Learning Probabilistic Transfer Functions: A Comparative Study of Classifiers
Complex volume rendering tasks require high‐dimensional transfer functions, which are notoriously difficult to design. One solution to this is to learn transfer functions from scribbles that the user places in the volumetric domain in an intuitive and natural manner. In this paper, we explicitly mod...
Saved in:
Published in | Computer graphics forum Vol. 34; no. 3; pp. 111 - 120 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.06.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Complex volume rendering tasks require high‐dimensional transfer functions, which are notoriously difficult to design. One solution to this is to learn transfer functions from scribbles that the user places in the volumetric domain in an intuitive and natural manner. In this paper, we explicitly model and visualize the uncertainty in the resulting classification. To this end, we extend a previous intelligent system approach to volume rendering, and we systematically compare five supervised classification techniques – Gaussian Naive Bayes, k Nearest Neighbor, Support Vector Machines, Neural Networks, and Random Forests – with respect to probabilistic classification, support for multiple materials, interactive performance, robustness to unreliable input, and easy parameter tuning, which we identify as key requirements for the successful use in this application. Based on theoretical considerations, as well as quantitative and visual results on volume datasets from different sources and modalities, we conclude that, while no single classifier can be expected to outperform all others under all circumstances, random forests are a useful off‐the‐shelf technique that provides fast, easy, robust and accurate results in many scenarios. |
---|---|
AbstractList | Complex volume rendering tasks require high-dimensional transfer functions, which are notoriously difficult to design. One solution to this is to learn transfer functions from scribbles that the user places in the volumetric domain in an intuitive and natural manner. In this paper, we explicitly model and visualize the uncertainty in the resulting classification. To this end, we extend a previous intelligent system approach to volume rendering, and we systematically compare five supervised classification techniques - Gaussian Naive Bayes, k Nearest Neighbor, Support Vector Machines, Neural Networks, and Random Forests - with respect to probabilistic classification, support for multiple materials, interactive performance, robustness to unreliable input, and easy parameter tuning, which we identify as key requirements for the successful use in this application. Based on theoretical considerations, as well as quantitative and visual results on volume datasets from different sources and modalities, we conclude that, while no single classifier can be expected to outperform all others under all circumstances, random forests are a useful off-the-shelf technique that provides fast, easy, robust and accurate results in many scenarios. |
Author | Soundararajan, K. P. Schultz, T. |
Author_xml | – sequence: 1 givenname: K. P. surname: Soundararajan fullname: Soundararajan, K. P. organization: University of Bonn, Germany – sequence: 2 givenname: T. surname: Schultz fullname: Schultz, T. organization: University of Bonn, Germany |
BookMark | eNp1kT1PwzAQhi0EEi0w8A8iscAQsJP4I2xVRAtSKUiAGK2LayNDahc7AfrvCRQYENxyNzzP6fx6iDaddxqhfYKPSV8n6sEck4xl-QYakILxVDBabqIBJv3MMaXbaBjjI8a44IwO0OVUQ3DWPSTXwddQ28bG1qrkNoCLRodk3DnVWu_iaTJKKr9YQoDWvujkpu3mq8SbpGogRmusDnEXbRloot776jvobnx2W52n06vJRTWapipnIk9VRkAXWWYAl1SAooJzhU1JGal5XShKWKZrXBgyrwVgbHJDcQ1lTYBSQXW-gw7Xe5fBP3c6tnJho9JNA077LkrCucA5Y6Ls0YNf6KPvguuvk4SVPCsKSkRPnawpFXyMQRupbAsf724D2EYSLD_ilX288jPe3jj6ZSyDXUBY_cl-bX-1jV79D8pqMv420rXR_4Z--zEgPEnGc07l_WwiZ7zi4poWcpq_A5AomXw |
CitedBy_id | crossref_primary_10_1016_j_cag_2016_06_007 crossref_primary_10_1007_s12650_019_00584_3 crossref_primary_10_3390_math12121885 crossref_primary_10_1016_j_cag_2017_10_002 crossref_primary_10_1109_TVCG_2021_3127918 crossref_primary_10_1109_TVCG_2016_2637333 crossref_primary_10_1111_cgf_12934 crossref_primary_10_1111_cgf_13663 crossref_primary_10_1109_TVCG_2017_2744078 crossref_primary_10_1007_s12650_021_00787_7 crossref_primary_10_1109_ACCESS_2021_3100429 crossref_primary_10_1109_TVCG_2018_2816059 |
Cites_doi | 10.1109/TVCG.2006.148 10.1109/TVCG.2012.231 10.1109/MCG.2003.1231171 10.1109/ICCVW.2009.5457447 10.1201/b10629 10.1109/TVCG.2002.1021579 10.1109/TVCG.2008.169 10.1023/A:1010933404324 10.1109/MCG.2007.129 10.1109/TVCG.2007.70518 10.1109/72.991427 10.1109/TVCG.2012.105 10.1007/978-1-4471-6497-5_1 10.1007/s00371-011-0634-3 10.1007/s11548-007-0079-3 10.1109/TVCG.2008.162 10.1109/VISUAL.2005.1532779 10.1109/TVCG.2010.208 10.1109/TVCG.2005.38 10.1109/TVCG.2011.261 10.1145/378456.378484 |
ContentType | Journal Article |
Copyright | 2015 The Author(s) Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. 2015 The Eurographics Association and John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2015 The Author(s) Computer Graphics Forum © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. – notice: 2015 The Eurographics Association and John Wiley & Sons Ltd. |
DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1111/cgf.12623 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1467-8659 |
EndPage | 120 |
ExternalDocumentID | 3747610231 10_1111_cgf_12623 CGF12623 ark_67375_WNG_N7C78P54_L |
Genre | article Feature |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADMLS ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AHQJS AIDQK AIDYY ALVPJ AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c3683-c21ae422fa0958ac5877c0f9561b7b4c5162eb04f1db8a00f3f50ba9b1a5585e3 |
IEDL.DBID | DR2 |
ISSN | 0167-7055 |
IngestDate | Fri Jul 11 07:30:56 EDT 2025 Mon Jul 14 09:12:37 EDT 2025 Thu Apr 24 23:12:44 EDT 2025 Thu Jul 03 08:37:10 EDT 2025 Wed Aug 20 07:25:02 EDT 2025 Wed Oct 30 09:53:31 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3683-c21ae422fa0958ac5877c0f9561b7b4c5162eb04f1db8a00f3f50ba9b1a5585e3 |
Notes | ArticleID:CGF12623 ark:/67375/WNG-N7C78P54-L istex:D6AD73DAB8ECF9FB94C4F73011019587AA934B3F SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1697244518 |
PQPubID | 30877 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1778036689 proquest_journals_1697244518 crossref_citationtrail_10_1111_cgf_12623 crossref_primary_10_1111_cgf_12623 wiley_primary_10_1111_cgf_12623_CGF12623 istex_primary_ark_67375_WNG_N7C78P54_L |
PublicationCentury | 2000 |
PublicationDate | 2015-06 June 2015 2015-06-00 20150601 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Computer graphics forum |
PublicationTitleAlternate | Computer Graphics Forum |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Schaul T., Bayer J., Wierstra D., Sun Y., Felder M., Sehnke F., Rückstiess T., Schmidhuber J.: PyBrain. Journal of Machine Learning Research 11 (2010), 743-746. 5 Caban J.J., Rheingans P.: Texture-based transfer functions for direct volume rendering. IEEE Transactions on Visualization and Computer Graphics 14, 6 (2008), 1364-1371. 1 Rezk Salama C., Keller M., Kohlmann P.: High-level user interfaces for transfer function design with semantics. IEEE Transactions on Visualization and Computer Graphics 12, 5 (2006), 1021-1028. 2 Johnson C.R., Sanderson A.R.: A next step: Visualizing errors and uncertainty. IEEE Computer Graphics and Applications 23, 5 (2003), 6-10. 2 Teistler M., Breiman R.S., Liong S.M., Ho L.Y., Shahab A., Nowinski W.L.: Interactive definition of transfer functions in volume rendering based on image markers. Int. J. Computer Assisted Radiology and Surgery 2 (2007), 55-64. 2 Breiman L.: Random forests. Machine Learning 45, 1 (2001), 5-32. 4, 5 Correa C., Ma K.-L.: Size-based transfer functions: A new volume exploration technique. IEEE Transactions on Visualization and Computer Graphics 14, 6 (2008), 1380-1387. 1 Hsu C.-W., Lin C.-J.: A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks 13, 2 (2002), 415-425. 4 Prassni J.S., Ropinski T., Hinrichs K.: Uncertainty-aware guided volume segmentation. IEEE Trans. Visualization and Computer Graphics 16, 6 (2010), 1358-1365. 2, 9 Kniss J., Kindlmann G., Hansen C.: Multidimensional transfer functions for interactive volume rendering. IEEE Transactions on Visualization and Computer Graphics 8, 3 (2002), 270-285. 1, 5 Nguyen B.P., Tay W.-L., Chui C.-K., Ong S.-H.: A clustering-based system to automate transfer function design for medical image visualization. The Visual Computer 28 (2012), 181-191. 2 Ma K.-L.: Machine learning to boost the next generation of visualization technology. IEEE Computer Graphics and Applications 27, 5 (2007), 6-9. 9 Guo H., Mao N., Yuan X.: WYSIWYG (what you see is what you get) volume visualization. IEEE Trans. Visualization and Computer Graphics (TVCG) 17, 12 (2011), 2106-2114. 2 Tzeng F.-Y., Lum E.B., Ma K.-L.: An intelligent system approach to higher-dimensional classification of volume data. IEEE Transactions on Visualization and Computer Graphics 11, 3 (2005), 273-284. 1, 2, 3, 4, 5, 8 Lundström C., Ljung P., Persson A., Ynnerman A.: Uncertainty visualization in medical volume rendering using probabilistic animation. IEEE Transactions on Visualization and Computer Graphics 13, 6 (Nov./Dec. 2007), 1648-1655. 2 Fernández-Delgado M., Cernadas E., Barro S., Amorim D.: Do we need hundreds of classifiers to solve real world classification problems? Journal of Machine Learning Research 15 (2014), 3133-3181. 2, 5 Ip C.Y., Varshney A., JaJa J.: Hierarchical exploration of volumes using multilevel segmentation of the intensity-gradient histograms. IEEE Transactions on Visualization and Computer Graphics 18, 12 (2012), 2355-2363. 1, 2, 5 Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. Springer Series in Statistics. Springer, 2011. 3, 4, 5 Engel K., Hadwiger M., Kniss J.M., Rezk-Salama C., Weiskopf D.: Real-Time Volume Graphics. Taylor & Francis Ltd., 2006. 2 Schölkopf B., Smola A.J.: Learning with Kernels. MIT Press, 2002. 4 Maciejewski R., Jang Y., Woo I., Jänicke H., Gaither K., Ebert D.: Abstracting attribute space for transfer function exploration and design. IEEE Transactions on Visualization and Computer Graphics 19, 1 (2013), 94-107. 1 Wu T.-F., Lin C.-J., Weng R.C.: Probability estimates for multi-class classification by pairwise coupling. Journal of Machine Learning Research 5 (2004), 975-1005. 4 Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay É.: Scikit-learn: Machine learning in python. Journal of Machine Learning Research 12 (2011), 2825-2830. 5 Kniss J.M., Uitert R.V., Stephens A., Li G.-S., Tasdizen T., Hansen C.: Statistically quantitative volume visualization. In Proc. IEEE Visualization 2005 (2005), pp. 287-294. 2, 8 2010; 11 2010; 16 2006; 12 2011 2002; 13 2002; 8 2008; 14 2009 2008 2006 2004; 5 2012; 18 2005 2011; 12 2004 2002 2011; 17 2001; 45 2005; 2005 2007; 13 2013; 19 2008; 5305 2014; 15 2012; 28 2014 2007; 2 2005; 11 1988 2003; 23 2007; 27 Pedregosa F. (e_1_2_9_22_2) 2011; 12 e_1_2_9_30_2 e_1_2_9_10_2 e_1_2_9_34_2 e_1_2_9_12_2 e_1_2_9_31_2 e_1_2_9_32_2 Schaul T. (e_1_2_9_25_2) 2010; 11 e_1_2_9_14_2 e_1_2_9_13_2 e_1_2_9_16_2 e_1_2_9_18_2 e_1_2_9_17_2 Kniss J.M. (e_1_2_9_15_2) 2005; 2005 e_1_2_9_19_2 Fernández‐Delgado M. (e_1_2_9_8_2) 2014; 15 e_1_2_9_21_2 e_1_2_9_20_2 e_1_2_9_23_2 Wu T.‐F. (e_1_2_9_33_2) 2004; 5 e_1_2_9_7_2 e_1_2_9_6_2 e_1_2_9_5_2 e_1_2_9_4_2 e_1_2_9_3_2 e_1_2_9_2_2 Schölkopf B. (e_1_2_9_28_2) 2002 Sharp T. (e_1_2_9_26_2) 2008 e_1_2_9_9_2 e_1_2_9_24_2 e_1_2_9_27_2 Hastie T. (e_1_2_9_11_2) 2011 e_1_2_9_29_2 |
References_xml | – reference: Tzeng F.-Y., Lum E.B., Ma K.-L.: An intelligent system approach to higher-dimensional classification of volume data. IEEE Transactions on Visualization and Computer Graphics 11, 3 (2005), 273-284. 1, 2, 3, 4, 5, 8 – reference: Rezk Salama C., Keller M., Kohlmann P.: High-level user interfaces for transfer function design with semantics. IEEE Transactions on Visualization and Computer Graphics 12, 5 (2006), 1021-1028. 2 – reference: Ma K.-L.: Machine learning to boost the next generation of visualization technology. IEEE Computer Graphics and Applications 27, 5 (2007), 6-9. 9 – reference: Guo H., Mao N., Yuan X.: WYSIWYG (what you see is what you get) volume visualization. IEEE Trans. Visualization and Computer Graphics (TVCG) 17, 12 (2011), 2106-2114. 2 – reference: Schölkopf B., Smola A.J.: Learning with Kernels. MIT Press, 2002. 4 – reference: Teistler M., Breiman R.S., Liong S.M., Ho L.Y., Shahab A., Nowinski W.L.: Interactive definition of transfer functions in volume rendering based on image markers. Int. J. Computer Assisted Radiology and Surgery 2 (2007), 55-64. 2 – reference: Kniss J.M., Uitert R.V., Stephens A., Li G.-S., Tasdizen T., Hansen C.: Statistically quantitative volume visualization. In Proc. IEEE Visualization 2005 (2005), pp. 287-294. 2, 8 – reference: Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. Springer Series in Statistics. Springer, 2011. 3, 4, 5 – reference: Ip C.Y., Varshney A., JaJa J.: Hierarchical exploration of volumes using multilevel segmentation of the intensity-gradient histograms. IEEE Transactions on Visualization and Computer Graphics 18, 12 (2012), 2355-2363. 1, 2, 5 – reference: Nguyen B.P., Tay W.-L., Chui C.-K., Ong S.-H.: A clustering-based system to automate transfer function design for medical image visualization. The Visual Computer 28 (2012), 181-191. 2 – reference: Breiman L.: Random forests. Machine Learning 45, 1 (2001), 5-32. 4, 5 – reference: Johnson C.R., Sanderson A.R.: A next step: Visualizing errors and uncertainty. IEEE Computer Graphics and Applications 23, 5 (2003), 6-10. 2 – reference: Correa C., Ma K.-L.: Size-based transfer functions: A new volume exploration technique. IEEE Transactions on Visualization and Computer Graphics 14, 6 (2008), 1380-1387. 1 – reference: Fernández-Delgado M., Cernadas E., Barro S., Amorim D.: Do we need hundreds of classifiers to solve real world classification problems? Journal of Machine Learning Research 15 (2014), 3133-3181. 2, 5 – reference: Engel K., Hadwiger M., Kniss J.M., Rezk-Salama C., Weiskopf D.: Real-Time Volume Graphics. Taylor & Francis Ltd., 2006. 2 – reference: Maciejewski R., Jang Y., Woo I., Jänicke H., Gaither K., Ebert D.: Abstracting attribute space for transfer function exploration and design. IEEE Transactions on Visualization and Computer Graphics 19, 1 (2013), 94-107. 1 – reference: Prassni J.S., Ropinski T., Hinrichs K.: Uncertainty-aware guided volume segmentation. IEEE Trans. Visualization and Computer Graphics 16, 6 (2010), 1358-1365. 2, 9 – reference: Kniss J., Kindlmann G., Hansen C.: Multidimensional transfer functions for interactive volume rendering. IEEE Transactions on Visualization and Computer Graphics 8, 3 (2002), 270-285. 1, 5 – reference: Lundström C., Ljung P., Persson A., Ynnerman A.: Uncertainty visualization in medical volume rendering using probabilistic animation. IEEE Transactions on Visualization and Computer Graphics 13, 6 (Nov./Dec. 2007), 1648-1655. 2 – reference: Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay É.: Scikit-learn: Machine learning in python. Journal of Machine Learning Research 12 (2011), 2825-2830. 5 – reference: Hsu C.-W., Lin C.-J.: A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks 13, 2 (2002), 415-425. 4 – reference: Schaul T., Bayer J., Wierstra D., Sun Y., Felder M., Sehnke F., Rückstiess T., Schmidhuber J.: PyBrain. Journal of Machine Learning Research 11 (2010), 743-746. 5 – reference: Caban J.J., Rheingans P.: Texture-based transfer functions for direct volume rendering. IEEE Transactions on Visualization and Computer Graphics 14, 6 (2008), 1364-1371. 1 – reference: Wu T.-F., Lin C.-J., Weng R.C.: Probability estimates for multi-class classification by pairwise coupling. Journal of Machine Learning Research 5 (2004), 975-1005. 4 – year: 2011 – volume: 18 start-page: 2355 issue: 12 year: 2012 end-page: 2363 article-title: Hierarchical exploration of volumes using multilevel segmentation of the intensity‐gradient histograms publication-title: IEEE Transactions on Visualization and Computer Graphics – start-page: 243 year: 2006 end-page: 250 – volume: 11 start-page: 743 year: 2010 end-page: 746 article-title: PyBrain publication-title: Journal of Machine Learning Research – start-page: 1393 year: 2009 end-page: 1400 – volume: 14 start-page: 1380 issue: 6 year: 2008 end-page: 1387 article-title: Size‐based transfer functions: A new volume exploration technique publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random forests publication-title: Machine Learning – volume: 17 start-page: 2106 issue: 12 year: 2011 end-page: 2114 article-title: WYSIWYG (what you see is what you get) volume visualization publication-title: IEEE Trans. Visualization and Computer Graphics (TVCG) – volume: 5 start-page: 975 year: 2004 end-page: 1005 article-title: Probability estimates for multi‐class classification by pairwise coupling publication-title: Journal of Machine Learning Research – volume: 13 start-page: 415 issue: 2 year: 2002 end-page: 425 article-title: A comparison of methods for multiclass support vector machines publication-title: IEEE Transactions on Neural Networks – volume: 5305 start-page: 595 year: 2008 end-page: 608 – volume: 14 start-page: 1364 issue: 6 year: 2008 end-page: 1371 article-title: Texture‐based transfer functions for direct volume rendering publication-title: IEEE Transactions on Visualization and Computer Graphics – start-page: 17 year: 2004 end-page: 24 – start-page: 65 year: 2005 end-page: 72 – volume: 8 start-page: 270 issue: 3 year: 2002 end-page: 285 article-title: Multidimensional transfer functions for interactive volume rendering publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 2005 start-page: 287 year: 2005 end-page: 294 article-title: Statistically quantitative volume visualization publication-title: Proc. IEEE Visualization – volume: 2 start-page: 55 year: 2007 end-page: 64 article-title: Interactive definition of transfer functions in volume rendering based on image markers publication-title: Int. J. Computer Assisted Radiology and Surgery – volume: 16 start-page: 1358 issue: 6 year: 2010 end-page: 1365 article-title: Uncertainty‐aware guided volume segmentation publication-title: IEEE Trans. Visualization and Computer Graphics – volume: 13 start-page: 1648 issue: 6 year: 2007 end-page: 1655 article-title: Uncertainty visualization in medical volume rendering using probabilistic animation publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 15 start-page: 3133 year: 2014 end-page: 3181 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: Journal of Machine Learning Research – start-page: 562 year: 2004 end-page: 567 – start-page: 41 year: 2008 end-page: 48 – year: 2002 – year: 2006 – start-page: 3 year: 2014 end-page: 28 – start-page: 65 year: 1988 end-page: 74 – volume: 19 start-page: 94 issue: 1 year: 2013 end-page: 107 article-title: Abstracting attribute space for transfer function exploration and design publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 12 start-page: 1021 issue: 5 year: 2006 end-page: 1028 article-title: High‐level user interfaces for transfer function design with semantics publication-title: IEEE Transactions on Visualization and Computer Graphics – volume: 23 start-page: 6 issue: 5 year: 2003 end-page: 10 article-title: A next step: Visualizing errors and uncertainty publication-title: IEEE Computer Graphics and Applications – volume: 28 start-page: 181 year: 2012 end-page: 191 article-title: A clustering‐based system to automate transfer function design for medical image visualization publication-title: The Visual Computer – volume: 27 start-page: 6 issue: 5 year: 2007 end-page: 9 article-title: Machine learning to boost the next generation of visualization technology publication-title: IEEE Computer Graphics and Applications – volume: 12 start-page: 2825 year: 2011 end-page: 2830 article-title: Duchesnay É.: Scikit‐learn: Machine learning in python publication-title: Journal of Machine Learning Research – volume: 11 start-page: 273 issue: 3 year: 2005 end-page: 284 article-title: An intelligent system approach to higher‐dimensional classification of volume data publication-title: IEEE Transactions on Visualization and Computer Graphics – ident: e_1_2_9_24_2 doi: 10.1109/TVCG.2006.148 – ident: e_1_2_9_12_2 doi: 10.1109/TVCG.2012.231 – ident: e_1_2_9_13_2 doi: 10.1109/MCG.2003.1231171 – ident: e_1_2_9_27_2 doi: 10.1109/ICCVW.2009.5457447 – ident: e_1_2_9_7_2 doi: 10.1201/b10629 – ident: e_1_2_9_14_2 doi: 10.1109/TVCG.2002.1021579 – ident: e_1_2_9_5_2 doi: 10.1109/TVCG.2008.169 – ident: e_1_2_9_3_2 doi: 10.1023/A:1010933404324 – ident: e_1_2_9_29_2 – ident: e_1_2_9_17_2 doi: 10.1109/MCG.2007.129 – ident: e_1_2_9_16_2 doi: 10.1109/TVCG.2007.70518 – ident: e_1_2_9_10_2 doi: 10.1109/72.991427 – ident: e_1_2_9_23_2 – volume: 11 start-page: 743 year: 2010 ident: e_1_2_9_25_2 article-title: PyBrain publication-title: Journal of Machine Learning Research – ident: e_1_2_9_18_2 doi: 10.1109/TVCG.2012.105 – volume: 15 start-page: 3133 year: 2014 ident: e_1_2_9_8_2 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: Journal of Machine Learning Research – ident: e_1_2_9_34_2 – ident: e_1_2_9_2_2 doi: 10.1007/978-1-4471-6497-5_1 – ident: e_1_2_9_20_2 doi: 10.1007/s00371-011-0634-3 – ident: e_1_2_9_30_2 doi: 10.1007/s11548-007-0079-3 – ident: e_1_2_9_4_2 doi: 10.1109/TVCG.2008.162 – ident: e_1_2_9_19_2 doi: 10.1109/VISUAL.2005.1532779 – start-page: 595 volume-title: LNCS year: 2008 ident: e_1_2_9_26_2 – volume: 2005 start-page: 287 year: 2005 ident: e_1_2_9_15_2 article-title: Statistically quantitative volume visualization publication-title: Proc. IEEE Visualization – ident: e_1_2_9_21_2 doi: 10.1109/TVCG.2010.208 – ident: e_1_2_9_31_2 doi: 10.1109/TVCG.2005.38 – volume: 12 start-page: 2825 year: 2011 ident: e_1_2_9_22_2 article-title: Duchesnay É.: Scikit‐learn: Machine learning in python publication-title: Journal of Machine Learning Research – volume: 5 start-page: 975 year: 2004 ident: e_1_2_9_33_2 article-title: Probability estimates for multi‐class classification by pairwise coupling publication-title: Journal of Machine Learning Research – ident: e_1_2_9_9_2 doi: 10.1109/TVCG.2011.261 – volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction year: 2011 ident: e_1_2_9_11_2 – volume-title: Learning with Kernels year: 2002 ident: e_1_2_9_28_2 – ident: e_1_2_9_32_2 – ident: e_1_2_9_6_2 doi: 10.1145/378456.378484 |
SSID | ssj0004765 |
Score | 2.198047 |
Snippet | Complex volume rendering tasks require high‐dimensional transfer functions, which are notoriously difficult to design. One solution to this is to learn... Complex volume rendering tasks require high-dimensional transfer functions, which are notoriously difficult to design. One solution to this is to learn... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 111 |
SubjectTerms | Analysis Artificial intelligence Categories and Subject Descriptors (according to ACM CCS) Classification Classifiers Forests I.4.6 [Image Processing and Computer Vision]: Segmentation-Pixel classification Image processing systems Mathematical models Probabilistic methods Probability theory Rendering Studies Transfer functions |
Title | Learning Probabilistic Transfer Functions: A Comparative Study of Classifiers |
URI | https://api.istex.fr/ark:/67375/WNG-N7C78P54-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12623 https://www.proquest.com/docview/1697244518 https://www.proquest.com/docview/1778036689 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB5CemkOTR8JdeMWNZTSy5rd1XPbkzF1QmlMKA3JISAkWQohxQ6ODWl_fUfaR5ySQultYWdBq5nRN9r99A3AO8-UUNy4zHPmM-YproPSVNl0ivBUUmELk9gWE3F4wr6c8bMN-NSehan1IboPbjEz0nodE9zYm7UkdxdhUJSI3rj-Rq5WLIi-3UlHMSl4q-sdFWMaVaHI4umevIdFj-K03t4rNNfL1YQ34204b0da00yuBqulHbhff4g4_uerPIUnTR1KhnXgPIMNP3sOW2vqhC_gqNFevSDHC8z6yKKNos4kwVvwCzJGTExh-5EMyehORpxEcuJPMg8ktdy8DLHd9g6cjD9_Hx1mTfeFzFGhaObKwnhWlsFgFaaM40pKl4d4ENZKyxwvROltzkIxtcrkeaCB59ZU6F2OexBPd2FzNp_5l0B8xSzlNCgbBPMlUwiC1DLhuVHGcN-DD60ftGukyWOHjB-63aLgDOk0Qz3Y70yvaz2Oh4zeJ2d2FmZxFQlskuvTyYGeyJFUx5zprz3ot97WTe7e6EJUsoy6baoHb7vbmHXxV4qZ-fkKbaRUiP1CVTj25Nq_j0aPDsbp4tW_m-7BY6zMeM1J68PmcrHyr7H6Wdo3Kcx_A4DK_jc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6V9gAceCMCBRYEiIsje70vI3GoUtKUplGFWtHbdtfZrVBRgtJEUH4Tf4X_xOz60RSBxKUHbpY8ssae17fr2W8AXjimhOKmTBxnLmEuxzwoTZGMx1ieaC5sZmK3xUgMDtj7Q364Aj-aszAVP0S74RYiI-brEOBhQ3opystj380olu-6pXLHnX3FBdvp2-1NtO5LSvvv9nuDpJ4pkJS5UHlS0sw4Rqk3iC2UKbmSskx9ON5ppWUlzwR1NmU-G1tl0tTnnqfWFKgzR2TtcnzuFVgLE8QDU__mh3OyKiYFb5jEA0dNzWMU-oZaVS9Uv7VgyG8XoO0yQI4Vrn8TfjbfpmpsOeku5rZbfv-NNvJ_-Xi34EYNtclGFRu3YcVN7sD1JQLGu7Bb08sek70ZJrbQKBx4q0ms4N7NSB_LfozMN2SD9M6Z0knovzwjU0_iVNFPPkwUvwcHl_I-92F1Mp24B0BcwWzOc6-sF8xRprDO55YJx40yhrsOvG4Mr8uafT0MAfmsm1UYWkRHi3TgeSv6paIc-ZPQq-g9rYSZnYQePcn1x9GWHsmeVHuc6WEH1hv30nV6OtWZKCQN1HSqA8_a25hYwt8iM3HTBcpIqRDeCFWg7tGX_q6N7m3148XDfxd9ClcH-7tDPdwe7TyCawhEedWCtw6r89nCPUawN7dPYowROLpsv_wF9eVb3Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1baxNBFD7UFkQfvIvRqqOo-LJhd3ZuK_hQEtPW1hDEYt_Gmc1MKS1JSRO0_iX_ij_KM7OXpqLgSx98W9jDcnbOdXa_-Q7AC8eUUNyUiePMJczlmAelKZLxGMsTzYXNTERbDMXWHnu_z_dX4EdzFqbih2g_uIXIiPk6BPjJ2C8FeXnguxnF6l0jKnfc2Vfcr52-3e6jcV9SOnj3qbeV1CMFkjIXKk9KmhnHKPUGWwtlSq6kLFMfTndaaVnJM0GdTZnPxlaZNPW556k1BarMsbF2OT73CqwxkRZhTkT_4zlXFZOCN0TigaKmpjEKsKFW1QvFby3Y8duFzna5P44FbnATfjZLU-FajrqLue2W339jjfxP1u4W3KgbbbJRRcZtWHGTO3B9iX7xLnyoyWUPyGiGaS3AhANrNYn127sZGWDRj3H5hmyQ3jlPOgnoyzMy9STOFD30YZ74Pdi7lPe5D6uT6cQ9AOIKZnOee2W9YI4yhVU-t0w4bpQx3HXgdWN3Xdbc62EEyLFu9mBoER0t0oHnrehJRTjyJ6FX0XlaCTM7Cgg9yfXn4aYeyp5UI870bgfWG-_SdXI61ZkoJA3EdKoDz9rbmFbCvyIzcdMFykipsLkRqkDdoyv9XRvd2xzEi4f_LvoUro76A727Pdx5BNewC-UV_m4dVuezhXuMnd7cPokRRuDLZbvlL2nTWow |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Probabilistic+Transfer+Functions%3A+A+Comparative+Study+of+Classifiers&rft.jtitle=Computer+graphics+forum&rft.au=Soundararajan%2C+K.+P.&rft.au=Schultz%2C+T.&rft.date=2015-06-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=34&rft.issue=3&rft.spage=111&rft.epage=120&rft_id=info:doi/10.1111%2Fcgf.12623&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_N7C78P54_L |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |