Optimality Conditions for Systems with Distributed Parameters Based on the Dubovitskii–Milyutin Theorem with Incomplete Information About the Initial Conditions
In this paper, we consider an optimal control problem for a system described by a parabolic linear partial differential equation with the Neumann boundary condition. We impose some constraints on the control. The performance functional has the integral form. The control time T is fixed. The initial...
Saved in:
Published in | Journal of mathematical sciences (New York, N.Y.) Vol. 276; no. 2; pp. 199 - 215 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
06.10.2023
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we consider an optimal control problem for a system described by a parabolic linear partial differential equation with the Neumann boundary condition. We impose some constraints on the control. The performance functional has the integral form. The control time
T
is fixed. The initial condition is not given by a known function but belongs to a certain set (incomplete information about the initial state). To obtain optimality conditions for the Neumann problem, a generalization of the Dubovitskii–Milyutin theorem was applied. The problem formulated in this paper describes the process of optimal heating for which we do not have exact information about the initial temperature of the heating object. We also present an example in which admissible controls and one of the initial conditions are given by means of the norm constraints. |
---|---|
AbstractList | In this paper, we consider an optimal control problem for a system described by a parabolic linear partial differential equation with the Neumann boundary condition. We impose some constraints on the control. The performance functional has the integral form. The control time T is fixed. The initial condition is not given by a known function but belongs to a certain set (incomplete information about the initial state). To obtain optimality conditions for the Neumann problem, a generalization of the Dubovitskii--Milyutin theorem was applied. The problem formulated in this paper describes the process of optimal heating for which we do not have exact information about the initial temperature of the heating object. We also present an example in which admissible controls and one of the initial conditions are given by means of the norm constraints. In this paper, we consider an optimal control problem for a system described by a parabolic linear partial differential equation with the Neumann boundary condition. We impose some constraints on the control. The performance functional has the integral form. The control time T is fixed. The initial condition is not given by a known function but belongs to a certain set (incomplete information about the initial state). To obtain optimality conditions for the Neumann problem, a generalization of the Dubovitskii--Milyutin theorem was applied. The problem formulated in this paper describes the process of optimal heating for which we do not have exact information about the initial temperature of the heating object. We also present an example in which admissible controls and one of the initial conditions are given by means of the norm constraints. Keywords and phrases: optimal control problem, Neumann problem, second-order parabolic operator, Dubovitskii--Milyutin theorem, conical approximations, optimality conditions. AMS Subject Classification: 37N10, 76N15, 76U05 In this paper, we consider an optimal control problem for a system described by a parabolic linear partial differential equation with the Neumann boundary condition. We impose some constraints on the control. The performance functional has the integral form. The control time T is fixed. The initial condition is not given by a known function but belongs to a certain set (incomplete information about the initial state). To obtain optimality conditions for the Neumann problem, a generalization of the Dubovitskii–Milyutin theorem was applied. The problem formulated in this paper describes the process of optimal heating for which we do not have exact information about the initial temperature of the heating object. We also present an example in which admissible controls and one of the initial conditions are given by means of the norm constraints. |
Audience | Academic |
Author | Bahaa, G. M. |
Author_xml | – sequence: 1 givenname: G. M. surname: Bahaa fullname: Bahaa, G. M. email: gm@yahoo.com organization: Taibah University, Beni-Suef University |
BookMark | eNp9ksFu1DAQhi3USrRbXoCTJU4cUuw4iZ3jsi1lpVZFtJwtJ7F3XRJ7sR1gb30H3oBH40mYNpXKSivkg63R98-MZ_5jdOC80wi9puSUEsLfRUrqUmQkZxmpOCsz8gId0ZKzTPC6PIA34XnGGC9eouMY7wiIKsGO0O_rTbKD6m3a4oV3nU3Wu4iND_hmG5MeIv5h0xqf2ZiCbcakO_xJBTXopEPE71WEgHc4rTU-Gxv_3ab41do_97-ubL8dk3X4dq190MOUZ-laP2x6UMMTqgzqoSCeN35Mj0mWDlpQ_T_NnKBDo_qoXz3dM_Tlw_nt4mN2eX2xXMwvs5ZVgmS64lS0Be0YrfO6I10jaG5yIZhROm-KRhVVoViujCFVnQtAqoI2Vc1rY3hH2Qy9mfJugv826pjknR-Dg5ISsnBSEEqLZ2qlei0t_CEF1Q42tnLOeSnquoSxz1C2h1ppp4PqYXXGQniHP93Dw-n0YNu9grc7AmCS_plWaoxRLm8-77L5xLbBxxi0kZsAOw9bSYl8sI-c7CPBPvLRPpKAiE2iCLBb6fA8jf-o_gI-PcuM |
Cites_doi | 10.1007/978-3-642-80684-1 10.1137/0313016 10.1007/BF00934567 10.1093/imamci/20.2.167 10.1093/imamci/dnl001 10.1093/imamci/dnm002 10.4236/ica.2012.33024 10.1093/imamci/dnm003 10.1093/imamci/19.4.461 10.1007/978-3-642-65217-2 10.1093/imamci/dni033 10.2298/FIL1608177B 10.2478/v10170-011-0003-5 10.1186/s13662-017-1121-6 10.1070/SM1975v027n02ABEH002506 10.1186/s13662-016-0976-2 10.1007/978-3-642-65024-6 10.1080/01630563.2016.1186693 10.1070/SM1976v029n03ABEH003675 |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2023 Springer |
Copyright_xml | – notice: Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2023 Springer |
DBID | AAYXX CITATION ISR |
DOI | 10.1007/s10958-023-06735-0 |
DatabaseName | CrossRef Gale In Context: Science |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1573-8795 |
EndPage | 215 |
ExternalDocumentID | A775899557 10_1007_s10958_023_06735_0 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 642 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IEA IHE IJ- IKXTQ IOF ISR ITC IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9R PF0 PT4 PT5 QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZWQNP ~8M ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION AEIIB ABRTQ |
ID | FETCH-LOGICAL-c3680-e6718c41d31929d0db812f2883fae2b4ba464a32aff069289d0641b6979ff7d13 |
IEDL.DBID | U2A |
ISSN | 1072-3374 |
IngestDate | Fri Jul 25 10:52:13 EDT 2025 Tue Jun 17 22:03:46 EDT 2025 Fri Jun 13 00:01:50 EDT 2025 Tue Jun 10 21:02:48 EDT 2025 Fri Jun 27 05:27:30 EDT 2025 Tue Jul 01 01:42:24 EDT 2025 Fri Feb 21 02:43:56 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | optimality conditions Neumann problem 37N10 optimal control problem second-order parabolic operator 76N15 Dubovitskii–Milyutin theorem 76U05 conical approximations |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3680-e6718c41d31929d0db812f2883fae2b4ba464a32aff069289d0641b6979ff7d13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10958-023-06735-0.pdf |
PQID | 2887040114 |
PQPubID | 2043545 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2887040114 gale_infotracmisc_A775899557 gale_infotracgeneralonefile_A775899557 gale_infotracacademiconefile_A775899557 gale_incontextgauss_ISR_A775899557 crossref_primary_10_1007_s10958_023_06735_0 springer_journals_10_1007_s10958_023_06735_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231006 |
PublicationDateYYYYMMDD | 2023-10-06 |
PublicationDate_xml | – month: 10 year: 2023 text: 20231006 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: New York |
PublicationTitle | Journal of mathematical sciences (New York, N.Y.) |
PublicationTitleAbbrev | J Math Sci |
PublicationYear | 2023 |
Publisher | Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | Bahaa (CR1) 2003; 20 Bahaa (CR5) 2012; 3 CR17 Walczak (CR28) 1984; 42 CR16 CR12 Bahaa (CR3) 2007; 24 CR10 Bahaa, Kotarski (CR11) 2008; 25 Lions, Magenes (CR25) 1972 Bahaa (CR2) 2005; 22 Girsanov (CR20) 1972 Bahaa, Tharwat (CR14) 2012; 33 Bahaa (CR4) 2008; 25 Bahaa (CR6) 2012; 2012 Bahaa (CR7) 2016; 33 CR9 Bahaa, Tharwat (CR13) 2011; 21 CR24 Wang (CR29) 1975; 13 Bahaa (CR8) 2016; 30 Tröltzsch (CR26) 1984 CR21 Walczak (CR27) 1984; 1 Ya, Dubovitskii and A. A. Milyutin (CR18) 1963; 149 Kowalewski, Kotarski (CR23) 1981; 7 Bahaa, Tharwat (CR15) 2012; A3 Ya, Dubovitskii and A. A. Milyutin (CR19) 1965; 5 Kotarski, El-Saify, Bahaa (CR22) 2002; 19 GM Bahaa (6735_CR3) 2007; 24 GM Bahaa (6735_CR11) 2008; 25 6735_CR17 6735_CR16 F Tröltzsch (6735_CR26) 1984 A Ya (6735_CR18) 1963; 149 GM Bahaa (6735_CR15) 2012; A3 A Kowalewski (6735_CR23) 1981; 7 IV Girsanov (6735_CR20) 1972 GM Bahaa (6735_CR6) 2012; 2012 6735_CR10 6735_CR12 6735_CR9 GM Bahaa (6735_CR13) 2011; 21 PKC Wang (6735_CR29) 1975; 13 GM Bahaa (6735_CR8) 2016; 30 A Ya (6735_CR19) 1965; 5 S Walczak (6735_CR28) 1984; 42 JL Lions (6735_CR25) 1972 S Walczak (6735_CR27) 1984; 1 GM Bahaa (6735_CR4) 2008; 25 6735_CR21 W Kotarski (6735_CR22) 2002; 19 6735_CR24 GM Bahaa (6735_CR14) 2012; 33 GM Bahaa (6735_CR1) 2003; 20 GM Bahaa (6735_CR5) 2012; 3 GM Bahaa (6735_CR7) 2016; 33 GM Bahaa (6735_CR2) 2005; 22 |
References_xml | – volume: 33 start-page: 1 issue: 3 year: 2016 end-page: 16 ident: CR7 article-title: Fractional optimal control problem for variational inequalities with control constraints publication-title: IMA J. Math. Control Inform. – volume: 5 start-page: 395 issue: 3 year: 1965 end-page: 453 ident: CR19 article-title: Extremal problems with constraints publication-title: Zh. Vychisl. Mat. Mat. Fiz. – volume: 7 start-page: 55 issue: 1 year: 1981 end-page: 74 ident: CR23 article-title: On application of Milutin–Dubovicki’s theorem to an optimal control problem for systems described by partial differential equations of hyperbolic type with time delay publication-title: Systems Sci. – volume: A3 start-page: 277 year: 2012 end-page: 291 ident: CR15 article-title: Optimal boundary control for infinite variables parabolic systems with time lags given in integral form publication-title: Iran. J. Sci. Technol. – ident: CR16 – year: 1972 ident: CR20 publication-title: Lectures on Mathematical Theory of Extremum Problems doi: 10.1007/978-3-642-80684-1 – ident: CR12 – year: 1984 ident: CR26 publication-title: Optimality Conditions for Parabolic Control Problems and Applications – volume: 13 start-page: 274 year: 1975 end-page: 293 ident: CR29 article-title: Optimal control of parabolic systems with boundary conditions involving time delay publication-title: SIAM J. Control. doi: 10.1137/0313016 – ident: CR10 – volume: 149 start-page: 759 issue: 4 year: 1963 end-page: 762 ident: CR18 article-title: Extremal problems with constraints publication-title: Dokl. Akad. Nauk SSSR – volume: 42 start-page: 561 issue: 2 year: 1984 end-page: 582 ident: CR28 article-title: Some properties of cones in normed spaces and their application investigating extremal problems publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00934567 – volume: 20 start-page: 167 year: 2003 end-page: 178 ident: CR1 article-title: Quadratic Pareto optimal control of parabolic equation with state-control constraints and an infinite number of variables publication-title: IMA J. Math. Control Inform. doi: 10.1093/imamci/20.2.167 – volume: 24 start-page: 1 year: 2007 end-page: 12 ident: CR3 article-title: Optimal control for cooperative parabolic systems governed by Schrödinger operator with control constraints publication-title: IMA J. Math. Control Inform. doi: 10.1093/imamci/dnl001 – volume: 25 start-page: 37 year: 2008 end-page: 48 ident: CR4 article-title: Optimal control problems of parabolic equations with an infinite number of variables and with equality constraints publication-title: IMA J. Math. Control Inform. doi: 10.1093/imamci/dnm002 – volume: 3 start-page: 211 issue: 3 year: 2012 end-page: 221 ident: CR5 article-title: Boundary control problem of infinite order distributed hyperbolic systems involving time lags publication-title: Intel. Control Automat. doi: 10.4236/ica.2012.33024 – volume: 25 start-page: 49 year: 2008 end-page: 57 ident: CR11 article-title: Optimality conditions for infinite order parabolic coupled systems with control constraints and general performance index publication-title: IMA J. Math. Control Inform. doi: 10.1093/imamci/dnm003 – ident: CR21 – volume: 19 start-page: 461 issue: 4 year: 2002 end-page: 476 ident: CR22 article-title: Optimal control of parabolic equation with an infinite number of variables for nonstandard functional and time delay publication-title: IMA J. Math. Control Inform. doi: 10.1093/imamci/19.4.461 – year: 1972 ident: CR25 publication-title: Non-Homogeneous Boundary Value Problem and Applications doi: 10.1007/978-3-642-65217-2 – ident: CR17 – ident: CR9 – volume: 22 start-page: 364 year: 2005 end-page: 375 ident: CR2 article-title: Time-optimal control problem for parabolic equations with control constraints and infinite number of variables publication-title: IMA J. Math. Control Inform. doi: 10.1093/imamci/dni033 – volume: 30 start-page: 2177 issue: 8 year: 2016 end-page: 2189 ident: CR8 article-title: Fractional optimal control problem for differential system with control constraints publication-title: Filomat. doi: 10.2298/FIL1608177B – volume: 21 start-page: 373 issue: 4 year: 2011 end-page: 393 ident: CR13 article-title: Optimal control problem for infinite variables hyperbolic systems with time lags publication-title: Arch. Control Sci. doi: 10.2478/v10170-011-0003-5 – volume: 33 start-page: 233 issue: 2–3 year: 2012 end-page: 258 ident: CR14 article-title: Time-optimal control of infinite order parabolic system with time lags given in integral form publication-title: J. Inform. Optim. Sci. – ident: CR24 – volume: 1 start-page: 187 year: 1984 end-page: 196 ident: CR27 article-title: On some control problems publication-title: Acta Univ. Lodz. Folia Math. – volume: 2012 start-page: 1 year: 2012 end-page: 25 ident: CR6 article-title: Optimality conditions for infinite order distributed parabolic systems with multiple time delays given in integral form publication-title: J. Appl. Math. – volume: 30 start-page: 2177 issue: 8 year: 2016 ident: 6735_CR8 publication-title: Filomat. doi: 10.2298/FIL1608177B – volume: A3 start-page: 277 year: 2012 ident: 6735_CR15 publication-title: Iran. J. Sci. Technol. – volume: 25 start-page: 49 year: 2008 ident: 6735_CR11 publication-title: IMA J. Math. Control Inform. doi: 10.1093/imamci/dnm003 – ident: 6735_CR10 doi: 10.1186/s13662-017-1121-6 – volume: 42 start-page: 561 issue: 2 year: 1984 ident: 6735_CR28 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00934567 – volume: 7 start-page: 55 issue: 1 year: 1981 ident: 6735_CR23 publication-title: Systems Sci. – ident: 6735_CR16 doi: 10.1070/SM1975v027n02ABEH002506 – volume: 20 start-page: 167 year: 2003 ident: 6735_CR1 publication-title: IMA J. Math. Control Inform. doi: 10.1093/imamci/20.2.167 – volume-title: Lectures on Mathematical Theory of Extremum Problems year: 1972 ident: 6735_CR20 doi: 10.1007/978-3-642-80684-1 – volume: 2012 start-page: 1 year: 2012 ident: 6735_CR6 publication-title: J. Appl. Math. – volume: 1 start-page: 187 year: 1984 ident: 6735_CR27 publication-title: Acta Univ. Lodz. Folia Math. – volume: 33 start-page: 233 issue: 2–3 year: 2012 ident: 6735_CR14 publication-title: J. Inform. Optim. Sci. – volume: 24 start-page: 1 year: 2007 ident: 6735_CR3 publication-title: IMA J. Math. Control Inform. doi: 10.1093/imamci/dnl001 – volume: 19 start-page: 461 issue: 4 year: 2002 ident: 6735_CR22 publication-title: IMA J. Math. Control Inform. doi: 10.1093/imamci/19.4.461 – volume: 3 start-page: 211 issue: 3 year: 2012 ident: 6735_CR5 publication-title: Intel. Control Automat. doi: 10.4236/ica.2012.33024 – ident: 6735_CR9 doi: 10.1186/s13662-016-0976-2 – ident: 6735_CR24 doi: 10.1007/978-3-642-65024-6 – volume: 13 start-page: 274 year: 1975 ident: 6735_CR29 publication-title: SIAM J. Control. doi: 10.1137/0313016 – ident: 6735_CR12 doi: 10.1080/01630563.2016.1186693 – ident: 6735_CR21 – volume: 5 start-page: 395 issue: 3 year: 1965 ident: 6735_CR19 publication-title: Zh. Vychisl. Mat. Mat. Fiz. – ident: 6735_CR17 doi: 10.1070/SM1976v029n03ABEH003675 – volume: 25 start-page: 37 year: 2008 ident: 6735_CR4 publication-title: IMA J. Math. Control Inform. doi: 10.1093/imamci/dnm002 – volume-title: Optimality Conditions for Parabolic Control Problems and Applications year: 1984 ident: 6735_CR26 – volume: 149 start-page: 759 issue: 4 year: 1963 ident: 6735_CR18 publication-title: Dokl. Akad. Nauk SSSR – volume: 22 start-page: 364 year: 2005 ident: 6735_CR2 publication-title: IMA J. Math. Control Inform. doi: 10.1093/imamci/dni033 – volume-title: Non-Homogeneous Boundary Value Problem and Applications year: 1972 ident: 6735_CR25 doi: 10.1007/978-3-642-65217-2 – volume: 21 start-page: 373 issue: 4 year: 2011 ident: 6735_CR13 publication-title: Arch. Control Sci. doi: 10.2478/v10170-011-0003-5 – volume: 33 start-page: 1 issue: 3 year: 2016 ident: 6735_CR7 publication-title: IMA J. Math. Control Inform. |
SSID | ssj0007683 |
Score | 2.2937367 |
Snippet | In this paper, we consider an optimal control problem for a system described by a parabolic linear partial differential equation with the Neumann boundary... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 199 |
SubjectTerms | Boundary conditions Differential equations Heating Initial conditions Mathematics Mathematics and Statistics Neumann problem Optimal control Optimization Partial differential equations Theorems |
Title | Optimality Conditions for Systems with Distributed Parameters Based on the Dubovitskii–Milyutin Theorem with Incomplete Information About the Initial Conditions |
URI | https://link.springer.com/article/10.1007/s10958-023-06735-0 https://www.proquest.com/docview/2887040114 |
Volume | 276 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELaq9lIOiNIiFkplIQQHsJS1Eyc57rZd2qJtEbBSOVlObFcraIKaLFJvfYe-QR-tT8JM4nQJlAOnHDJxnMy_PfOZkFcWUh3NTcocDwULMx0y0CLB8iDWMkOIqwaBb3osD2bh0Wl06pvCqq7avduSbCz1b81uaZQw8DEMD1eJGCTqaxHm7iDFMz66s78QQLdl9TFnQsShb5W5f4yeO_rTKP-1O9o4nckj8tBHi3TUsneDrNjiMXkwvYNarTbJzQko_XkTTdPdEjegUZAoxKLUo5FTXGule4iQi4dbWUM_aizJQlxNOgYvZmhZUBiS7i2y8ue8rr7N57dX19P590sQy4I2_fv2vB0HDApWocPT1Lcy4Qspbh_VzSCHWI4Ek15OZovMJvtfdg-YP3iB5UImAbMSPFYeDg3oJ09NYDIIAxyeS-y05RlyVIZacO1cIFNI2QwENsNMpjGuAJuheEJWi7KwTwmVLjG5MCbTiQytE9rw2CVDbbSJEifFgLzt_r_60eJrqCWSMnJLAbdUwy0VDMhLZJFC4IoCK2PO9KKq1OHnT2oUQ-aTplEUD8gbT-TK-kLn2jcawIQQ66pH-bpHedYifd9HuN0jBBXM-7c7kVHeBFQKflcMFhLyzQF514nR8va_P_LZ_5E_J-scBRqLGuQ2Wa0vFvYFBEp1tkPWRpPx-Biv779-2N9p9OQXqzQQkA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZQOQAHRFsQW9pioQoOYClrJ05yXFqqXegWBF2pN8uJ7WrVNkFNFokb79A36KP1SZhJnG4D5cA5E8fx_NsznwnZsZDqaG5S5ngoWJjpkIEWCZYHsZYZQlw1CHzTQzmehR-Po2PfFFZ11e7dkWRjqW81u6VRwsDHMLxcJWKQqN-HYCDBQq4ZH93YXwig27L6mDMh4tC3ytw9Rs8d_WmU_zodbZzO_hPy2EeLdNSyd5Xcs8UaeTS9gVqt1snVZ1D68yaaprslHkCjIFGIRalHI6e410r3ECEXL7eyhn7RWJKFuJr0PXgxQ8uCwpB0b5GVP-Z1dTqfX_-6nM7PfoJYFrTp37fn7ThgULAKHd6mvpUJP0jx-KhuBplgORJMejmZp2S2_-Fod8z8xQssFzIJmJXgsfJwaEA_eWoCk0EY4PBeYqctz5CjMtSCa-cCmULKZiCwGWYyjXEH2AzFM7JSlIV9Tqh0icmFMZlOZGid0IbHLhlqo02UOCkG5G23_up7i6-hlkjKyC0F3FINt1QwIK-QRQqBKwqsjDnRi6pSk29f1SiGzCdNoygekDeeyJX1hc61bzSACSHWVY_ydY_ypEX6votws0cIKpj3H3cio7wJqBQsVwwWEvLNAXnXidHy8b9_cuP_yF-SB-Oj6YE6mBx-ekEechRuLHCQm2SlvljYLQia6my70ZHfmZEQcw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELYqKlVwqOgP6gJtraqih2KR2ImTHLdsV2zbBQSsxM1yYhutKAki2UrceIe-QR-tT9KZJMuSlh44ZzJxPOP5sWc-E_LeQqqjuUmY44FgQaoDBqtIsMyLtEwR4qpG4Bvvy71J8OU0PL3TxV9Xu8-PJJueBkRpyqudS-N27jS-JWHMwN8wvGglZJC0PwZz7KNeT3j_1hZDMN2U2EecCREFbdvM_Tw6rulvA_3PSWntgIar5GkbOdJ-I-pn5JHNn5OV8S3savmC_DoAA3BRR9Z0t8DDaFQqCnEpbZHJKe670gGi5eJFV9bQQ43lWYixST-BRzO0yCmwpINZWvyYVuX5dPr75ud4-v0aVDSndS-_vWj4gHHBinR4m7ZtTfhBikdJVc1khKVJMOjFYF6SyfDzye4eay9hYJmQscesBO-VBb6ByeWJ8UwKIYHDO4qdtjxF6cpAC66d82QC6ZuBIMdPZRLhbrDxxRpZyovcviJUuthkwphUxzKwTmjDIxf72mgTxk6KHvk4n3912WBtqAWqMkpLgbRULS3l9cg7FJFCEIscq2TO9Kws1ej4SPUjyIKSJAyjHvnQErmiutKZbpsOYECIe9Wh3OpQnjWo3_cRbnYIYTlm3cdzlVGtOSgVTFcE1hJyzx7ZnqvR4vH_f3L9YeRvyZPDwVB9G-1_3SDLHHUbax3kJlmqrmb2NcRPVfqmXiJ_ANMjFK8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OPTIMALITY+CONDITIONS+FOR+SYSTEMS+WITH+DISTRIBUTED+PARAMETERS+BASED+ON+THE+DUBOVITSKII--MILYUTIN+THEOREM+WITH+INCOMPLETE+INFORMATION+ABOUT+THE+INITIAL+CONDITIONS&rft.jtitle=Journal+of+mathematical+sciences+%28New+York%2C+N.Y.%29&rft.au=Bahaa%2C+G.M&rft.date=2023-10-06&rft.pub=Springer&rft.issn=1072-3374&rft.volume=276&rft.issue=2&rft.spage=1&rft_id=info:doi/10.1007%2Fs10958-023-06735-0&rft.externalDocID=A775899557 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1072-3374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1072-3374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1072-3374&client=summon |