Linear transformations are widely used in data assimilation for covariance modeling, for reducing dimensionality (such as averaging dense observations to form “superobs”), and for managing sampling error in ensemble data assimilation. Here we describe a linear transformation that is optimal in the sense that, in the transformed space, the state variables and observations have uncorrelated errors, and a diagonal gain matrix in the update step. We conjecture, and provide numerical evidence, that the transformation is the best possible to precede covariance localization in an ensemble Kalman filter. A central feature of this transformation in the update step are scalars, which we term canonical observation operators (COOs), that relate pairs of transformed observations and state variables and rank‐order those pairs by their influence in the update. We show for an idealized problem that sample‐based estimates of the COOs, in conjunction with covariance localization for the sample covariance, can approximate well the true values, but a practical implementation of the transformation for high‐dimensional applications remains a subject for future research. The COOs also completely describe important properties of the update step, such as observation‐state mutual information, signal‐to‐noise and degrees of freedom for signal, and so give new insights, including relations among reduced‐rank approximations to variational schemes, particle‐filter weight degeneracy, and the local ensemble transform Kalman filter. Plain Language Summary Good estimates of the state of the Earth system rely on combining the latest observations with recent forecasts through a technique called data assimilation. To some degree, there is freedom to choose which variables are used in data assimilation and, before performing assimilation, to combine and transform the observations. Careful choices of variables and transformations of the observations not only have practical benefits, but also, by greatly simplifying the mathematical formulation of data assimilation, yield insights into how new observations influence Earth‐system state estimates and common measures of the information provided by observations. Key Points A linear transformation for observations and state variables uniquely diagonalizes the Kalman filter update equation A set of positive real numbers rank order the importance of transformed observations and state variables in the update In the new variables, optimal covariance localization consists of setting covariances to zero and retaining variances
Abstract Linear transformations are widely used in data assimilation for covariance modeling, for reducing dimensionality (such as averaging dense observations to form “superobs”), and for managing sampling error in ensemble data assimilation. Here we describe a linear transformation that is optimal in the sense that, in the transformed space, the state variables and observations have uncorrelated errors, and a diagonal gain matrix in the update step. We conjecture, and provide numerical evidence, that the transformation is the best possible to precede covariance localization in an ensemble Kalman filter. A central feature of this transformation in the update step are scalars, which we term canonical observation operators (COOs), that relate pairs of transformed observations and state variables and rank‐order those pairs by their influence in the update. We show for an idealized problem that sample‐based estimates of the COOs, in conjunction with covariance localization for the sample covariance, can approximate well the true values, but a practical implementation of the transformation for high‐dimensional applications remains a subject for future research. The COOs also completely describe important properties of the update step, such as observation‐state mutual information, signal‐to‐noise and degrees of freedom for signal, and so give new insights, including relations among reduced‐rank approximations to variational schemes, particle‐filter weight degeneracy, and the local ensemble transform Kalman filter.
Linear transformations are widely used in data assimilation for covariance modeling, for reducing dimensionality (such as averaging dense observations to form “superobs”), and for managing sampling error in ensemble data assimilation. Here we describe a linear transformation that is optimal in the sense that, in the transformed space, the state variables and observations have uncorrelated errors, and a diagonal gain matrix in the update step. We conjecture, and provide numerical evidence, that the transformation is the best possible to precede covariance localization in an ensemble Kalman filter. A central feature of this transformation in the update step are scalars, which we term canonical observation operators (COOs), that relate pairs of transformed observations and state variables and rank‐order those pairs by their influence in the update. We show for an idealized problem that sample‐based estimates of the COOs, in conjunction with covariance localization for the sample covariance, can approximate well the true values, but a practical implementation of the transformation for high‐dimensional applications remains a subject for future research. The COOs also completely describe important properties of the update step, such as observation‐state mutual information, signal‐to‐noise and degrees of freedom for signal, and so give new insights, including relations among reduced‐rank approximations to variational schemes, particle‐filter weight degeneracy, and the local ensemble transform Kalman filter. Good estimates of the state of the Earth system rely on combining the latest observations with recent forecasts through a technique called data assimilation. To some degree, there is freedom to choose which variables are used in data assimilation and, before performing assimilation, to combine and transform the observations. Careful choices of variables and transformations of the observations not only have practical benefits, but also, by greatly simplifying the mathematical formulation of data assimilation, yield insights into how new observations influence Earth‐system state estimates and common measures of the information provided by observations. A linear transformation for observations and state variables uniquely diagonalizes the Kalman filter update equation A set of positive real numbers rank order the importance of transformed observations and state variables in the update In the new variables, optimal covariance localization consists of setting covariances to zero and retaining variances
Linear transformations are widely used in data assimilation for covariance modeling, for reducing dimensionality (such as averaging dense observations to form “superobs”), and for managing sampling error in ensemble data assimilation. Here we describe a linear transformation that is optimal in the sense that, in the transformed space, the state variables and observations have uncorrelated errors, and a diagonal gain matrix in the update step. We conjecture, and provide numerical evidence, that the transformation is the best possible to precede covariance localization in an ensemble Kalman filter. A central feature of this transformation in the update step are scalars, which we term canonical observation operators (COOs), that relate pairs of transformed observations and state variables and rank‐order those pairs by their influence in the update. We show for an idealized problem that sample‐based estimates of the COOs, in conjunction with covariance localization for the sample covariance, can approximate well the true values, but a practical implementation of the transformation for high‐dimensional applications remains a subject for future research. The COOs also completely describe important properties of the update step, such as observation‐state mutual information, signal‐to‐noise and degrees of freedom for signal, and so give new insights, including relations among reduced‐rank approximations to variational schemes, particle‐filter weight degeneracy, and the local ensemble transform Kalman filter.
Author Hakim, Gregory J.
Snyder, Chris
Author_xml – sequence: 1
  givenname: Chris
  orcidid: 0000-0002-2257-9776
  surname: Snyder
  fullname: Snyder, Chris
  email: chriss@ucar.edu
  organization: National Center for Atmospheric Research
– sequence: 2
  givenname: Gregory J.
  orcidid: 0000-0001-8486-9739
  surname: Hakim
  fullname: Hakim, Gregory J.
  organization: University of Washington
BookMark eNp9kEtLAzEUhYNUsK3u_AEDbh3NY5JMlkOtL1q6sK5DJg9JmU5qMkX67x07Il25uofDx7mHMwGjNrQWgGsE7xDE4h5DjJZvsJeEn4ExEgXOccHY6ERfgElKGwgZY5iOAavabLXr_FY12cK3VsVsHVWbXIhb1fnQZr3KHlSnsiolv_XN0b0E5041yV793il4f5yvZ8_5YvX0MqsWuSaspLlymnLinCoLQ3GNBBVQWWtsUeJaaOE00wZbzjExqMbQFEpwIrQ2xBDLDZmClyHXBLWRu9j3jAcZlJdHI8QPqWLndWMldBByrktaOlFQWos-kliqoMaQCmH7rJshaxfD596mTm7CPrZ9fYlZiQiFiMCeuh0oHUNK0bq_rwjKn5Xl6co9Tgb8yzf28C8rX6vlHCNGKPkGrG9-AA
Cites_doi 10.3402/tellusa.v67.28027
10.1175/1520-0493(2001)129<2776:ddfobe>2.0.co;2
10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
10.1175/MWR-D-10-05052.1
10.1007/s00382-013-1989-0
10.1137/140977308
10.1093/biomet/28.3-4.321
10.1002/qj.2104
10.1002/qj.50
10.1175/2008MWR2529.1
10.1175/1520-0469(2003)060<1140:acobae>2.0.co;2
10.1175/2007MWR2018.1
10.1002/qj.49712555417
10.1002/mma.3496
10.1109/78.824676
10.1175/1520-0493(1998)126<0796:dauaek>2.0.co;2
10.1002/qj.3209
10.1175/1520-0493(1993)121<1554:SCOKFS>2.0.CO;2
10.1093/acprof:oso/9780198723844.003.0003
10.1117/12.256110
10.1002/qj.443
10.1137/100800427
10.1175/1520-0493(2001)129<0123:asekff>2.0.co;2
10.1111/j.1600-0870.2006.00222.x
10.1256/qj.04.15
10.3402/tellusa.v51i2.12316
10.1175/1520-0426(1985)002<0125:dcaepf>2.0.co;2
10.1256/qj.05.108
10.1080/16000870.2021.1903692
10.1002/qj.3347
10.1175/MWR-D-14-00157.1
10.1017/CBO9780511535895
10.3402/tellusa.v67.25257
10.1002/qj.49712354414
10.1002/qj.2990
10.1175/MWR-D-15-0252.1
10.1142/3171
10.1016/j.physd.2006.11.008
10.2151/jmsj.2014-605
10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2
10.1256/qj.02.132
ContentType Journal Article
Copyright 2022 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
F1W
H96
HCIFZ
KL.
L.G
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.1029/2021MS002937
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central (New)
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1942-2466
EndPage n/a
ExternalDocumentID oai_doaj_org_article_0f0077c858f9455b93d13e5a0c20599e
10_1029_2021MS002937
JAME21635
Genre article
GrantInformation_xml – fundername: National Center for Atmospheric Research
– fundername: National Science Foundation (NSF)
  funderid: 1852977
– fundername: Heising‐Simons Foundation (HSF)
  funderid: 2016–014
GroupedDBID 0R~
1OC
24P
29J
31~
5VS
8-1
8FE
8FH
AAHHS
AAZKR
ABDBF
ACCFJ
ACCMX
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
AZFZN
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
D1K
EAD
EAP
EAS
EBS
EJD
EPL
ESX
GODZA
GROUPED_DOAJ
HCIFZ
IAO
IGS
IPNFZ
ITC
K6-
KQ8
LK5
M7R
M~E
O9-
OK1
P2P
PCBAR
PIMPY
PROAC
RIG
RNS
TUS
WIN
~OA
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
PHGZM
PHGZT
7TG
ABUWG
AZQEC
DWQXO
F1W
H96
KL.
L.G
PKEHL
PQEST
PQQKQ
PQUKI
HZ~
PUEGO
ID FETCH-LOGICAL-c3685-afc573ffa84d52b19590aeede482b9c9fc6cd2e7723d1b20d4a9739ccd3d3e7d3
IEDL.DBID 24P
ISSN 1942-2466
IngestDate Wed Aug 27 01:12:13 EDT 2025
Wed Aug 13 11:19:10 EDT 2025
Sun Jul 06 05:07:39 EDT 2025
Wed Jan 22 16:22:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3685-afc573ffa84d52b19590aeede482b9c9fc6cd2e7723d1b20d4a9739ccd3d3e7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8486-9739
0000-0002-2257-9776
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021MS002937
PQID 2681350130
PQPubID 616667
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_0f0077c858f9455b93d13e5a0c20599e
proquest_journals_2681350130
crossref_primary_10_1029_2021MS002937
wiley_primary_10_1029_2021MS002937_JAME21635
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
20220601
2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of advances in modeling earth systems
PublicationYear 2022
Publisher John Wiley & Sons, Inc
American Geophysical Union (AGU)
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Geophysical Union (AGU)
References 2012; 140
2018; 144
2015; 37
2014; 92
2005; 131
2000; 48
1985; 2
2015; 143
2016; 144
2011; 33
2006
2009; 135
1999; 125
2002
2001; 129
2016; 39
2021; 73
1993; 121
2014; 43
2007; 59
2015; 67
2003; 129
2000
1996; 2830
2020
2007; 133
1936; 28
1997; 123
2007; 230
2013; 139
1998; 126
1999; 51
2014
2008; 136
2017; 143
2003; 60
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_2_1
Cover T. M. (e_1_2_11_12_1) 2006
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_20_1
e_1_2_11_25_1
Matlab (e_1_2_11_29_1) 2020
e_1_2_11_40_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_39_1
e_1_2_11_19_1
References_xml – volume: 121
  start-page: 1554
  issue: 5
  year: 1993
  end-page: 1565
  article-title: Spectral characteristics of Kalman filter systems for atmospheric data assimilation
  publication-title: Monthly Weather Review
– volume: 73
  start-page: 1
  year: 2021
  end-page: 18
  article-title: Eigenvector‐spatial localisation
  publication-title: Tellus A: Dynamic Meteorology and Oceanography
– volume: 129
  start-page: 2776
  issue: 11
  year: 2001
  end-page: 2790
  article-title: Distance‐dependent filtering of background error covariance estimates in an ensemble Kalman filter
  publication-title: Monthly Weather Review
– volume: 28
  start-page: 321
  issue: 3/4
  year: 1936
  end-page: 377
  article-title: Relations between two sets of variates
  publication-title: Biometrika
– volume: 129
  start-page: 420
  issue: 3
  year: 2001
  end-page: 436
  article-title: Adaptive sampling with the ensemble transform Kalman filter. Part i: Theoretical aspects
  publication-title: Journal of the Atmospheric Sciences
– volume: 123
  start-page: 2449
  issue: 544
  year: 1997
  end-page: 2461
  article-title: Dual formulation of four‐dimensional variational assimilation
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 92
  start-page: 585
  issue: 6
  year: 2014
  end-page: 597
  article-title: Optimal localization for ensemble Kalman filter systems
  publication-title: Journal of the Meteorological Society of Japan. Ser. II
– volume: 126
  start-page: 796
  issue: 3
  year: 1998
  end-page: 811
  article-title: Data assimilation using an ensemble Kalman filter technique
  publication-title: Monthly Weather Review
– volume: 136
  start-page: 463
  issue: 2
  year: 2008
  end-page: 482
  article-title: Ensemble data assimilation with the NCEP global forecast system
  publication-title: Monthly Weather Review
– volume: 133
  start-page: 615
  issue: 624
  year: 2007
  end-page: 630
  article-title: Spectral and spatial localization of background‐error correlations for data assimilation
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 67
  issue: 1
  year: 2015
  article-title: Towards a theory of optimal localisation
  publication-title: Tellus A: Dynamic Meteorology and Oceanography
– volume: 136
  start-page: 4629
  issue: 12
  year: 2008
  end-page: 4640
  article-title: Obstacles to high‐dimensional particle filtering
  publication-title: Monthly Weather Review
– volume: 144
  start-page: 365
  issue: 711
  year: 2018
  end-page: 390
  article-title: Optimal and scalable methods to approximate the solutions of large‐scale Bayesian problems: Theory and application to atmospheric inversion and data assimilation
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 129
  start-page: 123
  issue: 1
  year: 2001
  end-page: 137
  article-title: A sequential ensemble Kalman filter for atmospheric data assimilation
  publication-title: Monthly Weather Review
– volume: 139
  start-page: 2033
  issue: 677
  year: 2013
  end-page: 2054
  article-title: Information‐based data selection for ensemble data assimilation
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 37
  start-page: A2451
  issue: 6
  year: 2015
  end-page: A2487
  article-title: Optimal low‐rank approximations of Bayesian linear inverse problems
  publication-title: SIAM Journal on Scientific Computing
– volume: 67
  issue: 1
  year: 2015
  article-title: Scale‐dependent background‐error covariance localisation
  publication-title: Tellus A: Dynamic Meteorology and Oceanography
– year: 2000
– volume: 131
  start-page: 3385
  issue: 613
  year: 2005
  end-page: 3396
  article-title: Diagnosis of observation, background and analysis‐error statistics in observation space
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 143
  start-page: 1062
  issue: 703
  year: 2017
  end-page: 1072
  article-title: Improving ensemble covariances in hybrid variational data assimilation without increasing ensemble size
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 143
  start-page: 1622
  issue: 5
  year: 2015
  end-page: 1643
  article-title: Linear filtering of sample covariances for ensemble‐based data assimilation. Part i: Optimality criteria and application to variance filtering and covariance localization
  publication-title: Monthly Weather Review
– volume: 39
  start-page: 619
  issue: 4
  year: 2016
  end-page: 634
  article-title: Transformed and generalized localization for ensemble methods in data assimilation
  publication-title: Mathematical Methods in the Applied Sciences
– volume: 144
  start-page: 3677
  issue: 10
  year: 2016
  end-page: 3696
  article-title: Ensemble–variational integrated localized data assimilation
  publication-title: Monthly Weather Review
– year: 2014
– volume: 60
  start-page: 1140
  issue: 9
  year: 2003
  end-page: 1158
  article-title: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes
  publication-title: Journal of the Atmospheric Sciences
– volume: 131
  start-page: 1013
  issue: 607
  year: 2005
  end-page: 1043
  article-title: Ensemble‐derived stationary and flow‐dependent background‐error covariances: Evaluation in a quasi‐operational NWP setting
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 129
  start-page: 2884
  issue: 12
  year: 2001
  end-page: 2903
  article-title: An ensemble adjustment Kalman filter for data assimilation
  publication-title: Monthly Weather Review
– volume: 2
  start-page: 125
  issue: 2
  year: 1985
  end-page: 132
  article-title: Design criteria and eigen sequence plots for satellite‐computed tomography
  publication-title: Journal of Atmospheric and Oceanic Technology
– volume: 59
  start-page: 198
  year: 2007
  end-page: 209
  article-title: Measuring information content from observations for data assimilation: Relative entropy versus shannon entropy difference
  publication-title: Tellus A: Dynamic Meteorology and Oceanography
– volume: 33
  start-page: 2620
  issue: 5
  year: 2011
  end-page: 2640
  article-title: Interpolating irregularly spaced observations for filtering turbulent complex systems
  publication-title: SIAM Journal on Scientific Computing
– volume: 135
  start-page: 1157
  issue: 642
  year: 2009
  end-page: 1176
  article-title: Covariance localisation and balance in an ensemble Kalman filter
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 125
  start-page: 723
  issue: 554
  year: 1999
  end-page: 757
  article-title: Construction of correlation functions in two and three dimensions
  publication-title: Quarterly Journal of the Royal Meteorological Society
– year: 2002
– volume: 230
  start-page: 112
  issue: 1–2
  year: 2007
  end-page: 126
  article-title: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform kalman filter
  publication-title: Physica D: Nonlinear Phenomena
– volume: 48
  start-page: 824
  issue: 3
  year: 2000
  end-page: 831
  article-title: Canonical coordinates and the geometry of inference, rate, and capacity
  publication-title: IEEE Transactions on Signal Processing
– year: 2006
– year: 2020
– volume: 140
  start-page: 617
  issue: 2
  year: 2012
  end-page: 636
  article-title: Evaluation of a spatial/spectral covariance localization approach for atmospheric data assimilation
  publication-title: Monthly Weather Review
– volume: 129
  start-page: 3183
  issue: 595
  year: 2003
  end-page: 3203
  article-title: The potential of the ensemble Kalman filter for NWP–a comparison with 4d‐var
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 43
  start-page: 1631
  issue: 5–6
  year: 2014
  end-page: 1643
  article-title: Coupled atmosphere–ocean data assimilation experiments with a low‐order climate model
  publication-title: Climate Dynamics
– volume: 51
  start-page: 195
  issue: 2
  year: 1999
  end-page: 221
  article-title: A reformulation of the background error covariance in the ECMWF global data assimilation system
  publication-title: Tellus A: Dynamic Meteorology and Oceanography
– volume: 144
  start-page: 2230
  issue: 716
  year: 2018
  end-page: 2244
  article-title: Information constraints in variational data assimilation
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 2830
  start-page: 136
  year: 1996
  end-page: 147
– ident: e_1_2_11_10_1
  doi: 10.3402/tellusa.v67.28027
– ident: e_1_2_11_18_1
  doi: 10.1175/1520-0493(2001)129<2776:ddfobe>2.0.co;2
– ident: e_1_2_11_2_1
  doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
– ident: e_1_2_11_8_1
  doi: 10.1175/MWR-D-10-05052.1
– ident: e_1_2_11_40_1
  doi: 10.1007/s00382-013-1989-0
– ident: e_1_2_11_39_1
  doi: 10.1137/140977308
– ident: e_1_2_11_21_1
  doi: 10.1093/biomet/28.3-4.321
– ident: e_1_2_11_31_1
  doi: 10.1002/qj.2104
– ident: e_1_2_11_9_1
  doi: 10.1002/qj.50
– ident: e_1_2_11_38_1
  doi: 10.1175/2008MWR2529.1
– ident: e_1_2_11_42_1
  doi: 10.1175/1520-0469(2003)060<1140:acobae>2.0.co;2
– ident: e_1_2_11_43_1
  doi: 10.1175/2007MWR2018.1
– ident: e_1_2_11_17_1
  doi: 10.1002/qj.49712555417
– ident: e_1_2_11_32_1
  doi: 10.1002/mma.3496
– volume-title: Version 7.9 (r2020b)
  year: 2020
  ident: e_1_2_11_29_1
– ident: e_1_2_11_36_1
  doi: 10.1109/78.824676
– volume-title: Elements of information theory (wiley series in telecommunications and signal processing)
  year: 2006
  ident: e_1_2_11_12_1
– ident: e_1_2_11_22_1
  doi: 10.1175/1520-0493(1998)126<0796:dauaek>2.0.co;2
– ident: e_1_2_11_6_1
  doi: 10.1002/qj.3209
– ident: e_1_2_11_13_1
  doi: 10.1175/1520-0493(1993)121<1554:SCOKFS>2.0.CO;2
– ident: e_1_2_11_37_1
  doi: 10.1093/acprof:oso/9780198723844.003.0003
– ident: e_1_2_11_34_1
  doi: 10.1117/12.256110
– ident: e_1_2_11_26_1
  doi: 10.1002/qj.443
– ident: e_1_2_11_19_1
  doi: 10.1137/100800427
– ident: e_1_2_11_23_1
  doi: 10.1175/1520-0493(2001)129<0123:asekff>2.0.co;2
– ident: e_1_2_11_44_1
  doi: 10.1111/j.1600-0870.2006.00222.x
– ident: e_1_2_11_7_1
  doi: 10.1256/qj.04.15
– ident: e_1_2_11_14_1
  doi: 10.3402/tellusa.v51i2.12316
– ident: e_1_2_11_41_1
  doi: 10.1175/1520-0426(1985)002<0125:dcaepf>2.0.co;2
– ident: e_1_2_11_15_1
  doi: 10.1256/qj.05.108
– ident: e_1_2_11_20_1
  doi: 10.1080/16000870.2021.1903692
– ident: e_1_2_11_25_1
  doi: 10.1002/qj.3347
– ident: e_1_2_11_30_1
  doi: 10.1175/MWR-D-14-00157.1
– ident: e_1_2_11_4_1
  doi: 10.1017/CBO9780511535895
– ident: e_1_2_11_16_1
  doi: 10.3402/tellusa.v67.25257
– ident: e_1_2_11_11_1
  doi: 10.1002/qj.49712354414
– ident: e_1_2_11_28_1
  doi: 10.1002/qj.2990
– ident: e_1_2_11_3_1
  doi: 10.1175/MWR-D-15-0252.1
– ident: e_1_2_11_35_1
  doi: 10.1142/3171
– ident: e_1_2_11_24_1
  doi: 10.1016/j.physd.2006.11.008
– ident: e_1_2_11_33_1
  doi: 10.2151/jmsj.2014-605
– ident: e_1_2_11_5_1
  doi: 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2
– ident: e_1_2_11_27_1
  doi: 10.1256/qj.02.132
SSID ssj0066625
Score 2.2598658
Snippet Linear transformations are widely used in data assimilation for covariance modeling, for reducing dimensionality (such as averaging dense observations to form...
Abstract Linear transformations are widely used in data assimilation for covariance modeling, for reducing dimensionality (such as averaging dense observations...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Approximation
canonical correlation analysis
Correlation analysis
covariance localization
Data assimilation
Data collection
kalman filter
Kalman filters
linear transformation
Localization
Sampling error
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbEUwQK8gBMRMR2nMRjKa0qpMLSSt0sP6VKNEWl_H_OTorCAgtLlESJdLqzfd_5zt8hdCOctkKxLC2LkqY5dTpVTCu45KEIQ2RchYPC05diMs-fF3zRafUVasIaeuBGcQ-ZD4wzpuKVFznnWjBLmOMqMzRQi7iw-oLP2wVTzRoMmJzytsw9oyJE-GQa8pIi9DvvOKDI0_8DXHYhavQx40N00IJDPGiEOkJ7rj5GyRRw7XoTt7_xHR6-LQFkxqcTVAxq_AqTfgV_QVQJoxbPOkh0XWO4w09qqzDYYblaNpVvp2g-Hs2Gk7TthJCaQBCfKm94ybxXVW451YEQJlPg3VxeUS2M8KYwljpAyqAdTTObK1EyYYxllrnSsjPUq9e1O0dYG8e1dtwaSnJPfEUUgaBJK6e0VZYk6HanHvneEF7ImKimQnbVmKDHoLvvbwJNdXwBxpOt8eRfxktQf6d52c6dD0mLioR0J8sSdB-t8asgErzTiAKs5Bf_IdIl2qfhhEPcaOmj3nbz6a4Ad2z1dRxiXw_o0gk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XbyIn1idkoN6stgmTducZOrGEDZFFHYr-aoMXDu3-f_7kmVaL7uUNrQlvJe893sfeQ-hS26k5oJGYZZmJEyIkaGgUsAlsUkYPGLCHhQejtLBe_I0ZmPvcFv4tMq1THSCWtfK-shvSZrHNghGo7vZV2i7Rtnoqm-hsY3aIIJzML7a973Ry-taFgM2J8ynu0eEW0s_Htr4JLd9zxuKyNXr_wcym1DV6Zr-Htr1IBF3V1zdR1umOkDBEPBtPXducHyNHz4nADbd0yFKuxV-hs0_ha_AuoTVi98aiLSuMNzhR7EUGPgxmU5WGXBH6L3fe3sYhL4jQqhsofhQlIpltCxFnmhGpC0MEwnQcibJieSKlypVmhhAzFTHkkQ6ETyjXClNNTWZpseoVdWVOUFYKsOkNEwrEidlXOaxiMF4ksIIqYWOA3S1Jk8xWxW-KFzAmvCiScYA3Vva_b5jy1W7gXr-UfjVX0SlLRukcpaXPGFMcpgeNUxEitj6MCZAnTXlC7-HFsUfxwN047ixcSIFaKkeAXjJTjf_7QztEHuGwblSOqi1nH-bc0AWS3nhl88PzOXLyg
  priority: 102
  providerName: ProQuest
Title An Optimal Linear Transformation for Data Assimilation
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021MS002937
https://www.proquest.com/docview/2681350130
https://doaj.org/article/0f0077c858f9455b93d13e5a0c20599e
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XLyIT6yPJQf1ZLHNo22OPlZEWBVR8Fbyqiy4XVnX_-9MtivrRfBS2pJAmGQy38xkvgAc62C9NiJLy6LkqeTBpkZYgw9JhzB0pgwVCg_ui9sXefeqXruAG9XCzPghfgJupBlxvyYFN_azIxsgjkz02vMB5RrRwC7DKlXXEnc-l4_znRiRebx0Ff10nnJZFN3Bd-xyvtj7l0mKzP2_4OYiaI1W52YD1ju4yC5m87sJS6HdgmSASHc8iQFxdsqu3ocIO-PXNhQXLXvAbWCEvdDPxHXMnhew6bhl-MauzdQwnJnhaDg7C7cDLzf956vbtLsbIXVEGZ-axqlSNI2ppFfcEkVMZtDeBVlxq51uXOE8D4idhc8tz7w0uhTaOS-8CKUXu7DSjtuwB8y6oKwNyjueyyZvqtzk6EZZE4z1xucJnMzFU3_MKDDqmLrmul4UYwKXJLufNkRcHX-MJ291pwd11hCBkKtU1WiplNU4PBGUyRwnppiQwOFc8nWnTZ81L6qcEqAiS-AszsafA6nRXvU5Ak21_7_mB7DGqbohBlkOYWU6-QpHiDmmthcXVg9WL_v3j0-96Ll_Axxqz3E
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuiBYQgQI-UE6NSPxI4gNCfWy1pd0tQlupN-NX0Eo0KdtFqH-qv5GxNynbS2-9REmUWNZ4PPPNwzMAH6Q3TmqWpWVR0pRTb1LNjMYLD0kYMhM6HBQeT4rRGf96Ls7X4KY_CxPSKnuZGAW1a23wkX-iRZWHIBjLvlz-TkPXqBBd7VtoLNni2F__RZPt6vPRAa7vNqWHw-n-KO26CqQ2FFtPdW1FyepaV9wJakJxlUyjpvC8okZaWdvCOuoRdTKXG5o5rmXJpLWOOeZLx3DcR7DOGZoyA1jfG06-fe9lP9oCVHTp9RmVwbOQj0M8VIY-6yuKL_YHuANqV6Fx1G2Hz-BpB0rJ7pKLNmDNN5uQjBFPt_Podicfyf6vGYLb-PQcit2GnKKwucC_0JpFspDpCgJuG4J35EAvNMH1n13Mlhl3L-DsQWj1EgZN2_hXQIz1whgvnKU5r_O6ynWOxprRXhunXZ7Adk8edbkstKFigJxKtUrGBPYC7W6_CeWx44t2_lN1u01ldShTZCtR1ZILYSROj3mhM0tDPRqfwFZPedXt2Sv1n8MS2Imrce9EFGrFIUU4K17fP9p7eDyajk_UydHk-A08oeH8RHTjbMFgMf_j3yKqWZh3HSsR-PHQ3PsPmNgKYg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9RAFH_BJTFeDPgRq4hzEE82TGc6bedgCLC7AXFXYiDhNs4n2URaWNYY_zX-Ot90W10v3Lg0bdNOJm_ezPu9b4D30hsnNadpWZQszZk3qeZG4yWPQRiSCh0ThSfT4ug8_3whLtbgrs-FiWGV_ZnYHtSusdFGvsuKKotOME53QxcWcToc713fpLGDVPS09u00lixy4n__QvXt9tPxENd6h7Hx6OzwKO06DKQ2Fl5PdbCi5CHoKneCmVhohWqUGj6vmJFWBltYxzwiUO4yw6jLtSy5tNZxx33pOI77CNZL1IroANYPRtPTb70cQL2AiS7UnjIZrQzZJPpGZey5viIE214B_wHcVZjcyrnxBjztACrZX3LUJqz5-hkkE8TWzbw1wZMP5PDHDIFu-_Qciv2afMWD5wr_Qs0WyULOVtBwUxO8I0O90AR5YXY1W0bfvYDzB6HVSxjUTe1fATHWC2O8cJZlechClekMFTejvTZOuyyBnZ486npZdEO1znIm1SoZEziItPv7TSyV3b5o5peq23mKhliyyFaiCjIXwkicHvdCU8tibRqfwFZPedXt31v1j9sS-Niuxr0TUSghRwyhrXh9_2jv4DFyrfpyPD15A09YTKVoLTpbMFjMf_q3CHAWZrvjJALfH5p5_wDDCQ6X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimal+Linear+Transformation+for+Data+Assimilation&rft.jtitle=Journal+of+advances+in+modeling+earth+systems&rft.au=Snyder%2C+Chris&rft.au=Hakim%2C+Gregory+J.&rft.date=2022-06-01&rft.issn=1942-2466&rft.eissn=1942-2466&rft.volume=14&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2021MS002937&rft.externalDBID=10.1029%252F2021MS002937&rft.externalDocID=JAME21635
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-2466&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-2466&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-2466&client=summon