Learning Probabilistic Transfer Functions: A Comparative Study of Classifiers

Complex volume rendering tasks require high‐dimensional transfer functions, which are notoriously difficult to design. One solution to this is to learn transfer functions from scribbles that the user places in the volumetric domain in an intuitive and natural manner. In this paper, we explicitly mod...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 34; no. 3; pp. 111 - 120
Main Authors Soundararajan, K. P., Schultz, T.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.06.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Complex volume rendering tasks require high‐dimensional transfer functions, which are notoriously difficult to design. One solution to this is to learn transfer functions from scribbles that the user places in the volumetric domain in an intuitive and natural manner. In this paper, we explicitly model and visualize the uncertainty in the resulting classification. To this end, we extend a previous intelligent system approach to volume rendering, and we systematically compare five supervised classification techniques – Gaussian Naive Bayes, k Nearest Neighbor, Support Vector Machines, Neural Networks, and Random Forests – with respect to probabilistic classification, support for multiple materials, interactive performance, robustness to unreliable input, and easy parameter tuning, which we identify as key requirements for the successful use in this application. Based on theoretical considerations, as well as quantitative and visual results on volume datasets from different sources and modalities, we conclude that, while no single classifier can be expected to outperform all others under all circumstances, random forests are a useful off‐the‐shelf technique that provides fast, easy, robust and accurate results in many scenarios.
AbstractList Complex volume rendering tasks require high-dimensional transfer functions, which are notoriously difficult to design. One solution to this is to learn transfer functions from scribbles that the user places in the volumetric domain in an intuitive and natural manner. In this paper, we explicitly model and visualize the uncertainty in the resulting classification. To this end, we extend a previous intelligent system approach to volume rendering, and we systematically compare five supervised classification techniques - Gaussian Naive Bayes, k Nearest Neighbor, Support Vector Machines, Neural Networks, and Random Forests - with respect to probabilistic classification, support for multiple materials, interactive performance, robustness to unreliable input, and easy parameter tuning, which we identify as key requirements for the successful use in this application. Based on theoretical considerations, as well as quantitative and visual results on volume datasets from different sources and modalities, we conclude that, while no single classifier can be expected to outperform all others under all circumstances, random forests are a useful off-the-shelf technique that provides fast, easy, robust and accurate results in many scenarios.
Author Soundararajan, K. P.
Schultz, T.
Author_xml – sequence: 1
  givenname: K. P.
  surname: Soundararajan
  fullname: Soundararajan, K. P.
  organization: University of Bonn, Germany
– sequence: 2
  givenname: T.
  surname: Schultz
  fullname: Schultz, T.
  organization: University of Bonn, Germany
BookMark eNp1kT1PwzAQhi0EEi0w8A8iscAQsJP4I2xVRAtSKUiAGK2LayNDahc7AfrvCRQYENxyNzzP6fx6iDaddxqhfYKPSV8n6sEck4xl-QYakILxVDBabqIBJv3MMaXbaBjjI8a44IwO0OVUQ3DWPSTXwddQ28bG1qrkNoCLRodk3DnVWu_iaTJKKr9YQoDWvujkpu3mq8SbpGogRmusDnEXbRloot776jvobnx2W52n06vJRTWapipnIk9VRkAXWWYAl1SAooJzhU1JGal5XShKWKZrXBgyrwVgbHJDcQ1lTYBSQXW-gw7Xe5fBP3c6tnJho9JNA077LkrCucA5Y6Ls0YNf6KPvguuvk4SVPCsKSkRPnawpFXyMQRupbAsf724D2EYSLD_ilX288jPe3jj6ZSyDXUBY_cl-bX-1jV79D8pqMv420rXR_4Z--zEgPEnGc07l_WwiZ7zi4poWcpq_A5AomXw
CitedBy_id crossref_primary_10_1016_j_cag_2016_06_007
crossref_primary_10_1007_s12650_019_00584_3
crossref_primary_10_3390_math12121885
crossref_primary_10_1016_j_cag_2017_10_002
crossref_primary_10_1109_TVCG_2021_3127918
crossref_primary_10_1109_TVCG_2016_2637333
crossref_primary_10_1111_cgf_12934
crossref_primary_10_1111_cgf_13663
crossref_primary_10_1109_TVCG_2017_2744078
crossref_primary_10_1007_s12650_021_00787_7
crossref_primary_10_1109_ACCESS_2021_3100429
crossref_primary_10_1109_TVCG_2018_2816059
Cites_doi 10.1109/TVCG.2006.148
10.1109/TVCG.2012.231
10.1109/MCG.2003.1231171
10.1109/ICCVW.2009.5457447
10.1201/b10629
10.1109/TVCG.2002.1021579
10.1109/TVCG.2008.169
10.1023/A:1010933404324
10.1109/MCG.2007.129
10.1109/TVCG.2007.70518
10.1109/72.991427
10.1109/TVCG.2012.105
10.1007/978-1-4471-6497-5_1
10.1007/s00371-011-0634-3
10.1007/s11548-007-0079-3
10.1109/TVCG.2008.162
10.1109/VISUAL.2005.1532779
10.1109/TVCG.2010.208
10.1109/TVCG.2005.38
10.1109/TVCG.2011.261
10.1145/378456.378484
ContentType Journal Article
Copyright 2015 The Author(s) Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2015 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2015 The Author(s) Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2015 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.12623
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 120
ExternalDocumentID 3747610231
10_1111_cgf_12623
CGF12623
ark_67375_WNG_N7C78P54_L
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHQJS
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c3683-c21ae422fa0958ac5877c0f9561b7b4c5162eb04f1db8a00f3f50ba9b1a5585e3
IEDL.DBID DR2
ISSN 0167-7055
IngestDate Fri Jul 11 07:30:56 EDT 2025
Mon Jul 14 09:12:37 EDT 2025
Thu Apr 24 23:12:44 EDT 2025
Thu Jul 03 08:37:10 EDT 2025
Wed Aug 20 07:25:02 EDT 2025
Wed Oct 30 09:53:31 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3683-c21ae422fa0958ac5877c0f9561b7b4c5162eb04f1db8a00f3f50ba9b1a5585e3
Notes ArticleID:CGF12623
ark:/67375/WNG-N7C78P54-L
istex:D6AD73DAB8ECF9FB94C4F73011019587AA934B3F
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1697244518
PQPubID 30877
PageCount 10
ParticipantIDs proquest_miscellaneous_1778036689
proquest_journals_1697244518
crossref_citationtrail_10_1111_cgf_12623
crossref_primary_10_1111_cgf_12623
wiley_primary_10_1111_cgf_12623_CGF12623
istex_primary_ark_67375_WNG_N7C78P54_L
PublicationCentury 2000
PublicationDate 2015-06
June 2015
2015-06-00
20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Schaul T., Bayer J., Wierstra D., Sun Y., Felder M., Sehnke F., Rückstiess T., Schmidhuber J.: PyBrain. Journal of Machine Learning Research 11 (2010), 743-746. 5
Caban J.J., Rheingans P.: Texture-based transfer functions for direct volume rendering. IEEE Transactions on Visualization and Computer Graphics 14, 6 (2008), 1364-1371. 1
Rezk Salama C., Keller M., Kohlmann P.: High-level user interfaces for transfer function design with semantics. IEEE Transactions on Visualization and Computer Graphics 12, 5 (2006), 1021-1028. 2
Johnson C.R., Sanderson A.R.: A next step: Visualizing errors and uncertainty. IEEE Computer Graphics and Applications 23, 5 (2003), 6-10. 2
Teistler M., Breiman R.S., Liong S.M., Ho L.Y., Shahab A., Nowinski W.L.: Interactive definition of transfer functions in volume rendering based on image markers. Int. J. Computer Assisted Radiology and Surgery 2 (2007), 55-64. 2
Breiman L.: Random forests. Machine Learning 45, 1 (2001), 5-32. 4, 5
Correa C., Ma K.-L.: Size-based transfer functions: A new volume exploration technique. IEEE Transactions on Visualization and Computer Graphics 14, 6 (2008), 1380-1387. 1
Hsu C.-W., Lin C.-J.: A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks 13, 2 (2002), 415-425. 4
Prassni J.S., Ropinski T., Hinrichs K.: Uncertainty-aware guided volume segmentation. IEEE Trans. Visualization and Computer Graphics 16, 6 (2010), 1358-1365. 2, 9
Kniss J., Kindlmann G., Hansen C.: Multidimensional transfer functions for interactive volume rendering. IEEE Transactions on Visualization and Computer Graphics 8, 3 (2002), 270-285. 1, 5
Nguyen B.P., Tay W.-L., Chui C.-K., Ong S.-H.: A clustering-based system to automate transfer function design for medical image visualization. The Visual Computer 28 (2012), 181-191. 2
Ma K.-L.: Machine learning to boost the next generation of visualization technology. IEEE Computer Graphics and Applications 27, 5 (2007), 6-9. 9
Guo H., Mao N., Yuan X.: WYSIWYG (what you see is what you get) volume visualization. IEEE Trans. Visualization and Computer Graphics (TVCG) 17, 12 (2011), 2106-2114. 2
Tzeng F.-Y., Lum E.B., Ma K.-L.: An intelligent system approach to higher-dimensional classification of volume data. IEEE Transactions on Visualization and Computer Graphics 11, 3 (2005), 273-284. 1, 2, 3, 4, 5, 8
Lundström C., Ljung P., Persson A., Ynnerman A.: Uncertainty visualization in medical volume rendering using probabilistic animation. IEEE Transactions on Visualization and Computer Graphics 13, 6 (Nov./Dec. 2007), 1648-1655. 2
Fernández-Delgado M., Cernadas E., Barro S., Amorim D.: Do we need hundreds of classifiers to solve real world classification problems? Journal of Machine Learning Research 15 (2014), 3133-3181. 2, 5
Ip C.Y., Varshney A., JaJa J.: Hierarchical exploration of volumes using multilevel segmentation of the intensity-gradient histograms. IEEE Transactions on Visualization and Computer Graphics 18, 12 (2012), 2355-2363. 1, 2, 5
Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. Springer Series in Statistics. Springer, 2011. 3, 4, 5
Engel K., Hadwiger M., Kniss J.M., Rezk-Salama C., Weiskopf D.: Real-Time Volume Graphics. Taylor & Francis Ltd., 2006. 2
Schölkopf B., Smola A.J.: Learning with Kernels. MIT Press, 2002. 4
Maciejewski R., Jang Y., Woo I., Jänicke H., Gaither K., Ebert D.: Abstracting attribute space for transfer function exploration and design. IEEE Transactions on Visualization and Computer Graphics 19, 1 (2013), 94-107. 1
Wu T.-F., Lin C.-J., Weng R.C.: Probability estimates for multi-class classification by pairwise coupling. Journal of Machine Learning Research 5 (2004), 975-1005. 4
Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay É.: Scikit-learn: Machine learning in python. Journal of Machine Learning Research 12 (2011), 2825-2830. 5
Kniss J.M., Uitert R.V., Stephens A., Li G.-S., Tasdizen T., Hansen C.: Statistically quantitative volume visualization. In Proc. IEEE Visualization 2005 (2005), pp. 287-294. 2, 8
2010; 11
2010; 16
2006; 12
2011
2002; 13
2002; 8
2008; 14
2009
2008
2006
2004; 5
2012; 18
2005
2011; 12
2004
2002
2011; 17
2001; 45
2005; 2005
2007; 13
2013; 19
2008; 5305
2014; 15
2012; 28
2014
2007; 2
2005; 11
1988
2003; 23
2007; 27
Pedregosa F. (e_1_2_9_22_2) 2011; 12
e_1_2_9_30_2
e_1_2_9_10_2
e_1_2_9_34_2
e_1_2_9_12_2
e_1_2_9_31_2
e_1_2_9_32_2
Schaul T. (e_1_2_9_25_2) 2010; 11
e_1_2_9_14_2
e_1_2_9_13_2
e_1_2_9_16_2
e_1_2_9_18_2
e_1_2_9_17_2
Kniss J.M. (e_1_2_9_15_2) 2005; 2005
e_1_2_9_19_2
Fernández‐Delgado M. (e_1_2_9_8_2) 2014; 15
e_1_2_9_21_2
e_1_2_9_20_2
e_1_2_9_23_2
Wu T.‐F. (e_1_2_9_33_2) 2004; 5
e_1_2_9_7_2
e_1_2_9_6_2
e_1_2_9_5_2
e_1_2_9_4_2
e_1_2_9_3_2
e_1_2_9_2_2
Schölkopf B. (e_1_2_9_28_2) 2002
Sharp T. (e_1_2_9_26_2) 2008
e_1_2_9_9_2
e_1_2_9_24_2
e_1_2_9_27_2
Hastie T. (e_1_2_9_11_2) 2011
e_1_2_9_29_2
References_xml – reference: Tzeng F.-Y., Lum E.B., Ma K.-L.: An intelligent system approach to higher-dimensional classification of volume data. IEEE Transactions on Visualization and Computer Graphics 11, 3 (2005), 273-284. 1, 2, 3, 4, 5, 8
– reference: Rezk Salama C., Keller M., Kohlmann P.: High-level user interfaces for transfer function design with semantics. IEEE Transactions on Visualization and Computer Graphics 12, 5 (2006), 1021-1028. 2
– reference: Ma K.-L.: Machine learning to boost the next generation of visualization technology. IEEE Computer Graphics and Applications 27, 5 (2007), 6-9. 9
– reference: Guo H., Mao N., Yuan X.: WYSIWYG (what you see is what you get) volume visualization. IEEE Trans. Visualization and Computer Graphics (TVCG) 17, 12 (2011), 2106-2114. 2
– reference: Schölkopf B., Smola A.J.: Learning with Kernels. MIT Press, 2002. 4
– reference: Teistler M., Breiman R.S., Liong S.M., Ho L.Y., Shahab A., Nowinski W.L.: Interactive definition of transfer functions in volume rendering based on image markers. Int. J. Computer Assisted Radiology and Surgery 2 (2007), 55-64. 2
– reference: Kniss J.M., Uitert R.V., Stephens A., Li G.-S., Tasdizen T., Hansen C.: Statistically quantitative volume visualization. In Proc. IEEE Visualization 2005 (2005), pp. 287-294. 2, 8
– reference: Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. Springer Series in Statistics. Springer, 2011. 3, 4, 5
– reference: Ip C.Y., Varshney A., JaJa J.: Hierarchical exploration of volumes using multilevel segmentation of the intensity-gradient histograms. IEEE Transactions on Visualization and Computer Graphics 18, 12 (2012), 2355-2363. 1, 2, 5
– reference: Nguyen B.P., Tay W.-L., Chui C.-K., Ong S.-H.: A clustering-based system to automate transfer function design for medical image visualization. The Visual Computer 28 (2012), 181-191. 2
– reference: Breiman L.: Random forests. Machine Learning 45, 1 (2001), 5-32. 4, 5
– reference: Johnson C.R., Sanderson A.R.: A next step: Visualizing errors and uncertainty. IEEE Computer Graphics and Applications 23, 5 (2003), 6-10. 2
– reference: Correa C., Ma K.-L.: Size-based transfer functions: A new volume exploration technique. IEEE Transactions on Visualization and Computer Graphics 14, 6 (2008), 1380-1387. 1
– reference: Fernández-Delgado M., Cernadas E., Barro S., Amorim D.: Do we need hundreds of classifiers to solve real world classification problems? Journal of Machine Learning Research 15 (2014), 3133-3181. 2, 5
– reference: Engel K., Hadwiger M., Kniss J.M., Rezk-Salama C., Weiskopf D.: Real-Time Volume Graphics. Taylor & Francis Ltd., 2006. 2
– reference: Maciejewski R., Jang Y., Woo I., Jänicke H., Gaither K., Ebert D.: Abstracting attribute space for transfer function exploration and design. IEEE Transactions on Visualization and Computer Graphics 19, 1 (2013), 94-107. 1
– reference: Prassni J.S., Ropinski T., Hinrichs K.: Uncertainty-aware guided volume segmentation. IEEE Trans. Visualization and Computer Graphics 16, 6 (2010), 1358-1365. 2, 9
– reference: Kniss J., Kindlmann G., Hansen C.: Multidimensional transfer functions for interactive volume rendering. IEEE Transactions on Visualization and Computer Graphics 8, 3 (2002), 270-285. 1, 5
– reference: Lundström C., Ljung P., Persson A., Ynnerman A.: Uncertainty visualization in medical volume rendering using probabilistic animation. IEEE Transactions on Visualization and Computer Graphics 13, 6 (Nov./Dec. 2007), 1648-1655. 2
– reference: Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay É.: Scikit-learn: Machine learning in python. Journal of Machine Learning Research 12 (2011), 2825-2830. 5
– reference: Hsu C.-W., Lin C.-J.: A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks 13, 2 (2002), 415-425. 4
– reference: Schaul T., Bayer J., Wierstra D., Sun Y., Felder M., Sehnke F., Rückstiess T., Schmidhuber J.: PyBrain. Journal of Machine Learning Research 11 (2010), 743-746. 5
– reference: Caban J.J., Rheingans P.: Texture-based transfer functions for direct volume rendering. IEEE Transactions on Visualization and Computer Graphics 14, 6 (2008), 1364-1371. 1
– reference: Wu T.-F., Lin C.-J., Weng R.C.: Probability estimates for multi-class classification by pairwise coupling. Journal of Machine Learning Research 5 (2004), 975-1005. 4
– year: 2011
– volume: 18
  start-page: 2355
  issue: 12
  year: 2012
  end-page: 2363
  article-title: Hierarchical exploration of volumes using multilevel segmentation of the intensity‐gradient histograms
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– start-page: 243
  year: 2006
  end-page: 250
– volume: 11
  start-page: 743
  year: 2010
  end-page: 746
  article-title: PyBrain
  publication-title: Journal of Machine Learning Research
– start-page: 1393
  year: 2009
  end-page: 1400
– volume: 14
  start-page: 1380
  issue: 6
  year: 2008
  end-page: 1387
  article-title: Size‐based transfer functions: A new volume exploration technique
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine Learning
– volume: 17
  start-page: 2106
  issue: 12
  year: 2011
  end-page: 2114
  article-title: WYSIWYG (what you see is what you get) volume visualization
  publication-title: IEEE Trans. Visualization and Computer Graphics (TVCG)
– volume: 5
  start-page: 975
  year: 2004
  end-page: 1005
  article-title: Probability estimates for multi‐class classification by pairwise coupling
  publication-title: Journal of Machine Learning Research
– volume: 13
  start-page: 415
  issue: 2
  year: 2002
  end-page: 425
  article-title: A comparison of methods for multiclass support vector machines
  publication-title: IEEE Transactions on Neural Networks
– volume: 5305
  start-page: 595
  year: 2008
  end-page: 608
– volume: 14
  start-page: 1364
  issue: 6
  year: 2008
  end-page: 1371
  article-title: Texture‐based transfer functions for direct volume rendering
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– start-page: 17
  year: 2004
  end-page: 24
– start-page: 65
  year: 2005
  end-page: 72
– volume: 8
  start-page: 270
  issue: 3
  year: 2002
  end-page: 285
  article-title: Multidimensional transfer functions for interactive volume rendering
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 2005
  start-page: 287
  year: 2005
  end-page: 294
  article-title: Statistically quantitative volume visualization
  publication-title: Proc. IEEE Visualization
– volume: 2
  start-page: 55
  year: 2007
  end-page: 64
  article-title: Interactive definition of transfer functions in volume rendering based on image markers
  publication-title: Int. J. Computer Assisted Radiology and Surgery
– volume: 16
  start-page: 1358
  issue: 6
  year: 2010
  end-page: 1365
  article-title: Uncertainty‐aware guided volume segmentation
  publication-title: IEEE Trans. Visualization and Computer Graphics
– volume: 13
  start-page: 1648
  issue: 6
  year: 2007
  end-page: 1655
  article-title: Uncertainty visualization in medical volume rendering using probabilistic animation
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 15
  start-page: 3133
  year: 2014
  end-page: 3181
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: Journal of Machine Learning Research
– start-page: 562
  year: 2004
  end-page: 567
– start-page: 41
  year: 2008
  end-page: 48
– year: 2002
– year: 2006
– start-page: 3
  year: 2014
  end-page: 28
– start-page: 65
  year: 1988
  end-page: 74
– volume: 19
  start-page: 94
  issue: 1
  year: 2013
  end-page: 107
  article-title: Abstracting attribute space for transfer function exploration and design
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 12
  start-page: 1021
  issue: 5
  year: 2006
  end-page: 1028
  article-title: High‐level user interfaces for transfer function design with semantics
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 23
  start-page: 6
  issue: 5
  year: 2003
  end-page: 10
  article-title: A next step: Visualizing errors and uncertainty
  publication-title: IEEE Computer Graphics and Applications
– volume: 28
  start-page: 181
  year: 2012
  end-page: 191
  article-title: A clustering‐based system to automate transfer function design for medical image visualization
  publication-title: The Visual Computer
– volume: 27
  start-page: 6
  issue: 5
  year: 2007
  end-page: 9
  article-title: Machine learning to boost the next generation of visualization technology
  publication-title: IEEE Computer Graphics and Applications
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Duchesnay É.: Scikit‐learn: Machine learning in python
  publication-title: Journal of Machine Learning Research
– volume: 11
  start-page: 273
  issue: 3
  year: 2005
  end-page: 284
  article-title: An intelligent system approach to higher‐dimensional classification of volume data
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– ident: e_1_2_9_24_2
  doi: 10.1109/TVCG.2006.148
– ident: e_1_2_9_12_2
  doi: 10.1109/TVCG.2012.231
– ident: e_1_2_9_13_2
  doi: 10.1109/MCG.2003.1231171
– ident: e_1_2_9_27_2
  doi: 10.1109/ICCVW.2009.5457447
– ident: e_1_2_9_7_2
  doi: 10.1201/b10629
– ident: e_1_2_9_14_2
  doi: 10.1109/TVCG.2002.1021579
– ident: e_1_2_9_5_2
  doi: 10.1109/TVCG.2008.169
– ident: e_1_2_9_3_2
  doi: 10.1023/A:1010933404324
– ident: e_1_2_9_29_2
– ident: e_1_2_9_17_2
  doi: 10.1109/MCG.2007.129
– ident: e_1_2_9_16_2
  doi: 10.1109/TVCG.2007.70518
– ident: e_1_2_9_10_2
  doi: 10.1109/72.991427
– ident: e_1_2_9_23_2
– volume: 11
  start-page: 743
  year: 2010
  ident: e_1_2_9_25_2
  article-title: PyBrain
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_9_18_2
  doi: 10.1109/TVCG.2012.105
– volume: 15
  start-page: 3133
  year: 2014
  ident: e_1_2_9_8_2
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_9_34_2
– ident: e_1_2_9_2_2
  doi: 10.1007/978-1-4471-6497-5_1
– ident: e_1_2_9_20_2
  doi: 10.1007/s00371-011-0634-3
– ident: e_1_2_9_30_2
  doi: 10.1007/s11548-007-0079-3
– ident: e_1_2_9_4_2
  doi: 10.1109/TVCG.2008.162
– ident: e_1_2_9_19_2
  doi: 10.1109/VISUAL.2005.1532779
– start-page: 595
  volume-title: LNCS
  year: 2008
  ident: e_1_2_9_26_2
– volume: 2005
  start-page: 287
  year: 2005
  ident: e_1_2_9_15_2
  article-title: Statistically quantitative volume visualization
  publication-title: Proc. IEEE Visualization
– ident: e_1_2_9_21_2
  doi: 10.1109/TVCG.2010.208
– ident: e_1_2_9_31_2
  doi: 10.1109/TVCG.2005.38
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_9_22_2
  article-title: Duchesnay É.: Scikit‐learn: Machine learning in python
  publication-title: Journal of Machine Learning Research
– volume: 5
  start-page: 975
  year: 2004
  ident: e_1_2_9_33_2
  article-title: Probability estimates for multi‐class classification by pairwise coupling
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_9_9_2
  doi: 10.1109/TVCG.2011.261
– volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
  year: 2011
  ident: e_1_2_9_11_2
– volume-title: Learning with Kernels
  year: 2002
  ident: e_1_2_9_28_2
– ident: e_1_2_9_32_2
– ident: e_1_2_9_6_2
  doi: 10.1145/378456.378484
SSID ssj0004765
Score 2.198047
Snippet Complex volume rendering tasks require high‐dimensional transfer functions, which are notoriously difficult to design. One solution to this is to learn...
Complex volume rendering tasks require high-dimensional transfer functions, which are notoriously difficult to design. One solution to this is to learn...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111
SubjectTerms Analysis
Artificial intelligence
Categories and Subject Descriptors (according to ACM CCS)
Classification
Classifiers
Forests
I.4.6 [Image Processing and Computer Vision]: Segmentation-Pixel classification
Image processing systems
Mathematical models
Probabilistic methods
Probability theory
Rendering
Studies
Transfer functions
Title Learning Probabilistic Transfer Functions: A Comparative Study of Classifiers
URI https://api.istex.fr/ark:/67375/WNG-N7C78P54-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12623
https://www.proquest.com/docview/1697244518
https://www.proquest.com/docview/1778036689
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB5CemkOTR8JdeMWNZTSy5rd1XPbkzF1QmlMKA3JISAkWQohxQ6ODWl_fUfaR5ySQultYWdBq5nRN9r99A3AO8-UUNy4zHPmM-YproPSVNl0ivBUUmELk9gWE3F4wr6c8bMN-NSehan1IboPbjEz0nodE9zYm7UkdxdhUJSI3rj-Rq5WLIi-3UlHMSl4q-sdFWMaVaHI4umevIdFj-K03t4rNNfL1YQ34204b0da00yuBqulHbhff4g4_uerPIUnTR1KhnXgPIMNP3sOW2vqhC_gqNFevSDHC8z6yKKNos4kwVvwCzJGTExh-5EMyehORpxEcuJPMg8ktdy8DLHd9g6cjD9_Hx1mTfeFzFGhaObKwnhWlsFgFaaM40pKl4d4ENZKyxwvROltzkIxtcrkeaCB59ZU6F2OexBPd2FzNp_5l0B8xSzlNCgbBPMlUwiC1DLhuVHGcN-DD60ftGukyWOHjB-63aLgDOk0Qz3Y70yvaz2Oh4zeJ2d2FmZxFQlskuvTyYGeyJFUx5zprz3ot97WTe7e6EJUsoy6baoHb7vbmHXxV4qZ-fkKbaRUiP1CVTj25Nq_j0aPDsbp4tW_m-7BY6zMeM1J68PmcrHyr7H6Wdo3Kcx_A4DK_jc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6V9gAceCMCBRYEiIsje70vI3GoUtKUplGFWtHbdtfZrVBRgtJEUH4Tf4X_xOz60RSBxKUHbpY8ssae17fr2W8AXjimhOKmTBxnLmEuxzwoTZGMx1ieaC5sZmK3xUgMDtj7Q364Aj-aszAVP0S74RYiI-brEOBhQ3opystj380olu-6pXLHnX3FBdvp2-1NtO5LSvvv9nuDpJ4pkJS5UHlS0sw4Rqk3iC2UKbmSskx9ON5ppWUlzwR1NmU-G1tl0tTnnqfWFKgzR2TtcnzuFVgLE8QDU__mh3OyKiYFb5jEA0dNzWMU-oZaVS9Uv7VgyG8XoO0yQI4Vrn8TfjbfpmpsOeku5rZbfv-NNvJ_-Xi34EYNtclGFRu3YcVN7sD1JQLGu7Bb08sek70ZJrbQKBx4q0ms4N7NSB_LfozMN2SD9M6Z0knovzwjU0_iVNFPPkwUvwcHl_I-92F1Mp24B0BcwWzOc6-sF8xRprDO55YJx40yhrsOvG4Mr8uafT0MAfmsm1UYWkRHi3TgeSv6paIc-ZPQq-g9rYSZnYQePcn1x9GWHsmeVHuc6WEH1hv30nV6OtWZKCQN1HSqA8_a25hYwt8iM3HTBcpIqRDeCFWg7tGX_q6N7m3148XDfxd9ClcH-7tDPdwe7TyCawhEedWCtw6r89nCPUawN7dPYowROLpsv_wF9eVb3Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1baxNBFD7UFkQfvIvRqqOo-LJhd3ZuK_hQEtPW1hDEYt_Gmc1MKS1JSRO0_iX_ij_KM7OXpqLgSx98W9jDcnbOdXa_-Q7AC8eUUNyUiePMJczlmAelKZLxGMsTzYXNTERbDMXWHnu_z_dX4EdzFqbih2g_uIXIiPk6BPjJ2C8FeXnguxnF6l0jKnfc2Vfcr52-3e6jcV9SOnj3qbeV1CMFkjIXKk9KmhnHKPUGWwtlSq6kLFMfTndaaVnJM0GdTZnPxlaZNPW556k1BarMsbF2OT73CqwxkRZhTkT_4zlXFZOCN0TigaKmpjEKsKFW1QvFby3Y8duFzna5P44FbnATfjZLU-FajrqLue2W339jjfxP1u4W3KgbbbJRRcZtWHGTO3B9iX7xLnyoyWUPyGiGaS3AhANrNYn127sZGWDRj3H5hmyQ3jlPOgnoyzMy9STOFD30YZ74Pdi7lPe5D6uT6cQ9AOIKZnOee2W9YI4yhVU-t0w4bpQx3HXgdWN3Xdbc62EEyLFu9mBoER0t0oHnrehJRTjyJ6FX0XlaCTM7Cgg9yfXn4aYeyp5UI870bgfWG-_SdXI61ZkoJA3EdKoDz9rbmFbCvyIzcdMFykipsLkRqkDdoyv9XRvd2xzEi4f_LvoUro76A727Pdx5BNewC-UV_m4dVuezhXuMnd7cPokRRuDLZbvlL2nTWow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Probabilistic+Transfer+Functions%3A+A+Comparative+Study+of+Classifiers&rft.jtitle=Computer+graphics+forum&rft.au=Soundararajan%2C+K.+P.&rft.au=Schultz%2C+T.&rft.date=2015-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=34&rft.issue=3&rft.spage=111&rft.epage=120&rft_id=info:doi/10.1111%2Fcgf.12623&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_N7C78P54_L
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon