Modifying Polyvinylidene Chloride Resin with Fluorine Monomer and Cross‐Linking Monomers
Modified polyvinylidene chloride (PVDC) resin was prepared using octafluoropentyl methacrylate and trimethylolpropane trimethacrylate as modifying monomers through seeded emulsion polymerization. The successful incorporation of octafluoropentyl methacrylate into the PVDC resin was confirmed by Fouri...
Saved in:
Published in | Macromolecular rapid communications. Vol. 45; no. 21; pp. e2400402 - n/a |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Modified polyvinylidene chloride (PVDC) resin was prepared using octafluoropentyl methacrylate and trimethylolpropane trimethacrylate as modifying monomers through seeded emulsion polymerization. The successful incorporation of octafluoropentyl methacrylate into the PVDC resin was confirmed by Fourier transform infrared spectroscopy (FTIR) and X‐ray photoelectron spectroscopy (XPS) analyses. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and XPS were utilized to investigate the element distribution in the modified monomer emulsion and the mechanism of monomer modification. The results demonstrated that the fluorine monomer was reacted in the resin, and mainly concentrated on the surface of the resin. The addition of octafluoropentyl methacrylate and trimethylolpropane trimethacrylate improved the water resistance of the resin. Compared to unmodified PVDC resin, the contact angle of the modified PVDC resin increased from 89.46° to 109.51°, and the water resistance at room temperature increased from 120 to 500 h. Furthermore, the modified resin exhibited excellent mechanical properties, thermal stability, and storage stability.
The polyvinylidene chloride resin was modified with fluorine monomer and cross‐linking monomers to achieve enhanced properties. |
---|---|
AbstractList | Modified polyvinylidene chloride (PVDC) resin was prepared using octafluoropentyl methacrylate and trimethylolpropane trimethacrylate as modifying monomers through seeded emulsion polymerization. The successful incorporation of octafluoropentyl methacrylate into the PVDC resin was confirmed by Fourier transform infrared spectroscopy (FTIR) and X‐ray photoelectron spectroscopy (XPS) analyses. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and XPS were utilized to investigate the element distribution in the modified monomer emulsion and the mechanism of monomer modification. The results demonstrated that the fluorine monomer was reacted in the resin, and mainly concentrated on the surface of the resin. The addition of octafluoropentyl methacrylate and trimethylolpropane trimethacrylate improved the water resistance of the resin. Compared to unmodified PVDC resin, the contact angle of the modified PVDC resin increased from 89.46° to 109.51°, and the water resistance at room temperature increased from 120 to 500 h. Furthermore, the modified resin exhibited excellent mechanical properties, thermal stability, and storage stability.
The polyvinylidene chloride resin was modified with fluorine monomer and cross‐linking monomers to achieve enhanced properties. Modified polyvinylidene chloride (PVDC) resin was prepared using octafluoropentyl methacrylate and trimethylolpropane trimethacrylate as modifying monomers through seeded emulsion polymerization. The successful incorporation of octafluoropentyl methacrylate into the PVDC resin was confirmed by Fourier transform infrared spectroscopy (FTIR) and X‐ray photoelectron spectroscopy (XPS) analyses. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and XPS were utilized to investigate the element distribution in the modified monomer emulsion and the mechanism of monomer modification. The results demonstrated that the fluorine monomer was reacted in the resin, and mainly concentrated on the surface of the resin. The addition of octafluoropentyl methacrylate and trimethylolpropane trimethacrylate improved the water resistance of the resin. Compared to unmodified PVDC resin, the contact angle of the modified PVDC resin increased from 89.46° to 109.51°, and the water resistance at room temperature increased from 120 to 500 h. Furthermore, the modified resin exhibited excellent mechanical properties, thermal stability, and storage stability. Modified polyvinylidene chloride (PVDC) resin was prepared using octafluoropentyl methacrylate and trimethylolpropane trimethacrylate as modifying monomers through seeded emulsion polymerization. The successful incorporation of octafluoropentyl methacrylate into the PVDC resin was confirmed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and XPS were utilized to investigate the element distribution in the modified monomer emulsion and the mechanism of monomer modification. The results demonstrated that the fluorine monomer was reacted in the resin, and mainly concentrated on the surface of the resin. The addition of octafluoropentyl methacrylate and trimethylolpropane trimethacrylate improved the water resistance of the resin. Compared to unmodified PVDC resin, the contact angle of the modified PVDC resin increased from 89.46° to 109.51°, and the water resistance at room temperature increased from 120 to 500 h. Furthermore, the modified resin exhibited excellent mechanical properties, thermal stability, and storage stability.Modified polyvinylidene chloride (PVDC) resin was prepared using octafluoropentyl methacrylate and trimethylolpropane trimethacrylate as modifying monomers through seeded emulsion polymerization. The successful incorporation of octafluoropentyl methacrylate into the PVDC resin was confirmed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and XPS were utilized to investigate the element distribution in the modified monomer emulsion and the mechanism of monomer modification. The results demonstrated that the fluorine monomer was reacted in the resin, and mainly concentrated on the surface of the resin. The addition of octafluoropentyl methacrylate and trimethylolpropane trimethacrylate improved the water resistance of the resin. Compared to unmodified PVDC resin, the contact angle of the modified PVDC resin increased from 89.46° to 109.51°, and the water resistance at room temperature increased from 120 to 500 h. Furthermore, the modified resin exhibited excellent mechanical properties, thermal stability, and storage stability. |
Author | Liu, Yan Alzahrani, Eman El‐Bahy, Zeinhom M. Song, Qianqian Abo‐Dief, Hala M. Yang, Jing Ge, Ruixiang Gao, Fengjun Wang, Shouyang Shao, Qian Guo, Zhanhu Zhang, Zhifeng |
Author_xml | – sequence: 1 givenname: Fengjun orcidid: 0000-0003-0134-0210 surname: Gao fullname: Gao, Fengjun organization: Shandong University of Science and Technology – sequence: 2 givenname: Zhifeng surname: Zhang fullname: Zhang, Zhifeng organization: Shandong Xinglu Chemical Co., Ltd – sequence: 3 givenname: Qianqian surname: Song fullname: Song, Qianqian organization: Shandong University of Science and Technology – sequence: 4 givenname: Hala M. surname: Abo‐Dief fullname: Abo‐Dief, Hala M. organization: Taif University – sequence: 5 givenname: Eman surname: Alzahrani fullname: Alzahrani, Eman organization: Taif University – sequence: 6 givenname: Shouyang surname: Wang fullname: Wang, Shouyang organization: Shandong Xinglu Eco‐Friendly New Materials Co., Ltd – sequence: 7 givenname: Yan surname: Liu fullname: Liu, Yan organization: Shandong University of Science and Technology – sequence: 8 givenname: Qian surname: Shao fullname: Shao, Qian organization: Shandong University of Science and Technology – sequence: 9 givenname: Jing surname: Yang fullname: Yang, Jing email: skd990490@sdust.edu.cn organization: Shandong University of Science and Technology – sequence: 10 givenname: Zhanhu surname: Guo fullname: Guo, Zhanhu email: zhanhu.guo@northumbria.ac.uk organization: Taiyuan University of Science and Technology – sequence: 11 givenname: Zeinhom M. surname: El‐Bahy fullname: El‐Bahy, Zeinhom M. organization: Al‐Azhar University – sequence: 12 givenname: Ruixiang surname: Ge fullname: Ge, Ruixiang email: rxge@sdust.edu.cn organization: Shandong University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39235433$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkbFOwzAURS0EorSwMqJILCwpz89OnIwoooDUClTBwhKliUNdUhvihiobn8A38iU4agGJhclPvuc-2ff2ya42WhJyTGFIAfB8mdX5EAE5AAfcIQc0QOqzGMWumwHRp4yFPdK3dgEAkYP2Sc_pLOCMHZDHiSlU2Sr95N2Zqn1Tuq1UIbX0knllajd6U2mV9tZqNfdGVePunDgx2ixl7WW68JLaWPv5_jFW-rnbs9XsIdkrs8rKo-05IA-jy_vk2h_fXt0kF2M_Z2GEPuYIbFbGUCBKUWBGRVjMKOYRBox3IgRAORcosrAUnEIsqIhmPMqKLC5zNiBnm70vtXltpF2lS2VzWVWZlqaxKXNBxTTmUejQ0z_owjS1dq9zFAaxAAHMUSdbqpktZZG-1MrF3KbfqTlguAHy7uu1LH8QCmlXS9rVkv7U4gzxxrBWlWz_odPJxTT59X4B9KCPmQ |
Cites_doi | 10.1016/j.apsusc.2018.02.134 10.1016/j.lwt.2016.04.049 10.1007/s42114-023-00809-y 10.1007/s12221-017-7228-2 10.1007/s40820-023-01226-y 10.1007/s42114-023-00765-7 10.1007/s42114-022-00480-9 10.1016/j.cej.2017.06.145 10.1016/j.tca.2012.01.023 10.1002/app.40192 10.1016/j.compositesa.2021.106596 10.1016/j.porgcoat.2015.02.021 10.1007/s42114-023-00754-w 10.1007/s42114-023-00709-1 10.1080/02652039209374044 10.1007/s42114-022-00551-x 10.1007/s11998-016-9845-x 10.1007/s42114-023-00684-7 10.1007/s42114-023-00731-3 10.1002/pol.20230108 10.1016/j.indcrop.2014.10.046 10.1007/s10118-015-1570-x 10.30919/es1175 10.1007/s42114-021-00377-z 10.1007/s42114-023-00752-y 10.1108/03699421111130450 10.1016/j.porgcoat.2017.01.018 10.3390/molecules171214858 10.3390/polym10040362 10.1016/j.cej.2018.08.088 10.1007/s00003-021-01331-3 10.1007/s42114-023-00683-8 10.1007/s42114-023-00698-1 10.1016/j.reactfunctpolym.2020.104657 10.1016/j.polymer.2024.127120 10.1016/j.compscitech.2022.109445 10.3144/expresspolymlett.2011.14 10.1007/s42114-022-00567-3 10.1007/s42114-023-00741-1 10.1016/j.jhazmat.2007.05.067 10.1007/s42114-022-00554-8 10.1016/j.jfluchem.2010.03.009 10.1080/03602559.2010.543230 10.4012/dmj.2015-149 10.1007/s42114-023-00707-3 10.1007/s42114-023-00776-4 10.1007/s42114-021-00392-0 10.1016/j.ijbiomac.2023.127070 10.1007/s10965-012-9832-6 10.1021/acs.iecr.6b03979 10.1016/S0165-2370(03)00024-X 10.1007/s40820-024-01398-1 10.1016/j.polymer.2020.122196 10.1007/s42114-022-00485-4 10.1007/s42114-023-00748-8 10.1007/s42114-022-00473-8 10.1002/pola.24242 10.1007/s42114-023-00719-z 10.1016/j.apsusc.2012.12.104 10.1007/s42114-023-00664-x 10.1002/vnl.20158 10.1007/s42114-022-00417-2 10.1002/anie.202200705 10.1016/j.reactfunctpolym.2016.04.020 10.1007/s42114-023-00692-7 10.1016/j.polymdegradstab.2011.10.019 10.1021/acs.macromol.5b01014 10.1007/s42114-023-00662-z 10.1016/j.polymer.2013.10.016 10.1016/j.reactfunctpolym.2015.05.004 10.1007/s42114-023-00790-6 10.1080/15421400802713686 10.1007/s42114-023-00668-7 10.1002/pi.5655 10.1016/j.porgcoat.2017.02.011 10.30919/es1137 10.1155/2016/1470965 10.1016/j.ijadhadh.2019.102417 10.1007/s10163-019-00929-y 10.1016/j.jfluchem.2016.10.021 10.1016/j.polymer.2022.124783 10.1007/s42114-023-00795-1 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Macromolecular Rapid Communications published by Wiley‐VCH GmbH 2024 The Author(s). Macromolecular Rapid Communications published by Wiley‐VCH GmbH. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). Macromolecular Rapid Communications published by Wiley‐VCH GmbH – notice: 2024 The Author(s). Macromolecular Rapid Communications published by Wiley‐VCH GmbH. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD JG9 JQ2 L7M 7X8 |
DOI | 10.1002/marc.202400402 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace ProQuest Computer Science Collection MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3927 |
EndPage | n/a |
ExternalDocumentID | 39235433 10_1002_marc_202400402 MARC202400402 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Taif University, Saudi Arabia funderid: project number (TU‐DSPP‐2024‐28) – fundername: Taif University, Saudi Arabia grantid: project number (TU-DSPP-2024-28) |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA GYXMG H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6T MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RWB RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 JQ2 L7M 7X8 |
ID | FETCH-LOGICAL-c3682-2c203bf90d22e7d2a176db12c82534c203050144727a6f741097178b48ada9fc3 |
IEDL.DBID | DR2 |
ISSN | 1022-1336 1521-3927 |
IngestDate | Fri Jul 11 11:43:59 EDT 2025 Fri Jul 25 12:16:46 EDT 2025 Thu May 22 05:05:13 EDT 2025 Tue Jul 01 03:31:52 EDT 2025 Wed Jan 22 17:15:15 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | polyvinylidene chloride resin fluorine monomers water resistance performance modification trimethylolpropane trimethacrylate |
Language | English |
License | Attribution 2024 The Author(s). Macromolecular Rapid Communications published by Wiley‐VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3682-2c203bf90d22e7d2a176db12c82534c203050144727a6f741097178b48ada9fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0134-0210 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202400402 |
PMID | 39235433 |
PQID | 3125970703 |
PQPubID | 1016394 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_3100919486 proquest_journals_3125970703 pubmed_primary_39235433 crossref_primary_10_1002_marc_202400402 wiley_primary_10_1002_marc_202400402_MARC202400402 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 2024-Nov 20241101 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Macromolecular rapid communications. |
PublicationTitleAlternate | Macromol Rapid Commun |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 95 2024; 303 2023; 6 2018; 442 2012; 19 2016; 72 2016; 2016 2012; 17 2023; 2 2016; 104 2024 2012; 97 2016; 35 2015; 48 1992; 9 2013; 54 2019; 22 2015; 85 2023; 253 2019; 355 2008; 118 2021; 150 2014; 18 2024; 23 2024; 24 2016; 192 2024; 27 2012; 534 2022; 247 2023; 14 2023; 12 2015; 93 2023; 16 2011; 40 2008; 14 2013; 268 2017; 330 2024; 16 2011; 5 2016; 14 2023; 61 2018; 68 2021; 16 2020; 190 2010; 48 2003; 70 2022; 5 2022; 61 2020; 154 2015; 64 2011; 50 2017; 56 2010; 131 2022; 15 2017; 18 2005; 2 2013 2018; 10 2022; 16 2022; 17 2014; 33 2009; 500 2017; 105 2017; 106 2018; 58 2022; 18 2022; 19 2022; 224 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_49_1 e_1_2_8_68_1 Dutta B. (e_1_2_8_7_1) 2022; 16 Vyas S. (e_1_2_8_58_1) 2024; 23 Prabhu N. N. (e_1_2_8_17_1) 2022; 19 e_1_2_8_81_1 Aubakirov Y. (e_1_2_8_3_1) 2024; 24 e_1_2_8_5_1 Wu Y. (e_1_2_8_88_1) 2022; 18 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 Wu B. (e_1_2_8_11_1) 2023; 12 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_19_1 Chang R. C. (e_1_2_8_41_1) 2014; 18 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 Çakmakçi E. (e_1_2_8_51_1) 2018; 58 e_1_2_8_38_1 e_1_2_8_57_1 Chowdary O. S. S. S. (e_1_2_8_15_1) 2023; 2 e_1_2_8_70_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_93_1 Wada T. U. T. (e_1_2_8_26_1) 2005; 2 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_84_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 Liu Z. (e_1_2_8_8_1) 2022; 17 Colorado H. A. (e_1_2_8_9_1) 2024; 27 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_79_1 Sivasankarapillai V. S. (e_1_2_8_89_1) 2022; 15 Izah S. C. (e_1_2_8_1_1) 2023; 14 e_1_2_8_92_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_96_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 40396642 - Macromol Rapid Commun. 2025 May 21:e2500356. doi: 10.1002/marc.202500356. |
References_xml | – volume: 534 start-page: 21 year: 2012 publication-title: Thermochim. Acta – volume: 6 start-page: 172 year: 2023 publication-title: Adv. Compos. Hybrid Mater. – volume: 6 start-page: 82 year: 2023 publication-title: Adv. Compos. Hybrid Mater. – volume: 14 start-page: 1012 year: 2023 publication-title: ES Food Agrofor. – volume: 23 start-page: 1002 year: 2024 publication-title: ES Mater. Manuf. – volume: 50 start-page: 404 year: 2011 publication-title: Polym.‐Plastics Technol. Eng. – volume: 442 start-page: 71 year: 2018 publication-title: Appl. Surf. Sci. – volume: 6 start-page: 227 year: 2023 publication-title: Adv. Compos. Hybrid Mater. – year: 2024 – volume: 5 start-page: 2721 year: 2022 publication-title: Adv. Compos. Hybrid Mater. – volume: 131 start-page: 731 year: 2010 publication-title: J. Fluorine Chem. – volume: 330 start-page: 202 year: 2017 publication-title: Chem. Eng. J. – volume: 118 start-page: 118 year: 2008 publication-title: J. Hazardous Mater. – volume: 54 start-page: 6547 year: 2013 publication-title: Polymer – volume: 16 start-page: 36 year: 2023 publication-title: Nano‐Micro Lett. – volume: 10 start-page: 362 year: 2018 publication-title: Polymers – volume: 6 start-page: 199 year: 2023 publication-title: Adv. Compos. Hybrid Mater. – volume: 6 start-page: 210 year: 2023 publication-title: Adv. Compos. Hybrid Mater. – volume: 5 start-page: 3045 year: 2022 publication-title: Adv. Compos. Hybrid Mater. – volume: 5 start-page: 2247 year: 2022 publication-title: Adv. Compos. Hybrid Mater. – volume: 2 start-page: 1010 year: 2023 publication-title: ES Gen. – volume: 48 start-page: 4515 year: 2010 publication-title: J. Polym.Sci. Part A: Polym. Chem. – volume: 6 start-page: 101 year: 2023 publication-title: Adv. Compos. Hybrid Mater. – volume: 72 start-page: 166 year: 2016 publication-title: LWT – Food Sci. Technol. – volume: 6 start-page: 169 year: 2023 publication-title: Adv. Compos. Hybrid Mater. – volume: 5 start-page: 2478 year: 2022 publication-title: Adv. Compos. Hybrid Mater. – volume: 17 year: 2012 publication-title: Molecules – volume: 5 start-page: 1699 year: 2022 publication-title: Adv. Compos. Hybrid Mater. – volume: 35 start-page: 585 year: 2016 publication-title: Dental Mater. J. – volume: 104 start-page: 9 year: 2016 publication-title: Reactive Funct. Polym – volume: 16 start-page: 74 year: 2022 publication-title: ES Energy Environ. – volume: 56 start-page: 1341 year: 2017 publication-title: Ind. Eng. Chem. Res. – volume: 12 start-page: 859 year: 2023 publication-title: ES Food Agrof. – volume: 6 start-page: 113 year: 2023 publication-title: Adv. Compos. Hybrid Mater. – volume: 19 start-page: 59 year: 2022 publication-title: Eng. Sci. – volume: 40 start-page: 181 year: 2011 publication-title: Pigment Resin Technol – volume: 18 start-page: 1848 year: 2017 publication-title: Fibers Polym. – volume: 16 start-page: 195 year: 2024 publication-title: Nano‐Micro Lett. – volume: 253 year: 2023 publication-title: Int. J. Biolog. Macromol. – volume: 15 start-page: 4 year: 2022 publication-title: ES Energy Environ. – volume: 247 year: 2022 publication-title: Polymer – volume: 48 start-page: 6087 year: 2015 publication-title: Macromolecules – volume: 19 start-page: 9832 year: 2012 publication-title: J. Polym. Res. – volume: 6 start-page: 161 year: 2023 publication-title: Adv. Compos. Hybrid Mater. – volume: 5 start-page: 2116 year: 2022 publication-title: Adv. Compos. Hybrid Mater. – volume: 355 start-page: 299 year: 2019 publication-title: Chem. Eng. J. – volume: 14 start-page: 215 year: 2016 publication-title: J. Coatings Technol. Res. – volume: 6 start-page: 106 year: 2023 publication-title: Adv. Compos. Hybrid Mater. – volume: 268 start-page: 373 year: 2013 publication-title: Appl. Surf. Sci. – volume: 190 year: 2020 publication-title: Polymer – volume: 224 year: 2022 publication-title: Compos. Sci. Technol. – volume: 6 start-page: 168 year: 2023 publication-title: Adv. Compos. Hybrid Mater. – volume: 2 start-page: 577 year: 2005 publication-title: JCT research – volume: 16 start-page: 247 year: 2021 publication-title: J. Consumer Protection Food Safety – volume: 24 start-page: 1123 year: 2024 publication-title: ES Mater. Manuf. – volume: 22 start-page: 187 year: 2019 publication-title: J. Mater. Cycles Waste Management – volume: 6 start-page: 132 year: 2023 publication-title: Adv. Compos. Hybrid Mater. – volume: 14 start-page: 92 year: 2008 publication-title: J. Vinyl Additive Technol. – year: 2024 publication-title: Eng. Sci. – volume: 27 start-page: 1024 year: 2024 publication-title: Eng. Sci. – volume: 500 start-page: 51 year: 2009 publication-title: Molecular Crystals Liquid Crystals – volume: 303 year: 2024 publication-title: Polymer – year: 2013 publication-title: J. Appl. Polym. Sci. – volume: 6 start-page: 212 year: 2023 publication-title: Adv. Compos. Hybrid Mater. – volume: 154 year: 2020 publication-title: Reactive and Funct. Polym. – volume: 6 start-page: 122 year: 2023 publication-title: Adv. Compos. Hybrid Mater. – volume: 2016 start-page: 1 year: 2016 publication-title: J. Chem. – volume: 192 start-page: 41 year: 2016 publication-title: J. Fluorine Chem. – volume: 97 start-page: 170 year: 2012 publication-title: Polym. Degrad. Stab. – volume: 6 start-page: 81 year: 2023 publication-title: Adv. Compos. Hybrid Mater. – volume: 150 year: 2021 publication-title: Compos. Part A: Appl. Sci. Manuf. – volume: 70 start-page: 519 year: 2003 publication-title: J. Analy. Appl. Pyrolysis – volume: 61 year: 2022 publication-title: Angew. Chem. Inter. Ed. – volume: 106 start-page: 60 year: 2017 publication-title: Progress Organic Coatings – volume: 64 start-page: 194 year: 2015 publication-title: Indus. Crops Products – volume: 93 start-page: 1 year: 2015 publication-title: Reactive Functional Polym – volume: 6 start-page: 207 year: 2023 publication-title: Adv. Compos. Hybrid Mater. – volume: 105 start-page: 353 year: 2017 publication-title: Progress Organic Coatings – volume: 5 start-page: 132 year: 2011 publication-title: eXPRESS Polym. Lett. – volume: 6 start-page: 136 year: 2023 publication-title: Adv. Compos. Hybrid Mater. – volume: 17 start-page: 73 year: 2022 publication-title: ES Mater. Manuf. – volume: 5 start-page: 641 year: 2022 publication-title: Adv. Compos. Hybrid Mater. – volume: 33 start-page: 14 year: 2014 publication-title: Chinese J. Polym. Sci. – volume: 9 start-page: 19 year: 1992 publication-title: Food Additives Contaminants – volume: 68 start-page: 826 year: 2018 publication-title: Polym. Int. – volume: 6 start-page: 184 year: 2023 publication-title: Adv. Compos. Hybrid Mater. – volume: 61 start-page: 2677 year: 2023 publication-title: J. Polym. Sci. – volume: 85 start-page: 8 year: 2015 publication-title: Progress Organic Coatings – volume: 95 year: 2019 publication-title: Inter. J. Adhesion Adhesives – volume: 5 start-page: 899 year: 2022 publication-title: Adv. Compos. Hybrid Mater. – volume: 18 start-page: 113 year: 2022 publication-title: Eng. Sci. – volume: 18 start-page: S3 year: 2014 publication-title: Mater. Res. Innov. – volume: 5 start-page: 1769 year: 2022 publication-title: Adv. Compos. Hybrid Mater. – volume: 6 start-page: 95 year: 2023 publication-title: Adv. Compos. Hybrid Mater. – volume: 6 start-page: 142 year: 2023 publication-title: Adv. Compos. Hybrid Mater. – volume: 58 start-page: 854 year: 2018 publication-title: Polym.‐Plastics Technol. Eng. – ident: e_1_2_8_38_1 doi: 10.1016/j.apsusc.2018.02.134 – ident: e_1_2_8_34_1 doi: 10.1016/j.lwt.2016.04.049 – ident: e_1_2_8_80_1 doi: 10.1007/s42114-023-00809-y – ident: e_1_2_8_64_1 doi: 10.1007/s12221-017-7228-2 – volume: 24 start-page: 1123 year: 2024 ident: e_1_2_8_3_1 publication-title: ES Mater. Manuf. – ident: e_1_2_8_82_1 doi: 10.1007/s40820-023-01226-y – ident: e_1_2_8_13_1 doi: 10.1007/s42114-023-00765-7 – volume: 16 start-page: 74 year: 2022 ident: e_1_2_8_7_1 publication-title: ES Energy Environ. – ident: e_1_2_8_18_1 doi: 10.1007/s42114-022-00480-9 – ident: e_1_2_8_37_1 doi: 10.1016/j.cej.2017.06.145 – ident: e_1_2_8_31_1 doi: 10.1016/j.tca.2012.01.023 – ident: e_1_2_8_44_1 doi: 10.1002/app.40192 – volume: 14 start-page: 1012 year: 2023 ident: e_1_2_8_1_1 publication-title: ES Food Agrofor. – ident: e_1_2_8_39_1 doi: 10.1016/j.compositesa.2021.106596 – volume: 18 start-page: S3 year: 2014 ident: e_1_2_8_41_1 publication-title: Mater. Res. Innov. – ident: e_1_2_8_52_1 doi: 10.1016/j.porgcoat.2015.02.021 – ident: e_1_2_8_86_1 doi: 10.1007/s42114-023-00754-w – ident: e_1_2_8_95_1 doi: 10.1007/s42114-023-00709-1 – ident: e_1_2_8_35_1 doi: 10.1080/02652039209374044 – ident: e_1_2_8_10_1 doi: 10.1007/s42114-022-00551-x – volume: 2 start-page: 577 year: 2005 ident: e_1_2_8_26_1 publication-title: JCT research – ident: e_1_2_8_30_1 doi: 10.1007/s11998-016-9845-x – ident: e_1_2_8_84_1 doi: 10.1007/s42114-023-00684-7 – ident: e_1_2_8_90_1 doi: 10.1007/s42114-023-00731-3 – volume: 2 start-page: 1010 year: 2023 ident: e_1_2_8_15_1 publication-title: ES Gen. – ident: e_1_2_8_50_1 doi: 10.1002/pol.20230108 – ident: e_1_2_8_25_1 doi: 10.1016/j.indcrop.2014.10.046 – ident: e_1_2_8_33_1 doi: 10.1007/s10118-015-1570-x – ident: e_1_2_8_14_1 doi: 10.30919/es1175 – ident: e_1_2_8_20_1 doi: 10.1007/s42114-021-00377-z – ident: e_1_2_8_83_1 doi: 10.1007/s42114-023-00752-y – ident: e_1_2_8_22_1 doi: 10.1108/03699421111130450 – ident: e_1_2_8_71_1 doi: 10.1016/j.porgcoat.2017.01.018 – ident: e_1_2_8_62_1 doi: 10.3390/molecules171214858 – ident: e_1_2_8_73_1 doi: 10.3390/polym10040362 – ident: e_1_2_8_23_1 doi: 10.1016/j.cej.2018.08.088 – ident: e_1_2_8_36_1 doi: 10.1007/s00003-021-01331-3 – ident: e_1_2_8_78_1 doi: 10.1007/s42114-023-00683-8 – ident: e_1_2_8_55_1 doi: 10.1007/s42114-023-00698-1 – volume: 15 start-page: 4 year: 2022 ident: e_1_2_8_89_1 publication-title: ES Energy Environ. – ident: e_1_2_8_63_1 doi: 10.1016/j.reactfunctpolym.2020.104657 – ident: e_1_2_8_12_1 doi: 10.1016/j.polymer.2024.127120 – ident: e_1_2_8_79_1 doi: 10.1016/j.compscitech.2022.109445 – ident: e_1_2_8_76_1 doi: 10.3144/expresspolymlett.2011.14 – ident: e_1_2_8_2_1 doi: 10.1007/s42114-022-00567-3 – ident: e_1_2_8_94_1 doi: 10.1007/s42114-023-00741-1 – ident: e_1_2_8_40_1 doi: 10.1016/j.jhazmat.2007.05.067 – ident: e_1_2_8_32_1 doi: 10.1007/s42114-022-00554-8 – ident: e_1_2_8_46_1 doi: 10.1016/j.jfluchem.2010.03.009 – ident: e_1_2_8_67_1 doi: 10.1080/03602559.2010.543230 – ident: e_1_2_8_68_1 doi: 10.4012/dmj.2015-149 – ident: e_1_2_8_4_1 doi: 10.1007/s42114-023-00707-3 – ident: e_1_2_8_6_1 doi: 10.1007/s42114-023-00776-4 – ident: e_1_2_8_29_1 doi: 10.1007/s42114-021-00392-0 – ident: e_1_2_8_27_1 doi: 10.1016/j.ijbiomac.2023.127070 – volume: 27 start-page: 1024 year: 2024 ident: e_1_2_8_9_1 publication-title: Eng. Sci. – ident: e_1_2_8_48_1 doi: 10.1007/s10965-012-9832-6 – ident: e_1_2_8_75_1 doi: 10.1021/acs.iecr.6b03979 – ident: e_1_2_8_72_1 doi: 10.1016/S0165-2370(03)00024-X – ident: e_1_2_8_96_1 doi: 10.1007/s40820-024-01398-1 – volume: 58 start-page: 854 year: 2018 ident: e_1_2_8_51_1 publication-title: Polym.‐Plastics Technol. Eng. – ident: e_1_2_8_74_1 doi: 10.1016/j.polymer.2020.122196 – ident: e_1_2_8_87_1 doi: 10.1007/s42114-022-00485-4 – ident: e_1_2_8_16_1 doi: 10.1007/s42114-023-00748-8 – ident: e_1_2_8_28_1 doi: 10.1007/s42114-022-00473-8 – ident: e_1_2_8_77_1 doi: 10.1002/pola.24242 – ident: e_1_2_8_19_1 doi: 10.1007/s42114-023-00719-z – ident: e_1_2_8_49_1 doi: 10.1016/j.apsusc.2012.12.104 – volume: 19 start-page: 59 year: 2022 ident: e_1_2_8_17_1 publication-title: Eng. Sci. – ident: e_1_2_8_60_1 doi: 10.1007/s42114-023-00664-x – ident: e_1_2_8_61_1 doi: 10.1002/vnl.20158 – ident: e_1_2_8_91_1 doi: 10.1007/s42114-022-00417-2 – volume: 12 start-page: 859 year: 2023 ident: e_1_2_8_11_1 publication-title: ES Food Agrof. – ident: e_1_2_8_92_1 doi: 10.1002/anie.202200705 – ident: e_1_2_8_70_1 doi: 10.1016/j.reactfunctpolym.2016.04.020 – ident: e_1_2_8_93_1 doi: 10.1007/s42114-023-00692-7 – volume: 17 start-page: 73 year: 2022 ident: e_1_2_8_8_1 publication-title: ES Mater. Manuf. – ident: e_1_2_8_42_1 doi: 10.1016/j.polymdegradstab.2011.10.019 – ident: e_1_2_8_47_1 doi: 10.1021/acs.macromol.5b01014 – ident: e_1_2_8_81_1 doi: 10.1007/s42114-023-00662-z – ident: e_1_2_8_43_1 doi: 10.1016/j.polymer.2013.10.016 – ident: e_1_2_8_66_1 doi: 10.1016/j.reactfunctpolym.2015.05.004 – ident: e_1_2_8_56_1 doi: 10.1007/s42114-023-00790-6 – ident: e_1_2_8_54_1 doi: 10.1080/15421400802713686 – ident: e_1_2_8_85_1 doi: 10.1007/s42114-023-00668-7 – ident: e_1_2_8_5_1 doi: 10.1002/pi.5655 – ident: e_1_2_8_24_1 doi: 10.1016/j.porgcoat.2017.02.011 – ident: e_1_2_8_59_1 doi: 10.30919/es1137 – volume: 18 start-page: 113 year: 2022 ident: e_1_2_8_88_1 publication-title: Eng. Sci. – volume: 23 start-page: 1002 year: 2024 ident: e_1_2_8_58_1 publication-title: ES Mater. Manuf. – ident: e_1_2_8_65_1 doi: 10.1155/2016/1470965 – ident: e_1_2_8_69_1 doi: 10.1016/j.ijadhadh.2019.102417 – ident: e_1_2_8_21_1 doi: 10.1007/s10163-019-00929-y – ident: e_1_2_8_45_1 doi: 10.1016/j.jfluchem.2016.10.021 – ident: e_1_2_8_53_1 doi: 10.1016/j.polymer.2022.124783 – ident: e_1_2_8_57_1 doi: 10.1007/s42114-023-00795-1 – reference: 40396642 - Macromol Rapid Commun. 2025 May 21:e2500356. doi: 10.1002/marc.202500356. |
SSID | ssj0008402 |
Score | 2.449961 |
Snippet | Modified polyvinylidene chloride (PVDC) resin was prepared using octafluoropentyl methacrylate and trimethylolpropane trimethacrylate as modifying monomers... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2400402 |
SubjectTerms | Contact angle Cross-Linking Reagents - chemistry Emulsion polymerization Emulsions Energy distribution Fluorine Fluorine - chemistry fluorine monomers Fourier transforms Infrared analysis Infrared spectroscopy Mechanical properties Methacrylates - chemistry modification Monomers Photoelectron spectroscopy Photoelectrons Polymerization Polyvinyl Chloride - analogs & derivatives Polyvinyl Chloride - chemistry polyvinylidene chloride resin Polyvinylidene chlorides Polyvinyls - chemistry Resins Resins, Synthetic - chemistry Room temperature Scanning electron microscopy Spectrum analysis Storage stability Surface Properties Thermal stability Trimethylolpropane trimethacrylate Water resistance water resistance performance X ray photoelectron spectroscopy |
Title | Modifying Polyvinylidene Chloride Resin with Fluorine Monomer and Cross‐Linking Monomers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmarc.202400402 https://www.ncbi.nlm.nih.gov/pubmed/39235433 https://www.proquest.com/docview/3125970703 https://www.proquest.com/docview/3100919486 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60F734ftQXEQRP1W0Ss9ljWSwiVqQoiJcl2aRYLFvpQ9CTP8Hf6C8xs-muVg-C3jabDZtk8vgmmfkG4EAyGwjDeU3JMPUKipaiU-NGK8OY5jwn0m5dirMbfn57cvvFi9_zQ5QHbjgz8vUaJ7jSw-NP0lCkenD6HdpA8pxNEg22EBW1P_mjnPbirzudxuWUMVGwNgb0eLr49K70A2pOI9d862kugioq7S1OHo7GI32Uvnzjc_xPq5ZgYYJLScMPpGWYsdkKzMVFOLhVuGv1TTd3iiJX_d7zUzd77mFAUkvie7TiM5a07bCbETzZJc3eGC37LGmh04QdEJUZEmPb31_fLny8hiJvuAY3zdPr-Kw2CcxQS5lwiJymNGC6EwWGUhsaquqhMLpOU6duMo6ZAV5XcoeNlOg4zIJEVaHUXCqjok7K1qGS9TO7CaRuhAkjq7gVEU-FiiRPXUJKYdyLSFfhsBBM8uj5NxLPtEwT7Kuk7Ksq7BRySybzcJgwh9-iEJe1KuyX2a7n8FpEZbY_xm8czqxHXIoqbHh5l79y6JGdcOZK01xqv9QhaTXacZna-kuhbZjHZ-_uuAOV0WBsdx3uGek9mKX8ai8f4R_v2Pms |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTuMwEB4hOMAFWH7LsmAkJE6F1DaOc0TZrQo0CFUgIS6RHbuiokoRbZHY0z7CPiNPgiduggoHJDjajhXb459v7JlvAPYls4EwnNeVDDOvoGgpunVutDKMac4LIu3kQrSu-dnNcWlNiL4wnh-iunDDlVHs17jA8UL66I01FLkenIKHRpAc6STnMKw30uf_7rwxSDn9xT94Op3LqWOi5G0M6NF0_elz6QPYnMauxeHTXAJdNtvbnNwfjkf6MPv7jtHxW_1ahsUJNCUnfi79gBmbr8B8XEaEW4XbZGB6hV8UuRz0n596-XMfY5JaEt-hIZ-xpGOHvZzg5S5p9sdo3GdJgn4T9pGo3JAYO__y73_bh2woy4ZrcN38cxW36pPYDPWMCQfKaUYDprtRYCi1oaGqEQqjGzRzGifjWBjgiyV38EiJroMtyFUVSs2lMirqZmwdZvNBbjeBNIwwYWQVtyLimVCR5JlLSCmMy4h0DQ5KyaQPnoIj9WTLNMWxSquxqsF2Kbh0shSHKXMQLgpxZ6vBXlXsRg5fRlRuB2P8xkHNRsSlqMGGF3j1Kwcg2TFnrjYtxPZJG9LkpBNXqa2vVNqF-dZV0k7bpxfnP2EB87334zbMjh7H9peDQSO9U0z0V7GR_PE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SQb2Ib6tVIwieSrdJms0ey2qp2pZSLBQvS3aTxULZlj6E3vwJ_kZ_iZlNd7V4EDzmxYbJJvkmM_MNQjeCaocrxspSuJFVUELB4zJToVSUhoylRNrtDm_22eOgNvgRxW_5IfIHN9gZ6XkNG3yi4so3aShQPRj9DnwgGbBJboLFD5y6COvmZ7FRX6y906hcRhvjGW2jQyrr49evpV9Ycx26pndPYw_trkAjrttV3kcbOjlA236Wq-0QvbTHaphGLOHueLR8GybLEWQL1dh_BRc7pXFPz4YJhmdX3BgtwO1O4zZENOgplonCPszr8_2jZZMpZG2zI9Rv3D_7zfIqa0I5otzAZRIRh4ax5yhCtKuIrLpchVUSGV2QMmh0wJbIDHCRPDaAAlikXBEyIZX04ogeo0IyTvQpwlXFletpyTT3WMSlJ1hkCkJwZSq8sIhuM6EFE0uOEVgaZBKAeINcvEVUymQarDbJLKAGXHkunDlFdJ03G8mBzUImeryAPgYEVj0meBGd2LXIP2WgHa0xakaTdHH-mEPQrvf8vHT2n0FXaKt71whaD52nc7QD1TYssYQK8-lCXxh8Mg8v01_wC-Y-2kk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modifying+Polyvinylidene+Chloride+Resin+with+Fluorine+Monomer+and+Cross-Linking+Monomers&rft.jtitle=Macromolecular+rapid+communications.&rft.au=Gao%2C+Fengjun&rft.au=Zhang%2C+Zhifeng&rft.au=Song%2C+Qianqian&rft.au=Abo-Dief%2C+Hala+M&rft.date=2024-11-01&rft.issn=1521-3927&rft.eissn=1521-3927&rft.volume=45&rft.issue=21&rft.spage=e2400402&rft_id=info:doi/10.1002%2Fmarc.202400402&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1022-1336&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1022-1336&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1022-1336&client=summon |