An Optimal Linear Transformation for Data Assimilation
Linear transformations are widely used in data assimilation for covariance modeling, for reducing dimensionality (such as averaging dense observations to form “superobs”), and for managing sampling error in ensemble data assimilation. Here we describe a linear transformation that is optimal in the s...
Saved in:
Published in | Journal of advances in modeling earth systems Vol. 14; no. 6 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Washington
John Wiley & Sons, Inc
01.06.2022
American Geophysical Union (AGU) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Linear transformations are widely used in data assimilation for covariance modeling, for reducing dimensionality (such as averaging dense observations to form “superobs”), and for managing sampling error in ensemble data assimilation. Here we describe a linear transformation that is optimal in the sense that, in the transformed space, the state variables and observations have uncorrelated errors, and a diagonal gain matrix in the update step. We conjecture, and provide numerical evidence, that the transformation is the best possible to precede covariance localization in an ensemble Kalman filter. A central feature of this transformation in the update step are scalars, which we term canonical observation operators (COOs), that relate pairs of transformed observations and state variables and rank‐order those pairs by their influence in the update. We show for an idealized problem that sample‐based estimates of the COOs, in conjunction with covariance localization for the sample covariance, can approximate well the true values, but a practical implementation of the transformation for high‐dimensional applications remains a subject for future research. The COOs also completely describe important properties of the update step, such as observation‐state mutual information, signal‐to‐noise and degrees of freedom for signal, and so give new insights, including relations among reduced‐rank approximations to variational schemes, particle‐filter weight degeneracy, and the local ensemble transform Kalman filter.
Plain Language Summary
Good estimates of the state of the Earth system rely on combining the latest observations with recent forecasts through a technique called data assimilation. To some degree, there is freedom to choose which variables are used in data assimilation and, before performing assimilation, to combine and transform the observations. Careful choices of variables and transformations of the observations not only have practical benefits, but also, by greatly simplifying the mathematical formulation of data assimilation, yield insights into how new observations influence Earth‐system state estimates and common measures of the information provided by observations.
Key Points
A linear transformation for observations and state variables uniquely diagonalizes the Kalman filter update equation
A set of positive real numbers rank order the importance of transformed observations and state variables in the update
In the new variables, optimal covariance localization consists of setting covariances to zero and retaining variances |
---|---|
AbstractList | Linear transformations are widely used in data assimilation for covariance modeling, for reducing dimensionality (such as averaging dense observations to form “superobs”), and for managing sampling error in ensemble data assimilation. Here we describe a linear transformation that is optimal in the sense that, in the transformed space, the state variables and observations have uncorrelated errors, and a diagonal gain matrix in the update step. We conjecture, and provide numerical evidence, that the transformation is the best possible to precede covariance localization in an ensemble Kalman filter. A central feature of this transformation in the update step are scalars, which we term canonical observation operators (COOs), that relate pairs of transformed observations and state variables and rank‐order those pairs by their influence in the update. We show for an idealized problem that sample‐based estimates of the COOs, in conjunction with covariance localization for the sample covariance, can approximate well the true values, but a practical implementation of the transformation for high‐dimensional applications remains a subject for future research. The COOs also completely describe important properties of the update step, such as observation‐state mutual information, signal‐to‐noise and degrees of freedom for signal, and so give new insights, including relations among reduced‐rank approximations to variational schemes, particle‐filter weight degeneracy, and the local ensemble transform Kalman filter.
Plain Language Summary
Good estimates of the state of the Earth system rely on combining the latest observations with recent forecasts through a technique called data assimilation. To some degree, there is freedom to choose which variables are used in data assimilation and, before performing assimilation, to combine and transform the observations. Careful choices of variables and transformations of the observations not only have practical benefits, but also, by greatly simplifying the mathematical formulation of data assimilation, yield insights into how new observations influence Earth‐system state estimates and common measures of the information provided by observations.
Key Points
A linear transformation for observations and state variables uniquely diagonalizes the Kalman filter update equation
A set of positive real numbers rank order the importance of transformed observations and state variables in the update
In the new variables, optimal covariance localization consists of setting covariances to zero and retaining variances Abstract Linear transformations are widely used in data assimilation for covariance modeling, for reducing dimensionality (such as averaging dense observations to form “superobs”), and for managing sampling error in ensemble data assimilation. Here we describe a linear transformation that is optimal in the sense that, in the transformed space, the state variables and observations have uncorrelated errors, and a diagonal gain matrix in the update step. We conjecture, and provide numerical evidence, that the transformation is the best possible to precede covariance localization in an ensemble Kalman filter. A central feature of this transformation in the update step are scalars, which we term canonical observation operators (COOs), that relate pairs of transformed observations and state variables and rank‐order those pairs by their influence in the update. We show for an idealized problem that sample‐based estimates of the COOs, in conjunction with covariance localization for the sample covariance, can approximate well the true values, but a practical implementation of the transformation for high‐dimensional applications remains a subject for future research. The COOs also completely describe important properties of the update step, such as observation‐state mutual information, signal‐to‐noise and degrees of freedom for signal, and so give new insights, including relations among reduced‐rank approximations to variational schemes, particle‐filter weight degeneracy, and the local ensemble transform Kalman filter. Linear transformations are widely used in data assimilation for covariance modeling, for reducing dimensionality (such as averaging dense observations to form “superobs”), and for managing sampling error in ensemble data assimilation. Here we describe a linear transformation that is optimal in the sense that, in the transformed space, the state variables and observations have uncorrelated errors, and a diagonal gain matrix in the update step. We conjecture, and provide numerical evidence, that the transformation is the best possible to precede covariance localization in an ensemble Kalman filter. A central feature of this transformation in the update step are scalars, which we term canonical observation operators (COOs), that relate pairs of transformed observations and state variables and rank‐order those pairs by their influence in the update. We show for an idealized problem that sample‐based estimates of the COOs, in conjunction with covariance localization for the sample covariance, can approximate well the true values, but a practical implementation of the transformation for high‐dimensional applications remains a subject for future research. The COOs also completely describe important properties of the update step, such as observation‐state mutual information, signal‐to‐noise and degrees of freedom for signal, and so give new insights, including relations among reduced‐rank approximations to variational schemes, particle‐filter weight degeneracy, and the local ensemble transform Kalman filter. Good estimates of the state of the Earth system rely on combining the latest observations with recent forecasts through a technique called data assimilation. To some degree, there is freedom to choose which variables are used in data assimilation and, before performing assimilation, to combine and transform the observations. Careful choices of variables and transformations of the observations not only have practical benefits, but also, by greatly simplifying the mathematical formulation of data assimilation, yield insights into how new observations influence Earth‐system state estimates and common measures of the information provided by observations. A linear transformation for observations and state variables uniquely diagonalizes the Kalman filter update equation A set of positive real numbers rank order the importance of transformed observations and state variables in the update In the new variables, optimal covariance localization consists of setting covariances to zero and retaining variances Linear transformations are widely used in data assimilation for covariance modeling, for reducing dimensionality (such as averaging dense observations to form “superobs”), and for managing sampling error in ensemble data assimilation. Here we describe a linear transformation that is optimal in the sense that, in the transformed space, the state variables and observations have uncorrelated errors, and a diagonal gain matrix in the update step. We conjecture, and provide numerical evidence, that the transformation is the best possible to precede covariance localization in an ensemble Kalman filter. A central feature of this transformation in the update step are scalars, which we term canonical observation operators (COOs), that relate pairs of transformed observations and state variables and rank‐order those pairs by their influence in the update. We show for an idealized problem that sample‐based estimates of the COOs, in conjunction with covariance localization for the sample covariance, can approximate well the true values, but a practical implementation of the transformation for high‐dimensional applications remains a subject for future research. The COOs also completely describe important properties of the update step, such as observation‐state mutual information, signal‐to‐noise and degrees of freedom for signal, and so give new insights, including relations among reduced‐rank approximations to variational schemes, particle‐filter weight degeneracy, and the local ensemble transform Kalman filter. |
Author | Hakim, Gregory J. Snyder, Chris |
Author_xml | – sequence: 1 givenname: Chris orcidid: 0000-0002-2257-9776 surname: Snyder fullname: Snyder, Chris email: chriss@ucar.edu organization: National Center for Atmospheric Research – sequence: 2 givenname: Gregory J. orcidid: 0000-0001-8486-9739 surname: Hakim fullname: Hakim, Gregory J. organization: University of Washington |
BookMark | eNp9kEtLAzEUhYNUsK3u_AEDbh3NY5JMlkOtL1q6sK5DJg9JmU5qMkX67x07Il25uofDx7mHMwGjNrQWgGsE7xDE4h5DjJZvsJeEn4ExEgXOccHY6ERfgElKGwgZY5iOAavabLXr_FY12cK3VsVsHVWbXIhb1fnQZr3KHlSnsiolv_XN0b0E5041yV793il4f5yvZ8_5YvX0MqsWuSaspLlymnLinCoLQ3GNBBVQWWtsUeJaaOE00wZbzjExqMbQFEpwIrQ2xBDLDZmClyHXBLWRu9j3jAcZlJdHI8QPqWLndWMldBByrktaOlFQWos-kliqoMaQCmH7rJshaxfD596mTm7CPrZ9fYlZiQiFiMCeuh0oHUNK0bq_rwjKn5Xl6co9Tgb8yzf28C8rX6vlHCNGKPkGrG9-AA |
Cites_doi | 10.3402/tellusa.v67.28027 10.1175/1520-0493(2001)129<2776:ddfobe>2.0.co;2 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2 10.1175/MWR-D-10-05052.1 10.1007/s00382-013-1989-0 10.1137/140977308 10.1093/biomet/28.3-4.321 10.1002/qj.2104 10.1002/qj.50 10.1175/2008MWR2529.1 10.1175/1520-0469(2003)060<1140:acobae>2.0.co;2 10.1175/2007MWR2018.1 10.1002/qj.49712555417 10.1002/mma.3496 10.1109/78.824676 10.1175/1520-0493(1998)126<0796:dauaek>2.0.co;2 10.1002/qj.3209 10.1175/1520-0493(1993)121<1554:SCOKFS>2.0.CO;2 10.1093/acprof:oso/9780198723844.003.0003 10.1117/12.256110 10.1002/qj.443 10.1137/100800427 10.1175/1520-0493(2001)129<0123:asekff>2.0.co;2 10.1111/j.1600-0870.2006.00222.x 10.1256/qj.04.15 10.3402/tellusa.v51i2.12316 10.1175/1520-0426(1985)002<0125:dcaepf>2.0.co;2 10.1256/qj.05.108 10.1080/16000870.2021.1903692 10.1002/qj.3347 10.1175/MWR-D-14-00157.1 10.1017/CBO9780511535895 10.3402/tellusa.v67.25257 10.1002/qj.49712354414 10.1002/qj.2990 10.1175/MWR-D-15-0252.1 10.1142/3171 10.1016/j.physd.2006.11.008 10.2151/jmsj.2014-605 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2 10.1256/qj.02.132 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union. 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union. – notice: 2022. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7TG ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR CCPQU DWQXO F1W H96 HCIFZ KL. L.G PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
DOI | 10.1029/2021MS002937 |
DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central (New) ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 1942-2466 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_0f0077c858f9455b93d13e5a0c20599e 10_1029_2021MS002937 JAME21635 |
Genre | article |
GrantInformation_xml | – fundername: National Center for Atmospheric Research – fundername: National Science Foundation (NSF) funderid: 1852977 – fundername: Heising‐Simons Foundation (HSF) funderid: 2016–014 |
GroupedDBID | 0R~ 1OC 24P 29J 31~ 5VS 8-1 8FE 8FH AAHHS AAZKR ABDBF ACCFJ ACCMX ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEGXH AENEX AEQDE AEUYN AFKRA AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU AZFZN BCNDV BENPR BHPHI BKSAR CCPQU D1K EAD EAP EAS EBS EJD EPL ESX GODZA GROUPED_DOAJ HCIFZ IAO IGS IPNFZ ITC K6- KQ8 LK5 M7R M~E O9- OK1 P2P PCBAR PIMPY PROAC RIG RNS TUS WIN ~OA AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION PHGZM PHGZT 7TG ABUWG AZQEC DWQXO F1W H96 KL. L.G PKEHL PQEST PQQKQ PQUKI HZ~ PUEGO |
ID | FETCH-LOGICAL-c3685-afc573ffa84d52b19590aeede482b9c9fc6cd2e7723d1b20d4a9739ccd3d3e7d3 |
IEDL.DBID | 24P |
ISSN | 1942-2466 |
IngestDate | Wed Aug 27 01:12:13 EDT 2025 Wed Aug 13 11:19:10 EDT 2025 Sun Jul 06 05:07:39 EDT 2025 Wed Jan 22 16:22:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3685-afc573ffa84d52b19590aeede482b9c9fc6cd2e7723d1b20d4a9739ccd3d3e7d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8486-9739 0000-0002-2257-9776 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021MS002937 |
PQID | 2681350130 |
PQPubID | 616667 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0f0077c858f9455b93d13e5a0c20599e proquest_journals_2681350130 crossref_primary_10_1029_2021MS002937 wiley_primary_10_1029_2021MS002937_JAME21635 |
PublicationCentury | 2000 |
PublicationDate | June 2022 2022-06-00 20220601 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
PublicationDecade | 2020 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Journal of advances in modeling earth systems |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc American Geophysical Union (AGU) |
Publisher_xml | – name: John Wiley & Sons, Inc – name: American Geophysical Union (AGU) |
References | 2012; 140 2018; 144 2015; 37 2014; 92 2005; 131 2000; 48 1985; 2 2015; 143 2016; 144 2011; 33 2006 2009; 135 1999; 125 2002 2001; 129 2016; 39 2021; 73 1993; 121 2014; 43 2007; 59 2015; 67 2003; 129 2000 1996; 2830 2020 2007; 133 1936; 28 1997; 123 2007; 230 2013; 139 1998; 126 1999; 51 2014 2008; 136 2017; 143 2003; 60 e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_35_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_2_1 Cover T. M. (e_1_2_11_12_1) 2006 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_20_1 e_1_2_11_25_1 Matlab (e_1_2_11_29_1) 2020 e_1_2_11_40_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 e_1_2_11_37_1 e_1_2_11_38_1 e_1_2_11_39_1 e_1_2_11_19_1 |
References_xml | – volume: 121 start-page: 1554 issue: 5 year: 1993 end-page: 1565 article-title: Spectral characteristics of Kalman filter systems for atmospheric data assimilation publication-title: Monthly Weather Review – volume: 73 start-page: 1 year: 2021 end-page: 18 article-title: Eigenvector‐spatial localisation publication-title: Tellus A: Dynamic Meteorology and Oceanography – volume: 129 start-page: 2776 issue: 11 year: 2001 end-page: 2790 article-title: Distance‐dependent filtering of background error covariance estimates in an ensemble Kalman filter publication-title: Monthly Weather Review – volume: 28 start-page: 321 issue: 3/4 year: 1936 end-page: 377 article-title: Relations between two sets of variates publication-title: Biometrika – volume: 129 start-page: 420 issue: 3 year: 2001 end-page: 436 article-title: Adaptive sampling with the ensemble transform Kalman filter. Part i: Theoretical aspects publication-title: Journal of the Atmospheric Sciences – volume: 123 start-page: 2449 issue: 544 year: 1997 end-page: 2461 article-title: Dual formulation of four‐dimensional variational assimilation publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 92 start-page: 585 issue: 6 year: 2014 end-page: 597 article-title: Optimal localization for ensemble Kalman filter systems publication-title: Journal of the Meteorological Society of Japan. Ser. II – volume: 126 start-page: 796 issue: 3 year: 1998 end-page: 811 article-title: Data assimilation using an ensemble Kalman filter technique publication-title: Monthly Weather Review – volume: 136 start-page: 463 issue: 2 year: 2008 end-page: 482 article-title: Ensemble data assimilation with the NCEP global forecast system publication-title: Monthly Weather Review – volume: 133 start-page: 615 issue: 624 year: 2007 end-page: 630 article-title: Spectral and spatial localization of background‐error correlations for data assimilation publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 67 issue: 1 year: 2015 article-title: Towards a theory of optimal localisation publication-title: Tellus A: Dynamic Meteorology and Oceanography – volume: 136 start-page: 4629 issue: 12 year: 2008 end-page: 4640 article-title: Obstacles to high‐dimensional particle filtering publication-title: Monthly Weather Review – volume: 144 start-page: 365 issue: 711 year: 2018 end-page: 390 article-title: Optimal and scalable methods to approximate the solutions of large‐scale Bayesian problems: Theory and application to atmospheric inversion and data assimilation publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 129 start-page: 123 issue: 1 year: 2001 end-page: 137 article-title: A sequential ensemble Kalman filter for atmospheric data assimilation publication-title: Monthly Weather Review – volume: 139 start-page: 2033 issue: 677 year: 2013 end-page: 2054 article-title: Information‐based data selection for ensemble data assimilation publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 37 start-page: A2451 issue: 6 year: 2015 end-page: A2487 article-title: Optimal low‐rank approximations of Bayesian linear inverse problems publication-title: SIAM Journal on Scientific Computing – volume: 67 issue: 1 year: 2015 article-title: Scale‐dependent background‐error covariance localisation publication-title: Tellus A: Dynamic Meteorology and Oceanography – year: 2000 – volume: 131 start-page: 3385 issue: 613 year: 2005 end-page: 3396 article-title: Diagnosis of observation, background and analysis‐error statistics in observation space publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 143 start-page: 1062 issue: 703 year: 2017 end-page: 1072 article-title: Improving ensemble covariances in hybrid variational data assimilation without increasing ensemble size publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 143 start-page: 1622 issue: 5 year: 2015 end-page: 1643 article-title: Linear filtering of sample covariances for ensemble‐based data assimilation. Part i: Optimality criteria and application to variance filtering and covariance localization publication-title: Monthly Weather Review – volume: 39 start-page: 619 issue: 4 year: 2016 end-page: 634 article-title: Transformed and generalized localization for ensemble methods in data assimilation publication-title: Mathematical Methods in the Applied Sciences – volume: 144 start-page: 3677 issue: 10 year: 2016 end-page: 3696 article-title: Ensemble–variational integrated localized data assimilation publication-title: Monthly Weather Review – year: 2014 – volume: 60 start-page: 1140 issue: 9 year: 2003 end-page: 1158 article-title: A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes publication-title: Journal of the Atmospheric Sciences – volume: 131 start-page: 1013 issue: 607 year: 2005 end-page: 1043 article-title: Ensemble‐derived stationary and flow‐dependent background‐error covariances: Evaluation in a quasi‐operational NWP setting publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 129 start-page: 2884 issue: 12 year: 2001 end-page: 2903 article-title: An ensemble adjustment Kalman filter for data assimilation publication-title: Monthly Weather Review – volume: 2 start-page: 125 issue: 2 year: 1985 end-page: 132 article-title: Design criteria and eigen sequence plots for satellite‐computed tomography publication-title: Journal of Atmospheric and Oceanic Technology – volume: 59 start-page: 198 year: 2007 end-page: 209 article-title: Measuring information content from observations for data assimilation: Relative entropy versus shannon entropy difference publication-title: Tellus A: Dynamic Meteorology and Oceanography – volume: 33 start-page: 2620 issue: 5 year: 2011 end-page: 2640 article-title: Interpolating irregularly spaced observations for filtering turbulent complex systems publication-title: SIAM Journal on Scientific Computing – volume: 135 start-page: 1157 issue: 642 year: 2009 end-page: 1176 article-title: Covariance localisation and balance in an ensemble Kalman filter publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 125 start-page: 723 issue: 554 year: 1999 end-page: 757 article-title: Construction of correlation functions in two and three dimensions publication-title: Quarterly Journal of the Royal Meteorological Society – year: 2002 – volume: 230 start-page: 112 issue: 1–2 year: 2007 end-page: 126 article-title: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform kalman filter publication-title: Physica D: Nonlinear Phenomena – volume: 48 start-page: 824 issue: 3 year: 2000 end-page: 831 article-title: Canonical coordinates and the geometry of inference, rate, and capacity publication-title: IEEE Transactions on Signal Processing – year: 2006 – year: 2020 – volume: 140 start-page: 617 issue: 2 year: 2012 end-page: 636 article-title: Evaluation of a spatial/spectral covariance localization approach for atmospheric data assimilation publication-title: Monthly Weather Review – volume: 129 start-page: 3183 issue: 595 year: 2003 end-page: 3203 article-title: The potential of the ensemble Kalman filter for NWP–a comparison with 4d‐var publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 43 start-page: 1631 issue: 5–6 year: 2014 end-page: 1643 article-title: Coupled atmosphere–ocean data assimilation experiments with a low‐order climate model publication-title: Climate Dynamics – volume: 51 start-page: 195 issue: 2 year: 1999 end-page: 221 article-title: A reformulation of the background error covariance in the ECMWF global data assimilation system publication-title: Tellus A: Dynamic Meteorology and Oceanography – volume: 144 start-page: 2230 issue: 716 year: 2018 end-page: 2244 article-title: Information constraints in variational data assimilation publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 2830 start-page: 136 year: 1996 end-page: 147 – ident: e_1_2_11_10_1 doi: 10.3402/tellusa.v67.28027 – ident: e_1_2_11_18_1 doi: 10.1175/1520-0493(2001)129<2776:ddfobe>2.0.co;2 – ident: e_1_2_11_2_1 doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2 – ident: e_1_2_11_8_1 doi: 10.1175/MWR-D-10-05052.1 – ident: e_1_2_11_40_1 doi: 10.1007/s00382-013-1989-0 – ident: e_1_2_11_39_1 doi: 10.1137/140977308 – ident: e_1_2_11_21_1 doi: 10.1093/biomet/28.3-4.321 – ident: e_1_2_11_31_1 doi: 10.1002/qj.2104 – ident: e_1_2_11_9_1 doi: 10.1002/qj.50 – ident: e_1_2_11_38_1 doi: 10.1175/2008MWR2529.1 – ident: e_1_2_11_42_1 doi: 10.1175/1520-0469(2003)060<1140:acobae>2.0.co;2 – ident: e_1_2_11_43_1 doi: 10.1175/2007MWR2018.1 – ident: e_1_2_11_17_1 doi: 10.1002/qj.49712555417 – ident: e_1_2_11_32_1 doi: 10.1002/mma.3496 – volume-title: Version 7.9 (r2020b) year: 2020 ident: e_1_2_11_29_1 – ident: e_1_2_11_36_1 doi: 10.1109/78.824676 – volume-title: Elements of information theory (wiley series in telecommunications and signal processing) year: 2006 ident: e_1_2_11_12_1 – ident: e_1_2_11_22_1 doi: 10.1175/1520-0493(1998)126<0796:dauaek>2.0.co;2 – ident: e_1_2_11_6_1 doi: 10.1002/qj.3209 – ident: e_1_2_11_13_1 doi: 10.1175/1520-0493(1993)121<1554:SCOKFS>2.0.CO;2 – ident: e_1_2_11_37_1 doi: 10.1093/acprof:oso/9780198723844.003.0003 – ident: e_1_2_11_34_1 doi: 10.1117/12.256110 – ident: e_1_2_11_26_1 doi: 10.1002/qj.443 – ident: e_1_2_11_19_1 doi: 10.1137/100800427 – ident: e_1_2_11_23_1 doi: 10.1175/1520-0493(2001)129<0123:asekff>2.0.co;2 – ident: e_1_2_11_44_1 doi: 10.1111/j.1600-0870.2006.00222.x – ident: e_1_2_11_7_1 doi: 10.1256/qj.04.15 – ident: e_1_2_11_14_1 doi: 10.3402/tellusa.v51i2.12316 – ident: e_1_2_11_41_1 doi: 10.1175/1520-0426(1985)002<0125:dcaepf>2.0.co;2 – ident: e_1_2_11_15_1 doi: 10.1256/qj.05.108 – ident: e_1_2_11_20_1 doi: 10.1080/16000870.2021.1903692 – ident: e_1_2_11_25_1 doi: 10.1002/qj.3347 – ident: e_1_2_11_30_1 doi: 10.1175/MWR-D-14-00157.1 – ident: e_1_2_11_4_1 doi: 10.1017/CBO9780511535895 – ident: e_1_2_11_16_1 doi: 10.3402/tellusa.v67.25257 – ident: e_1_2_11_11_1 doi: 10.1002/qj.49712354414 – ident: e_1_2_11_28_1 doi: 10.1002/qj.2990 – ident: e_1_2_11_3_1 doi: 10.1175/MWR-D-15-0252.1 – ident: e_1_2_11_35_1 doi: 10.1142/3171 – ident: e_1_2_11_24_1 doi: 10.1016/j.physd.2006.11.008 – ident: e_1_2_11_33_1 doi: 10.2151/jmsj.2014-605 – ident: e_1_2_11_5_1 doi: 10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2 – ident: e_1_2_11_27_1 doi: 10.1256/qj.02.132 |
SSID | ssj0066625 |
Score | 2.2598658 |
Snippet | Linear transformations are widely used in data assimilation for covariance modeling, for reducing dimensionality (such as averaging dense observations to form... Abstract Linear transformations are widely used in data assimilation for covariance modeling, for reducing dimensionality (such as averaging dense observations... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Index Database Publisher |
SubjectTerms | Algorithms Approximation canonical correlation analysis Correlation analysis covariance localization Data assimilation Data collection kalman filter Kalman filters linear transformation Localization Sampling error |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxbEUwQK8gBMRMR2nMRjKa0qpMLSSt0sP6VKNEWl_H_OTorCAgtLlESJdLqzfd_5zt8hdCOctkKxLC2LkqY5dTpVTCu45KEIQ2RchYPC05diMs-fF3zRafUVasIaeuBGcQ-ZD4wzpuKVFznnWjBLmOMqMzRQi7iw-oLP2wVTzRoMmJzytsw9oyJE-GQa8pIi9DvvOKDI0_8DXHYhavQx40N00IJDPGiEOkJ7rj5GyRRw7XoTt7_xHR6-LQFkxqcTVAxq_AqTfgV_QVQJoxbPOkh0XWO4w09qqzDYYblaNpVvp2g-Hs2Gk7TthJCaQBCfKm94ybxXVW451YEQJlPg3VxeUS2M8KYwljpAyqAdTTObK1EyYYxllrnSsjPUq9e1O0dYG8e1dtwaSnJPfEUUgaBJK6e0VZYk6HanHvneEF7ImKimQnbVmKDHoLvvbwJNdXwBxpOt8eRfxktQf6d52c6dD0mLioR0J8sSdB-t8asgErzTiAKs5Bf_IdIl2qfhhEPcaOmj3nbz6a4Ad2z1dRxiXw_o0gk priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XbyIn1idkoN6stgmTducZOrGEDZFFHYr-aoMXDu3-f_7kmVaL7uUNrQlvJe893sfeQ-hS26k5oJGYZZmJEyIkaGgUsAlsUkYPGLCHhQejtLBe_I0ZmPvcFv4tMq1THSCWtfK-shvSZrHNghGo7vZV2i7Rtnoqm-hsY3aIIJzML7a973Ry-taFgM2J8ynu0eEW0s_Htr4JLd9zxuKyNXr_wcym1DV6Zr-Htr1IBF3V1zdR1umOkDBEPBtPXducHyNHz4nADbd0yFKuxV-hs0_ha_AuoTVi98aiLSuMNzhR7EUGPgxmU5WGXBH6L3fe3sYhL4jQqhsofhQlIpltCxFnmhGpC0MEwnQcibJieSKlypVmhhAzFTHkkQ6ETyjXClNNTWZpseoVdWVOUFYKsOkNEwrEidlXOaxiMF4ksIIqYWOA3S1Jk8xWxW-KFzAmvCiScYA3Vva_b5jy1W7gXr-UfjVX0SlLRukcpaXPGFMcpgeNUxEitj6MCZAnTXlC7-HFsUfxwN047ixcSIFaKkeAXjJTjf_7QztEHuGwblSOqi1nH-bc0AWS3nhl88PzOXLyg priority: 102 providerName: ProQuest |
Title | An Optimal Linear Transformation for Data Assimilation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2021MS002937 https://www.proquest.com/docview/2681350130 https://doaj.org/article/0f0077c858f9455b93d13e5a0c20599e |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58XLyIT6yPJQf1ZLHNo22OPlZEWBVR8Fbyqiy4XVnX_-9MtivrRfBS2pJAmGQy38xkvgAc62C9NiJLy6LkqeTBpkZYgw9JhzB0pgwVCg_ui9sXefeqXruAG9XCzPghfgJupBlxvyYFN_azIxsgjkz02vMB5RrRwC7DKlXXEnc-l4_znRiRebx0Ff10nnJZFN3Bd-xyvtj7l0mKzP2_4OYiaI1W52YD1ju4yC5m87sJS6HdgmSASHc8iQFxdsqu3ocIO-PXNhQXLXvAbWCEvdDPxHXMnhew6bhl-MauzdQwnJnhaDg7C7cDLzf956vbtLsbIXVEGZ-axqlSNI2ppFfcEkVMZtDeBVlxq51uXOE8D4idhc8tz7w0uhTaOS-8CKUXu7DSjtuwB8y6oKwNyjueyyZvqtzk6EZZE4z1xucJnMzFU3_MKDDqmLrmul4UYwKXJLufNkRcHX-MJ291pwd11hCBkKtU1WiplNU4PBGUyRwnppiQwOFc8nWnTZ81L6qcEqAiS-AszsafA6nRXvU5Ak21_7_mB7DGqbohBlkOYWU6-QpHiDmmthcXVg9WL_v3j0-96Ll_Axxqz3E |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QEuiBYQgQI-UE6NSPxI4gNCfWy1pd0tQlupN-NX0Eo0KdtFqH-qv5GxNynbS2-9REmUWNZ4PPPNwzMAH6Q3TmqWpWVR0pRTb1LNjMYLD0kYMhM6HBQeT4rRGf96Ls7X4KY_CxPSKnuZGAW1a23wkX-iRZWHIBjLvlz-TkPXqBBd7VtoLNni2F__RZPt6vPRAa7vNqWHw-n-KO26CqQ2FFtPdW1FyepaV9wJakJxlUyjpvC8okZaWdvCOuoRdTKXG5o5rmXJpLWOOeZLx3DcR7DOGZoyA1jfG06-fe9lP9oCVHTp9RmVwbOQj0M8VIY-6yuKL_YHuANqV6Fx1G2Hz-BpB0rJ7pKLNmDNN5uQjBFPt_Podicfyf6vGYLb-PQcit2GnKKwucC_0JpFspDpCgJuG4J35EAvNMH1n13Mlhl3L-DsQWj1EgZN2_hXQIz1whgvnKU5r_O6ynWOxprRXhunXZ7Adk8edbkstKFigJxKtUrGBPYC7W6_CeWx44t2_lN1u01ldShTZCtR1ZILYSROj3mhM0tDPRqfwFZPedXt2Sv1n8MS2Imrce9EFGrFIUU4K17fP9p7eDyajk_UydHk-A08oeH8RHTjbMFgMf_j3yKqWZh3HSsR-PHQ3PsPmNgKYg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9RAFH_BJTFeDPgRq4hzEE82TGc6bedgCLC7AXFXYiDhNs4n2URaWNYY_zX-Ot90W10v3Lg0bdNOJm_ezPu9b4D30hsnNadpWZQszZk3qeZG4yWPQRiSCh0ThSfT4ug8_3whLtbgrs-FiWGV_ZnYHtSusdFGvsuKKotOME53QxcWcToc713fpLGDVPS09u00lixy4n__QvXt9tPxENd6h7Hx6OzwKO06DKQ2Fl5PdbCi5CHoKneCmVhohWqUGj6vmJFWBltYxzwiUO4yw6jLtSy5tNZxx33pOI77CNZL1IroANYPRtPTb70cQL2AiS7UnjIZrQzZJPpGZey5viIE214B_wHcVZjcyrnxBjztACrZX3LUJqz5-hkkE8TWzbw1wZMP5PDHDIFu-_Qciv2afMWD5wr_Qs0WyULOVtBwUxO8I0O90AR5YXY1W0bfvYDzB6HVSxjUTe1fATHWC2O8cJZlechClekMFTejvTZOuyyBnZ486npZdEO1znIm1SoZEziItPv7TSyV3b5o5peq23mKhliyyFaiCjIXwkicHvdCU8tibRqfwFZPedXt31v1j9sS-Niuxr0TUSghRwyhrXh9_2jv4DFyrfpyPD15A09YTKVoLTpbMFjMf_q3CHAWZrvjJALfH5p5_wDDCQ6X |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimal+Linear+Transformation+for+Data+Assimilation&rft.jtitle=Journal+of+advances+in+modeling+earth+systems&rft.au=Snyder%2C+Chris&rft.au=Hakim%2C+Gregory+J.&rft.date=2022-06-01&rft.issn=1942-2466&rft.eissn=1942-2466&rft.volume=14&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2021MS002937&rft.externalDBID=10.1029%252F2021MS002937&rft.externalDocID=JAME21635 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-2466&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-2466&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-2466&client=summon |