Modifying Polyvinylidene Chloride Resin with Fluorine Monomer and Cross‐Linking Monomers

Modified polyvinylidene chloride (PVDC) resin was prepared using octafluoropentyl methacrylate and trimethylolpropane trimethacrylate as modifying monomers through seeded emulsion polymerization. The successful incorporation of octafluoropentyl methacrylate into the PVDC resin was confirmed by Fouri...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular rapid communications. Vol. 45; no. 21; pp. e2400402 - n/a
Main Authors Gao, Fengjun, Zhang, Zhifeng, Song, Qianqian, Abo‐Dief, Hala M., Alzahrani, Eman, Wang, Shouyang, Liu, Yan, Shao, Qian, Yang, Jing, Guo, Zhanhu, El‐Bahy, Zeinhom M., Ge, Ruixiang
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Modified polyvinylidene chloride (PVDC) resin was prepared using octafluoropentyl methacrylate and trimethylolpropane trimethacrylate as modifying monomers through seeded emulsion polymerization. The successful incorporation of octafluoropentyl methacrylate into the PVDC resin was confirmed by Fourier transform infrared spectroscopy (FTIR) and X‐ray photoelectron spectroscopy (XPS) analyses. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and XPS were utilized to investigate the element distribution in the modified monomer emulsion and the mechanism of monomer modification. The results demonstrated that the fluorine monomer was reacted in the resin, and mainly concentrated on the surface of the resin. The addition of octafluoropentyl methacrylate and trimethylolpropane trimethacrylate improved the water resistance of the resin. Compared to unmodified PVDC resin, the contact angle of the modified PVDC resin increased from 89.46° to 109.51°, and the water resistance at room temperature increased from 120 to 500 h. Furthermore, the modified resin exhibited excellent mechanical properties, thermal stability, and storage stability. The polyvinylidene chloride resin was modified with fluorine monomer and cross‐linking monomers to achieve enhanced properties.
AbstractList Modified polyvinylidene chloride (PVDC) resin was prepared using octafluoropentyl methacrylate and trimethylolpropane trimethacrylate as modifying monomers through seeded emulsion polymerization. The successful incorporation of octafluoropentyl methacrylate into the PVDC resin was confirmed by Fourier transform infrared spectroscopy (FTIR) and X‐ray photoelectron spectroscopy (XPS) analyses. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and XPS were utilized to investigate the element distribution in the modified monomer emulsion and the mechanism of monomer modification. The results demonstrated that the fluorine monomer was reacted in the resin, and mainly concentrated on the surface of the resin. The addition of octafluoropentyl methacrylate and trimethylolpropane trimethacrylate improved the water resistance of the resin. Compared to unmodified PVDC resin, the contact angle of the modified PVDC resin increased from 89.46° to 109.51°, and the water resistance at room temperature increased from 120 to 500 h. Furthermore, the modified resin exhibited excellent mechanical properties, thermal stability, and storage stability. The polyvinylidene chloride resin was modified with fluorine monomer and cross‐linking monomers to achieve enhanced properties.
Modified polyvinylidene chloride (PVDC) resin was prepared using octafluoropentyl methacrylate and trimethylolpropane trimethacrylate as modifying monomers through seeded emulsion polymerization. The successful incorporation of octafluoropentyl methacrylate into the PVDC resin was confirmed by Fourier transform infrared spectroscopy (FTIR) and X‐ray photoelectron spectroscopy (XPS) analyses. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and XPS were utilized to investigate the element distribution in the modified monomer emulsion and the mechanism of monomer modification. The results demonstrated that the fluorine monomer was reacted in the resin, and mainly concentrated on the surface of the resin. The addition of octafluoropentyl methacrylate and trimethylolpropane trimethacrylate improved the water resistance of the resin. Compared to unmodified PVDC resin, the contact angle of the modified PVDC resin increased from 89.46° to 109.51°, and the water resistance at room temperature increased from 120 to 500 h. Furthermore, the modified resin exhibited excellent mechanical properties, thermal stability, and storage stability.
Modified polyvinylidene chloride (PVDC) resin was prepared using octafluoropentyl methacrylate and trimethylolpropane trimethacrylate as modifying monomers through seeded emulsion polymerization. The successful incorporation of octafluoropentyl methacrylate into the PVDC resin was confirmed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and XPS were utilized to investigate the element distribution in the modified monomer emulsion and the mechanism of monomer modification. The results demonstrated that the fluorine monomer was reacted in the resin, and mainly concentrated on the surface of the resin. The addition of octafluoropentyl methacrylate and trimethylolpropane trimethacrylate improved the water resistance of the resin. Compared to unmodified PVDC resin, the contact angle of the modified PVDC resin increased from 89.46° to 109.51°, and the water resistance at room temperature increased from 120 to 500 h. Furthermore, the modified resin exhibited excellent mechanical properties, thermal stability, and storage stability.Modified polyvinylidene chloride (PVDC) resin was prepared using octafluoropentyl methacrylate and trimethylolpropane trimethacrylate as modifying monomers through seeded emulsion polymerization. The successful incorporation of octafluoropentyl methacrylate into the PVDC resin was confirmed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and XPS were utilized to investigate the element distribution in the modified monomer emulsion and the mechanism of monomer modification. The results demonstrated that the fluorine monomer was reacted in the resin, and mainly concentrated on the surface of the resin. The addition of octafluoropentyl methacrylate and trimethylolpropane trimethacrylate improved the water resistance of the resin. Compared to unmodified PVDC resin, the contact angle of the modified PVDC resin increased from 89.46° to 109.51°, and the water resistance at room temperature increased from 120 to 500 h. Furthermore, the modified resin exhibited excellent mechanical properties, thermal stability, and storage stability.
Author Liu, Yan
Alzahrani, Eman
El‐Bahy, Zeinhom M.
Song, Qianqian
Abo‐Dief, Hala M.
Yang, Jing
Ge, Ruixiang
Gao, Fengjun
Wang, Shouyang
Shao, Qian
Guo, Zhanhu
Zhang, Zhifeng
Author_xml – sequence: 1
  givenname: Fengjun
  orcidid: 0000-0003-0134-0210
  surname: Gao
  fullname: Gao, Fengjun
  organization: Shandong University of Science and Technology
– sequence: 2
  givenname: Zhifeng
  surname: Zhang
  fullname: Zhang, Zhifeng
  organization: Shandong Xinglu Chemical Co., Ltd
– sequence: 3
  givenname: Qianqian
  surname: Song
  fullname: Song, Qianqian
  organization: Shandong University of Science and Technology
– sequence: 4
  givenname: Hala M.
  surname: Abo‐Dief
  fullname: Abo‐Dief, Hala M.
  organization: Taif University
– sequence: 5
  givenname: Eman
  surname: Alzahrani
  fullname: Alzahrani, Eman
  organization: Taif University
– sequence: 6
  givenname: Shouyang
  surname: Wang
  fullname: Wang, Shouyang
  organization: Shandong Xinglu Eco‐Friendly New Materials Co., Ltd
– sequence: 7
  givenname: Yan
  surname: Liu
  fullname: Liu, Yan
  organization: Shandong University of Science and Technology
– sequence: 8
  givenname: Qian
  surname: Shao
  fullname: Shao, Qian
  organization: Shandong University of Science and Technology
– sequence: 9
  givenname: Jing
  surname: Yang
  fullname: Yang, Jing
  email: skd990490@sdust.edu.cn
  organization: Shandong University of Science and Technology
– sequence: 10
  givenname: Zhanhu
  surname: Guo
  fullname: Guo, Zhanhu
  email: zhanhu.guo@northumbria.ac.uk
  organization: Taiyuan University of Science and Technology
– sequence: 11
  givenname: Zeinhom M.
  surname: El‐Bahy
  fullname: El‐Bahy, Zeinhom M.
  organization: Al‐Azhar University
– sequence: 12
  givenname: Ruixiang
  surname: Ge
  fullname: Ge, Ruixiang
  email: rxge@sdust.edu.cn
  organization: Shandong University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39235433$$D View this record in MEDLINE/PubMed
BookMark eNqFkbFOwzAURS0EorSwMqJILCwpz89OnIwoooDUClTBwhKliUNdUhvihiobn8A38iU4agGJhclPvuc-2ff2ya42WhJyTGFIAfB8mdX5EAE5AAfcIQc0QOqzGMWumwHRp4yFPdK3dgEAkYP2Sc_pLOCMHZDHiSlU2Sr95N2Zqn1Tuq1UIbX0knllajd6U2mV9tZqNfdGVePunDgx2ixl7WW68JLaWPv5_jFW-rnbs9XsIdkrs8rKo-05IA-jy_vk2h_fXt0kF2M_Z2GEPuYIbFbGUCBKUWBGRVjMKOYRBox3IgRAORcosrAUnEIsqIhmPMqKLC5zNiBnm70vtXltpF2lS2VzWVWZlqaxKXNBxTTmUejQ0z_owjS1dq9zFAaxAAHMUSdbqpktZZG-1MrF3KbfqTlguAHy7uu1LH8QCmlXS9rVkv7U4gzxxrBWlWz_odPJxTT59X4B9KCPmQ
Cites_doi 10.1016/j.apsusc.2018.02.134
10.1016/j.lwt.2016.04.049
10.1007/s42114-023-00809-y
10.1007/s12221-017-7228-2
10.1007/s40820-023-01226-y
10.1007/s42114-023-00765-7
10.1007/s42114-022-00480-9
10.1016/j.cej.2017.06.145
10.1016/j.tca.2012.01.023
10.1002/app.40192
10.1016/j.compositesa.2021.106596
10.1016/j.porgcoat.2015.02.021
10.1007/s42114-023-00754-w
10.1007/s42114-023-00709-1
10.1080/02652039209374044
10.1007/s42114-022-00551-x
10.1007/s11998-016-9845-x
10.1007/s42114-023-00684-7
10.1007/s42114-023-00731-3
10.1002/pol.20230108
10.1016/j.indcrop.2014.10.046
10.1007/s10118-015-1570-x
10.30919/es1175
10.1007/s42114-021-00377-z
10.1007/s42114-023-00752-y
10.1108/03699421111130450
10.1016/j.porgcoat.2017.01.018
10.3390/molecules171214858
10.3390/polym10040362
10.1016/j.cej.2018.08.088
10.1007/s00003-021-01331-3
10.1007/s42114-023-00683-8
10.1007/s42114-023-00698-1
10.1016/j.reactfunctpolym.2020.104657
10.1016/j.polymer.2024.127120
10.1016/j.compscitech.2022.109445
10.3144/expresspolymlett.2011.14
10.1007/s42114-022-00567-3
10.1007/s42114-023-00741-1
10.1016/j.jhazmat.2007.05.067
10.1007/s42114-022-00554-8
10.1016/j.jfluchem.2010.03.009
10.1080/03602559.2010.543230
10.4012/dmj.2015-149
10.1007/s42114-023-00707-3
10.1007/s42114-023-00776-4
10.1007/s42114-021-00392-0
10.1016/j.ijbiomac.2023.127070
10.1007/s10965-012-9832-6
10.1021/acs.iecr.6b03979
10.1016/S0165-2370(03)00024-X
10.1007/s40820-024-01398-1
10.1016/j.polymer.2020.122196
10.1007/s42114-022-00485-4
10.1007/s42114-023-00748-8
10.1007/s42114-022-00473-8
10.1002/pola.24242
10.1007/s42114-023-00719-z
10.1016/j.apsusc.2012.12.104
10.1007/s42114-023-00664-x
10.1002/vnl.20158
10.1007/s42114-022-00417-2
10.1002/anie.202200705
10.1016/j.reactfunctpolym.2016.04.020
10.1007/s42114-023-00692-7
10.1016/j.polymdegradstab.2011.10.019
10.1021/acs.macromol.5b01014
10.1007/s42114-023-00662-z
10.1016/j.polymer.2013.10.016
10.1016/j.reactfunctpolym.2015.05.004
10.1007/s42114-023-00790-6
10.1080/15421400802713686
10.1007/s42114-023-00668-7
10.1002/pi.5655
10.1016/j.porgcoat.2017.02.011
10.30919/es1137
10.1155/2016/1470965
10.1016/j.ijadhadh.2019.102417
10.1007/s10163-019-00929-y
10.1016/j.jfluchem.2016.10.021
10.1016/j.polymer.2022.124783
10.1007/s42114-023-00795-1
ContentType Journal Article
Copyright 2024 The Author(s). Macromolecular Rapid Communications published by Wiley‐VCH GmbH
2024 The Author(s). Macromolecular Rapid Communications published by Wiley‐VCH GmbH.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Macromolecular Rapid Communications published by Wiley‐VCH GmbH
– notice: 2024 The Author(s). Macromolecular Rapid Communications published by Wiley‐VCH GmbH.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
JG9
JQ2
L7M
7X8
DOI 10.1002/marc.202400402
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3927
EndPage n/a
ExternalDocumentID 39235433
10_1002_marc_202400402
MARC202400402
Genre article
Journal Article
GrantInformation_xml – fundername: Taif University, Saudi Arabia
  funderid: project number (TU‐DSPP‐2024‐28)
– fundername: Taif University, Saudi Arabia
  grantid: project number (TU-DSPP-2024-28)
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
GYXMG
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6T
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWB
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
JQ2
L7M
7X8
ID FETCH-LOGICAL-c3682-2c203bf90d22e7d2a176db12c82534c203050144727a6f741097178b48ada9fc3
IEDL.DBID DR2
ISSN 1022-1336
1521-3927
IngestDate Fri Jul 11 11:43:59 EDT 2025
Fri Jul 25 12:16:46 EDT 2025
Thu May 22 05:05:13 EDT 2025
Tue Jul 01 03:31:52 EDT 2025
Wed Jan 22 17:15:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords polyvinylidene chloride resin
fluorine monomers
water resistance performance
modification
trimethylolpropane trimethacrylate
Language English
License Attribution
2024 The Author(s). Macromolecular Rapid Communications published by Wiley‐VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3682-2c203bf90d22e7d2a176db12c82534c203050144727a6f741097178b48ada9fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0134-0210
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202400402
PMID 39235433
PQID 3125970703
PQPubID 1016394
PageCount 11
ParticipantIDs proquest_miscellaneous_3100919486
proquest_journals_3125970703
pubmed_primary_39235433
crossref_primary_10_1002_marc_202400402
wiley_primary_10_1002_marc_202400402_MARC202400402
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
2024-Nov
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Macromolecular rapid communications.
PublicationTitleAlternate Macromol Rapid Commun
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 95
2024; 303
2023; 6
2018; 442
2012; 19
2016; 72
2016; 2016
2012; 17
2023; 2
2016; 104
2024
2012; 97
2016; 35
2015; 48
1992; 9
2013; 54
2019; 22
2015; 85
2023; 253
2019; 355
2008; 118
2021; 150
2014; 18
2024; 23
2024; 24
2016; 192
2024; 27
2012; 534
2022; 247
2023; 14
2023; 12
2015; 93
2023; 16
2011; 40
2008; 14
2013; 268
2017; 330
2024; 16
2011; 5
2016; 14
2023; 61
2018; 68
2021; 16
2020; 190
2010; 48
2003; 70
2022; 5
2022; 61
2020; 154
2015; 64
2011; 50
2017; 56
2010; 131
2022; 15
2017; 18
2005; 2
2013
2018; 10
2022; 16
2022; 17
2014; 33
2009; 500
2017; 105
2017; 106
2018; 58
2022; 18
2022; 19
2022; 224
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_49_1
e_1_2_8_68_1
Dutta B. (e_1_2_8_7_1) 2022; 16
Vyas S. (e_1_2_8_58_1) 2024; 23
Prabhu N. N. (e_1_2_8_17_1) 2022; 19
e_1_2_8_81_1
Aubakirov Y. (e_1_2_8_3_1) 2024; 24
e_1_2_8_5_1
Wu Y. (e_1_2_8_88_1) 2022; 18
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
Wu B. (e_1_2_8_11_1) 2023; 12
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
Chang R. C. (e_1_2_8_41_1) 2014; 18
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
Çakmakçi E. (e_1_2_8_51_1) 2018; 58
e_1_2_8_38_1
e_1_2_8_57_1
Chowdary O. S. S. S. (e_1_2_8_15_1) 2023; 2
e_1_2_8_70_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_93_1
Wada T. U. T. (e_1_2_8_26_1) 2005; 2
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_84_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
Liu Z. (e_1_2_8_8_1) 2022; 17
Colorado H. A. (e_1_2_8_9_1) 2024; 27
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_79_1
Sivasankarapillai V. S. (e_1_2_8_89_1) 2022; 15
Izah S. C. (e_1_2_8_1_1) 2023; 14
e_1_2_8_92_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_96_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
40396642 - Macromol Rapid Commun. 2025 May 21:e2500356. doi: 10.1002/marc.202500356.
References_xml – volume: 534
  start-page: 21
  year: 2012
  publication-title: Thermochim. Acta
– volume: 6
  start-page: 172
  year: 2023
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 6
  start-page: 82
  year: 2023
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 14
  start-page: 1012
  year: 2023
  publication-title: ES Food Agrofor.
– volume: 23
  start-page: 1002
  year: 2024
  publication-title: ES Mater. Manuf.
– volume: 50
  start-page: 404
  year: 2011
  publication-title: Polym.‐Plastics Technol. Eng.
– volume: 442
  start-page: 71
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 6
  start-page: 227
  year: 2023
  publication-title: Adv. Compos. Hybrid Mater.
– year: 2024
– volume: 5
  start-page: 2721
  year: 2022
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 131
  start-page: 731
  year: 2010
  publication-title: J. Fluorine Chem.
– volume: 330
  start-page: 202
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 118
  start-page: 118
  year: 2008
  publication-title: J. Hazardous Mater.
– volume: 54
  start-page: 6547
  year: 2013
  publication-title: Polymer
– volume: 16
  start-page: 36
  year: 2023
  publication-title: Nano‐Micro Lett.
– volume: 10
  start-page: 362
  year: 2018
  publication-title: Polymers
– volume: 6
  start-page: 199
  year: 2023
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 6
  start-page: 210
  year: 2023
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 5
  start-page: 3045
  year: 2022
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 5
  start-page: 2247
  year: 2022
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 2
  start-page: 1010
  year: 2023
  publication-title: ES Gen.
– volume: 48
  start-page: 4515
  year: 2010
  publication-title: J. Polym.Sci. Part A: Polym. Chem.
– volume: 6
  start-page: 101
  year: 2023
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 72
  start-page: 166
  year: 2016
  publication-title: LWT – Food Sci. Technol.
– volume: 6
  start-page: 169
  year: 2023
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 5
  start-page: 2478
  year: 2022
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 17
  year: 2012
  publication-title: Molecules
– volume: 5
  start-page: 1699
  year: 2022
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 35
  start-page: 585
  year: 2016
  publication-title: Dental Mater. J.
– volume: 104
  start-page: 9
  year: 2016
  publication-title: Reactive Funct. Polym
– volume: 16
  start-page: 74
  year: 2022
  publication-title: ES Energy Environ.
– volume: 56
  start-page: 1341
  year: 2017
  publication-title: Ind. Eng. Chem. Res.
– volume: 12
  start-page: 859
  year: 2023
  publication-title: ES Food Agrof.
– volume: 6
  start-page: 113
  year: 2023
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 19
  start-page: 59
  year: 2022
  publication-title: Eng. Sci.
– volume: 40
  start-page: 181
  year: 2011
  publication-title: Pigment Resin Technol
– volume: 18
  start-page: 1848
  year: 2017
  publication-title: Fibers Polym.
– volume: 16
  start-page: 195
  year: 2024
  publication-title: Nano‐Micro Lett.
– volume: 253
  year: 2023
  publication-title: Int. J. Biolog. Macromol.
– volume: 15
  start-page: 4
  year: 2022
  publication-title: ES Energy Environ.
– volume: 247
  year: 2022
  publication-title: Polymer
– volume: 48
  start-page: 6087
  year: 2015
  publication-title: Macromolecules
– volume: 19
  start-page: 9832
  year: 2012
  publication-title: J. Polym. Res.
– volume: 6
  start-page: 161
  year: 2023
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 5
  start-page: 2116
  year: 2022
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 355
  start-page: 299
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 14
  start-page: 215
  year: 2016
  publication-title: J. Coatings Technol. Res.
– volume: 6
  start-page: 106
  year: 2023
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 268
  start-page: 373
  year: 2013
  publication-title: Appl. Surf. Sci.
– volume: 190
  year: 2020
  publication-title: Polymer
– volume: 224
  year: 2022
  publication-title: Compos. Sci. Technol.
– volume: 6
  start-page: 168
  year: 2023
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 2
  start-page: 577
  year: 2005
  publication-title: JCT research
– volume: 16
  start-page: 247
  year: 2021
  publication-title: J. Consumer Protection Food Safety
– volume: 24
  start-page: 1123
  year: 2024
  publication-title: ES Mater. Manuf.
– volume: 22
  start-page: 187
  year: 2019
  publication-title: J. Mater. Cycles Waste Management
– volume: 6
  start-page: 132
  year: 2023
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 14
  start-page: 92
  year: 2008
  publication-title: J. Vinyl Additive Technol.
– year: 2024
  publication-title: Eng. Sci.
– volume: 27
  start-page: 1024
  year: 2024
  publication-title: Eng. Sci.
– volume: 500
  start-page: 51
  year: 2009
  publication-title: Molecular Crystals Liquid Crystals
– volume: 303
  year: 2024
  publication-title: Polymer
– year: 2013
  publication-title: J. Appl. Polym. Sci.
– volume: 6
  start-page: 212
  year: 2023
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 154
  year: 2020
  publication-title: Reactive and Funct. Polym.
– volume: 6
  start-page: 122
  year: 2023
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 2016
  start-page: 1
  year: 2016
  publication-title: J. Chem.
– volume: 192
  start-page: 41
  year: 2016
  publication-title: J. Fluorine Chem.
– volume: 97
  start-page: 170
  year: 2012
  publication-title: Polym. Degrad. Stab.
– volume: 6
  start-page: 81
  year: 2023
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 150
  year: 2021
  publication-title: Compos. Part A: Appl. Sci. Manuf.
– volume: 70
  start-page: 519
  year: 2003
  publication-title: J. Analy. Appl. Pyrolysis
– volume: 61
  year: 2022
  publication-title: Angew. Chem. Inter. Ed.
– volume: 106
  start-page: 60
  year: 2017
  publication-title: Progress Organic Coatings
– volume: 64
  start-page: 194
  year: 2015
  publication-title: Indus. Crops Products
– volume: 93
  start-page: 1
  year: 2015
  publication-title: Reactive Functional Polym
– volume: 6
  start-page: 207
  year: 2023
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 105
  start-page: 353
  year: 2017
  publication-title: Progress Organic Coatings
– volume: 5
  start-page: 132
  year: 2011
  publication-title: eXPRESS Polym. Lett.
– volume: 6
  start-page: 136
  year: 2023
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 17
  start-page: 73
  year: 2022
  publication-title: ES Mater. Manuf.
– volume: 5
  start-page: 641
  year: 2022
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 33
  start-page: 14
  year: 2014
  publication-title: Chinese J. Polym. Sci.
– volume: 9
  start-page: 19
  year: 1992
  publication-title: Food Additives Contaminants
– volume: 68
  start-page: 826
  year: 2018
  publication-title: Polym. Int.
– volume: 6
  start-page: 184
  year: 2023
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 61
  start-page: 2677
  year: 2023
  publication-title: J. Polym. Sci.
– volume: 85
  start-page: 8
  year: 2015
  publication-title: Progress Organic Coatings
– volume: 95
  year: 2019
  publication-title: Inter. J. Adhesion Adhesives
– volume: 5
  start-page: 899
  year: 2022
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 18
  start-page: 113
  year: 2022
  publication-title: Eng. Sci.
– volume: 18
  start-page: S3
  year: 2014
  publication-title: Mater. Res. Innov.
– volume: 5
  start-page: 1769
  year: 2022
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 6
  start-page: 95
  year: 2023
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 6
  start-page: 142
  year: 2023
  publication-title: Adv. Compos. Hybrid Mater.
– volume: 58
  start-page: 854
  year: 2018
  publication-title: Polym.‐Plastics Technol. Eng.
– ident: e_1_2_8_38_1
  doi: 10.1016/j.apsusc.2018.02.134
– ident: e_1_2_8_34_1
  doi: 10.1016/j.lwt.2016.04.049
– ident: e_1_2_8_80_1
  doi: 10.1007/s42114-023-00809-y
– ident: e_1_2_8_64_1
  doi: 10.1007/s12221-017-7228-2
– volume: 24
  start-page: 1123
  year: 2024
  ident: e_1_2_8_3_1
  publication-title: ES Mater. Manuf.
– ident: e_1_2_8_82_1
  doi: 10.1007/s40820-023-01226-y
– ident: e_1_2_8_13_1
  doi: 10.1007/s42114-023-00765-7
– volume: 16
  start-page: 74
  year: 2022
  ident: e_1_2_8_7_1
  publication-title: ES Energy Environ.
– ident: e_1_2_8_18_1
  doi: 10.1007/s42114-022-00480-9
– ident: e_1_2_8_37_1
  doi: 10.1016/j.cej.2017.06.145
– ident: e_1_2_8_31_1
  doi: 10.1016/j.tca.2012.01.023
– ident: e_1_2_8_44_1
  doi: 10.1002/app.40192
– volume: 14
  start-page: 1012
  year: 2023
  ident: e_1_2_8_1_1
  publication-title: ES Food Agrofor.
– ident: e_1_2_8_39_1
  doi: 10.1016/j.compositesa.2021.106596
– volume: 18
  start-page: S3
  year: 2014
  ident: e_1_2_8_41_1
  publication-title: Mater. Res. Innov.
– ident: e_1_2_8_52_1
  doi: 10.1016/j.porgcoat.2015.02.021
– ident: e_1_2_8_86_1
  doi: 10.1007/s42114-023-00754-w
– ident: e_1_2_8_95_1
  doi: 10.1007/s42114-023-00709-1
– ident: e_1_2_8_35_1
  doi: 10.1080/02652039209374044
– ident: e_1_2_8_10_1
  doi: 10.1007/s42114-022-00551-x
– volume: 2
  start-page: 577
  year: 2005
  ident: e_1_2_8_26_1
  publication-title: JCT research
– ident: e_1_2_8_30_1
  doi: 10.1007/s11998-016-9845-x
– ident: e_1_2_8_84_1
  doi: 10.1007/s42114-023-00684-7
– ident: e_1_2_8_90_1
  doi: 10.1007/s42114-023-00731-3
– volume: 2
  start-page: 1010
  year: 2023
  ident: e_1_2_8_15_1
  publication-title: ES Gen.
– ident: e_1_2_8_50_1
  doi: 10.1002/pol.20230108
– ident: e_1_2_8_25_1
  doi: 10.1016/j.indcrop.2014.10.046
– ident: e_1_2_8_33_1
  doi: 10.1007/s10118-015-1570-x
– ident: e_1_2_8_14_1
  doi: 10.30919/es1175
– ident: e_1_2_8_20_1
  doi: 10.1007/s42114-021-00377-z
– ident: e_1_2_8_83_1
  doi: 10.1007/s42114-023-00752-y
– ident: e_1_2_8_22_1
  doi: 10.1108/03699421111130450
– ident: e_1_2_8_71_1
  doi: 10.1016/j.porgcoat.2017.01.018
– ident: e_1_2_8_62_1
  doi: 10.3390/molecules171214858
– ident: e_1_2_8_73_1
  doi: 10.3390/polym10040362
– ident: e_1_2_8_23_1
  doi: 10.1016/j.cej.2018.08.088
– ident: e_1_2_8_36_1
  doi: 10.1007/s00003-021-01331-3
– ident: e_1_2_8_78_1
  doi: 10.1007/s42114-023-00683-8
– ident: e_1_2_8_55_1
  doi: 10.1007/s42114-023-00698-1
– volume: 15
  start-page: 4
  year: 2022
  ident: e_1_2_8_89_1
  publication-title: ES Energy Environ.
– ident: e_1_2_8_63_1
  doi: 10.1016/j.reactfunctpolym.2020.104657
– ident: e_1_2_8_12_1
  doi: 10.1016/j.polymer.2024.127120
– ident: e_1_2_8_79_1
  doi: 10.1016/j.compscitech.2022.109445
– ident: e_1_2_8_76_1
  doi: 10.3144/expresspolymlett.2011.14
– ident: e_1_2_8_2_1
  doi: 10.1007/s42114-022-00567-3
– ident: e_1_2_8_94_1
  doi: 10.1007/s42114-023-00741-1
– ident: e_1_2_8_40_1
  doi: 10.1016/j.jhazmat.2007.05.067
– ident: e_1_2_8_32_1
  doi: 10.1007/s42114-022-00554-8
– ident: e_1_2_8_46_1
  doi: 10.1016/j.jfluchem.2010.03.009
– ident: e_1_2_8_67_1
  doi: 10.1080/03602559.2010.543230
– ident: e_1_2_8_68_1
  doi: 10.4012/dmj.2015-149
– ident: e_1_2_8_4_1
  doi: 10.1007/s42114-023-00707-3
– ident: e_1_2_8_6_1
  doi: 10.1007/s42114-023-00776-4
– ident: e_1_2_8_29_1
  doi: 10.1007/s42114-021-00392-0
– ident: e_1_2_8_27_1
  doi: 10.1016/j.ijbiomac.2023.127070
– volume: 27
  start-page: 1024
  year: 2024
  ident: e_1_2_8_9_1
  publication-title: Eng. Sci.
– ident: e_1_2_8_48_1
  doi: 10.1007/s10965-012-9832-6
– ident: e_1_2_8_75_1
  doi: 10.1021/acs.iecr.6b03979
– ident: e_1_2_8_72_1
  doi: 10.1016/S0165-2370(03)00024-X
– ident: e_1_2_8_96_1
  doi: 10.1007/s40820-024-01398-1
– volume: 58
  start-page: 854
  year: 2018
  ident: e_1_2_8_51_1
  publication-title: Polym.‐Plastics Technol. Eng.
– ident: e_1_2_8_74_1
  doi: 10.1016/j.polymer.2020.122196
– ident: e_1_2_8_87_1
  doi: 10.1007/s42114-022-00485-4
– ident: e_1_2_8_16_1
  doi: 10.1007/s42114-023-00748-8
– ident: e_1_2_8_28_1
  doi: 10.1007/s42114-022-00473-8
– ident: e_1_2_8_77_1
  doi: 10.1002/pola.24242
– ident: e_1_2_8_19_1
  doi: 10.1007/s42114-023-00719-z
– ident: e_1_2_8_49_1
  doi: 10.1016/j.apsusc.2012.12.104
– volume: 19
  start-page: 59
  year: 2022
  ident: e_1_2_8_17_1
  publication-title: Eng. Sci.
– ident: e_1_2_8_60_1
  doi: 10.1007/s42114-023-00664-x
– ident: e_1_2_8_61_1
  doi: 10.1002/vnl.20158
– ident: e_1_2_8_91_1
  doi: 10.1007/s42114-022-00417-2
– volume: 12
  start-page: 859
  year: 2023
  ident: e_1_2_8_11_1
  publication-title: ES Food Agrof.
– ident: e_1_2_8_92_1
  doi: 10.1002/anie.202200705
– ident: e_1_2_8_70_1
  doi: 10.1016/j.reactfunctpolym.2016.04.020
– ident: e_1_2_8_93_1
  doi: 10.1007/s42114-023-00692-7
– volume: 17
  start-page: 73
  year: 2022
  ident: e_1_2_8_8_1
  publication-title: ES Mater. Manuf.
– ident: e_1_2_8_42_1
  doi: 10.1016/j.polymdegradstab.2011.10.019
– ident: e_1_2_8_47_1
  doi: 10.1021/acs.macromol.5b01014
– ident: e_1_2_8_81_1
  doi: 10.1007/s42114-023-00662-z
– ident: e_1_2_8_43_1
  doi: 10.1016/j.polymer.2013.10.016
– ident: e_1_2_8_66_1
  doi: 10.1016/j.reactfunctpolym.2015.05.004
– ident: e_1_2_8_56_1
  doi: 10.1007/s42114-023-00790-6
– ident: e_1_2_8_54_1
  doi: 10.1080/15421400802713686
– ident: e_1_2_8_85_1
  doi: 10.1007/s42114-023-00668-7
– ident: e_1_2_8_5_1
  doi: 10.1002/pi.5655
– ident: e_1_2_8_24_1
  doi: 10.1016/j.porgcoat.2017.02.011
– ident: e_1_2_8_59_1
  doi: 10.30919/es1137
– volume: 18
  start-page: 113
  year: 2022
  ident: e_1_2_8_88_1
  publication-title: Eng. Sci.
– volume: 23
  start-page: 1002
  year: 2024
  ident: e_1_2_8_58_1
  publication-title: ES Mater. Manuf.
– ident: e_1_2_8_65_1
  doi: 10.1155/2016/1470965
– ident: e_1_2_8_69_1
  doi: 10.1016/j.ijadhadh.2019.102417
– ident: e_1_2_8_21_1
  doi: 10.1007/s10163-019-00929-y
– ident: e_1_2_8_45_1
  doi: 10.1016/j.jfluchem.2016.10.021
– ident: e_1_2_8_53_1
  doi: 10.1016/j.polymer.2022.124783
– ident: e_1_2_8_57_1
  doi: 10.1007/s42114-023-00795-1
– reference: 40396642 - Macromol Rapid Commun. 2025 May 21:e2500356. doi: 10.1002/marc.202500356.
SSID ssj0008402
Score 2.449961
Snippet Modified polyvinylidene chloride (PVDC) resin was prepared using octafluoropentyl methacrylate and trimethylolpropane trimethacrylate as modifying monomers...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2400402
SubjectTerms Contact angle
Cross-Linking Reagents - chemistry
Emulsion polymerization
Emulsions
Energy distribution
Fluorine
Fluorine - chemistry
fluorine monomers
Fourier transforms
Infrared analysis
Infrared spectroscopy
Mechanical properties
Methacrylates - chemistry
modification
Monomers
Photoelectron spectroscopy
Photoelectrons
Polymerization
Polyvinyl Chloride - analogs & derivatives
Polyvinyl Chloride - chemistry
polyvinylidene chloride resin
Polyvinylidene chlorides
Polyvinyls - chemistry
Resins
Resins, Synthetic - chemistry
Room temperature
Scanning electron microscopy
Spectrum analysis
Storage stability
Surface Properties
Thermal stability
Trimethylolpropane trimethacrylate
Water resistance
water resistance performance
X ray photoelectron spectroscopy
Title Modifying Polyvinylidene Chloride Resin with Fluorine Monomer and Cross‐Linking Monomers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202400402
https://www.ncbi.nlm.nih.gov/pubmed/39235433
https://www.proquest.com/docview/3125970703
https://www.proquest.com/docview/3100919486
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60F734ftQXEQRP1W0Ss9ljWSwiVqQoiJcl2aRYLFvpQ9CTP8Hf6C8xs-muVg-C3jabDZtk8vgmmfkG4EAyGwjDeU3JMPUKipaiU-NGK8OY5jwn0m5dirMbfn57cvvFi9_zQ5QHbjgz8vUaJ7jSw-NP0lCkenD6HdpA8pxNEg22EBW1P_mjnPbirzudxuWUMVGwNgb0eLr49K70A2pOI9d862kugioq7S1OHo7GI32Uvnzjc_xPq5ZgYYJLScMPpGWYsdkKzMVFOLhVuGv1TTd3iiJX_d7zUzd77mFAUkvie7TiM5a07bCbETzZJc3eGC37LGmh04QdEJUZEmPb31_fLny8hiJvuAY3zdPr-Kw2CcxQS5lwiJymNGC6EwWGUhsaquqhMLpOU6duMo6ZAV5XcoeNlOg4zIJEVaHUXCqjok7K1qGS9TO7CaRuhAkjq7gVEU-FiiRPXUJKYdyLSFfhsBBM8uj5NxLPtEwT7Kuk7Ksq7BRySybzcJgwh9-iEJe1KuyX2a7n8FpEZbY_xm8czqxHXIoqbHh5l79y6JGdcOZK01xqv9QhaTXacZna-kuhbZjHZ-_uuAOV0WBsdx3uGek9mKX8ai8f4R_v2Pms
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTuMwEB4hOMAFWH7LsmAkJE6F1DaOc0TZrQo0CFUgIS6RHbuiokoRbZHY0z7CPiNPgiduggoHJDjajhXb459v7JlvAPYls4EwnNeVDDOvoGgpunVutDKMac4LIu3kQrSu-dnNcWlNiL4wnh-iunDDlVHs17jA8UL66I01FLkenIKHRpAc6STnMKw30uf_7rwxSDn9xT94Op3LqWOi5G0M6NF0_elz6QPYnMauxeHTXAJdNtvbnNwfjkf6MPv7jtHxW_1ahsUJNCUnfi79gBmbr8B8XEaEW4XbZGB6hV8UuRz0n596-XMfY5JaEt-hIZ-xpGOHvZzg5S5p9sdo3GdJgn4T9pGo3JAYO__y73_bh2woy4ZrcN38cxW36pPYDPWMCQfKaUYDprtRYCi1oaGqEQqjGzRzGifjWBjgiyV38EiJroMtyFUVSs2lMirqZmwdZvNBbjeBNIwwYWQVtyLimVCR5JlLSCmMy4h0DQ5KyaQPnoIj9WTLNMWxSquxqsF2Kbh0shSHKXMQLgpxZ6vBXlXsRg5fRlRuB2P8xkHNRsSlqMGGF3j1Kwcg2TFnrjYtxPZJG9LkpBNXqa2vVNqF-dZV0k7bpxfnP2EB87334zbMjh7H9peDQSO9U0z0V7GR_PE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SQb2Ib6tVIwieSrdJms0ey2qp2pZSLBQvS3aTxULZlj6E3vwJ_kZ_iZlNd7V4EDzmxYbJJvkmM_MNQjeCaocrxspSuJFVUELB4zJToVSUhoylRNrtDm_22eOgNvgRxW_5IfIHN9gZ6XkNG3yi4so3aShQPRj9DnwgGbBJboLFD5y6COvmZ7FRX6y906hcRhvjGW2jQyrr49evpV9Ycx26pndPYw_trkAjrttV3kcbOjlA236Wq-0QvbTHaphGLOHueLR8GybLEWQL1dh_BRc7pXFPz4YJhmdX3BgtwO1O4zZENOgplonCPszr8_2jZZMpZG2zI9Rv3D_7zfIqa0I5otzAZRIRh4ax5yhCtKuIrLpchVUSGV2QMmh0wJbIDHCRPDaAAlikXBEyIZX04ogeo0IyTvQpwlXFletpyTT3WMSlJ1hkCkJwZSq8sIhuM6EFE0uOEVgaZBKAeINcvEVUymQarDbJLKAGXHkunDlFdJ03G8mBzUImeryAPgYEVj0meBGd2LXIP2WgHa0xakaTdHH-mEPQrvf8vHT2n0FXaKt71whaD52nc7QD1TYssYQK8-lCXxh8Mg8v01_wC-Y-2kk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modifying+Polyvinylidene+Chloride+Resin+with+Fluorine+Monomer+and+Cross-Linking+Monomers&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Gao%2C+Fengjun&rft.au=Zhang%2C+Zhifeng&rft.au=Song%2C+Qianqian&rft.au=Abo-Dief%2C+Hala+M&rft.date=2024-11-01&rft.issn=1521-3927&rft.eissn=1521-3927&rft.volume=45&rft.issue=21&rft.spage=e2400402&rft_id=info:doi/10.1002%2Fmarc.202400402&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon