ECG biometric recognition using SVM-based approach

This paper presents a new approach for biometric personal identification based on electrocardiogram (ECG) features. ECG, which reflects cardiac electrical activity, is a distinctive characteristic of a person and can be used for security needs. Twenty‐one features based on temporal and amplitude dis...

Full description

Saved in:
Bibliographic Details
Published inIEEJ transactions on electrical and electronic engineering Vol. 11; no. S1; pp. S94 - S100
Main Authors Rezgui, Dhouha, Lachiri, Zied
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.06.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents a new approach for biometric personal identification based on electrocardiogram (ECG) features. ECG, which reflects cardiac electrical activity, is a distinctive characteristic of a person and can be used for security needs. Twenty‐one features based on temporal and amplitude distances between detected fiducial points and 10 morphological descriptors are extracted from each heartbeat. Then, support vector machine (SVM) is used as a classifier. A comparative study between two kernels, Gaussian and polynomial, was made in order to determine the best kernel and the appropriate values of hyperparameters that improve the recognition performance. The algorithm is evaluated using two databases, namely MIT‐BIH Arrhythmia and MIT‐BIH Normal Sinus Rhythm. Analysis of the results shows that the combination of all features allows improvement of our system efficiency with regard to healthy human subjects and those with arrhythmia. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
AbstractList This paper presents a new approach for biometric personal identification based on electrocardiogram (ECG) features. ECG, which reflects cardiac electrical activity, is a distinctive characteristic of a person and can be used for security needs. Twenty‐one features based on temporal and amplitude distances between detected fiducial points and 10 morphological descriptors are extracted from each heartbeat. Then, support vector machine (SVM) is used as a classifier. A comparative study between two kernels, Gaussian and polynomial, was made in order to determine the best kernel and the appropriate values of hyperparameters that improve the recognition performance. The algorithm is evaluated using two databases, namely MIT‐BIH Arrhythmia and MIT‐BIH Normal Sinus Rhythm. Analysis of the results shows that the combination of all features allows improvement of our system efficiency with regard to healthy human subjects and those with arrhythmia. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
This paper presents a new approach for biometric personal identification based on electrocardiogram (ECG) features. ECG, which reflects cardiac electrical activity, is a distinctive characteristic of a person and can be used for security needs. Twenty-one features based on temporal and amplitude distances between detected fiducial points and 10 morphological descriptors are extracted from each heartbeat. Then, support vector machine (SVM) is used as a classifier. A comparative study between two kernels, Gaussian and polynomial, was made in order to determine the best kernel and the appropriate values of hyperparameters that improve the recognition performance. The algorithm is evaluated using two databases, namely MIT-BIH Arrhythmia and MIT-BIH Normal Sinus Rhythm. Analysis of the results shows that the combination of all features allows improvement of our system efficiency with regard to healthy human subjects and those with arrhythmia. copyright 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
Author Lachiri, Zied
Rezgui, Dhouha
Author_xml – sequence: 1
  givenname: Dhouha
  surname: Rezgui
  fullname: Rezgui, Dhouha
  email: rezgui_dhouha@yahoo.com
  organization: Department of Electrical Engineering, National Engineering School of Tunis, University of Tunis El Manar, Tunisia, Tunis 1002
– sequence: 2
  givenname: Zied
  surname: Lachiri
  fullname: Lachiri, Zied
  organization: Department of Electrical Engineering, National Engineering School of Tunis, University of Tunis El Manar, Tunisia, Tunis 1002
BookMark eNp9kE1PwkAQhjcGEwE9-A-aeNFDYT_a3fZoaq0miAfxI142y3aKi6XF3RLl31tEPZBoZpKZw_O-M3l7qFPVFSB0TPCAYEyHDcCAUhqQPdQlMSN-EEek87sLdoB6zs0xDjiLoi6iaZJ5U1MvoLFGexZ0PatMY-rKWzlTzby7hxt_qhzknlouba30yyHaL1Tp4Oh79tH9ZTpJrvzRbXadnI98zXhE_FjxEIcFpXEeUcUVFSQGltOcijxgYViwSEMh8rZVW1gHhHOIFQsLzQAo66PTrW979m0FrpEL4zSUpaqgXjlJIhqGhGJKWvRkB53XK1u130kiYhFwTPjG8GxLaVs7Z6GQS2sWyq4lwXKTnmzTk1_ptexwh9WmUZtcGqtM-Z_i3ZSw_ttaTtL0R-FvFcY18PGrUPZVcsFEKB_HmSQXyTMfP1GZsU-RNo-y
CitedBy_id crossref_primary_10_1007_s10462_020_09863_0
crossref_primary_10_1007_s11042_023_16506_3
crossref_primary_10_1016_j_patrec_2019_11_005
crossref_primary_10_1109_ACCESS_2019_2948067
crossref_primary_10_1109_TIM_2021_3119138
crossref_primary_10_1007_s11045_018_0593_1
crossref_primary_10_1038_s41598_023_34629_3
crossref_primary_10_3390_app9010201
crossref_primary_10_1016_j_neuri_2023_100121
crossref_primary_10_1109_TIFS_2020_3006384
crossref_primary_10_1007_s13534_023_00266_y
crossref_primary_10_1109_ACCESS_2023_3349148
crossref_primary_10_12720_jait_16_1_101_108
crossref_primary_10_1371_journal_pone_0197240
crossref_primary_10_1109_ACCESS_2021_3133482
crossref_primary_10_1016_j_bspc_2021_103127
crossref_primary_10_3390_s17102228
crossref_primary_10_1088_2631_8695_abffa6
crossref_primary_10_1016_j_patrec_2021_01_027
crossref_primary_10_1155_2019_2608547
crossref_primary_10_1007_s00500_023_08253_2
crossref_primary_10_1109_ACCESS_2018_2849870
Cites_doi 10.1109/BTAS.2008.4699343
10.1109/IDAACS.2009.5342942
10.1109/19.930458
10.1016/j.patcog.2008.04.015
10.1109/IEMBS.2001.1019645
10.1109/APBME.2003.1302648
10.1109/BCC.2006.4341627
10.1109/TIM.2007.909996
10.1155/2011/720971
10.1016/j.patcog.2004.05.014
10.1016/j.medengphy.2005.12.010
10.1109/MUE.2008.67
10.1109/TENCON.2005.300986
10.1161/01.CIR.101.23.e215
10.1007/978-3-642-01793-3_128
10.1007/s00500-009-0525-y
10.1023/A:1009715923555
10.1109/10.918594
10.1109/AIPR.2003.1284276
ContentType Journal Article
Copyright 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
Copyright_xml – notice: 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
DBID BSCLL
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1002/tee.22241
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1931-4981
EndPage S100
ExternalDocumentID 4091492801
10_1002_tee_22241
TEE22241
ark_67375_WNG_1DCZ6NX2_G
Genre article
GrantInformation_xml – fundername: Research Laboratory LR‐SITI‐ENIT
GroupedDBID .3N
.GA
.Y3
05W
0R~
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
5GY
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADOZA
ADXAS
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
CS3
D-E
D-F
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
QB0
R.K
ROL
RWI
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WXSBR
WYISQ
XV2
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
ALVPJ
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c3681-9a6505f229d82a6a2719e3d2d27d4355f38cef7df7dadad0c4166e9a35fc3ee23
ISSN 1931-4973
IngestDate Thu Jul 10 23:40:40 EDT 2025
Fri Jul 25 12:17:16 EDT 2025
Thu Jul 03 08:17:05 EDT 2025
Thu Apr 24 22:52:18 EDT 2025
Wed Jan 22 16:35:44 EST 2025
Wed Oct 30 09:53:09 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue S1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3681-9a6505f229d82a6a2719e3d2d27d4355f38cef7df7dadad0c4166e9a35fc3ee23
Notes Research Laboratory LR-SITI-ENIT
ark:/67375/WNG-1DCZ6NX2-G
ArticleID:TEE22241
istex:618A1AEA6A207AAAE2A6DBAB1EBCC0714119A4B4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1797460162
PQPubID 996339
PageCount 7
ParticipantIDs proquest_miscellaneous_1825512021
proquest_journals_1797460162
crossref_primary_10_1002_tee_22241
crossref_citationtrail_10_1002_tee_22241
wiley_primary_10_1002_tee_22241_TEE22241
istex_primary_ark_67375_WNG_1DCZ6NX2_G
PublicationCentury 2000
PublicationDate June 2016
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: June 2016
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Tokyo
PublicationTitle IEEJ transactions on electrical and electronic engineering
PublicationTitleAlternate IEEJ Trans Elec Electron Eng
PublicationYear 2016
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley Subscription Services, Inc
References Singh YN, Gupta P. Biometrics method for human identification using electrocardiogram. Advances in Biometrics 2009; 5558:1270-1279.
Christov I, Herrero GG, Krasteva V, Jekova I, Gotchev A, Egiazarian K. Comparative study of morphological and time-frequency ECG descriptors for heartbeat classification. Medical Engineering & Physics 2006; 28(9):876-887.
Hoekema R, Uijen GJH, van Oosterom A. Geometrical aspects of the interindividual variability of multilead ECG recordings. IEEE Transactions on Biomedical Engineering 2001; 48(5):551-559.
Clifford GD, Azuaje F, McSharry PE. Advanced Methods and Tools for ECG Data Analysis. Artech House, Inc: Boston; 2006.
Biel L, Pettersson O, Philipson L, Wide P. ECG analysis: a new approach in human identification. IEEE Transactions on Instrumentation and Measurement 2001; 50(3):808-812.
Singh YN, Gupta P. Correlation-based classification of heartbeats for individual identification. Soft Computing 2011; 15(3):449-460.
Irvine JM, Israel SA, Scruggs WT, Worek WJ. EigenPulse: robust human identification from cardiovascular function. Pattern Recognition 2008; 41(11):3427-343.
Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 2000; 101(23):e215-e220.
Chan ADC, Hamdy MM, Badre A, Badee V. Wavelet distance measure for person identification using electrocardiograms. IEEE Transactions on Instrumentation and Measurement 2008; 57:248-253.
Shen TW, Tompkins WJ, Hu YH. One-lead ECG for identity verification. Proceedings of the 2nd Conference of the IEEE Engineering in Medicine and Biology Society and the Biomedical Engineering Society 2002; 1:62-63.
Israel SA, Irvine JM, Cheng A, Wiederhold MD, Wiederhold BK. ECG to identify individuals. Pattern Recognition 2005; 38(1):133-142.
Jones SA. ECG Success: Exercises in ECG Interpretation. F. A. Davis Company: Philadelphia; 2008.
Lourenço A, Silva H, Fred A. Unveiling the biometric potential of finger-based ECG signals. Computational Intelligence and Neuroscience 2011; 2011:1-8.
Burges CJC. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 1998; 2:121-167.
2011; 2011
2001; 50
2001
2006; 28
2002; 1
2009
2008
2008; 57
2006
2001; 48
2005
1998; 2
2008; 41
2003
2011; 15
2000; 101
2002
2005; 38
2009; 5558
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
Clifford GD (e_1_2_8_18_1) 2006
e_1_2_8_15_1
e_1_2_8_16_1
Shen TW (e_1_2_8_9_1) 2002; 1
Jones SA (e_1_2_8_17_1) 2008
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – reference: Biel L, Pettersson O, Philipson L, Wide P. ECG analysis: a new approach in human identification. IEEE Transactions on Instrumentation and Measurement 2001; 50(3):808-812.
– reference: Lourenço A, Silva H, Fred A. Unveiling the biometric potential of finger-based ECG signals. Computational Intelligence and Neuroscience 2011; 2011:1-8.
– reference: Irvine JM, Israel SA, Scruggs WT, Worek WJ. EigenPulse: robust human identification from cardiovascular function. Pattern Recognition 2008; 41(11):3427-343.
– reference: Burges CJC. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 1998; 2:121-167.
– reference: Chan ADC, Hamdy MM, Badre A, Badee V. Wavelet distance measure for person identification using electrocardiograms. IEEE Transactions on Instrumentation and Measurement 2008; 57:248-253.
– reference: Jones SA. ECG Success: Exercises in ECG Interpretation. F. A. Davis Company: Philadelphia; 2008.
– reference: Shen TW, Tompkins WJ, Hu YH. One-lead ECG for identity verification. Proceedings of the 2nd Conference of the IEEE Engineering in Medicine and Biology Society and the Biomedical Engineering Society 2002; 1:62-63.
– reference: Clifford GD, Azuaje F, McSharry PE. Advanced Methods and Tools for ECG Data Analysis. Artech House, Inc: Boston; 2006.
– reference: Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng CK, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 2000; 101(23):e215-e220.
– reference: Singh YN, Gupta P. Correlation-based classification of heartbeats for individual identification. Soft Computing 2011; 15(3):449-460.
– reference: Israel SA, Irvine JM, Cheng A, Wiederhold MD, Wiederhold BK. ECG to identify individuals. Pattern Recognition 2005; 38(1):133-142.
– reference: Christov I, Herrero GG, Krasteva V, Jekova I, Gotchev A, Egiazarian K. Comparative study of morphological and time-frequency ECG descriptors for heartbeat classification. Medical Engineering & Physics 2006; 28(9):876-887.
– reference: Singh YN, Gupta P. Biometrics method for human identification using electrocardiogram. Advances in Biometrics 2009; 5558:1270-1279.
– reference: Hoekema R, Uijen GJH, van Oosterom A. Geometrical aspects of the interindividual variability of multilead ECG recordings. IEEE Transactions on Biomedical Engineering 2001; 48(5):551-559.
– volume: 101
  start-page: e215
  issue: 23
  year: 2000
  end-page: e220
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– start-page: 1
  year: 2005
  end-page: 4
– volume: 15
  start-page: 449
  issue: 3
  year: 2011
  end-page: 460
  article-title: Correlation‐based classification of heartbeats for individual identification
  publication-title: Soft Computing
– volume: 1
  start-page: 62
  year: 2002
  end-page: 63
  article-title: One‐lead ECG for identity verification
  publication-title: Proceedings of the 2nd Conference of the IEEE Engineering in Medicine and Biology Society and the Biomedical Engineering Society
– start-page: 1
  year: 2008
  end-page: 8
– volume: 48
  start-page: 551
  issue: 5
  year: 2001
  end-page: 559
  article-title: Geometrical aspects of the interindividual variability of multilead ECG recordings
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 2
  start-page: 121
  year: 1998
  end-page: 167
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Mining and Knowledge Discovery
– year: 2002
– volume: 38
  start-page: 133
  issue: 1
  year: 2005
  end-page: 142
  article-title: ECG to identify individuals
  publication-title: Pattern Recognition
– year: 2008
– start-page: 3721
  year: 2001
  end-page: 3723
– year: 2006
– volume: 5558
  start-page: 1270
  year: 2009
  end-page: 1279
  article-title: Biometrics method for human identification using electrocardiogram
  publication-title: Advances in Biometrics
– start-page: 226
  year: 2003
  end-page: 231
– volume: 50
  start-page: 808
  issue: 3
  year: 2001
  end-page: 812
  article-title: ECG analysis: a new approach in human identification
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 57
  start-page: 248
  year: 2008
  end-page: 253
  article-title: Wavelet distance measure for person identification using electrocardiograms
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 41
  start-page: 3427
  issue: 11
  year: 2008
  end-page: 343
  article-title: EigenPulse: robust human identification from cardiovascular function
  publication-title: Pattern Recognition
– volume: 28
  start-page: 876
  issue: 9
  year: 2006
  end-page: 887
  article-title: Comparative study of morphological and time‐frequency ECG descriptors for heartbeat classification
  publication-title: Medical Engineering & Physics
– start-page: 446
  year: 2009
  end-page: 451
– start-page: 190
  year: 2003
  end-page: 191
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 8
  article-title: Unveiling the biometric potential of finger‐based ECG signals
  publication-title: Computational Intelligence and Neuroscience
– start-page: 201
  year: 2008
  end-page: 206
– ident: e_1_2_8_12_1
  doi: 10.1109/BTAS.2008.4699343
– ident: e_1_2_8_26_1
  doi: 10.1109/IDAACS.2009.5342942
– ident: e_1_2_8_8_1
  doi: 10.1109/19.930458
– ident: e_1_2_8_20_1
– ident: e_1_2_8_2_1
  doi: 10.1016/j.patcog.2008.04.015
– volume-title: Advanced Methods and Tools for ECG Data Analysis
  year: 2006
  ident: e_1_2_8_18_1
– ident: e_1_2_8_10_1
  doi: 10.1109/IEMBS.2001.1019645
– ident: e_1_2_8_3_1
  doi: 10.1109/APBME.2003.1302648
– volume: 1
  start-page: 62
  year: 2002
  ident: e_1_2_8_9_1
  article-title: One‐lead ECG for identity verification
  publication-title: Proceedings of the 2nd Conference of the IEEE Engineering in Medicine and Biology Society and the Biomedical Engineering Society
– ident: e_1_2_8_21_1
  doi: 10.1109/BCC.2006.4341627
– ident: e_1_2_8_6_1
  doi: 10.1109/TIM.2007.909996
– ident: e_1_2_8_11_1
  doi: 10.1155/2011/720971
– ident: e_1_2_8_7_1
  doi: 10.1016/j.patcog.2004.05.014
– volume-title: ECG Success: Exercises in ECG Interpretation
  year: 2008
  ident: e_1_2_8_17_1
– ident: e_1_2_8_23_1
  doi: 10.1016/j.medengphy.2005.12.010
– ident: e_1_2_8_5_1
  doi: 10.1109/MUE.2008.67
– ident: e_1_2_8_25_1
  doi: 10.1109/TENCON.2005.300986
– ident: e_1_2_8_19_1
  doi: 10.1161/01.CIR.101.23.e215
– ident: e_1_2_8_16_1
– ident: e_1_2_8_13_1
  doi: 10.1007/978-3-642-01793-3_128
– ident: e_1_2_8_14_1
  doi: 10.1007/s00500-009-0525-y
– ident: e_1_2_8_24_1
  doi: 10.1023/A:1009715923555
– ident: e_1_2_8_4_1
  doi: 10.1109/10.918594
– ident: e_1_2_8_15_1
– ident: e_1_2_8_22_1
  doi: 10.1109/AIPR.2003.1284276
SSID ssj0046388
Score 2.1992593
Snippet This paper presents a new approach for biometric personal identification based on electrocardiogram (ECG) features. ECG, which reflects cardiac electrical...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage S94
SubjectTerms amplitude attributes
Arrhythmia
Biometrics
electrocardiogram (ECG)
Electronic engineering
Gaussian
Kernels
MIT-BIH database
morphological descriptors
Polynomials
Recognition
support vector machine
Support vector machines
temporal attributes
Title ECG biometric recognition using SVM-based approach
URI https://api.istex.fr/ark:/67375/WNG-1DCZ6NX2-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ftee.22241
https://www.proquest.com/docview/1797460162
https://www.proquest.com/docview/1825512021
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdK-wIPiA0QhTFlCCGkKSN2Gid5nLqu07T2JR1Ue7Gc2GYI1KLRSGh_BH8zZztxvS9pTKiVFblW4vrO9xHf_Q6h9xosBxRVBb5JCg3HsKVEGodCZGWEqyQvTR2yyZQenQ6O58m80_njRS3Vq3Kvurw1r-QhVIU-oKvOkv0HyrqbQgdcA32hBQpDey8aj4bjXZM_r2H2d10sEBC0Nq8Ais-TUKsp4aDDfVsU_LxjXSKirRduDg5sWRwHIeBVyZFr5EJ3SiMvv9Y2U_18WZ87CX-iIzRtCvvZtyZ7qnmzgOk6Auq_yC8wDbEuYGfll_T7bJUWJ4Cxx2gF9sRpYQsgN5q5wAbU9KbUtyiyKyn3iLZI1qqtPc6_pvFcHCK_-K4D29KEfZmOGT4YntHpnLDxI9Qj4HaQLurtH0xOila3D0BaZTZOwf61FqsqIp_c469YOD29WX9fcV98J8hYMbNn6GnjfgT7lpc2UEcuNtETD5TyOSLAVYHjqsDjqsBwVeC4Kmi56gU6PRzNhkdhU1kjrGKa4TDnYJgnipBcZIRTTlKcy1gQQVIB9nOi4qySKhXw5fCJKjDbqcx5nKgqlpLEL1F3sVzIVyjIo1SpLBcq10BINII7lxEfCCkzlShK--hjuxqsamDndfWTH8wCZhMGC8fMwvXROzf0p8VauW3QB7OkbsRdNOyjrXbNWbNnfzFQP-lAIxCRPtpxP4NE1cdkfCGXNYzJwM3GBIxfmLuh1d2zYbPRyFy8vu-03qDH6722hbqri1q-Bbt2VW43zPYXpGKiqA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ECG+biometric+recognition+using+SVM-based+approach&rft.jtitle=IEEJ+transactions+on+electrical+and+electronic+engineering&rft.au=Rezgui%2C+Dhouha&rft.au=Lachiri%2C+Zied&rft.date=2016-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1931-4973&rft.eissn=1931-4981&rft.volume=11&rft.issue=S1&rft.spage=S94&rft.epage=S100&rft_id=info:doi/10.1002%2Ftee.22241&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_1DCZ6NX2_G
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1931-4973&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1931-4973&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1931-4973&client=summon