Optimality Conditions for Systems with Distributed Parameters Based on the Dubovitskii–Milyutin Theorem with Incomplete Information About the Initial Conditions

In this paper, we consider an optimal control problem for a system described by a parabolic linear partial differential equation with the Neumann boundary condition. We impose some constraints on the control. The performance functional has the integral form. The control time T is fixed. The initial...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical sciences (New York, N.Y.) Vol. 276; no. 2; pp. 199 - 215
Main Author Bahaa, G. M.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 06.10.2023
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we consider an optimal control problem for a system described by a parabolic linear partial differential equation with the Neumann boundary condition. We impose some constraints on the control. The performance functional has the integral form. The control time T is fixed. The initial condition is not given by a known function but belongs to a certain set (incomplete information about the initial state). To obtain optimality conditions for the Neumann problem, a generalization of the Dubovitskii–Milyutin theorem was applied. The problem formulated in this paper describes the process of optimal heating for which we do not have exact information about the initial temperature of the heating object. We also present an example in which admissible controls and one of the initial conditions are given by means of the norm constraints.
AbstractList In this paper, we consider an optimal control problem for a system described by a parabolic linear partial differential equation with the Neumann boundary condition. We impose some constraints on the control. The performance functional has the integral form. The control time T is fixed. The initial condition is not given by a known function but belongs to a certain set (incomplete information about the initial state). To obtain optimality conditions for the Neumann problem, a generalization of the Dubovitskii--Milyutin theorem was applied. The problem formulated in this paper describes the process of optimal heating for which we do not have exact information about the initial temperature of the heating object. We also present an example in which admissible controls and one of the initial conditions are given by means of the norm constraints.
In this paper, we consider an optimal control problem for a system described by a parabolic linear partial differential equation with the Neumann boundary condition. We impose some constraints on the control. The performance functional has the integral form. The control time T is fixed. The initial condition is not given by a known function but belongs to a certain set (incomplete information about the initial state). To obtain optimality conditions for the Neumann problem, a generalization of the Dubovitskii--Milyutin theorem was applied. The problem formulated in this paper describes the process of optimal heating for which we do not have exact information about the initial temperature of the heating object. We also present an example in which admissible controls and one of the initial conditions are given by means of the norm constraints. Keywords and phrases: optimal control problem, Neumann problem, second-order parabolic operator, Dubovitskii--Milyutin theorem, conical approximations, optimality conditions. AMS Subject Classification: 37N10, 76N15, 76U05
In this paper, we consider an optimal control problem for a system described by a parabolic linear partial differential equation with the Neumann boundary condition. We impose some constraints on the control. The performance functional has the integral form. The control time T is fixed. The initial condition is not given by a known function but belongs to a certain set (incomplete information about the initial state). To obtain optimality conditions for the Neumann problem, a generalization of the Dubovitskii–Milyutin theorem was applied. The problem formulated in this paper describes the process of optimal heating for which we do not have exact information about the initial temperature of the heating object. We also present an example in which admissible controls and one of the initial conditions are given by means of the norm constraints.
Audience Academic
Author Bahaa, G. M.
Author_xml – sequence: 1
  givenname: G. M.
  surname: Bahaa
  fullname: Bahaa, G. M.
  email: gm@yahoo.com
  organization: Taibah University, Beni-Suef University
BookMark eNp9ksFu1DAQhi3USrRbXoCTJU4cUuw4iZ3jsi1lpVZFtJwtJ7F3XRJ7sR1gb30H3oBH40mYNpXKSivkg63R98-MZ_5jdOC80wi9puSUEsLfRUrqUmQkZxmpOCsz8gId0ZKzTPC6PIA34XnGGC9eouMY7wiIKsGO0O_rTbKD6m3a4oV3nU3Wu4iND_hmG5MeIv5h0xqf2ZiCbcakO_xJBTXopEPE71WEgHc4rTU-Gxv_3ab41do_97-ubL8dk3X4dq190MOUZ-laP2x6UMMTqgzqoSCeN35Mj0mWDlpQ_T_NnKBDo_qoXz3dM_Tlw_nt4mN2eX2xXMwvs5ZVgmS64lS0Be0YrfO6I10jaG5yIZhROm-KRhVVoViujCFVnQtAqoI2Vc1rY3hH2Qy9mfJugv826pjknR-Dg5ISsnBSEEqLZ2qlei0t_CEF1Q42tnLOeSnquoSxz1C2h1ppp4PqYXXGQniHP93Dw-n0YNu9grc7AmCS_plWaoxRLm8-77L5xLbBxxi0kZsAOw9bSYl8sI-c7CPBPvLRPpKAiE2iCLBb6fA8jf-o_gI-PcuM
Cites_doi 10.1007/978-3-642-80684-1
10.1137/0313016
10.1007/BF00934567
10.1093/imamci/20.2.167
10.1093/imamci/dnl001
10.1093/imamci/dnm002
10.4236/ica.2012.33024
10.1093/imamci/dnm003
10.1093/imamci/19.4.461
10.1007/978-3-642-65217-2
10.1093/imamci/dni033
10.2298/FIL1608177B
10.2478/v10170-011-0003-5
10.1186/s13662-017-1121-6
10.1070/SM1975v027n02ABEH002506
10.1186/s13662-016-0976-2
10.1007/978-3-642-65024-6
10.1080/01630563.2016.1186693
10.1070/SM1976v029n03ABEH003675
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2023 Springer
Copyright_xml – notice: Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2023 Springer
DBID AAYXX
CITATION
ISR
DOI 10.1007/s10958-023-06735-0
DatabaseName CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList





DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-8795
EndPage 215
ExternalDocumentID A775899557
10_1007_s10958_023_06735_0
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
642
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
IOF
ISR
ITC
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9R
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XU3
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8R
Z8T
Z8W
Z92
ZMTXR
ZWQNP
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
AEIIB
ABRTQ
ID FETCH-LOGICAL-c3680-e6718c41d31929d0db812f2883fae2b4ba464a32aff069289d0641b6979ff7d13
IEDL.DBID U2A
ISSN 1072-3374
IngestDate Fri Jul 25 10:52:13 EDT 2025
Tue Jun 17 22:03:46 EDT 2025
Fri Jun 13 00:01:50 EDT 2025
Tue Jun 10 21:02:48 EDT 2025
Fri Jun 27 05:27:30 EDT 2025
Tue Jul 01 01:42:24 EDT 2025
Fri Feb 21 02:43:56 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords optimality conditions
Neumann problem
37N10
optimal control problem
second-order parabolic operator
76N15
Dubovitskii–Milyutin theorem
76U05
conical approximations
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3680-e6718c41d31929d0db812f2883fae2b4ba464a32aff069289d0641b6979ff7d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10958-023-06735-0.pdf
PQID 2887040114
PQPubID 2043545
PageCount 17
ParticipantIDs proquest_journals_2887040114
gale_infotracmisc_A775899557
gale_infotracgeneralonefile_A775899557
gale_infotracacademiconefile_A775899557
gale_incontextgauss_ISR_A775899557
crossref_primary_10_1007_s10958_023_06735_0
springer_journals_10_1007_s10958_023_06735_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231006
PublicationDateYYYYMMDD 2023-10-06
PublicationDate_xml – month: 10
  year: 2023
  text: 20231006
  day: 06
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle Journal of mathematical sciences (New York, N.Y.)
PublicationTitleAbbrev J Math Sci
PublicationYear 2023
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Bahaa (CR1) 2003; 20
Bahaa (CR5) 2012; 3
CR17
Walczak (CR28) 1984; 42
CR16
CR12
Bahaa (CR3) 2007; 24
CR10
Bahaa, Kotarski (CR11) 2008; 25
Lions, Magenes (CR25) 1972
Bahaa (CR2) 2005; 22
Girsanov (CR20) 1972
Bahaa, Tharwat (CR14) 2012; 33
Bahaa (CR4) 2008; 25
Bahaa (CR6) 2012; 2012
Bahaa (CR7) 2016; 33
CR9
Bahaa, Tharwat (CR13) 2011; 21
CR24
Wang (CR29) 1975; 13
Bahaa (CR8) 2016; 30
Tröltzsch (CR26) 1984
CR21
Walczak (CR27) 1984; 1
Ya, Dubovitskii and A. A. Milyutin (CR18) 1963; 149
Kowalewski, Kotarski (CR23) 1981; 7
Bahaa, Tharwat (CR15) 2012; A3
Ya, Dubovitskii and A. A. Milyutin (CR19) 1965; 5
Kotarski, El-Saify, Bahaa (CR22) 2002; 19
GM Bahaa (6735_CR3) 2007; 24
GM Bahaa (6735_CR11) 2008; 25
6735_CR17
6735_CR16
F Tröltzsch (6735_CR26) 1984
A Ya (6735_CR18) 1963; 149
GM Bahaa (6735_CR15) 2012; A3
A Kowalewski (6735_CR23) 1981; 7
IV Girsanov (6735_CR20) 1972
GM Bahaa (6735_CR6) 2012; 2012
6735_CR10
6735_CR12
6735_CR9
GM Bahaa (6735_CR13) 2011; 21
PKC Wang (6735_CR29) 1975; 13
GM Bahaa (6735_CR8) 2016; 30
A Ya (6735_CR19) 1965; 5
S Walczak (6735_CR28) 1984; 42
JL Lions (6735_CR25) 1972
S Walczak (6735_CR27) 1984; 1
GM Bahaa (6735_CR4) 2008; 25
6735_CR21
W Kotarski (6735_CR22) 2002; 19
6735_CR24
GM Bahaa (6735_CR14) 2012; 33
GM Bahaa (6735_CR1) 2003; 20
GM Bahaa (6735_CR5) 2012; 3
GM Bahaa (6735_CR7) 2016; 33
GM Bahaa (6735_CR2) 2005; 22
References_xml – volume: 33
  start-page: 1
  issue: 3
  year: 2016
  end-page: 16
  ident: CR7
  article-title: Fractional optimal control problem for variational inequalities with control constraints
  publication-title: IMA J. Math. Control Inform.
– volume: 5
  start-page: 395
  issue: 3
  year: 1965
  end-page: 453
  ident: CR19
  article-title: Extremal problems with constraints
  publication-title: Zh. Vychisl. Mat. Mat. Fiz.
– volume: 7
  start-page: 55
  issue: 1
  year: 1981
  end-page: 74
  ident: CR23
  article-title: On application of Milutin–Dubovicki’s theorem to an optimal control problem for systems described by partial differential equations of hyperbolic type with time delay
  publication-title: Systems Sci.
– volume: A3
  start-page: 277
  year: 2012
  end-page: 291
  ident: CR15
  article-title: Optimal boundary control for infinite variables parabolic systems with time lags given in integral form
  publication-title: Iran. J. Sci. Technol.
– ident: CR16
– year: 1972
  ident: CR20
  publication-title: Lectures on Mathematical Theory of Extremum Problems
  doi: 10.1007/978-3-642-80684-1
– ident: CR12
– year: 1984
  ident: CR26
  publication-title: Optimality Conditions for Parabolic Control Problems and Applications
– volume: 13
  start-page: 274
  year: 1975
  end-page: 293
  ident: CR29
  article-title: Optimal control of parabolic systems with boundary conditions involving time delay
  publication-title: SIAM J. Control.
  doi: 10.1137/0313016
– ident: CR10
– volume: 149
  start-page: 759
  issue: 4
  year: 1963
  end-page: 762
  ident: CR18
  article-title: Extremal problems with constraints
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 42
  start-page: 561
  issue: 2
  year: 1984
  end-page: 582
  ident: CR28
  article-title: Some properties of cones in normed spaces and their application investigating extremal problems
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00934567
– volume: 20
  start-page: 167
  year: 2003
  end-page: 178
  ident: CR1
  article-title: Quadratic Pareto optimal control of parabolic equation with state-control constraints and an infinite number of variables
  publication-title: IMA J. Math. Control Inform.
  doi: 10.1093/imamci/20.2.167
– volume: 24
  start-page: 1
  year: 2007
  end-page: 12
  ident: CR3
  article-title: Optimal control for cooperative parabolic systems governed by Schrödinger operator with control constraints
  publication-title: IMA J. Math. Control Inform.
  doi: 10.1093/imamci/dnl001
– volume: 25
  start-page: 37
  year: 2008
  end-page: 48
  ident: CR4
  article-title: Optimal control problems of parabolic equations with an infinite number of variables and with equality constraints
  publication-title: IMA J. Math. Control Inform.
  doi: 10.1093/imamci/dnm002
– volume: 3
  start-page: 211
  issue: 3
  year: 2012
  end-page: 221
  ident: CR5
  article-title: Boundary control problem of infinite order distributed hyperbolic systems involving time lags
  publication-title: Intel. Control Automat.
  doi: 10.4236/ica.2012.33024
– volume: 25
  start-page: 49
  year: 2008
  end-page: 57
  ident: CR11
  article-title: Optimality conditions for infinite order parabolic coupled systems with control constraints and general performance index
  publication-title: IMA J. Math. Control Inform.
  doi: 10.1093/imamci/dnm003
– ident: CR21
– volume: 19
  start-page: 461
  issue: 4
  year: 2002
  end-page: 476
  ident: CR22
  article-title: Optimal control of parabolic equation with an infinite number of variables for nonstandard functional and time delay
  publication-title: IMA J. Math. Control Inform.
  doi: 10.1093/imamci/19.4.461
– year: 1972
  ident: CR25
  publication-title: Non-Homogeneous Boundary Value Problem and Applications
  doi: 10.1007/978-3-642-65217-2
– ident: CR17
– ident: CR9
– volume: 22
  start-page: 364
  year: 2005
  end-page: 375
  ident: CR2
  article-title: Time-optimal control problem for parabolic equations with control constraints and infinite number of variables
  publication-title: IMA J. Math. Control Inform.
  doi: 10.1093/imamci/dni033
– volume: 30
  start-page: 2177
  issue: 8
  year: 2016
  end-page: 2189
  ident: CR8
  article-title: Fractional optimal control problem for differential system with control constraints
  publication-title: Filomat.
  doi: 10.2298/FIL1608177B
– volume: 21
  start-page: 373
  issue: 4
  year: 2011
  end-page: 393
  ident: CR13
  article-title: Optimal control problem for infinite variables hyperbolic systems with time lags
  publication-title: Arch. Control Sci.
  doi: 10.2478/v10170-011-0003-5
– volume: 33
  start-page: 233
  issue: 2–3
  year: 2012
  end-page: 258
  ident: CR14
  article-title: Time-optimal control of infinite order parabolic system with time lags given in integral form
  publication-title: J. Inform. Optim. Sci.
– ident: CR24
– volume: 1
  start-page: 187
  year: 1984
  end-page: 196
  ident: CR27
  article-title: On some control problems
  publication-title: Acta Univ. Lodz. Folia Math.
– volume: 2012
  start-page: 1
  year: 2012
  end-page: 25
  ident: CR6
  article-title: Optimality conditions for infinite order distributed parabolic systems with multiple time delays given in integral form
  publication-title: J. Appl. Math.
– volume: 30
  start-page: 2177
  issue: 8
  year: 2016
  ident: 6735_CR8
  publication-title: Filomat.
  doi: 10.2298/FIL1608177B
– volume: A3
  start-page: 277
  year: 2012
  ident: 6735_CR15
  publication-title: Iran. J. Sci. Technol.
– volume: 25
  start-page: 49
  year: 2008
  ident: 6735_CR11
  publication-title: IMA J. Math. Control Inform.
  doi: 10.1093/imamci/dnm003
– ident: 6735_CR10
  doi: 10.1186/s13662-017-1121-6
– volume: 42
  start-page: 561
  issue: 2
  year: 1984
  ident: 6735_CR28
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00934567
– volume: 7
  start-page: 55
  issue: 1
  year: 1981
  ident: 6735_CR23
  publication-title: Systems Sci.
– ident: 6735_CR16
  doi: 10.1070/SM1975v027n02ABEH002506
– volume: 20
  start-page: 167
  year: 2003
  ident: 6735_CR1
  publication-title: IMA J. Math. Control Inform.
  doi: 10.1093/imamci/20.2.167
– volume-title: Lectures on Mathematical Theory of Extremum Problems
  year: 1972
  ident: 6735_CR20
  doi: 10.1007/978-3-642-80684-1
– volume: 2012
  start-page: 1
  year: 2012
  ident: 6735_CR6
  publication-title: J. Appl. Math.
– volume: 1
  start-page: 187
  year: 1984
  ident: 6735_CR27
  publication-title: Acta Univ. Lodz. Folia Math.
– volume: 33
  start-page: 233
  issue: 2–3
  year: 2012
  ident: 6735_CR14
  publication-title: J. Inform. Optim. Sci.
– volume: 24
  start-page: 1
  year: 2007
  ident: 6735_CR3
  publication-title: IMA J. Math. Control Inform.
  doi: 10.1093/imamci/dnl001
– volume: 19
  start-page: 461
  issue: 4
  year: 2002
  ident: 6735_CR22
  publication-title: IMA J. Math. Control Inform.
  doi: 10.1093/imamci/19.4.461
– volume: 3
  start-page: 211
  issue: 3
  year: 2012
  ident: 6735_CR5
  publication-title: Intel. Control Automat.
  doi: 10.4236/ica.2012.33024
– ident: 6735_CR9
  doi: 10.1186/s13662-016-0976-2
– ident: 6735_CR24
  doi: 10.1007/978-3-642-65024-6
– volume: 13
  start-page: 274
  year: 1975
  ident: 6735_CR29
  publication-title: SIAM J. Control.
  doi: 10.1137/0313016
– ident: 6735_CR12
  doi: 10.1080/01630563.2016.1186693
– ident: 6735_CR21
– volume: 5
  start-page: 395
  issue: 3
  year: 1965
  ident: 6735_CR19
  publication-title: Zh. Vychisl. Mat. Mat. Fiz.
– ident: 6735_CR17
  doi: 10.1070/SM1976v029n03ABEH003675
– volume: 25
  start-page: 37
  year: 2008
  ident: 6735_CR4
  publication-title: IMA J. Math. Control Inform.
  doi: 10.1093/imamci/dnm002
– volume-title: Optimality Conditions for Parabolic Control Problems and Applications
  year: 1984
  ident: 6735_CR26
– volume: 149
  start-page: 759
  issue: 4
  year: 1963
  ident: 6735_CR18
  publication-title: Dokl. Akad. Nauk SSSR
– volume: 22
  start-page: 364
  year: 2005
  ident: 6735_CR2
  publication-title: IMA J. Math. Control Inform.
  doi: 10.1093/imamci/dni033
– volume-title: Non-Homogeneous Boundary Value Problem and Applications
  year: 1972
  ident: 6735_CR25
  doi: 10.1007/978-3-642-65217-2
– volume: 21
  start-page: 373
  issue: 4
  year: 2011
  ident: 6735_CR13
  publication-title: Arch. Control Sci.
  doi: 10.2478/v10170-011-0003-5
– volume: 33
  start-page: 1
  issue: 3
  year: 2016
  ident: 6735_CR7
  publication-title: IMA J. Math. Control Inform.
SSID ssj0007683
Score 2.2937367
Snippet In this paper, we consider an optimal control problem for a system described by a parabolic linear partial differential equation with the Neumann boundary...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 199
SubjectTerms Boundary conditions
Differential equations
Heating
Initial conditions
Mathematics
Mathematics and Statistics
Neumann problem
Optimal control
Optimization
Partial differential equations
Theorems
Title Optimality Conditions for Systems with Distributed Parameters Based on the Dubovitskii–Milyutin Theorem with Incomplete Information About the Initial Conditions
URI https://link.springer.com/article/10.1007/s10958-023-06735-0
https://www.proquest.com/docview/2887040114
Volume 276
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELaq9lIOiNIiFkplIQQHsJS1Eyc57rZd2qJtEbBSOVlObFcraIKaLFJvfYe-QR-tT8JM4nQJlAOnHDJxnMy_PfOZkFcWUh3NTcocDwULMx0y0CLB8iDWMkOIqwaBb3osD2bh0Wl06pvCqq7avduSbCz1b81uaZQw8DEMD1eJGCTqaxHm7iDFMz66s78QQLdl9TFnQsShb5W5f4yeO_rTKP-1O9o4nckj8tBHi3TUsneDrNjiMXkwvYNarTbJzQko_XkTTdPdEjegUZAoxKLUo5FTXGule4iQi4dbWUM_aizJQlxNOgYvZmhZUBiS7i2y8ue8rr7N57dX19P590sQy4I2_fv2vB0HDApWocPT1Lcy4Qspbh_VzSCHWI4Ek15OZovMJvtfdg-YP3iB5UImAbMSPFYeDg3oJ09NYDIIAxyeS-y05RlyVIZacO1cIFNI2QwENsNMpjGuAJuheEJWi7KwTwmVLjG5MCbTiQytE9rw2CVDbbSJEifFgLzt_r_60eJrqCWSMnJLAbdUwy0VDMhLZJFC4IoCK2PO9KKq1OHnT2oUQ-aTplEUD8gbT-TK-kLn2jcawIQQ66pH-bpHedYifd9HuN0jBBXM-7c7kVHeBFQKflcMFhLyzQF514nR8va_P_LZ_5E_J-scBRqLGuQ2Wa0vFvYFBEp1tkPWRpPx-Biv779-2N9p9OQXqzQQkA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZQOQAHRFsQW9pioQoOYClrJ05yXFqqXegWBF2pN8uJ7WrVNkFNFokb79A36KP1SZhJnG4D5cA5E8fx_NsznwnZsZDqaG5S5ngoWJjpkIEWCZYHsZYZQlw1CHzTQzmehR-Po2PfFFZ11e7dkWRjqW81u6VRwsDHMLxcJWKQqN-HYCDBQq4ZH93YXwig27L6mDMh4tC3ytw9Rs8d_WmU_zodbZzO_hPy2EeLdNSyd5Xcs8UaeTS9gVqt1snVZ1D68yaaprslHkCjIFGIRalHI6e410r3ECEXL7eyhn7RWJKFuJr0PXgxQ8uCwpB0b5GVP-Z1dTqfX_-6nM7PfoJYFrTp37fn7ThgULAKHd6mvpUJP0jx-KhuBplgORJMejmZp2S2_-Fod8z8xQssFzIJmJXgsfJwaEA_eWoCk0EY4PBeYqctz5CjMtSCa-cCmULKZiCwGWYyjXEH2AzFM7JSlIV9Tqh0icmFMZlOZGid0IbHLhlqo02UOCkG5G23_up7i6-hlkjKyC0F3FINt1QwIK-QRQqBKwqsjDnRi6pSk29f1SiGzCdNoygekDeeyJX1hc61bzSACSHWVY_ydY_ypEX6votws0cIKpj3H3cio7wJqBQsVwwWEvLNAXnXidHy8b9_cuP_yF-SB-Oj6YE6mBx-ekEechRuLHCQm2SlvljYLQia6my70ZHfmZEQcw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELYqKlVwqOgP6gJtraqih2KR2ImTHLdsV2zbBQSsxM1yYhutKAki2UrceIe-QR-tT9KZJMuSlh44ZzJxPOP5sWc-E_LeQqqjuUmY44FgQaoDBqtIsMyLtEwR4qpG4Bvvy71J8OU0PL3TxV9Xu8-PJJueBkRpyqudS-N27jS-JWHMwN8wvGglZJC0PwZz7KNeT3j_1hZDMN2U2EecCREFbdvM_Tw6rulvA_3PSWntgIar5GkbOdJ-I-pn5JHNn5OV8S3savmC_DoAA3BRR9Z0t8DDaFQqCnEpbZHJKe670gGi5eJFV9bQQ43lWYixST-BRzO0yCmwpINZWvyYVuX5dPr75ud4-v0aVDSndS-_vWj4gHHBinR4m7ZtTfhBikdJVc1khKVJMOjFYF6SyfDzye4eay9hYJmQscesBO-VBb6ByeWJ8UwKIYHDO4qdtjxF6cpAC66d82QC6ZuBIMdPZRLhbrDxxRpZyovcviJUuthkwphUxzKwTmjDIxf72mgTxk6KHvk4n3912WBtqAWqMkpLgbRULS3l9cg7FJFCEIscq2TO9Kws1ej4SPUjyIKSJAyjHvnQErmiutKZbpsOYECIe9Wh3OpQnjWo3_cRbnYIYTlm3cdzlVGtOSgVTFcE1hJyzx7ZnqvR4vH_f3L9YeRvyZPDwVB9G-1_3SDLHHUbax3kJlmqrmb2NcRPVfqmXiJ_ANMjFK8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OPTIMALITY+CONDITIONS+FOR+SYSTEMS+WITH+DISTRIBUTED+PARAMETERS+BASED+ON+THE+DUBOVITSKII--MILYUTIN+THEOREM+WITH+INCOMPLETE+INFORMATION+ABOUT+THE+INITIAL+CONDITIONS&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Bahaa%2C+G.M&rft.date=2023-10-06&rft.pub=Springer&rft.issn=1072-3374&rft.volume=276&rft.issue=2&rft.spage=1&rft_id=info:doi/10.1007%2Fs10958-023-06735-0&rft.externalDocID=A775899557
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon