Tuning model parameters in class‐imbalanced learning with precision‐recall curve

An issue for class‐imbalanced learning is what assessment metric should be employed. So far, precision‐recall curve (PRC) as a metric is rarely used in practice as compared with its alternative of receiver operating characteristic (ROC). This study investigates the performance of PRC as the evaluati...

Full description

Saved in:
Bibliographic Details
Published inBiometrical journal Vol. 61; no. 3; pp. 652 - 664
Main Authors Fu, Guang‐Hui, Yi, Lun‐Zhao, Pan, Jianxin
Format Journal Article
LanguageEnglish
Published Germany Wiley - VCH Verlag GmbH & Co. KGaA 01.05.2019
Subjects
Online AccessGet full text
ISSN0323-3847
1521-4036
1521-4036
DOI10.1002/bimj.201800148

Cover

Loading…
Abstract An issue for class‐imbalanced learning is what assessment metric should be employed. So far, precision‐recall curve (PRC) as a metric is rarely used in practice as compared with its alternative of receiver operating characteristic (ROC). This study investigates the performance of PRC as the evaluating criterion to address the class‐imbalanced data and focuses on the comparison of PRC with ROC. The advantages of PRC over ROC on assessing class‐imbalanced data are also investigated and tested on our proposed algorithm by tuning the whole model parameters in simulation studies and real data examples. The result shows that PRC is competitive with ROC as performance measurement for handling class‐imbalanced data in tuning the model parameters. PRC can be considered as an alternative but effective assessment for preprocessing (such as variable selection) skewed data and building a classifier in class‐imbalanced learning.
AbstractList An issue for class‐imbalanced learning is what assessment metric should be employed. So far, precision‐recall curve (PRC) as a metric is rarely used in practice as compared with its alternative of receiver operating characteristic (ROC). This study investigates the performance of PRC as the evaluating criterion to address the class‐imbalanced data and focuses on the comparison of PRC with ROC. The advantages of PRC over ROC on assessing class‐imbalanced data are also investigated and tested on our proposed algorithm by tuning the whole model parameters in simulation studies and real data examples. The result shows that PRC is competitive with ROC as performance measurement for handling class‐imbalanced data in tuning the model parameters. PRC can be considered as an alternative but effective assessment for preprocessing (such as variable selection) skewed data and building a classifier in class‐imbalanced learning.
An issue for class-imbalanced learning is what assessment metric should be employed. So far, precision-recall curve (PRC) as a metric is rarely used in practice as compared with its alternative of receiver operating characteristic (ROC). This study investigates the performance of PRC as the evaluating criterion to address the class-imbalanced data and focuses on the comparison of PRC with ROC. The advantages of PRC over ROC on assessing class-imbalanced data are also investigated and tested on our proposed algorithm by tuning the whole model parameters in simulation studies and real data examples. The result shows that PRC is competitive with ROC as performance measurement for handling class-imbalanced data in tuning the model parameters. PRC can be considered as an alternative but effective assessment for preprocessing (such as variable selection) skewed data and building a classifier in class-imbalanced learning.An issue for class-imbalanced learning is what assessment metric should be employed. So far, precision-recall curve (PRC) as a metric is rarely used in practice as compared with its alternative of receiver operating characteristic (ROC). This study investigates the performance of PRC as the evaluating criterion to address the class-imbalanced data and focuses on the comparison of PRC with ROC. The advantages of PRC over ROC on assessing class-imbalanced data are also investigated and tested on our proposed algorithm by tuning the whole model parameters in simulation studies and real data examples. The result shows that PRC is competitive with ROC as performance measurement for handling class-imbalanced data in tuning the model parameters. PRC can be considered as an alternative but effective assessment for preprocessing (such as variable selection) skewed data and building a classifier in class-imbalanced learning.
Author Fu, Guang‐Hui
Pan, Jianxin
Yi, Lun‐Zhao
Author_xml – sequence: 1
  givenname: Guang‐Hui
  orcidid: 0000-0002-0138-0004
  surname: Fu
  fullname: Fu, Guang‐Hui
  organization: Kunming University of Science and Technology
– sequence: 2
  givenname: Lun‐Zhao
  surname: Yi
  fullname: Yi, Lun‐Zhao
  organization: Kunming University of Science and Technology
– sequence: 3
  givenname: Jianxin
  orcidid: 0000-0002-7460-6350
  surname: Pan
  fullname: Pan, Jianxin
  email: jianxin.pan@manchester.ac.uk
  organization: The University of Manchester
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30548291$$D View this record in MEDLINE/PubMed
BookMark eNqF0T1P3TAUBmALgeBCu3asInVhye3xR2J7bFE_qEBdbmfLdk5aXznJrZ0UsfET-hv5JZhCGViY7OF57aPzHpP9cRqRkDcU1hSAvXdh2K4ZUAVAhdojK9owWgvg7T5ZAWe85krII3Kc8xYANAh2SI44NEIxTVdks1nGMP6shqnDWO1ssgPOmHIVxspHm_Ptzd8wOBvt6LGrItr0z1-F-Ve1S-hDDtNYULnaGCu_pD_4ihz0NmZ8_XiekB-fP23OvtYX37-cn324qD1vFaulpc7atncWwDmlZauRUaa81G2vuNUogFEnu0YL1nSyscxJ9N6hk23TAz8hpw_v7tL0e8E8myFkj7EMi9OSDaNNgS2TotB3z-h2WtJYpjOMgdRKc8GLevuoFjdgZ3YpDDZdm__7KmD9AHyack7YPxEK5r4Qc1-IeSqkBMSzgA-zncvO5mRDfDF2FSJev_CJ-Xh--Y1qyfgdhAygkw
CitedBy_id crossref_primary_10_1016_j_engappai_2024_108849
crossref_primary_10_1159_000539837
crossref_primary_10_3233_JSA_220617
crossref_primary_10_3389_fendo_2022_1034251
crossref_primary_10_1213_ANE_0000000000005694
crossref_primary_10_1017_S0033291721001653
crossref_primary_10_1093_ehjdh_ztac068
crossref_primary_10_1080_14697688_2023_2230264
crossref_primary_10_1109_TIE_2023_3319731
crossref_primary_10_3390_ijerph20043455
crossref_primary_10_1007_s11440_024_02363_3
crossref_primary_10_3390_rs15082140
crossref_primary_10_1016_j_intimp_2024_113033
crossref_primary_10_1083_jcb_202006180
crossref_primary_10_1016_j_eswa_2022_116961
crossref_primary_10_1016_j_jksuci_2021_09_017
crossref_primary_10_3389_fonc_2023_1183072
crossref_primary_10_1055_a_2236_7849
crossref_primary_10_1061_JMENEA_MEENG_5516
crossref_primary_10_3233_JSA_200617
crossref_primary_10_1111_bor_70005
crossref_primary_10_14309_ctg_0000000000000609
crossref_primary_10_1111_acem_14198
crossref_primary_10_1097_PEC_0000000000002648
crossref_primary_10_1002_ird3_113
crossref_primary_10_1016_j_eswa_2025_127204
crossref_primary_10_1186_s12911_024_02428_z
crossref_primary_10_1016_j_engappai_2023_106796
crossref_primary_10_1186_s12879_023_08235_7
crossref_primary_10_1061_JMENEA_MEENG_5492
crossref_primary_10_1109_TGRS_2023_3312766
crossref_primary_10_3390_medicina59010172
crossref_primary_10_1186_s12859_020_3411_3
crossref_primary_10_1002_cem_3515
crossref_primary_10_1002_cem_3537
crossref_primary_10_21015_vtcs_v12i2_1911
crossref_primary_10_1111_cas_16276
crossref_primary_10_3390_rs13101952
crossref_primary_10_1007_s00521_020_05450_0
crossref_primary_10_3390_s21248455
crossref_primary_10_1186_s13321_023_00743_7
crossref_primary_10_3390_su142114406
crossref_primary_10_1148_ryai_240300
crossref_primary_10_1007_s11517_023_02841_y
crossref_primary_10_3390_rs15112833
crossref_primary_10_3390_metabo11060389
crossref_primary_10_1016_j_compbiomed_2024_109492
Cites_doi 10.1038/jcbfm.2013.51
10.18637/jss.v033.i01
10.1111/rssb.12100
10.1016/j.aca.2015.12.043
10.1007/s11306-015-0803-x
10.1111/j.1467-9868.2010.00740.x
10.1016/j.eswa.2016.12.035
10.1109/ICPR.2010.1036
10.1093/biostatistics/kxu050
10.1016/j.neucom.2012.04.039
10.1016/j.chemolab.2017.10.015
10.1080/10618600.2015.1041636
10.1007/978-1-4757-3264-1
10.1073/pnas.96.12.6745
10.1007/s10994-005-4257-7
10.1007/978-3-642-13059-5_22
10.1016/j.jclinepi.2015.02.010
10.1145/1143844.1143874
10.1093/bioinformatics/bti724
10.1117/12.2216434
10.1080/01621459.2016.1164051
10.1080/01621459.2014.998760
10.1214/15-AOS1388
10.1111/j.2517-6161.1996.tb02080.x
10.1093/biomet/asw027
10.1111/j.1467-9868.2005.00503.x
10.1016/j.datak.2012.08.001
10.1214/07-AOAS131
10.1002/cem.1364
10.1148/radiology.143.1.7063747
10.1002/sim.3980
10.2307/1390807
10.3150/13-BEJ566
10.1371/journal.pone.0118432
10.1016/j.patrec.2005.10.010
10.1016/j.chemolab.2016.11.006
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
DOI 10.1002/bimj.201800148
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1521-4036
EndPage 664
ExternalDocumentID 30548291
10_1002_bimj_201800148
BIMJ1972
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 11761041; 21465016; 21775058
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
3-9
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M67
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
Y6R
YHZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3682-7a1baa6fba00bb89769e2128c796f83a9e4021b7d59425d75a2b7eccbeb765f03
IEDL.DBID DR2
ISSN 0323-3847
1521-4036
IngestDate Fri Jul 11 00:01:09 EDT 2025
Fri Jul 25 10:33:49 EDT 2025
Wed Feb 19 02:32:27 EST 2025
Thu Apr 24 23:05:26 EDT 2025
Tue Jul 01 04:18:02 EDT 2025
Wed Jan 22 16:44:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords class imbalance
parameter tuning
precision-recall curve
receiver operating characteristic
measurement
Language English
License 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3682-7a1baa6fba00bb89769e2128c796f83a9e4021b7d59425d75a2b7eccbeb765f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7460-6350
0000-0002-0138-0004
PMID 30548291
PQID 2207989343
PQPubID 105592
PageCount 13
ParticipantIDs proquest_miscellaneous_2157656274
proquest_journals_2207989343
pubmed_primary_30548291
crossref_primary_10_1002_bimj_201800148
crossref_citationtrail_10_1002_bimj_201800148
wiley_primary_10_1002_bimj_201800148_BIMJ1972
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2019
2019-05-00
20190501
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Biometrical journal
PublicationTitleAlternate Biom J
PublicationYear 2019
Publisher Wiley - VCH Verlag GmbH & Co. KGaA
Publisher_xml – name: Wiley - VCH Verlag GmbH & Co. KGaA
References 2010; 33
2012; 81–82
2015; 16
2010
2013; 105
2015; 11
2015; 10
2017; 171
2006
1982; 143
2005; 21
2003
2016; 103
2002
1996; 58
2001; 22
2015; 7
2012; 31
2005; 67
2016; 78
1999
2017; 73
2015; 68
2016; 6
2013; 33
2000
2016; 911
2006; 27
2015; 21
2017; 160
2016; 111
2016
1999; 96
2015
2013
2011; 25
2004; 2004
2007; 1
1996; 5
2016; 25
2010; 72
2016; 44
2005; 58
Ali A. (e_1_2_10_3_1) 2015; 7
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_22_1
e_1_2_10_42_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_40_1
Yi L. (e_1_2_10_39_1) 2016; 6
Zhang T. (e_1_2_10_43_1) 2001; 22
Flach P. (e_1_2_10_14_1) 2015
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_31_1
e_1_2_10_30_1
Denil M. (e_1_2_10_12_1) 2010
Akbani R. (e_1_2_10_2_1) 2004; 2004
Schölkopf B. (e_1_2_10_32_1) 2002
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
Boyd K. (e_1_2_10_8_1) 2013
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 21
  start-page: 242
  issue: 1
  year: 2015
  end-page: 275
  article-title: Variable selection and estimation for semi‐parametric multiple‐index models
  publication-title: Bernulli
– volume: 2004
  start-page: 39
  year: 2004
  end-page: 50
  article-title: Applying support vector machines to imbalanced datasets
  publication-title: Machine Learning: ECML
– volume: 25
  start-page: 665
  issue: 3
  year: 2016
  end-page: 683
  article-title: Bayesian sparse group selection
  publication-title: Journal of Computational and Graphical Statistics
– volume: 44
  start-page: 813
  issue: 2
  year: 2016
  end-page: 852
  article-title: Best subset selection via a modern optimization lens
  publication-title: Annals of Statistics
– volume: 81–82
  start-page: 67
  year: 2012
  end-page: 103
  article-title: Dbfs: An effective density based feature selection scheme for small sample size and high dimensional imbalanced data sets
  publication-title: Data & Knowledge Engineering
– volume: 21
  start-page: 4356
  issue: 24
  year: 2005
  end-page: 4362
  article-title: Regularized roc method for disease classification and biomarker selection with microarray data
  publication-title: Bioinformatics
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the lasso
  publication-title: Journal of the Royal Statistical Society. Series B (Statistical Methodology)
– start-page: 451
  year: 2013
  end-page: 466
  article-title: Area under the precision‐recall curve: Point estimates and confidence intervals
– volume: 10
  start-page: 1
  issue: 3
  year: 2015
  end-page: 21
  article-title: The precision‐recall plot is more informative than the roc plot when evaluating binary classifiers on imbalanced datasets
  publication-title: Plos One
– volume: 5
  start-page: 299
  issue: 3
  year: 1996
  end-page: 314
  article-title: R: A language for data analysis and graphics
  publication-title: Journal of Computational and Graphical Statistics
– volume: 143
  start-page: 29
  issue: 1
  year: 1982
  end-page: 36
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
– start-page: 55
  year: 1999
  end-page: 60
– volume: 6
  year: 2016
  article-title: Serum metabolic profiling reveals altered metabolic pathways in patients with post‐traumatic cognitive impairments
  publication-title: Scientific Reports
– volume: 68
  start-page: 855
  issue: 8
  year: 2015
  end-page: 859
  article-title: The precision recall curve overcame the optimism of the receiver operating characteristic curve in rare diseases
  publication-title: Journal of Clinical Epidemiology
– year: 2000
– start-page: 838
  year: 2015
  end-page: 846
  article-title: Precision‐recall‐gain curves: PR analysis done right
– volume: 73
  start-page: 220
  year: 2017
  end-page: 239
  article-title: Learning from class‐imbalanced data: Review of methods and applications
  publication-title: Expert Systems with Applications
– year: 2016
– volume: 58
  start-page: 25
  issue: 1
  year: 2005
  end-page: 32
  article-title: On the application of roc analysis to predict classification performance under varying class distributions
  publication-title: Machine Learning
– volume: 22
  start-page: 103
  issue: 2
  year: 2001
  article-title: An introduction to support vector machines and other kernel‐based learning methods
  publication-title: AI Magazine
– volume: 111
  start-page: 169
  issue: 513
  year: 2016
  end-page: 179
  article-title: Ultrahigh‐dimensional multiclass linear discriminant analysis by pairwise sure independence screening
  publication-title: Journal of the American Statistical Association
– volume: 11
  start-page: 1539
  issue: 6
  year: 2015
  end-page: 1551
  article-title: Informative metabolites identification by variable importance analysis based on random variable combination
  publication-title: Metabolomics
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  end-page: 874
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognition Letters
– start-page: 220
  year: 2010
  end-page: 231
  article-title: Overlap versus Imbalance
– start-page: 816
  year: 2003
  end-page: 823
– volume: 105
  start-page: 3
  year: 2013
  end-page: 11
  article-title: Feature selection for high‐dimensional imbalanced data
  publication-title: Neurocomputing
– volume: 911
  start-page: 27
  year: 2016
  end-page: 34
  article-title: Variable importance analysis based on rank aggregation with applications in metabolomics for biomarker discovery
  publication-title: Analytica Chimica Acta
– volume: 96
  start-page: 6745
  issue: 12
  year: 1999
  end-page: 6750
  article-title: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
  publication-title: Proceedings of the National Academy of Sciences
– volume: 171
  start-page: 241
  year: 2017
  end-page: 250
  article-title: Stable variable selection of class‐imbalanced data with precision‐recall criterion
  publication-title: Chemometrics and Intelligent Laboratory Systems
– volume: 72
  start-page: 417
  issue: 4
  year: 2010
  end-page: 473
  article-title: Stability selection
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 7
  start-page: 176
  issue: 3
  year: 2015
  end-page: 204
  article-title: Classification with class imbalance problem: A review
  publication-title: International Journal of Advances in Soft Computing and its Applications
– volume: 33
  start-page: 1
  issue: 1
  year: 2010
  end-page: 22
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: Journal of Statistical Software
– volume: 16
  start-page: 252
  issue: 2
  year: 2015
  end-page: 267
  article-title: Concave 1‐norm group selection
  publication-title: Biostatistics
– year: 2002
– start-page: 1
  year: 2000
  end-page: 3
– volume: 111
  start-page: 1427
  issue: 516
  year: 2016
  end-page: 1439
  article-title: Hierarchical feature selection incorporating known and novel biological information: Identifying genomic features related to prostate cancer recurrence
  publication-title: Journal of the American Statistical Association
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  end-page: 320
  article-title: Regularization and variable selection via the elastic net
  publication-title: Journal of the Royal Statistical Society Series B (Statistical Methodology)
– volume: 78
  start-page: 53
  issue: 1
  year: 2016
  end-page: 76
  article-title: Variable selection for support vector machines in moderately high dimensions
  publication-title: Journal of the Royal Statistical Society Series B (Statistical Methodology)
– start-page: 233
  year: 2006
  end-page: 240
– volume: 103
  start-page: 547
  issue: 3
  year: 2016
  end-page: 562
  article-title: Variable selection for case‐cohort studies with failure time outcome
  publication-title: Biometrika
– volume: 31
  start-page: 628
  issue: 7
  year: 2012
  end-page: 635
  article-title: Variable selection using the optimal ROC curve: An application to a traditional chinese medicine study on osteoporosis disease
  publication-title: Statistics in Medicine
– volume: 33
  start-page: 1075
  issue: 7
  year: 2013
  end-page: 1082
  article-title: Early identification of potentially salvageable tissue with MRI‐based predictive algorithms after experimental ischemic stroke
  publication-title: Journal of Cerebral Blood Flow & Metabolism
– volume: 1
  start-page: 302
  issue: 2
  year: 2007
  end-page: 332
  article-title: Pathwise coordinate optimization
  publication-title: The Annals of Applied Statistics
– volume: 25
  start-page: 92
  issue: 2
  year: 2011
  end-page: 99
  article-title: Combination of kernel pca and linear support vector machine for modeling a nonlinear relationship between bioactivity and molecular descriptors
  publication-title: Journal of Chemometrics
– start-page: 4263
  year: 2010
  end-page: 4266
– volume: 160
  start-page: 22
  year: 2017
  end-page: 31
  article-title: Stable biomarker screening and classification by subsampling‐based sparse regularization coupled with support vector machines in metabolomics
  publication-title: Chemometrics and Intelligent Laboratory Systems
– ident: e_1_2_10_7_1
  doi: 10.1038/jcbfm.2013.51
– ident: e_1_2_10_16_1
  doi: 10.18637/jss.v033.i01
– ident: e_1_2_10_44_1
  doi: 10.1111/rssb.12100
– ident: e_1_2_10_41_1
  doi: 10.1016/j.aca.2015.12.043
– ident: e_1_2_10_42_1
  doi: 10.1007/s11306-015-0803-x
– start-page: 838
  volume-title: Advances in neural information processing systems 28
  year: 2015
  ident: e_1_2_10_14_1
– volume-title: Learning with kernels: support vector machines, regularization, optimization, and beyond
  year: 2002
  ident: e_1_2_10_32_1
– volume: 6
  year: 2016
  ident: e_1_2_10_39_1
  article-title: Serum metabolic profiling reveals altered metabolic pathways in patients with post‐traumatic cognitive impairments
  publication-title: Scientific Reports
– ident: e_1_2_10_25_1
  doi: 10.1111/j.1467-9868.2010.00740.x
– ident: e_1_2_10_20_1
  doi: 10.1016/j.eswa.2016.12.035
– ident: e_1_2_10_9_1
  doi: 10.1109/ICPR.2010.1036
– ident: e_1_2_10_23_1
  doi: 10.1093/biostatistics/kxu050
– ident: e_1_2_10_40_1
  doi: 10.1016/j.neucom.2012.04.039
– ident: e_1_2_10_35_1
– start-page: 451
  volume-title: Machine learning and knowledge discovery in databases
  year: 2013
  ident: e_1_2_10_8_1
– ident: e_1_2_10_18_1
  doi: 10.1016/j.chemolab.2017.10.015
– ident: e_1_2_10_10_1
  doi: 10.1080/10618600.2015.1041636
– ident: e_1_2_10_38_1
– ident: e_1_2_10_34_1
  doi: 10.1007/978-1-4757-3264-1
– ident: e_1_2_10_5_1
  doi: 10.1073/pnas.96.12.6745
– ident: e_1_2_10_37_1
  doi: 10.1007/s10994-005-4257-7
– start-page: 220
  volume-title: Advances in artificial intelligence
  year: 2010
  ident: e_1_2_10_12_1
  doi: 10.1007/978-3-642-13059-5_22
– ident: e_1_2_10_27_1
  doi: 10.1016/j.jclinepi.2015.02.010
– volume: 22
  start-page: 103
  issue: 2
  year: 2001
  ident: e_1_2_10_43_1
  article-title: An introduction to support vector machines and other kernel‐based learning methods
  publication-title: AI Magazine
– ident: e_1_2_10_11_1
  doi: 10.1145/1143844.1143874
– volume: 7
  start-page: 176
  issue: 3
  year: 2015
  ident: e_1_2_10_3_1
  article-title: Classification with class imbalance problem: A review
  publication-title: International Journal of Advances in Soft Computing and its Applications
– ident: e_1_2_10_29_1
– ident: e_1_2_10_24_1
  doi: 10.1093/bioinformatics/bti724
– ident: e_1_2_10_30_1
  doi: 10.1117/12.2216434
– ident: e_1_2_10_45_1
  doi: 10.1080/01621459.2016.1164051
– ident: e_1_2_10_28_1
  doi: 10.1080/01621459.2014.998760
– ident: e_1_2_10_6_1
  doi: 10.1214/15-AOS1388
– ident: e_1_2_10_33_1
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 2004
  start-page: 39
  year: 2004
  ident: e_1_2_10_2_1
  article-title: Applying support vector machines to imbalanced datasets
  publication-title: Machine Learning: ECML
– ident: e_1_2_10_26_1
  doi: 10.1093/biomet/asw027
– ident: e_1_2_10_47_1
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: e_1_2_10_4_1
  doi: 10.1016/j.datak.2012.08.001
– ident: e_1_2_10_15_1
  doi: 10.1214/07-AOAS131
– ident: e_1_2_10_17_1
  doi: 10.1002/cem.1364
– ident: e_1_2_10_21_1
  doi: 10.1148/radiology.143.1.7063747
– ident: e_1_2_10_46_1
  doi: 10.1002/sim.3980
– ident: e_1_2_10_22_1
  doi: 10.2307/1390807
– ident: e_1_2_10_36_1
  doi: 10.3150/13-BEJ566
– ident: e_1_2_10_31_1
  doi: 10.1371/journal.pone.0118432
– ident: e_1_2_10_13_1
  doi: 10.1016/j.patrec.2005.10.010
– ident: e_1_2_10_19_1
  doi: 10.1016/j.chemolab.2016.11.006
SSID ssj0009042
Score 2.4186075
Snippet An issue for class‐imbalanced learning is what assessment metric should be employed. So far, precision‐recall curve (PRC) as a metric is rarely used in...
An issue for class-imbalanced learning is what assessment metric should be employed. So far, precision-recall curve (PRC) as a metric is rarely used in...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 652
SubjectTerms Algorithms
Biometry - methods
Brain Injuries, Traumatic - diagnosis
Brain Injuries, Traumatic - metabolism
class imbalance
Colonic Neoplasms - diagnosis
Colonic Neoplasms - genetics
Colonic Neoplasms - physiopathology
Computer simulation
Humans
Learning
Machine Learning
Mathematical models
measurement
Models, Statistical
parameter tuning
Parameters
Performance measurement
precision‐recall curve
Recall
receiver operating characteristic
ROC Curve
Support Vector Machine
Tuning
Title Tuning model parameters in class‐imbalanced learning with precision‐recall curve
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.201800148
https://www.ncbi.nlm.nih.gov/pubmed/30548291
https://www.proquest.com/docview/2207989343
https://www.proquest.com/docview/2157656274
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS9xAEF9EEHyp1Vq9amULhT5Fk82f3X3UoqigD3KCb2Fns1euvcvJ3UXQJz-Cn9FP4kw2Fz1FSulbSCZksn9mfrM7-xvGvltjpE0KG0ABaZBEkQkAhA20BkTPAl2-pNPIZ-fZ8WVyepVevTjF7_kh2gU3mhm1vaYJbmCy90waCv3hb0rNUoTy6bQvJWwRKrp45o_SYeK3EUQcxGiHZ6yNodibf33eK72BmvPItXY9RyvMzJT2GSd_dqsp7Nq7V3yO__NXH9mHBpfyfT-QVtmCK9fYkq9UefuJdbsVLaDwunAOJ77wIeXRTHi_5JYA-OP9Q38IlCdpXcGbWhS_OC3z8utxU8gHhfDSDAbcVuMbt84ujw67P4-DpiBDYOOMkLiJwJisByYMARQiGe3Q9SkrddZTsdEOo9EIZJFqNAWFTI0AiWMEHMgs7YXxZ7ZYjkq3yXhPqcIqNCcOA8BYGcSpEu1yXCihM4xKOyyYdUhuG7ZyKpoxyD3PssippfK2pTrsRyt_7Xk63pXcnvVv3szXSS5EKDVCtyTusG_tY5xptH1iSjeqUCbC2CylWkUdtuHHRfsptJoJak5q1737Fx3yg5OzUyr49uUf5bfYMt7UPuNymy1Ox5X7iqhoCjv1yH8CLEgGAw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEYIL78dCASMhcUqbOA_bR17VtnR7QFuJW-RxvGhhN622GyQ48RP4jfwSZuIk1YIQQtwiZaI4tmf8eTz5PoBnzlrlsspFWGEeZUliI0TpImOQ0LOkJV_x38iTo2J8nB28z_tqQv4XJvBDDAk39ow2XrODc0J695w1FOfLj1ybpRnm64twiWW9WcTg9btzBikTZ-EgQaZRSpG4522M5e7m85vr0m9gcxO7tovP3nXAvtmh5uTTTrPGHff1F0bH__quG3Ctg6biRZhLN-GCr2_B5SBW-eU2TKcN51BEq50jmDJ8yaU0Z2JeC8cY_Me37_Mlcqmk85Xo5Cg-CM70itNVp-VDRnRpFwvhmtVnfweO995MX42jTpMhcmnBYNwmaG0xQxvHiJrAjPG0-mmnTDHTqTWeNqQJqio3FA0qlVuJiqYJelRFPovTu7BVn9T-PoiZ1pXTFFE87QFTbQmqKgrNaaWlKWhjOoKoH5HSdYTlrJuxKAPVsiy5p8qhp0bwfLA_DVQdf7Tc7ge47Fz2rJQyVobQW5aO4Olwm5yNT1Bs7U8askloe5azXNEI7oWJMbyKAmdGLedmt8P7lzaUL_cnB6z59uAf7Z_AlfF0clge7h-9fQhXycCEAsxt2FqvGv-IQNIaH7du8BOCBwod
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VVqBeaPkrW1owEhKntInzY_tIoau20AqhrdRbZDsOWthNV9sNEj31EfqMPAkzcTbtghBC3CJ5okxsz8xne_wNwCurtbBJYQNTmDRIokgHxnAbKGUQPXMM-YJuIx-fZAenydFZenbrFr_nh-g23MgyGn9NBj4pyt0b0lAzHH-h1CxJKF_egZUkQ4shWPTphkBKhYk_R-BxEKMjntM2hnx38f3FsPQb1lyErk3s6a-BnmvtU06-7tQzs2MvfyF0_J_fWof7LTBlb_xMegBLrnoId32pyu-PYDCoaQeFNZVzGBGGjymR5oINK2YJgf-4uh6ODSVKWlewthjFZ0b7vGwybSv5oBA-6tGI2Xr6zT2G0_7-4O1B0FZkCGycERTXkdE6K40OQ2MkQhnlMPZJK1RWylgrh8vRyIgiVegLCpFqbgROEuOMyNIyjJ_AcnVeuafASikLK9GfOFwBxlIjUBXomONCcpXhsrQHwXxActvSlVPVjFHuiZZ5Tj2Vdz3Vg9ed_MQTdfxRcms-vnlrsBc556FQiN2SuAcvu2Y0NTo_0ZU7r1EmwsVZSsWKerDh50X3KXSbCWpOajej-xcd8r3D4yOq-Lb5j_Iv4N7Hd_38w-HJ-2ewiu3KZ19uwfJsWrttREgz87wxgp93bQjV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+model+parameters+in+class%E2%80%90imbalanced+learning+with+precision%E2%80%90recall+curve&rft.jtitle=Biometrical+journal&rft.au=Guang%E2%80%90Hui+Fu&rft.au=Lun%E2%80%90Zhao+Yi&rft.au=Pan%2C+Jianxin&rft.date=2019-05-01&rft.pub=Wiley+-+VCH+Verlag+GmbH+%26+Co.+KGaA&rft.issn=0323-3847&rft.eissn=1521-4036&rft.volume=61&rft.issue=3&rft.spage=652&rft.epage=664&rft_id=info:doi/10.1002%2Fbimj.201800148&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0323-3847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0323-3847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0323-3847&client=summon