Discrete Wavelet Transforms in Walsh Analysis
A review of discrete wavelet transforms defined through Walsh functions and used for image processing, compression of fractal signals, analysis of financial time series, and analysis of geophysical data is presented. Relationships of the discrete transforms considered with wavelet bases recently con...
Saved in:
Published in | Journal of mathematical sciences (New York, N.Y.) Vol. 257; no. 1; pp. 127 - 137 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
04.08.2021
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A review of discrete wavelet transforms defined through Walsh functions and used for image processing, compression of fractal signals, analysis of financial time series, and analysis of geophysical data is presented. Relationships of the discrete transforms considered with wavelet bases recently constructed and frames on the Cantor and Vilenkin groups are noted. |
---|---|
AbstractList | A review of discrete wavelet transforms defined through Walsh functions and used for image processing, compression of fractal signals, analysis of financial time series, and analysis of geophysical data is presented. Relationships of the discrete transforms considered with wavelet bases recently constructed and frames on the Cantor and Vilenkin groups are noted. Keywords and phrases: Walsh function, Haar system, Weierstrass function, wavelet, frame, zero-dimensional group, discrete transform, image processing, signal coding, analysis of geophysical data. AMS Subject Classification: 42C40, 65T60 A review of discrete wavelet transforms defined through Walsh functions and used for image processing, compression of fractal signals, analysis of financial time series, and analysis of geophysical data is presented. Relationships of the discrete transforms considered with wavelet bases recently constructed and frames on the Cantor and Vilenkin groups are noted. |
Audience | Academic |
Author | Farkov, Yu. A. |
Author_xml | – sequence: 1 givenname: Yu. A. surname: Farkov fullname: Farkov, Yu. A. email: farkov@list.ru, farkov-ya@ranepa.ru organization: Russian Presidential Academy of National Economy and Public Administration |
BookMark | eNp9kV1LwzAUhoNMcJv-Aa8KXnmRmY-2SS_H_BoMBJ14GdL0pHZ07Uw6cf_eaIUxGJKLhMPzhHPOO0KDpm0AoUtKJpQQceMpyRKJCaOYJLFIMTtBQ5oIjqXIkkF4E8Ew5yI-QyPvVyRIqeRDhG8rbxx0EL3pT6ihi5ZON962bu2jqgnV2r9H00bXO1_5c3RqQwEu_u4xer2_W84e8eLpYT6bLrDhqWRYc5lALimI3BTGGCqS2FpbxLkgkBZ5YRkrdBqD4TKD3ErLMy3SIjbWMi1zPkZX_b8b135swXdq1W5daMIrliQyDJMJsqdKXYOqGtt2Tpt1GEhNBQtUJrI4UPgIVUIDTtdhi7YK5QN-coQPp4B1ZY4K1wdCYDr46kq99V7NX54PWdazxrXeO7Bq46q1djtFifpJUvVJqpCk-k1SsSDxXvIBbkpw-238Y30DJRugGg |
Cites_doi | 10.1016/j.jmaa.2014.11.061 10.1137/1.9781611970104 10.1142/8431 10.1109/78.735301 10.18500/1816-9791-2016-16-2-217-225 10.1109/SAMPTA.2017.8024368 10.4213/sm1126 10.1090/mmono/239 10.4236/ajcm.2012.22011 10.1016/j.jmaa.2016.08.062 10.46753/pjaa.2015.v02i02.004 10.1016/j.jat.2008.10.003 10.1134/S2070046611040030 10.4213/mzm8704 10.1142/S0219691311004195 10.1134/S0371968514020125 10.46753/pjaa.2015.v02i02.002 10.1134/S2070046611030022 10.1007/BF01198002 10.1142/S0219691315500368 10.1142/S0219691315500022 10.1109/78.668788 10.1090/S0002-9947-1949-0032833-2 10.1155/S0161171298000428 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2021 COPYRIGHT 2021 Springer Springer Science+Business Media, LLC, part of Springer Nature 2021. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: COPYRIGHT 2021 Springer – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021. |
DBID | AAYXX CITATION ISR |
DOI | 10.1007/s10958-021-05476-2 |
DatabaseName | CrossRef Gale In Context: Science |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1573-8795 |
EndPage | 137 |
ExternalDocumentID | A728109794 10_1007_s10958_021_05476_2 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IEA IHE IJ- IKXTQ IOF ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZWQNP ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION AEIIB ABRTQ |
ID | FETCH-LOGICAL-c3682-a385eb81e7bcdccc1754fffd4b70e6dbdf22da64ec389ebf8f39a76d4cff2a8b3 |
IEDL.DBID | U2A |
ISSN | 1072-3374 |
IngestDate | Fri Jul 25 10:58:28 EDT 2025 Tue Jun 17 20:55:55 EDT 2025 Thu Jun 12 23:42:59 EDT 2025 Tue Jun 10 20:47:59 EDT 2025 Fri Jun 27 03:54:20 EDT 2025 Tue Jul 01 01:42:19 EDT 2025 Fri Feb 21 02:47:55 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | image processing discrete transform 42C40 Walsh function Weierstrass function wavelet zerodimensional group signal coding Haar system analysis of geophysical data 65T60 frame |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3682-a385eb81e7bcdccc1754fffd4b70e6dbdf22da64ec389ebf8f39a76d4cff2a8b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10958-021-05476-2.pdf |
PQID | 2558107970 |
PQPubID | 2043545 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2558107970 gale_infotracmisc_A728109794 gale_infotracgeneralonefile_A728109794 gale_infotracacademiconefile_A728109794 gale_incontextgauss_ISR_A728109794 crossref_primary_10_1007_s10958_021_05476_2 springer_journals_10_1007_s10958_021_05476_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210804 |
PublicationDateYYYYMMDD | 2021-08-04 |
PublicationDate_xml | – month: 08 year: 2021 text: 20210804 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of mathematical sciences (New York, N.Y.) |
PublicationTitleAbbrev | J Math Sci |
PublicationYear | 2021 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | DaubechiesITen Lectures on Wavelets1992PhiladelphiaSIAM10.1137/1.9781611970104 Bl. Sendov, “Adapted multiresolution analysis,” in: Functions, Series, Operators, Memorial Conf. in Honor of the 100th Anniversary of the Birth of Prof. G. Alexits (1899–1978), Budapest, Hungary, August 9–13, 1999(L. Leindler et al., eds.), János Bolyai Math. Soc., Budapest (2002), pp. 23–38. InFKimSAn Introduction to Wavelet Theory in Finance: A Wavelet Multiscale Approach2012SingaporeWorld Scientific10.1142/8431 LangWCFractal multiwavelets related to the Cantor dyadic groupInt. J. Math. Math. Sci.199821307317160973910.1155/S0161171298000428 TchobanouMKMultidimensional Multi-Speed Signal Processing Systems2009MoscowTekhnosfera M. Vetterli and J. Kovačević, Wavelets and Subband Coding, Prentice Hall, New Jersey (1995). Yu. A. Farkov and E. A. Rodionov, “Algorithms for wavelet construction on Vilenkin groups,” p-Adic Numb. Ultr. Anal. Appl., 3, No. 1, 181–195 (2011). KrivosheinAProtasovVSkopinaMMultivariate Wavelet Frames2016SingaporeSpringer1366.42001 MallatSA Wavelet Tour of Signal Processing1999San DiegoAcademic Press0998.94510 KholshchevnikovaNSkvortsovVAOn U- and M-sets for series with respect to characters of compact zero-dimensional groupsJ. Math. Anal. Appl.20174461383394355473410.1016/j.jmaa.2016.08.062 Yu. A. Farkov, “Orthogonal wavelets in Walsh analysis,” in: Generalized Integrals and Harmonic Analysis (T. P. Lukashenko and A. P. Solodov, eds.), Izd. Mosk. Univ., Moscow (2016), pp. 62–75. RodionovEAOn applications of wavelets to the digital signal processingIzv. Saratov. Univ. Nov. Ser. Mat. Mekh. Inform.2016162217225352291610.18500/1816-9791-2016-16-2-217-225 FarkovYADiscrete wavelets and the Vilenkin–Chrestenson transformMat. Zametki2011896914928290814710.4213/mzm8704 N. Ya. Vilenkin, “On a class of complete orthogonal systems,” Izv. Akad. Nauk SSSR. Ser. Mat., 11, No. 4, 363–400 (1947). ChuiCKMhaskarHNOn trigonometric waveletsConstr. Approx.19939167190121576810.1007/BF01198002 FarkovYAPeriodic wavelets in Walsh analysisCommun. Math. Appl.2012332232422824037 LyubushinAAFarkovYASynchronous components of financial time seriesKomp. Issled. Model.201794639655 G. N. Agaev, N. Ya. Vilenkin, G. M. Jafarli, and A. I. Rubinstein, Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional Groups [in Russian], Elm, Baku (1981). Z. Cvetkovi´c and M. Vetterli, “Oversampled filter banks,” IEEE Trans. Signal. Proc., 46, No. 5, 1245–1255 (1998). SchippFWadeWRSimonPWalsh Series: An Introduction to Dyadic Harmonic Analysis1990New YorkAdam Hilger0727.42017 E. V. Burnaev and N. N. Olenev, “Proximity measures based on wavelet coefficients for comparing statistical and calculated time series,” in: Collected Scientific and Methodical Papers [in Russian], 10, Izd. Vyatsk. Gos. Univ., Kirov (2006), pp. 41–51. M. Skopina, “p-Adic wavelets,” Poincar´e J. Anal. Appl., 2, 53–63 (2015). FarkovYAConstructions of MRA-based wavelets and frames in Walsh analysisPoincaré J. Anal. Appl.20152133634399391354.42059 FarkovYAOn wavelets related to the Walsh seriesJ. Approx. Theory.20091611259279255815510.1016/j.jat.2008.10.003 Yu. A. Farkov, “Nonstationary multiresolution analysis for Vilenkin groups,” in: Int. Conf. on Sampling Theory and Applications, Tallinn, Estonia, 3-7 July 2017, Tallinn (2017), pp. 595–598. Yu. A. Farkov and E. A. Rodionov, “On biorthogonal discrete wavelet bases,” Int. J. Wavelets Multires. Inf. Process., 13, No. 1, 1550002 (2015). B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Walsh Series and Transformations: Theory and Applications [in Russian], Moscow (2008). FarkovYAMaksimovAYStroganovSAOn biorthogonal wavelets related to the Walsh functionsInt. J. Wavelets Multires. Inform. Process.20119485499280472310.1142/S0219691311004195 BölcskeiHHlawatschFFeichtingerHGFrame-theoretic analysis of oversampled filter banksIEEE Trans. Signal. Proc.199846123256326810.1109/78.735301 FarkovYARodionovEANonstationary wavelets related to the Walsh functionsAm. J. Comput. Math.20122828710.4236/ajcm.2012.22011 KozyrevSVKhrennikovAYShelkovichVMp-Adic wavelets and their applicationsTr. Mat. Inst. Steklova201428516620634799931308.42031 FineNJOn the Walsh functionsTrans. Am. Math. Soc.1949653724143283310.1090/S0002-9947-1949-0032833-2 I. Ya. Novikov, V. Yu. Protasov, and M. A. Skopina, Wavelet Theory, American Mathematical Society, Providence, Rhode Island (2011). EvdokimovSSkopinaMOn orthogonal p-adic wavelet basesJ. Math. Anal. Appl.2015422952965329271010.1016/j.jmaa.2014.11.061 FarkovYABiorthogonal wavelets on Vilenkin groupsTr. Mat. Inst. Steklova200926511012425995461178.42037 LyubushinAAYakovlevPVRodionovEAMultivariate analysis of fluctuation parameters of GPS signals before and after the mega-earthquake in Japan March 11, 2011Geofiz. Issled.20151611423 E. V. Burnaev and N. N. Olenev, “Proximity measure for time series based on wavelet coefficients,” in: Tr. XLVIII Nauch. Konf. MFTI, Dolgoprudny (2005), pp. 108–110. Yu. A. Farkov, “Periodic wavelets on the p-adic Vilenkin group,” p-Adic Numb. Ultr. Anal. Appl., 3, No. 4, 281–287 (2011). FarkovYABorisovMEPeriodic dyadic wavelets and coding of fractal functionsIzv. Vyssh. Ucheb. Zaved.20129546531370481277.42044 ProtasovVYFarkovYADyadic wavelets and scaling functions on the half-lineMat. Sb.200619710129160231011910.4213/sm1126 Wavelet Applications in Economics and Finance (M. Gallegati and W. Semmler, eds.), Springer, Berlin (2014). StroganovSAEstimates of the smoothness of low-frequency microseismic oscillations using dyadic waveletsGeofiz. Issled.20121311722 Yu. A. Farkov, E. A. Lebedeva, and M. A. Skopina, “Wavelet frames on Vilenkin groups and their approximation properties,” Int. J. Wavelets Multires. Inform. Process., 13, No. 5, 1550036 (2015). 5476_CR3 5476_CR1 5476_CR6 SV Kozyrev (5476_CR28) 2014; 285 5476_CR4 WC Lang (5476_CR30) 1998; 21 YA Farkov (5476_CR21) 2012; 2 5476_CR24 5476_CR25 F Schipp (5476_CR37) 1990 5476_CR22 AA Lyubushin (5476_CR31) 2017; 9 I Daubechies (5476_CR7) 1992 YA Farkov (5476_CR19) 2011; 9 5476_CR20 5476_CR42 5476_CR43 H Bölcskei (5476_CR2) 1998; 46 YA Farkov (5476_CR10) 2009; 265 F In (5476_CR26) 2012 VY Protasov (5476_CR35) 2006; 197 YA Farkov (5476_CR17) 2012; 9 YA Farkov (5476_CR9) 2009; 161 MK Tchobanou (5476_CR41) 2009 YA Farkov (5476_CR12) 2011; 89 S Mallat (5476_CR33) 1999 N Kholshchevnikova (5476_CR27) 2017; 446 5476_CR39 5476_CR18 S Evdokimov (5476_CR8) 2015; 422 5476_CR15 EA Rodionov (5476_CR36) 2016; 16 5476_CR16 5476_CR38 AA Lyubushin (5476_CR32) 2015; 16 5476_CR11 5476_CR34 NJ Fine (5476_CR23) 1949; 65 YA Farkov (5476_CR14) 2015; 2 SA Stroganov (5476_CR40) 2012; 13 YA Farkov (5476_CR13) 2012; 3 A Krivoshein (5476_CR29) 2016 CK Chui (5476_CR5) 1993; 9 |
References_xml | – reference: RodionovEAOn applications of wavelets to the digital signal processingIzv. Saratov. Univ. Nov. Ser. Mat. Mekh. Inform.2016162217225352291610.18500/1816-9791-2016-16-2-217-225 – reference: FarkovYADiscrete wavelets and the Vilenkin–Chrestenson transformMat. Zametki2011896914928290814710.4213/mzm8704 – reference: LyubushinAAFarkovYASynchronous components of financial time seriesKomp. Issled. Model.201794639655 – reference: TchobanouMKMultidimensional Multi-Speed Signal Processing Systems2009MoscowTekhnosfera – reference: FarkovYABorisovMEPeriodic dyadic wavelets and coding of fractal functionsIzv. Vyssh. Ucheb. Zaved.20129546531370481277.42044 – reference: FarkovYAConstructions of MRA-based wavelets and frames in Walsh analysisPoincaré J. Anal. Appl.20152133634399391354.42059 – reference: Yu. A. Farkov, E. A. Lebedeva, and M. A. Skopina, “Wavelet frames on Vilenkin groups and their approximation properties,” Int. J. Wavelets Multires. Inform. Process., 13, No. 5, 1550036 (2015). – reference: KholshchevnikovaNSkvortsovVAOn U- and M-sets for series with respect to characters of compact zero-dimensional groupsJ. Math. Anal. Appl.20174461383394355473410.1016/j.jmaa.2016.08.062 – reference: MallatSA Wavelet Tour of Signal Processing1999San DiegoAcademic Press0998.94510 – reference: BölcskeiHHlawatschFFeichtingerHGFrame-theoretic analysis of oversampled filter banksIEEE Trans. Signal. Proc.199846123256326810.1109/78.735301 – reference: FarkovYABiorthogonal wavelets on Vilenkin groupsTr. Mat. Inst. Steklova200926511012425995461178.42037 – reference: Yu. A. Farkov, “Nonstationary multiresolution analysis for Vilenkin groups,” in: Int. Conf. on Sampling Theory and Applications, Tallinn, Estonia, 3-7 July 2017, Tallinn (2017), pp. 595–598. – reference: E. V. Burnaev and N. N. Olenev, “Proximity measure for time series based on wavelet coefficients,” in: Tr. XLVIII Nauch. Konf. MFTI, Dolgoprudny (2005), pp. 108–110. – reference: FarkovYARodionovEANonstationary wavelets related to the Walsh functionsAm. J. Comput. Math.20122828710.4236/ajcm.2012.22011 – reference: M. Vetterli and J. Kovačević, Wavelets and Subband Coding, Prentice Hall, New Jersey (1995). – reference: Yu. A. Farkov and E. A. Rodionov, “Algorithms for wavelet construction on Vilenkin groups,” p-Adic Numb. Ultr. Anal. Appl., 3, No. 1, 181–195 (2011). – reference: LyubushinAAYakovlevPVRodionovEAMultivariate analysis of fluctuation parameters of GPS signals before and after the mega-earthquake in Japan March 11, 2011Geofiz. Issled.20151611423 – reference: Z. Cvetkovi´c and M. Vetterli, “Oversampled filter banks,” IEEE Trans. Signal. Proc., 46, No. 5, 1245–1255 (1998). – reference: FarkovYAPeriodic wavelets in Walsh analysisCommun. Math. Appl.2012332232422824037 – reference: InFKimSAn Introduction to Wavelet Theory in Finance: A Wavelet Multiscale Approach2012SingaporeWorld Scientific10.1142/8431 – reference: B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Walsh Series and Transformations: Theory and Applications [in Russian], Moscow (2008). – reference: I. Ya. Novikov, V. Yu. Protasov, and M. A. Skopina, Wavelet Theory, American Mathematical Society, Providence, Rhode Island (2011). – reference: ChuiCKMhaskarHNOn trigonometric waveletsConstr. Approx.19939167190121576810.1007/BF01198002 – reference: KozyrevSVKhrennikovAYShelkovichVMp-Adic wavelets and their applicationsTr. Mat. Inst. Steklova201428516620634799931308.42031 – reference: G. N. Agaev, N. Ya. Vilenkin, G. M. Jafarli, and A. I. Rubinstein, Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional Groups [in Russian], Elm, Baku (1981). – reference: FarkovYAMaksimovAYStroganovSAOn biorthogonal wavelets related to the Walsh functionsInt. J. Wavelets Multires. Inform. Process.20119485499280472310.1142/S0219691311004195 – reference: Bl. Sendov, “Adapted multiresolution analysis,” in: Functions, Series, Operators, Memorial Conf. in Honor of the 100th Anniversary of the Birth of Prof. G. Alexits (1899–1978), Budapest, Hungary, August 9–13, 1999(L. Leindler et al., eds.), János Bolyai Math. Soc., Budapest (2002), pp. 23–38. – reference: E. V. Burnaev and N. N. Olenev, “Proximity measures based on wavelet coefficients for comparing statistical and calculated time series,” in: Collected Scientific and Methodical Papers [in Russian], 10, Izd. Vyatsk. Gos. Univ., Kirov (2006), pp. 41–51. – reference: DaubechiesITen Lectures on Wavelets1992PhiladelphiaSIAM10.1137/1.9781611970104 – reference: ProtasovVYFarkovYADyadic wavelets and scaling functions on the half-lineMat. Sb.200619710129160231011910.4213/sm1126 – reference: Yu. A. Farkov, “Orthogonal wavelets in Walsh analysis,” in: Generalized Integrals and Harmonic Analysis (T. P. Lukashenko and A. P. Solodov, eds.), Izd. Mosk. Univ., Moscow (2016), pp. 62–75. – reference: Yu. A. Farkov and E. A. Rodionov, “On biorthogonal discrete wavelet bases,” Int. J. Wavelets Multires. Inf. Process., 13, No. 1, 1550002 (2015). – reference: Wavelet Applications in Economics and Finance (M. Gallegati and W. Semmler, eds.), Springer, Berlin (2014). – reference: EvdokimovSSkopinaMOn orthogonal p-adic wavelet basesJ. Math. Anal. Appl.2015422952965329271010.1016/j.jmaa.2014.11.061 – reference: StroganovSAEstimates of the smoothness of low-frequency microseismic oscillations using dyadic waveletsGeofiz. Issled.20121311722 – reference: FarkovYAOn wavelets related to the Walsh seriesJ. Approx. Theory.20091611259279255815510.1016/j.jat.2008.10.003 – reference: FineNJOn the Walsh functionsTrans. Am. Math. Soc.1949653724143283310.1090/S0002-9947-1949-0032833-2 – reference: N. Ya. Vilenkin, “On a class of complete orthogonal systems,” Izv. Akad. Nauk SSSR. Ser. Mat., 11, No. 4, 363–400 (1947). – reference: SchippFWadeWRSimonPWalsh Series: An Introduction to Dyadic Harmonic Analysis1990New YorkAdam Hilger0727.42017 – reference: Yu. A. Farkov, “Periodic wavelets on the p-adic Vilenkin group,” p-Adic Numb. Ultr. Anal. Appl., 3, No. 4, 281–287 (2011). – reference: LangWCFractal multiwavelets related to the Cantor dyadic groupInt. J. Math. Math. Sci.199821307317160973910.1155/S0161171298000428 – reference: M. Skopina, “p-Adic wavelets,” Poincar´e J. Anal. Appl., 2, 53–63 (2015). – reference: KrivosheinAProtasovVSkopinaMMultivariate Wavelet Frames2016SingaporeSpringer1366.42001 – ident: 5476_CR15 – volume: 422 start-page: 952 year: 2015 ident: 5476_CR8 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2014.11.061 – volume-title: Multidimensional Multi-Speed Signal Processing Systems year: 2009 ident: 5476_CR41 – volume-title: Ten Lectures on Wavelets year: 1992 ident: 5476_CR7 doi: 10.1137/1.9781611970104 – volume-title: An Introduction to Wavelet Theory in Finance: A Wavelet Multiscale Approach year: 2012 ident: 5476_CR26 doi: 10.1142/8431 – ident: 5476_CR3 – ident: 5476_CR1 – ident: 5476_CR25 – volume-title: A Wavelet Tour of Signal Processing year: 1999 ident: 5476_CR33 – volume: 13 start-page: 17 issue: 1 year: 2012 ident: 5476_CR40 publication-title: Geofiz. Issled. – ident: 5476_CR42 – volume: 46 start-page: 3256 issue: 12 year: 1998 ident: 5476_CR2 publication-title: IEEE Trans. Signal. Proc. doi: 10.1109/78.735301 – volume: 16 start-page: 217 issue: 2 year: 2016 ident: 5476_CR36 publication-title: Izv. Saratov. Univ. Nov. Ser. Mat. Mekh. Inform. doi: 10.18500/1816-9791-2016-16-2-217-225 – ident: 5476_CR16 doi: 10.1109/SAMPTA.2017.8024368 – volume: 197 start-page: 129 issue: 10 year: 2006 ident: 5476_CR35 publication-title: Mat. Sb. doi: 10.4213/sm1126 – ident: 5476_CR34 doi: 10.1090/mmono/239 – volume: 2 start-page: 82 year: 2012 ident: 5476_CR21 publication-title: Am. J. Comput. Math. doi: 10.4236/ajcm.2012.22011 – volume: 446 start-page: 383 issue: 1 year: 2017 ident: 5476_CR27 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2016.08.062 – volume: 9 start-page: 54 year: 2012 ident: 5476_CR17 publication-title: Izv. Vyssh. Ucheb. Zaved. – ident: 5476_CR39 doi: 10.46753/pjaa.2015.v02i02.004 – volume: 161 start-page: 259 issue: 1 year: 2009 ident: 5476_CR9 publication-title: J. Approx. Theory. doi: 10.1016/j.jat.2008.10.003 – ident: 5476_CR11 doi: 10.1134/S2070046611040030 – volume-title: Walsh Series: An Introduction to Dyadic Harmonic Analysis year: 1990 ident: 5476_CR37 – volume: 89 start-page: 914 issue: 6 year: 2011 ident: 5476_CR12 publication-title: Mat. Zametki doi: 10.4213/mzm8704 – volume: 9 start-page: 485 year: 2011 ident: 5476_CR19 publication-title: Int. J. Wavelets Multires. Inform. Process. doi: 10.1142/S0219691311004195 – volume: 285 start-page: 166 year: 2014 ident: 5476_CR28 publication-title: Tr. Mat. Inst. Steklova doi: 10.1134/S0371968514020125 – volume: 9 start-page: 639 issue: 4 year: 2017 ident: 5476_CR31 publication-title: Komp. Issled. Model. – volume: 3 start-page: 223 issue: 3 year: 2012 ident: 5476_CR13 publication-title: Commun. Math. Appl. – ident: 5476_CR4 – volume: 2 start-page: 13 year: 2015 ident: 5476_CR14 publication-title: Poincaré J. Anal. Appl. doi: 10.46753/pjaa.2015.v02i02.002 – ident: 5476_CR20 doi: 10.1134/S2070046611030022 – ident: 5476_CR43 – ident: 5476_CR24 – volume: 9 start-page: 167 year: 1993 ident: 5476_CR5 publication-title: Constr. Approx. doi: 10.1007/BF01198002 – ident: 5476_CR18 doi: 10.1142/S0219691315500368 – ident: 5476_CR22 doi: 10.1142/S0219691315500022 – ident: 5476_CR6 doi: 10.1109/78.668788 – volume: 265 start-page: 110 year: 2009 ident: 5476_CR10 publication-title: Tr. Mat. Inst. Steklova – volume-title: Multivariate Wavelet Frames year: 2016 ident: 5476_CR29 – volume: 16 start-page: 14 issue: 1 year: 2015 ident: 5476_CR32 publication-title: Geofiz. Issled. – volume: 65 start-page: 372 year: 1949 ident: 5476_CR23 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1949-0032833-2 – volume: 21 start-page: 307 year: 1998 ident: 5476_CR30 publication-title: Int. J. Math. Math. Sci. doi: 10.1155/S0161171298000428 – ident: 5476_CR38 |
SSID | ssj0007683 |
Score | 2.2158613 |
Snippet | A review of discrete wavelet transforms defined through Walsh functions and used for image processing, compression of fractal signals, analysis of financial... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 127 |
SubjectTerms | Discrete Wavelet Transform Fractal analysis Image compression Image processing Mathematics Mathematics and Statistics Signal processing Wavelet analysis Wavelet transforms |
Title | Discrete Wavelet Transforms in Walsh Analysis |
URI | https://link.springer.com/article/10.1007/s10958-021-05476-2 https://www.proquest.com/docview/2558107970 |
Volume | 257 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6iL_ogXnFeRhHRBy1sSdo0j5vbvDEfdMP5FJI0mQPpxM7_70kvzup88KnQHEJ7bvkOOfmC0EkQGEm449NmEgqUyGCfK8J8ZZpUUU10TmDavw-vh_R2FIyKQ2Fp2e1ebklmmfrbYTceRL5rKQCYwUIfEu9K4Gp38OIhbn3lXwDQeVs9wz4hjBZHZRbPUVmOfiblX7uj2aLT20DrBVr0Wrl5N9GSSbbQWv-LajXdRn5nApEP0Nd7ku4SiZk3KLFo6k0SePuavngl98gOGva6g8trv7gDwdckBPArSRQYFTUNUzrWWsNqT621MVWsYcJYxRbjWIbUaEAeRtnIEi5ZGFNtLZaRIrtoOZkmZg95UlsaKEOaMuaUu1InZqEJmkxiQlTIa-i8VIV4y6kuxJzU2ClOgOJEpjiBa-jYaUs4DonENamM5UeaipvHB9FiOHIb25zW0FkhZKezd6ll0fMPH-RopyqSpxXJcU66vUjwsCII0aCrw6X1RBGNqYCyCYYZZ40auigtOh_--yf3_yd-gFZx5lvgYvQQLc_eP8wRYJaZqqOVVrvT7rnn1fNdt5657Ce8wuOQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUQHIADYhVhjRCCA0RqbCeOjxVQlaU9QCu4WbZjFyQUUNP-P-MshbAcuMZPUTLjGT_LM88IHUeRkYQ7PW0mYYOSGBxwRVigTEgV1USXAqa9ftwd0pun6KlqCsvravf6SLLI1F-a3XiUBK6kAGgGiwNIvAtABhJXyDXE7Vn-BQJdltUzHBDCaNUq8_s7GsvR96T843S0WHQ6q2ilYot-u3TvGpoz2Tpa7s2kVvMNFFy-QOQD9fUfpbtEYuIPai6a-y8ZPH3Nn_1ae2QTDTtXg4tuUN2BEGgSA_mVJImMSkLDlE611rDaU2ttShVrmThVqcU4lTE1GpiHUTaxhEsWp1Rbi2WiyBaaz94ys418qS2NlCGhTDnlbquTsthEIZOYEBVzD53VphDvpdSF-BQ1doYTYDhRGE5gDx05awmnIZG5IpWRnOa5uH64F22GE3ewzamHTiuQfZuMpZZVzT98kJOdaiBPGshRKbr9G3CvAYRo0M3h2nuiisZcwLYJhhlnLQ-d1x79HP77J3f-Bz9Ei91B707cXfdvd9ESLuYZTDe6h-Yn46nZB_4yUQfFdP0AWyfjfQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEA6iIPognrieRUQftLhN0qZ5XNTFG1EXfQs5VZAq2-7_d9JDrceDr52htDOTmS9k5gtC23FsJeGeT5tJ2KCkFodcERYqG1FFNdEVgenlVXIyoGcP8cOXKf6y2705kqxmGjxLU1YcvBl38GXwjcdp6NsLAHKwJIQkPAHpOPJxPcC9j1wMYLpqsWc4JITRemzm93e0StP3BP3jpLQsQP1ZNFMjx6BXuXoOjdlsHk1fftCu5gsoPHqGLAAwOLiX_kKJIrhrcGkePGfw9CV_ChoekkU06B_fHZ6E9X0IoSYJAGFJ0tiqNLJMaaO1hspPnXOGKta1iVHGYWxkQq0GFGKVSx3hkiWGauewTBVZQuPZa2aXUSC1o7GyJJKGU-63PYYlNo6YxISohHfQXmMK8VbRXohPgmNvOAGGE6XhBO6gLW8t4fkkMt-w8ihHeS5Ob29Ej-HUH3Jz2kG7tZJ7LYZSy7r_Hz7IU1C1NHdamo8VAfdvimstRVgZui1uvCfqlZkL2EKBmHHW7aD9xqOf4r9_cuV_6pto8vqoLy5Or85X0RQuwwyija6h8WI4susAZQq1UUbrO6PV57k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+Wavelet+Transforms+in+Walsh+Analysis&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Farkov%2C+Yu+A&rft.date=2021-08-04&rft.pub=Springer+Nature+B.V&rft.issn=1072-3374&rft.eissn=1573-8795&rft.volume=257&rft.issue=1&rft.spage=127&rft.epage=137&rft_id=info:doi/10.1007%2Fs10958-021-05476-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon |