Tuning model parameters in class‐imbalanced learning with precision‐recall curve
An issue for class‐imbalanced learning is what assessment metric should be employed. So far, precision‐recall curve (PRC) as a metric is rarely used in practice as compared with its alternative of receiver operating characteristic (ROC). This study investigates the performance of PRC as the evaluati...
Saved in:
Published in | Biometrical journal Vol. 61; no. 3; pp. 652 - 664 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley - VCH Verlag GmbH & Co. KGaA
01.05.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0323-3847 1521-4036 1521-4036 |
DOI | 10.1002/bimj.201800148 |
Cover
Loading…
Abstract | An issue for class‐imbalanced learning is what assessment metric should be employed. So far, precision‐recall curve (PRC) as a metric is rarely used in practice as compared with its alternative of receiver operating characteristic (ROC). This study investigates the performance of PRC as the evaluating criterion to address the class‐imbalanced data and focuses on the comparison of PRC with ROC. The advantages of PRC over ROC on assessing class‐imbalanced data are also investigated and tested on our proposed algorithm by tuning the whole model parameters in simulation studies and real data examples. The result shows that PRC is competitive with ROC as performance measurement for handling class‐imbalanced data in tuning the model parameters. PRC can be considered as an alternative but effective assessment for preprocessing (such as variable selection) skewed data and building a classifier in class‐imbalanced learning. |
---|---|
AbstractList | An issue for class‐imbalanced learning is what assessment metric should be employed. So far, precision‐recall curve (PRC) as a metric is rarely used in practice as compared with its alternative of receiver operating characteristic (ROC). This study investigates the performance of PRC as the evaluating criterion to address the class‐imbalanced data and focuses on the comparison of PRC with ROC. The advantages of PRC over ROC on assessing class‐imbalanced data are also investigated and tested on our proposed algorithm by tuning the whole model parameters in simulation studies and real data examples. The result shows that PRC is competitive with ROC as performance measurement for handling class‐imbalanced data in tuning the model parameters. PRC can be considered as an alternative but effective assessment for preprocessing (such as variable selection) skewed data and building a classifier in class‐imbalanced learning. An issue for class-imbalanced learning is what assessment metric should be employed. So far, precision-recall curve (PRC) as a metric is rarely used in practice as compared with its alternative of receiver operating characteristic (ROC). This study investigates the performance of PRC as the evaluating criterion to address the class-imbalanced data and focuses on the comparison of PRC with ROC. The advantages of PRC over ROC on assessing class-imbalanced data are also investigated and tested on our proposed algorithm by tuning the whole model parameters in simulation studies and real data examples. The result shows that PRC is competitive with ROC as performance measurement for handling class-imbalanced data in tuning the model parameters. PRC can be considered as an alternative but effective assessment for preprocessing (such as variable selection) skewed data and building a classifier in class-imbalanced learning.An issue for class-imbalanced learning is what assessment metric should be employed. So far, precision-recall curve (PRC) as a metric is rarely used in practice as compared with its alternative of receiver operating characteristic (ROC). This study investigates the performance of PRC as the evaluating criterion to address the class-imbalanced data and focuses on the comparison of PRC with ROC. The advantages of PRC over ROC on assessing class-imbalanced data are also investigated and tested on our proposed algorithm by tuning the whole model parameters in simulation studies and real data examples. The result shows that PRC is competitive with ROC as performance measurement for handling class-imbalanced data in tuning the model parameters. PRC can be considered as an alternative but effective assessment for preprocessing (such as variable selection) skewed data and building a classifier in class-imbalanced learning. |
Author | Fu, Guang‐Hui Pan, Jianxin Yi, Lun‐Zhao |
Author_xml | – sequence: 1 givenname: Guang‐Hui orcidid: 0000-0002-0138-0004 surname: Fu fullname: Fu, Guang‐Hui organization: Kunming University of Science and Technology – sequence: 2 givenname: Lun‐Zhao surname: Yi fullname: Yi, Lun‐Zhao organization: Kunming University of Science and Technology – sequence: 3 givenname: Jianxin orcidid: 0000-0002-7460-6350 surname: Pan fullname: Pan, Jianxin email: jianxin.pan@manchester.ac.uk organization: The University of Manchester |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30548291$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0T1P3TAUBmALgeBCu3asInVhye3xR2J7bFE_qEBdbmfLdk5aXznJrZ0UsfET-hv5JZhCGViY7OF57aPzHpP9cRqRkDcU1hSAvXdh2K4ZUAVAhdojK9owWgvg7T5ZAWe85krII3Kc8xYANAh2SI44NEIxTVdks1nGMP6shqnDWO1ssgPOmHIVxspHm_Ptzd8wOBvt6LGrItr0z1-F-Ve1S-hDDtNYULnaGCu_pD_4ihz0NmZ8_XiekB-fP23OvtYX37-cn324qD1vFaulpc7atncWwDmlZauRUaa81G2vuNUogFEnu0YL1nSyscxJ9N6hk23TAz8hpw_v7tL0e8E8myFkj7EMi9OSDaNNgS2TotB3z-h2WtJYpjOMgdRKc8GLevuoFjdgZ3YpDDZdm__7KmD9AHyack7YPxEK5r4Qc1-IeSqkBMSzgA-zncvO5mRDfDF2FSJev_CJ-Xh--Y1qyfgdhAygkw |
CitedBy_id | crossref_primary_10_1016_j_engappai_2024_108849 crossref_primary_10_1159_000539837 crossref_primary_10_3233_JSA_220617 crossref_primary_10_3389_fendo_2022_1034251 crossref_primary_10_1213_ANE_0000000000005694 crossref_primary_10_1017_S0033291721001653 crossref_primary_10_1093_ehjdh_ztac068 crossref_primary_10_1080_14697688_2023_2230264 crossref_primary_10_1109_TIE_2023_3319731 crossref_primary_10_3390_ijerph20043455 crossref_primary_10_1007_s11440_024_02363_3 crossref_primary_10_3390_rs15082140 crossref_primary_10_1016_j_intimp_2024_113033 crossref_primary_10_1083_jcb_202006180 crossref_primary_10_1016_j_eswa_2022_116961 crossref_primary_10_1016_j_jksuci_2021_09_017 crossref_primary_10_3389_fonc_2023_1183072 crossref_primary_10_1055_a_2236_7849 crossref_primary_10_1061_JMENEA_MEENG_5516 crossref_primary_10_3233_JSA_200617 crossref_primary_10_1111_bor_70005 crossref_primary_10_14309_ctg_0000000000000609 crossref_primary_10_1111_acem_14198 crossref_primary_10_1097_PEC_0000000000002648 crossref_primary_10_1002_ird3_113 crossref_primary_10_1016_j_eswa_2025_127204 crossref_primary_10_1186_s12911_024_02428_z crossref_primary_10_1016_j_engappai_2023_106796 crossref_primary_10_1186_s12879_023_08235_7 crossref_primary_10_1061_JMENEA_MEENG_5492 crossref_primary_10_1109_TGRS_2023_3312766 crossref_primary_10_3390_medicina59010172 crossref_primary_10_1186_s12859_020_3411_3 crossref_primary_10_1002_cem_3515 crossref_primary_10_1002_cem_3537 crossref_primary_10_21015_vtcs_v12i2_1911 crossref_primary_10_1111_cas_16276 crossref_primary_10_3390_rs13101952 crossref_primary_10_1007_s00521_020_05450_0 crossref_primary_10_3390_s21248455 crossref_primary_10_1186_s13321_023_00743_7 crossref_primary_10_3390_su142114406 crossref_primary_10_1148_ryai_240300 crossref_primary_10_1007_s11517_023_02841_y crossref_primary_10_3390_rs15112833 crossref_primary_10_3390_metabo11060389 crossref_primary_10_1016_j_compbiomed_2024_109492 |
Cites_doi | 10.1038/jcbfm.2013.51 10.18637/jss.v033.i01 10.1111/rssb.12100 10.1016/j.aca.2015.12.043 10.1007/s11306-015-0803-x 10.1111/j.1467-9868.2010.00740.x 10.1016/j.eswa.2016.12.035 10.1109/ICPR.2010.1036 10.1093/biostatistics/kxu050 10.1016/j.neucom.2012.04.039 10.1016/j.chemolab.2017.10.015 10.1080/10618600.2015.1041636 10.1007/978-1-4757-3264-1 10.1073/pnas.96.12.6745 10.1007/s10994-005-4257-7 10.1007/978-3-642-13059-5_22 10.1016/j.jclinepi.2015.02.010 10.1145/1143844.1143874 10.1093/bioinformatics/bti724 10.1117/12.2216434 10.1080/01621459.2016.1164051 10.1080/01621459.2014.998760 10.1214/15-AOS1388 10.1111/j.2517-6161.1996.tb02080.x 10.1093/biomet/asw027 10.1111/j.1467-9868.2005.00503.x 10.1016/j.datak.2012.08.001 10.1214/07-AOAS131 10.1002/cem.1364 10.1148/radiology.143.1.7063747 10.1002/sim.3980 10.2307/1390807 10.3150/13-BEJ566 10.1371/journal.pone.0118432 10.1016/j.patrec.2005.10.010 10.1016/j.chemolab.2016.11.006 |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/bimj.201800148 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1521-4036 |
EndPage | 664 |
ExternalDocumentID | 30548291 10_1002_bimj_201800148 BIMJ1972 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 11761041; 21465016; 21775058 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 3-9 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DUUFO EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M67 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XPP XV2 Y6R YHZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c3682-7a1baa6fba00bb89769e2128c796f83a9e4021b7d59425d75a2b7eccbeb765f03 |
IEDL.DBID | DR2 |
ISSN | 0323-3847 1521-4036 |
IngestDate | Fri Jul 11 00:01:09 EDT 2025 Fri Jul 25 10:33:49 EDT 2025 Wed Feb 19 02:32:27 EST 2025 Thu Apr 24 23:05:26 EDT 2025 Tue Jul 01 04:18:02 EDT 2025 Wed Jan 22 16:44:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | class imbalance parameter tuning precision-recall curve receiver operating characteristic measurement |
Language | English |
License | 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3682-7a1baa6fba00bb89769e2128c796f83a9e4021b7d59425d75a2b7eccbeb765f03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7460-6350 0000-0002-0138-0004 |
PMID | 30548291 |
PQID | 2207989343 |
PQPubID | 105592 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2157656274 proquest_journals_2207989343 pubmed_primary_30548291 crossref_primary_10_1002_bimj_201800148 crossref_citationtrail_10_1002_bimj_201800148 wiley_primary_10_1002_bimj_201800148_BIMJ1972 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2019 2019-05-00 20190501 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Biometrical journal |
PublicationTitleAlternate | Biom J |
PublicationYear | 2019 |
Publisher | Wiley - VCH Verlag GmbH & Co. KGaA |
Publisher_xml | – name: Wiley - VCH Verlag GmbH & Co. KGaA |
References | 2010; 33 2012; 81–82 2015; 16 2010 2013; 105 2015; 11 2015; 10 2017; 171 2006 1982; 143 2005; 21 2003 2016; 103 2002 1996; 58 2001; 22 2015; 7 2012; 31 2005; 67 2016; 78 1999 2017; 73 2015; 68 2016; 6 2013; 33 2000 2016; 911 2006; 27 2015; 21 2017; 160 2016; 111 2016 1999; 96 2015 2013 2011; 25 2004; 2004 2007; 1 1996; 5 2016; 25 2010; 72 2016; 44 2005; 58 Ali A. (e_1_2_10_3_1) 2015; 7 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_22_1 e_1_2_10_42_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_40_1 Yi L. (e_1_2_10_39_1) 2016; 6 Zhang T. (e_1_2_10_43_1) 2001; 22 Flach P. (e_1_2_10_14_1) 2015 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_31_1 e_1_2_10_30_1 Denil M. (e_1_2_10_12_1) 2010 Akbani R. (e_1_2_10_2_1) 2004; 2004 Schölkopf B. (e_1_2_10_32_1) 2002 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 Boyd K. (e_1_2_10_8_1) 2013 e_1_2_10_26_1 e_1_2_10_47_1 |
References_xml | – volume: 21 start-page: 242 issue: 1 year: 2015 end-page: 275 article-title: Variable selection and estimation for semi‐parametric multiple‐index models publication-title: Bernulli – volume: 2004 start-page: 39 year: 2004 end-page: 50 article-title: Applying support vector machines to imbalanced datasets publication-title: Machine Learning: ECML – volume: 25 start-page: 665 issue: 3 year: 2016 end-page: 683 article-title: Bayesian sparse group selection publication-title: Journal of Computational and Graphical Statistics – volume: 44 start-page: 813 issue: 2 year: 2016 end-page: 852 article-title: Best subset selection via a modern optimization lens publication-title: Annals of Statistics – volume: 81–82 start-page: 67 year: 2012 end-page: 103 article-title: Dbfs: An effective density based feature selection scheme for small sample size and high dimensional imbalanced data sets publication-title: Data & Knowledge Engineering – volume: 21 start-page: 4356 issue: 24 year: 2005 end-page: 4362 article-title: Regularized roc method for disease classification and biomarker selection with microarray data publication-title: Bioinformatics – volume: 58 start-page: 267 issue: 1 year: 1996 end-page: 288 article-title: Regression shrinkage and selection via the lasso publication-title: Journal of the Royal Statistical Society. Series B (Statistical Methodology) – start-page: 451 year: 2013 end-page: 466 article-title: Area under the precision‐recall curve: Point estimates and confidence intervals – volume: 10 start-page: 1 issue: 3 year: 2015 end-page: 21 article-title: The precision‐recall plot is more informative than the roc plot when evaluating binary classifiers on imbalanced datasets publication-title: Plos One – volume: 5 start-page: 299 issue: 3 year: 1996 end-page: 314 article-title: R: A language for data analysis and graphics publication-title: Journal of Computational and Graphical Statistics – volume: 143 start-page: 29 issue: 1 year: 1982 end-page: 36 article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve publication-title: Radiology – start-page: 55 year: 1999 end-page: 60 – volume: 6 year: 2016 article-title: Serum metabolic profiling reveals altered metabolic pathways in patients with post‐traumatic cognitive impairments publication-title: Scientific Reports – volume: 68 start-page: 855 issue: 8 year: 2015 end-page: 859 article-title: The precision recall curve overcame the optimism of the receiver operating characteristic curve in rare diseases publication-title: Journal of Clinical Epidemiology – year: 2000 – start-page: 838 year: 2015 end-page: 846 article-title: Precision‐recall‐gain curves: PR analysis done right – volume: 73 start-page: 220 year: 2017 end-page: 239 article-title: Learning from class‐imbalanced data: Review of methods and applications publication-title: Expert Systems with Applications – year: 2016 – volume: 58 start-page: 25 issue: 1 year: 2005 end-page: 32 article-title: On the application of roc analysis to predict classification performance under varying class distributions publication-title: Machine Learning – volume: 22 start-page: 103 issue: 2 year: 2001 article-title: An introduction to support vector machines and other kernel‐based learning methods publication-title: AI Magazine – volume: 111 start-page: 169 issue: 513 year: 2016 end-page: 179 article-title: Ultrahigh‐dimensional multiclass linear discriminant analysis by pairwise sure independence screening publication-title: Journal of the American Statistical Association – volume: 11 start-page: 1539 issue: 6 year: 2015 end-page: 1551 article-title: Informative metabolites identification by variable importance analysis based on random variable combination publication-title: Metabolomics – volume: 27 start-page: 861 issue: 8 year: 2006 end-page: 874 article-title: An introduction to ROC analysis publication-title: Pattern Recognition Letters – start-page: 220 year: 2010 end-page: 231 article-title: Overlap versus Imbalance – start-page: 816 year: 2003 end-page: 823 – volume: 105 start-page: 3 year: 2013 end-page: 11 article-title: Feature selection for high‐dimensional imbalanced data publication-title: Neurocomputing – volume: 911 start-page: 27 year: 2016 end-page: 34 article-title: Variable importance analysis based on rank aggregation with applications in metabolomics for biomarker discovery publication-title: Analytica Chimica Acta – volume: 96 start-page: 6745 issue: 12 year: 1999 end-page: 6750 article-title: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays publication-title: Proceedings of the National Academy of Sciences – volume: 171 start-page: 241 year: 2017 end-page: 250 article-title: Stable variable selection of class‐imbalanced data with precision‐recall criterion publication-title: Chemometrics and Intelligent Laboratory Systems – volume: 72 start-page: 417 issue: 4 year: 2010 end-page: 473 article-title: Stability selection publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – volume: 7 start-page: 176 issue: 3 year: 2015 end-page: 204 article-title: Classification with class imbalance problem: A review publication-title: International Journal of Advances in Soft Computing and its Applications – volume: 33 start-page: 1 issue: 1 year: 2010 end-page: 22 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: Journal of Statistical Software – volume: 16 start-page: 252 issue: 2 year: 2015 end-page: 267 article-title: Concave 1‐norm group selection publication-title: Biostatistics – year: 2002 – start-page: 1 year: 2000 end-page: 3 – volume: 111 start-page: 1427 issue: 516 year: 2016 end-page: 1439 article-title: Hierarchical feature selection incorporating known and novel biological information: Identifying genomic features related to prostate cancer recurrence publication-title: Journal of the American Statistical Association – volume: 67 start-page: 301 issue: 2 year: 2005 end-page: 320 article-title: Regularization and variable selection via the elastic net publication-title: Journal of the Royal Statistical Society Series B (Statistical Methodology) – volume: 78 start-page: 53 issue: 1 year: 2016 end-page: 76 article-title: Variable selection for support vector machines in moderately high dimensions publication-title: Journal of the Royal Statistical Society Series B (Statistical Methodology) – start-page: 233 year: 2006 end-page: 240 – volume: 103 start-page: 547 issue: 3 year: 2016 end-page: 562 article-title: Variable selection for case‐cohort studies with failure time outcome publication-title: Biometrika – volume: 31 start-page: 628 issue: 7 year: 2012 end-page: 635 article-title: Variable selection using the optimal ROC curve: An application to a traditional chinese medicine study on osteoporosis disease publication-title: Statistics in Medicine – volume: 33 start-page: 1075 issue: 7 year: 2013 end-page: 1082 article-title: Early identification of potentially salvageable tissue with MRI‐based predictive algorithms after experimental ischemic stroke publication-title: Journal of Cerebral Blood Flow & Metabolism – volume: 1 start-page: 302 issue: 2 year: 2007 end-page: 332 article-title: Pathwise coordinate optimization publication-title: The Annals of Applied Statistics – volume: 25 start-page: 92 issue: 2 year: 2011 end-page: 99 article-title: Combination of kernel pca and linear support vector machine for modeling a nonlinear relationship between bioactivity and molecular descriptors publication-title: Journal of Chemometrics – start-page: 4263 year: 2010 end-page: 4266 – volume: 160 start-page: 22 year: 2017 end-page: 31 article-title: Stable biomarker screening and classification by subsampling‐based sparse regularization coupled with support vector machines in metabolomics publication-title: Chemometrics and Intelligent Laboratory Systems – ident: e_1_2_10_7_1 doi: 10.1038/jcbfm.2013.51 – ident: e_1_2_10_16_1 doi: 10.18637/jss.v033.i01 – ident: e_1_2_10_44_1 doi: 10.1111/rssb.12100 – ident: e_1_2_10_41_1 doi: 10.1016/j.aca.2015.12.043 – ident: e_1_2_10_42_1 doi: 10.1007/s11306-015-0803-x – start-page: 838 volume-title: Advances in neural information processing systems 28 year: 2015 ident: e_1_2_10_14_1 – volume-title: Learning with kernels: support vector machines, regularization, optimization, and beyond year: 2002 ident: e_1_2_10_32_1 – volume: 6 year: 2016 ident: e_1_2_10_39_1 article-title: Serum metabolic profiling reveals altered metabolic pathways in patients with post‐traumatic cognitive impairments publication-title: Scientific Reports – ident: e_1_2_10_25_1 doi: 10.1111/j.1467-9868.2010.00740.x – ident: e_1_2_10_20_1 doi: 10.1016/j.eswa.2016.12.035 – ident: e_1_2_10_9_1 doi: 10.1109/ICPR.2010.1036 – ident: e_1_2_10_23_1 doi: 10.1093/biostatistics/kxu050 – ident: e_1_2_10_40_1 doi: 10.1016/j.neucom.2012.04.039 – ident: e_1_2_10_35_1 – start-page: 451 volume-title: Machine learning and knowledge discovery in databases year: 2013 ident: e_1_2_10_8_1 – ident: e_1_2_10_18_1 doi: 10.1016/j.chemolab.2017.10.015 – ident: e_1_2_10_10_1 doi: 10.1080/10618600.2015.1041636 – ident: e_1_2_10_38_1 – ident: e_1_2_10_34_1 doi: 10.1007/978-1-4757-3264-1 – ident: e_1_2_10_5_1 doi: 10.1073/pnas.96.12.6745 – ident: e_1_2_10_37_1 doi: 10.1007/s10994-005-4257-7 – start-page: 220 volume-title: Advances in artificial intelligence year: 2010 ident: e_1_2_10_12_1 doi: 10.1007/978-3-642-13059-5_22 – ident: e_1_2_10_27_1 doi: 10.1016/j.jclinepi.2015.02.010 – volume: 22 start-page: 103 issue: 2 year: 2001 ident: e_1_2_10_43_1 article-title: An introduction to support vector machines and other kernel‐based learning methods publication-title: AI Magazine – ident: e_1_2_10_11_1 doi: 10.1145/1143844.1143874 – volume: 7 start-page: 176 issue: 3 year: 2015 ident: e_1_2_10_3_1 article-title: Classification with class imbalance problem: A review publication-title: International Journal of Advances in Soft Computing and its Applications – ident: e_1_2_10_29_1 – ident: e_1_2_10_24_1 doi: 10.1093/bioinformatics/bti724 – ident: e_1_2_10_30_1 doi: 10.1117/12.2216434 – ident: e_1_2_10_45_1 doi: 10.1080/01621459.2016.1164051 – ident: e_1_2_10_28_1 doi: 10.1080/01621459.2014.998760 – ident: e_1_2_10_6_1 doi: 10.1214/15-AOS1388 – ident: e_1_2_10_33_1 doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 2004 start-page: 39 year: 2004 ident: e_1_2_10_2_1 article-title: Applying support vector machines to imbalanced datasets publication-title: Machine Learning: ECML – ident: e_1_2_10_26_1 doi: 10.1093/biomet/asw027 – ident: e_1_2_10_47_1 doi: 10.1111/j.1467-9868.2005.00503.x – ident: e_1_2_10_4_1 doi: 10.1016/j.datak.2012.08.001 – ident: e_1_2_10_15_1 doi: 10.1214/07-AOAS131 – ident: e_1_2_10_17_1 doi: 10.1002/cem.1364 – ident: e_1_2_10_21_1 doi: 10.1148/radiology.143.1.7063747 – ident: e_1_2_10_46_1 doi: 10.1002/sim.3980 – ident: e_1_2_10_22_1 doi: 10.2307/1390807 – ident: e_1_2_10_36_1 doi: 10.3150/13-BEJ566 – ident: e_1_2_10_31_1 doi: 10.1371/journal.pone.0118432 – ident: e_1_2_10_13_1 doi: 10.1016/j.patrec.2005.10.010 – ident: e_1_2_10_19_1 doi: 10.1016/j.chemolab.2016.11.006 |
SSID | ssj0009042 |
Score | 2.4186075 |
Snippet | An issue for class‐imbalanced learning is what assessment metric should be employed. So far, precision‐recall curve (PRC) as a metric is rarely used in... An issue for class-imbalanced learning is what assessment metric should be employed. So far, precision-recall curve (PRC) as a metric is rarely used in... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 652 |
SubjectTerms | Algorithms Biometry - methods Brain Injuries, Traumatic - diagnosis Brain Injuries, Traumatic - metabolism class imbalance Colonic Neoplasms - diagnosis Colonic Neoplasms - genetics Colonic Neoplasms - physiopathology Computer simulation Humans Learning Machine Learning Mathematical models measurement Models, Statistical parameter tuning Parameters Performance measurement precision‐recall curve Recall receiver operating characteristic ROC Curve Support Vector Machine Tuning |
Title | Tuning model parameters in class‐imbalanced learning with precision‐recall curve |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.201800148 https://www.ncbi.nlm.nih.gov/pubmed/30548291 https://www.proquest.com/docview/2207989343 https://www.proquest.com/docview/2157656274 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS9xAEF9EEHyp1Vq9amULhT5Fk82f3X3UoqigD3KCb2Fns1euvcvJ3UXQJz-Cn9FP4kw2Fz1FSulbSCZksn9mfrM7-xvGvltjpE0KG0ABaZBEkQkAhA20BkTPAl2-pNPIZ-fZ8WVyepVevTjF7_kh2gU3mhm1vaYJbmCy90waCv3hb0rNUoTy6bQvJWwRKrp45o_SYeK3EUQcxGiHZ6yNodibf33eK72BmvPItXY9RyvMzJT2GSd_dqsp7Nq7V3yO__NXH9mHBpfyfT-QVtmCK9fYkq9UefuJdbsVLaDwunAOJ77wIeXRTHi_5JYA-OP9Q38IlCdpXcGbWhS_OC3z8utxU8gHhfDSDAbcVuMbt84ujw67P4-DpiBDYOOMkLiJwJisByYMARQiGe3Q9SkrddZTsdEOo9EIZJFqNAWFTI0AiWMEHMgs7YXxZ7ZYjkq3yXhPqcIqNCcOA8BYGcSpEu1yXCihM4xKOyyYdUhuG7ZyKpoxyD3PssippfK2pTrsRyt_7Xk63pXcnvVv3szXSS5EKDVCtyTusG_tY5xptH1iSjeqUCbC2CylWkUdtuHHRfsptJoJak5q1737Fx3yg5OzUyr49uUf5bfYMt7UPuNymy1Ox5X7iqhoCjv1yH8CLEgGAw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEYIL78dCASMhcUqbOA_bR17VtnR7QFuJW-RxvGhhN622GyQ48RP4jfwSZuIk1YIQQtwiZaI4tmf8eTz5PoBnzlrlsspFWGEeZUliI0TpImOQ0LOkJV_x38iTo2J8nB28z_tqQv4XJvBDDAk39ow2XrODc0J695w1FOfLj1ybpRnm64twiWW9WcTg9btzBikTZ-EgQaZRSpG4522M5e7m85vr0m9gcxO7tovP3nXAvtmh5uTTTrPGHff1F0bH__quG3Ctg6biRZhLN-GCr2_B5SBW-eU2TKcN51BEq50jmDJ8yaU0Z2JeC8cY_Me37_Mlcqmk85Xo5Cg-CM70itNVp-VDRnRpFwvhmtVnfweO995MX42jTpMhcmnBYNwmaG0xQxvHiJrAjPG0-mmnTDHTqTWeNqQJqio3FA0qlVuJiqYJelRFPovTu7BVn9T-PoiZ1pXTFFE87QFTbQmqKgrNaaWlKWhjOoKoH5HSdYTlrJuxKAPVsiy5p8qhp0bwfLA_DVQdf7Tc7ge47Fz2rJQyVobQW5aO4Olwm5yNT1Bs7U8askloe5azXNEI7oWJMbyKAmdGLedmt8P7lzaUL_cnB6z59uAf7Z_AlfF0clge7h-9fQhXycCEAsxt2FqvGv-IQNIaH7du8BOCBwod |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VVqBeaPkrW1owEhKntInzY_tIoau20AqhrdRbZDsOWthNV9sNEj31EfqMPAkzcTbtghBC3CJ5okxsz8xne_wNwCurtbBJYQNTmDRIokgHxnAbKGUQPXMM-YJuIx-fZAenydFZenbrFr_nh-g23MgyGn9NBj4pyt0b0lAzHH-h1CxJKF_egZUkQ4shWPTphkBKhYk_R-BxEKMjntM2hnx38f3FsPQb1lyErk3s6a-BnmvtU06-7tQzs2MvfyF0_J_fWof7LTBlb_xMegBLrnoId32pyu-PYDCoaQeFNZVzGBGGjymR5oINK2YJgf-4uh6ODSVKWlewthjFZ0b7vGwybSv5oBA-6tGI2Xr6zT2G0_7-4O1B0FZkCGycERTXkdE6K40OQ2MkQhnlMPZJK1RWylgrh8vRyIgiVegLCpFqbgROEuOMyNIyjJ_AcnVeuafASikLK9GfOFwBxlIjUBXomONCcpXhsrQHwXxActvSlVPVjFHuiZZ5Tj2Vdz3Vg9ed_MQTdfxRcms-vnlrsBc556FQiN2SuAcvu2Y0NTo_0ZU7r1EmwsVZSsWKerDh50X3KXSbCWpOajej-xcd8r3D4yOq-Lb5j_Iv4N7Hd_38w-HJ-2ewiu3KZ19uwfJsWrttREgz87wxgp93bQjV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+model+parameters+in+class%E2%80%90imbalanced+learning+with+precision%E2%80%90recall+curve&rft.jtitle=Biometrical+journal&rft.au=Guang%E2%80%90Hui+Fu&rft.au=Lun%E2%80%90Zhao+Yi&rft.au=Pan%2C+Jianxin&rft.date=2019-05-01&rft.pub=Wiley+-+VCH+Verlag+GmbH+%26+Co.+KGaA&rft.issn=0323-3847&rft.eissn=1521-4036&rft.volume=61&rft.issue=3&rft.spage=652&rft.epage=664&rft_id=info:doi/10.1002%2Fbimj.201800148&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0323-3847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0323-3847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0323-3847&client=summon |