Discrete Wavelet Transforms in Walsh Analysis

A review of discrete wavelet transforms defined through Walsh functions and used for image processing, compression of fractal signals, analysis of financial time series, and analysis of geophysical data is presented. Relationships of the discrete transforms considered with wavelet bases recently con...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical sciences (New York, N.Y.) Vol. 257; no. 1; pp. 127 - 137
Main Author Farkov, Yu. A.
Format Journal Article
LanguageEnglish
Published New York Springer US 04.08.2021
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A review of discrete wavelet transforms defined through Walsh functions and used for image processing, compression of fractal signals, analysis of financial time series, and analysis of geophysical data is presented. Relationships of the discrete transforms considered with wavelet bases recently constructed and frames on the Cantor and Vilenkin groups are noted.
AbstractList A review of discrete wavelet transforms defined through Walsh functions and used for image processing, compression of fractal signals, analysis of financial time series, and analysis of geophysical data is presented. Relationships of the discrete transforms considered with wavelet bases recently constructed and frames on the Cantor and Vilenkin groups are noted. Keywords and phrases: Walsh function, Haar system, Weierstrass function, wavelet, frame, zero-dimensional group, discrete transform, image processing, signal coding, analysis of geophysical data. AMS Subject Classification: 42C40, 65T60
A review of discrete wavelet transforms defined through Walsh functions and used for image processing, compression of fractal signals, analysis of financial time series, and analysis of geophysical data is presented. Relationships of the discrete transforms considered with wavelet bases recently constructed and frames on the Cantor and Vilenkin groups are noted.
Audience Academic
Author Farkov, Yu. A.
Author_xml – sequence: 1
  givenname: Yu. A.
  surname: Farkov
  fullname: Farkov, Yu. A.
  email: farkov@list.ru, farkov-ya@ranepa.ru
  organization: Russian Presidential Academy of National Economy and Public Administration
BookMark eNp9kV1LwzAUhoNMcJv-Aa8KXnmRmY-2SS_H_BoMBJ14GdL0pHZ07Uw6cf_eaIUxGJKLhMPzhHPOO0KDpm0AoUtKJpQQceMpyRKJCaOYJLFIMTtBQ5oIjqXIkkF4E8Ew5yI-QyPvVyRIqeRDhG8rbxx0EL3pT6ihi5ZON962bu2jqgnV2r9H00bXO1_5c3RqQwEu_u4xer2_W84e8eLpYT6bLrDhqWRYc5lALimI3BTGGCqS2FpbxLkgkBZ5YRkrdBqD4TKD3ErLMy3SIjbWMi1zPkZX_b8b135swXdq1W5daMIrliQyDJMJsqdKXYOqGtt2Tpt1GEhNBQtUJrI4UPgIVUIDTtdhi7YK5QN-coQPp4B1ZY4K1wdCYDr46kq99V7NX54PWdazxrXeO7Bq46q1djtFifpJUvVJqpCk-k1SsSDxXvIBbkpw-238Y30DJRugGg
Cites_doi 10.1016/j.jmaa.2014.11.061
10.1137/1.9781611970104
10.1142/8431
10.1109/78.735301
10.18500/1816-9791-2016-16-2-217-225
10.1109/SAMPTA.2017.8024368
10.4213/sm1126
10.1090/mmono/239
10.4236/ajcm.2012.22011
10.1016/j.jmaa.2016.08.062
10.46753/pjaa.2015.v02i02.004
10.1016/j.jat.2008.10.003
10.1134/S2070046611040030
10.4213/mzm8704
10.1142/S0219691311004195
10.1134/S0371968514020125
10.46753/pjaa.2015.v02i02.002
10.1134/S2070046611030022
10.1007/BF01198002
10.1142/S0219691315500368
10.1142/S0219691315500022
10.1109/78.668788
10.1090/S0002-9947-1949-0032833-2
10.1155/S0161171298000428
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2021
COPYRIGHT 2021 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2021.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2021
– notice: COPYRIGHT 2021 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2021.
DBID AAYXX
CITATION
ISR
DOI 10.1007/s10958-021-05476-2
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList





DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8795
EndPage 137
ExternalDocumentID A728109794
10_1007_s10958_021_05476_2
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
AEIIB
ABRTQ
ID FETCH-LOGICAL-c3682-a385eb81e7bcdccc1754fffd4b70e6dbdf22da64ec389ebf8f39a76d4cff2a8b3
IEDL.DBID U2A
ISSN 1072-3374
IngestDate Fri Jul 25 10:58:28 EDT 2025
Tue Jun 17 20:55:55 EDT 2025
Thu Jun 12 23:42:59 EDT 2025
Tue Jun 10 20:47:59 EDT 2025
Fri Jun 27 03:54:20 EDT 2025
Tue Jul 01 01:42:19 EDT 2025
Fri Feb 21 02:47:55 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords image processing
discrete transform
42C40
Walsh function
Weierstrass function
wavelet
zerodimensional group
signal coding
Haar system
analysis of geophysical data
65T60
frame
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3682-a385eb81e7bcdccc1754fffd4b70e6dbdf22da64ec389ebf8f39a76d4cff2a8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10958-021-05476-2.pdf
PQID 2558107970
PQPubID 2043545
PageCount 11
ParticipantIDs proquest_journals_2558107970
gale_infotracmisc_A728109794
gale_infotracgeneralonefile_A728109794
gale_infotracacademiconefile_A728109794
gale_incontextgauss_ISR_A728109794
crossref_primary_10_1007_s10958_021_05476_2
springer_journals_10_1007_s10958_021_05476_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210804
PublicationDateYYYYMMDD 2021-08-04
PublicationDate_xml – month: 08
  year: 2021
  text: 20210804
  day: 04
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of mathematical sciences (New York, N.Y.)
PublicationTitleAbbrev J Math Sci
PublicationYear 2021
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References DaubechiesITen Lectures on Wavelets1992PhiladelphiaSIAM10.1137/1.9781611970104
Bl. Sendov, “Adapted multiresolution analysis,” in: Functions, Series, Operators, Memorial Conf. in Honor of the 100th Anniversary of the Birth of Prof. G. Alexits (1899–1978), Budapest, Hungary, August 9–13, 1999(L. Leindler et al., eds.), János Bolyai Math. Soc., Budapest (2002), pp. 23–38.
InFKimSAn Introduction to Wavelet Theory in Finance: A Wavelet Multiscale Approach2012SingaporeWorld Scientific10.1142/8431
LangWCFractal multiwavelets related to the Cantor dyadic groupInt. J. Math. Math. Sci.199821307317160973910.1155/S0161171298000428
TchobanouMKMultidimensional Multi-Speed Signal Processing Systems2009MoscowTekhnosfera
M. Vetterli and J. Kovačević, Wavelets and Subband Coding, Prentice Hall, New Jersey (1995).
Yu. A. Farkov and E. A. Rodionov, “Algorithms for wavelet construction on Vilenkin groups,” p-Adic Numb. Ultr. Anal. Appl., 3, No. 1, 181–195 (2011).
KrivosheinAProtasovVSkopinaMMultivariate Wavelet Frames2016SingaporeSpringer1366.42001
MallatSA Wavelet Tour of Signal Processing1999San DiegoAcademic Press0998.94510
KholshchevnikovaNSkvortsovVAOn U- and M-sets for series with respect to characters of compact zero-dimensional groupsJ. Math. Anal. Appl.20174461383394355473410.1016/j.jmaa.2016.08.062
Yu. A. Farkov, “Orthogonal wavelets in Walsh analysis,” in: Generalized Integrals and Harmonic Analysis (T. P. Lukashenko and A. P. Solodov, eds.), Izd. Mosk. Univ., Moscow (2016), pp. 62–75.
RodionovEAOn applications of wavelets to the digital signal processingIzv. Saratov. Univ. Nov. Ser. Mat. Mekh. Inform.2016162217225352291610.18500/1816-9791-2016-16-2-217-225
FarkovYADiscrete wavelets and the Vilenkin–Chrestenson transformMat. Zametki2011896914928290814710.4213/mzm8704
N. Ya. Vilenkin, “On a class of complete orthogonal systems,” Izv. Akad. Nauk SSSR. Ser. Mat., 11, No. 4, 363–400 (1947).
ChuiCKMhaskarHNOn trigonometric waveletsConstr. Approx.19939167190121576810.1007/BF01198002
FarkovYAPeriodic wavelets in Walsh analysisCommun. Math. Appl.2012332232422824037
LyubushinAAFarkovYASynchronous components of financial time seriesKomp. Issled. Model.201794639655
G. N. Agaev, N. Ya. Vilenkin, G. M. Jafarli, and A. I. Rubinstein, Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional Groups [in Russian], Elm, Baku (1981).
Z. Cvetkovi´c and M. Vetterli, “Oversampled filter banks,” IEEE Trans. Signal. Proc., 46, No. 5, 1245–1255 (1998).
SchippFWadeWRSimonPWalsh Series: An Introduction to Dyadic Harmonic Analysis1990New YorkAdam Hilger0727.42017
E. V. Burnaev and N. N. Olenev, “Proximity measures based on wavelet coefficients for comparing statistical and calculated time series,” in: Collected Scientific and Methodical Papers [in Russian], 10, Izd. Vyatsk. Gos. Univ., Kirov (2006), pp. 41–51.
M. Skopina, “p-Adic wavelets,” Poincar´e J. Anal. Appl., 2, 53–63 (2015).
FarkovYAConstructions of MRA-based wavelets and frames in Walsh analysisPoincaré J. Anal. Appl.20152133634399391354.42059
FarkovYAOn wavelets related to the Walsh seriesJ. Approx. Theory.20091611259279255815510.1016/j.jat.2008.10.003
Yu. A. Farkov, “Nonstationary multiresolution analysis for Vilenkin groups,” in: Int. Conf. on Sampling Theory and Applications, Tallinn, Estonia, 3-7 July 2017, Tallinn (2017), pp. 595–598.
Yu. A. Farkov and E. A. Rodionov, “On biorthogonal discrete wavelet bases,” Int. J. Wavelets Multires. Inf. Process., 13, No. 1, 1550002 (2015).
B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Walsh Series and Transformations: Theory and Applications [in Russian], Moscow (2008).
FarkovYAMaksimovAYStroganovSAOn biorthogonal wavelets related to the Walsh functionsInt. J. Wavelets Multires. Inform. Process.20119485499280472310.1142/S0219691311004195
BölcskeiHHlawatschFFeichtingerHGFrame-theoretic analysis of oversampled filter banksIEEE Trans. Signal. Proc.199846123256326810.1109/78.735301
FarkovYARodionovEANonstationary wavelets related to the Walsh functionsAm. J. Comput. Math.20122828710.4236/ajcm.2012.22011
KozyrevSVKhrennikovAYShelkovichVMp-Adic wavelets and their applicationsTr. Mat. Inst. Steklova201428516620634799931308.42031
FineNJOn the Walsh functionsTrans. Am. Math. Soc.1949653724143283310.1090/S0002-9947-1949-0032833-2
I. Ya. Novikov, V. Yu. Protasov, and M. A. Skopina, Wavelet Theory, American Mathematical Society, Providence, Rhode Island (2011).
EvdokimovSSkopinaMOn orthogonal p-adic wavelet basesJ. Math. Anal. Appl.2015422952965329271010.1016/j.jmaa.2014.11.061
FarkovYABiorthogonal wavelets on Vilenkin groupsTr. Mat. Inst. Steklova200926511012425995461178.42037
LyubushinAAYakovlevPVRodionovEAMultivariate analysis of fluctuation parameters of GPS signals before and after the mega-earthquake in Japan March 11, 2011Geofiz. Issled.20151611423
E. V. Burnaev and N. N. Olenev, “Proximity measure for time series based on wavelet coefficients,” in: Tr. XLVIII Nauch. Konf. MFTI, Dolgoprudny (2005), pp. 108–110.
Yu. A. Farkov, “Periodic wavelets on the p-adic Vilenkin group,” p-Adic Numb. Ultr. Anal. Appl., 3, No. 4, 281–287 (2011).
FarkovYABorisovMEPeriodic dyadic wavelets and coding of fractal functionsIzv. Vyssh. Ucheb. Zaved.20129546531370481277.42044
ProtasovVYFarkovYADyadic wavelets and scaling functions on the half-lineMat. Sb.200619710129160231011910.4213/sm1126
Wavelet Applications in Economics and Finance (M. Gallegati and W. Semmler, eds.), Springer, Berlin (2014).
StroganovSAEstimates of the smoothness of low-frequency microseismic oscillations using dyadic waveletsGeofiz. Issled.20121311722
Yu. A. Farkov, E. A. Lebedeva, and M. A. Skopina, “Wavelet frames on Vilenkin groups and their approximation properties,” Int. J. Wavelets Multires. Inform. Process., 13, No. 5, 1550036 (2015).
5476_CR3
5476_CR1
5476_CR6
SV Kozyrev (5476_CR28) 2014; 285
5476_CR4
WC Lang (5476_CR30) 1998; 21
YA Farkov (5476_CR21) 2012; 2
5476_CR24
5476_CR25
F Schipp (5476_CR37) 1990
5476_CR22
AA Lyubushin (5476_CR31) 2017; 9
I Daubechies (5476_CR7) 1992
YA Farkov (5476_CR19) 2011; 9
5476_CR20
5476_CR42
5476_CR43
H Bölcskei (5476_CR2) 1998; 46
YA Farkov (5476_CR10) 2009; 265
F In (5476_CR26) 2012
VY Protasov (5476_CR35) 2006; 197
YA Farkov (5476_CR17) 2012; 9
YA Farkov (5476_CR9) 2009; 161
MK Tchobanou (5476_CR41) 2009
YA Farkov (5476_CR12) 2011; 89
S Mallat (5476_CR33) 1999
N Kholshchevnikova (5476_CR27) 2017; 446
5476_CR39
5476_CR18
S Evdokimov (5476_CR8) 2015; 422
5476_CR15
EA Rodionov (5476_CR36) 2016; 16
5476_CR16
5476_CR38
AA Lyubushin (5476_CR32) 2015; 16
5476_CR11
5476_CR34
NJ Fine (5476_CR23) 1949; 65
YA Farkov (5476_CR14) 2015; 2
SA Stroganov (5476_CR40) 2012; 13
YA Farkov (5476_CR13) 2012; 3
A Krivoshein (5476_CR29) 2016
CK Chui (5476_CR5) 1993; 9
References_xml – reference: RodionovEAOn applications of wavelets to the digital signal processingIzv. Saratov. Univ. Nov. Ser. Mat. Mekh. Inform.2016162217225352291610.18500/1816-9791-2016-16-2-217-225
– reference: FarkovYADiscrete wavelets and the Vilenkin–Chrestenson transformMat. Zametki2011896914928290814710.4213/mzm8704
– reference: LyubushinAAFarkovYASynchronous components of financial time seriesKomp. Issled. Model.201794639655
– reference: TchobanouMKMultidimensional Multi-Speed Signal Processing Systems2009MoscowTekhnosfera
– reference: FarkovYABorisovMEPeriodic dyadic wavelets and coding of fractal functionsIzv. Vyssh. Ucheb. Zaved.20129546531370481277.42044
– reference: FarkovYAConstructions of MRA-based wavelets and frames in Walsh analysisPoincaré J. Anal. Appl.20152133634399391354.42059
– reference: Yu. A. Farkov, E. A. Lebedeva, and M. A. Skopina, “Wavelet frames on Vilenkin groups and their approximation properties,” Int. J. Wavelets Multires. Inform. Process., 13, No. 5, 1550036 (2015).
– reference: KholshchevnikovaNSkvortsovVAOn U- and M-sets for series with respect to characters of compact zero-dimensional groupsJ. Math. Anal. Appl.20174461383394355473410.1016/j.jmaa.2016.08.062
– reference: MallatSA Wavelet Tour of Signal Processing1999San DiegoAcademic Press0998.94510
– reference: BölcskeiHHlawatschFFeichtingerHGFrame-theoretic analysis of oversampled filter banksIEEE Trans. Signal. Proc.199846123256326810.1109/78.735301
– reference: FarkovYABiorthogonal wavelets on Vilenkin groupsTr. Mat. Inst. Steklova200926511012425995461178.42037
– reference: Yu. A. Farkov, “Nonstationary multiresolution analysis for Vilenkin groups,” in: Int. Conf. on Sampling Theory and Applications, Tallinn, Estonia, 3-7 July 2017, Tallinn (2017), pp. 595–598.
– reference: E. V. Burnaev and N. N. Olenev, “Proximity measure for time series based on wavelet coefficients,” in: Tr. XLVIII Nauch. Konf. MFTI, Dolgoprudny (2005), pp. 108–110.
– reference: FarkovYARodionovEANonstationary wavelets related to the Walsh functionsAm. J. Comput. Math.20122828710.4236/ajcm.2012.22011
– reference: M. Vetterli and J. Kovačević, Wavelets and Subband Coding, Prentice Hall, New Jersey (1995).
– reference: Yu. A. Farkov and E. A. Rodionov, “Algorithms for wavelet construction on Vilenkin groups,” p-Adic Numb. Ultr. Anal. Appl., 3, No. 1, 181–195 (2011).
– reference: LyubushinAAYakovlevPVRodionovEAMultivariate analysis of fluctuation parameters of GPS signals before and after the mega-earthquake in Japan March 11, 2011Geofiz. Issled.20151611423
– reference: Z. Cvetkovi´c and M. Vetterli, “Oversampled filter banks,” IEEE Trans. Signal. Proc., 46, No. 5, 1245–1255 (1998).
– reference: FarkovYAPeriodic wavelets in Walsh analysisCommun. Math. Appl.2012332232422824037
– reference: InFKimSAn Introduction to Wavelet Theory in Finance: A Wavelet Multiscale Approach2012SingaporeWorld Scientific10.1142/8431
– reference: B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Walsh Series and Transformations: Theory and Applications [in Russian], Moscow (2008).
– reference: I. Ya. Novikov, V. Yu. Protasov, and M. A. Skopina, Wavelet Theory, American Mathematical Society, Providence, Rhode Island (2011).
– reference: ChuiCKMhaskarHNOn trigonometric waveletsConstr. Approx.19939167190121576810.1007/BF01198002
– reference: KozyrevSVKhrennikovAYShelkovichVMp-Adic wavelets and their applicationsTr. Mat. Inst. Steklova201428516620634799931308.42031
– reference: G. N. Agaev, N. Ya. Vilenkin, G. M. Jafarli, and A. I. Rubinstein, Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional Groups [in Russian], Elm, Baku (1981).
– reference: FarkovYAMaksimovAYStroganovSAOn biorthogonal wavelets related to the Walsh functionsInt. J. Wavelets Multires. Inform. Process.20119485499280472310.1142/S0219691311004195
– reference: Bl. Sendov, “Adapted multiresolution analysis,” in: Functions, Series, Operators, Memorial Conf. in Honor of the 100th Anniversary of the Birth of Prof. G. Alexits (1899–1978), Budapest, Hungary, August 9–13, 1999(L. Leindler et al., eds.), János Bolyai Math. Soc., Budapest (2002), pp. 23–38.
– reference: E. V. Burnaev and N. N. Olenev, “Proximity measures based on wavelet coefficients for comparing statistical and calculated time series,” in: Collected Scientific and Methodical Papers [in Russian], 10, Izd. Vyatsk. Gos. Univ., Kirov (2006), pp. 41–51.
– reference: DaubechiesITen Lectures on Wavelets1992PhiladelphiaSIAM10.1137/1.9781611970104
– reference: ProtasovVYFarkovYADyadic wavelets and scaling functions on the half-lineMat. Sb.200619710129160231011910.4213/sm1126
– reference: Yu. A. Farkov, “Orthogonal wavelets in Walsh analysis,” in: Generalized Integrals and Harmonic Analysis (T. P. Lukashenko and A. P. Solodov, eds.), Izd. Mosk. Univ., Moscow (2016), pp. 62–75.
– reference: Yu. A. Farkov and E. A. Rodionov, “On biorthogonal discrete wavelet bases,” Int. J. Wavelets Multires. Inf. Process., 13, No. 1, 1550002 (2015).
– reference: Wavelet Applications in Economics and Finance (M. Gallegati and W. Semmler, eds.), Springer, Berlin (2014).
– reference: EvdokimovSSkopinaMOn orthogonal p-adic wavelet basesJ. Math. Anal. Appl.2015422952965329271010.1016/j.jmaa.2014.11.061
– reference: StroganovSAEstimates of the smoothness of low-frequency microseismic oscillations using dyadic waveletsGeofiz. Issled.20121311722
– reference: FarkovYAOn wavelets related to the Walsh seriesJ. Approx. Theory.20091611259279255815510.1016/j.jat.2008.10.003
– reference: FineNJOn the Walsh functionsTrans. Am. Math. Soc.1949653724143283310.1090/S0002-9947-1949-0032833-2
– reference: N. Ya. Vilenkin, “On a class of complete orthogonal systems,” Izv. Akad. Nauk SSSR. Ser. Mat., 11, No. 4, 363–400 (1947).
– reference: SchippFWadeWRSimonPWalsh Series: An Introduction to Dyadic Harmonic Analysis1990New YorkAdam Hilger0727.42017
– reference: Yu. A. Farkov, “Periodic wavelets on the p-adic Vilenkin group,” p-Adic Numb. Ultr. Anal. Appl., 3, No. 4, 281–287 (2011).
– reference: LangWCFractal multiwavelets related to the Cantor dyadic groupInt. J. Math. Math. Sci.199821307317160973910.1155/S0161171298000428
– reference: M. Skopina, “p-Adic wavelets,” Poincar´e J. Anal. Appl., 2, 53–63 (2015).
– reference: KrivosheinAProtasovVSkopinaMMultivariate Wavelet Frames2016SingaporeSpringer1366.42001
– ident: 5476_CR15
– volume: 422
  start-page: 952
  year: 2015
  ident: 5476_CR8
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2014.11.061
– volume-title: Multidimensional Multi-Speed Signal Processing Systems
  year: 2009
  ident: 5476_CR41
– volume-title: Ten Lectures on Wavelets
  year: 1992
  ident: 5476_CR7
  doi: 10.1137/1.9781611970104
– volume-title: An Introduction to Wavelet Theory in Finance: A Wavelet Multiscale Approach
  year: 2012
  ident: 5476_CR26
  doi: 10.1142/8431
– ident: 5476_CR3
– ident: 5476_CR1
– ident: 5476_CR25
– volume-title: A Wavelet Tour of Signal Processing
  year: 1999
  ident: 5476_CR33
– volume: 13
  start-page: 17
  issue: 1
  year: 2012
  ident: 5476_CR40
  publication-title: Geofiz. Issled.
– ident: 5476_CR42
– volume: 46
  start-page: 3256
  issue: 12
  year: 1998
  ident: 5476_CR2
  publication-title: IEEE Trans. Signal. Proc.
  doi: 10.1109/78.735301
– volume: 16
  start-page: 217
  issue: 2
  year: 2016
  ident: 5476_CR36
  publication-title: Izv. Saratov. Univ. Nov. Ser. Mat. Mekh. Inform.
  doi: 10.18500/1816-9791-2016-16-2-217-225
– ident: 5476_CR16
  doi: 10.1109/SAMPTA.2017.8024368
– volume: 197
  start-page: 129
  issue: 10
  year: 2006
  ident: 5476_CR35
  publication-title: Mat. Sb.
  doi: 10.4213/sm1126
– ident: 5476_CR34
  doi: 10.1090/mmono/239
– volume: 2
  start-page: 82
  year: 2012
  ident: 5476_CR21
  publication-title: Am. J. Comput. Math.
  doi: 10.4236/ajcm.2012.22011
– volume: 446
  start-page: 383
  issue: 1
  year: 2017
  ident: 5476_CR27
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2016.08.062
– volume: 9
  start-page: 54
  year: 2012
  ident: 5476_CR17
  publication-title: Izv. Vyssh. Ucheb. Zaved.
– ident: 5476_CR39
  doi: 10.46753/pjaa.2015.v02i02.004
– volume: 161
  start-page: 259
  issue: 1
  year: 2009
  ident: 5476_CR9
  publication-title: J. Approx. Theory.
  doi: 10.1016/j.jat.2008.10.003
– ident: 5476_CR11
  doi: 10.1134/S2070046611040030
– volume-title: Walsh Series: An Introduction to Dyadic Harmonic Analysis
  year: 1990
  ident: 5476_CR37
– volume: 89
  start-page: 914
  issue: 6
  year: 2011
  ident: 5476_CR12
  publication-title: Mat. Zametki
  doi: 10.4213/mzm8704
– volume: 9
  start-page: 485
  year: 2011
  ident: 5476_CR19
  publication-title: Int. J. Wavelets Multires. Inform. Process.
  doi: 10.1142/S0219691311004195
– volume: 285
  start-page: 166
  year: 2014
  ident: 5476_CR28
  publication-title: Tr. Mat. Inst. Steklova
  doi: 10.1134/S0371968514020125
– volume: 9
  start-page: 639
  issue: 4
  year: 2017
  ident: 5476_CR31
  publication-title: Komp. Issled. Model.
– volume: 3
  start-page: 223
  issue: 3
  year: 2012
  ident: 5476_CR13
  publication-title: Commun. Math. Appl.
– ident: 5476_CR4
– volume: 2
  start-page: 13
  year: 2015
  ident: 5476_CR14
  publication-title: Poincaré J. Anal. Appl.
  doi: 10.46753/pjaa.2015.v02i02.002
– ident: 5476_CR20
  doi: 10.1134/S2070046611030022
– ident: 5476_CR43
– ident: 5476_CR24
– volume: 9
  start-page: 167
  year: 1993
  ident: 5476_CR5
  publication-title: Constr. Approx.
  doi: 10.1007/BF01198002
– ident: 5476_CR18
  doi: 10.1142/S0219691315500368
– ident: 5476_CR22
  doi: 10.1142/S0219691315500022
– ident: 5476_CR6
  doi: 10.1109/78.668788
– volume: 265
  start-page: 110
  year: 2009
  ident: 5476_CR10
  publication-title: Tr. Mat. Inst. Steklova
– volume-title: Multivariate Wavelet Frames
  year: 2016
  ident: 5476_CR29
– volume: 16
  start-page: 14
  issue: 1
  year: 2015
  ident: 5476_CR32
  publication-title: Geofiz. Issled.
– volume: 65
  start-page: 372
  year: 1949
  ident: 5476_CR23
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1949-0032833-2
– volume: 21
  start-page: 307
  year: 1998
  ident: 5476_CR30
  publication-title: Int. J. Math. Math. Sci.
  doi: 10.1155/S0161171298000428
– ident: 5476_CR38
SSID ssj0007683
Score 2.2158613
Snippet A review of discrete wavelet transforms defined through Walsh functions and used for image processing, compression of fractal signals, analysis of financial...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 127
SubjectTerms Discrete Wavelet Transform
Fractal analysis
Image compression
Image processing
Mathematics
Mathematics and Statistics
Signal processing
Wavelet analysis
Wavelet transforms
Title Discrete Wavelet Transforms in Walsh Analysis
URI https://link.springer.com/article/10.1007/s10958-021-05476-2
https://www.proquest.com/docview/2558107970
Volume 257
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA6iL_ogXnFeRhHRBy1sSdo0j5vbvDEfdMP5FJI0mQPpxM7_70kvzup88KnQHEJ7bvkOOfmC0EkQGEm449NmEgqUyGCfK8J8ZZpUUU10TmDavw-vh_R2FIyKQ2Fp2e1ebklmmfrbYTceRL5rKQCYwUIfEu9K4Gp38OIhbn3lXwDQeVs9wz4hjBZHZRbPUVmOfiblX7uj2aLT20DrBVr0Wrl5N9GSSbbQWv-LajXdRn5nApEP0Nd7ku4SiZk3KLFo6k0SePuavngl98gOGva6g8trv7gDwdckBPArSRQYFTUNUzrWWsNqT621MVWsYcJYxRbjWIbUaEAeRtnIEi5ZGFNtLZaRIrtoOZkmZg95UlsaKEOaMuaUu1InZqEJmkxiQlTIa-i8VIV4y6kuxJzU2ClOgOJEpjiBa-jYaUs4DonENamM5UeaipvHB9FiOHIb25zW0FkhZKezd6ll0fMPH-RopyqSpxXJcU66vUjwsCII0aCrw6X1RBGNqYCyCYYZZ40auigtOh_--yf3_yd-gFZx5lvgYvQQLc_eP8wRYJaZqqOVVrvT7rnn1fNdt5657Ce8wuOQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUQHIADYhVhjRCCA0RqbCeOjxVQlaU9QCu4WbZjFyQUUNP-P-MshbAcuMZPUTLjGT_LM88IHUeRkYQ7PW0mYYOSGBxwRVigTEgV1USXAqa9ftwd0pun6KlqCsvravf6SLLI1F-a3XiUBK6kAGgGiwNIvAtABhJXyDXE7Vn-BQJdltUzHBDCaNUq8_s7GsvR96T843S0WHQ6q2ilYot-u3TvGpoz2Tpa7s2kVvMNFFy-QOQD9fUfpbtEYuIPai6a-y8ZPH3Nn_1ae2QTDTtXg4tuUN2BEGgSA_mVJImMSkLDlE611rDaU2ttShVrmThVqcU4lTE1GpiHUTaxhEsWp1Rbi2WiyBaaz94ys418qS2NlCGhTDnlbquTsthEIZOYEBVzD53VphDvpdSF-BQ1doYTYDhRGE5gDx05awmnIZG5IpWRnOa5uH64F22GE3ewzamHTiuQfZuMpZZVzT98kJOdaiBPGshRKbr9G3CvAYRo0M3h2nuiisZcwLYJhhlnLQ-d1x79HP77J3f-Bz9Ei91B707cXfdvd9ESLuYZTDe6h-Yn46nZB_4yUQfFdP0AWyfjfQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEA6iIPognrieRUQftLhN0qZ5XNTFG1EXfQs5VZAq2-7_d9JDrceDr52htDOTmS9k5gtC23FsJeGeT5tJ2KCkFodcERYqG1FFNdEVgenlVXIyoGcP8cOXKf6y2705kqxmGjxLU1YcvBl38GXwjcdp6NsLAHKwJIQkPAHpOPJxPcC9j1wMYLpqsWc4JITRemzm93e0StP3BP3jpLQsQP1ZNFMjx6BXuXoOjdlsHk1fftCu5gsoPHqGLAAwOLiX_kKJIrhrcGkePGfw9CV_ChoekkU06B_fHZ6E9X0IoSYJAGFJ0tiqNLJMaaO1hspPnXOGKta1iVHGYWxkQq0GFGKVSx3hkiWGauewTBVZQuPZa2aXUSC1o7GyJJKGU-63PYYlNo6YxISohHfQXmMK8VbRXohPgmNvOAGGE6XhBO6gLW8t4fkkMt-w8ihHeS5Ob29Ej-HUH3Jz2kG7tZJ7LYZSy7r_Hz7IU1C1NHdamo8VAfdvimstRVgZui1uvCfqlZkL2EKBmHHW7aD9xqOf4r9_cuV_6pto8vqoLy5Or85X0RQuwwyija6h8WI4susAZQq1UUbrO6PV57k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+Wavelet+Transforms+in+Walsh+Analysis&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Farkov%2C+Yu+A&rft.date=2021-08-04&rft.pub=Springer+Nature+B.V&rft.issn=1072-3374&rft.eissn=1573-8795&rft.volume=257&rft.issue=1&rft.spage=127&rft.epage=137&rft_id=info:doi/10.1007%2Fs10958-021-05476-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon