Segmented Bayesian calibration approach for estimating age in forensic science
Forensic age estimation is receiving growing attention from researchers in the last few years. Accurate estimates of age are needed both for identifying real age in individuals without any identity document and assessing it for human remains. The methods applied in such context are mostly based on r...
Saved in:
Published in | Biometrical journal Vol. 61; no. 6; pp. 1575 - 1594 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley - VCH Verlag GmbH & Co. KGaA
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Forensic age estimation is receiving growing attention from researchers in the last few years. Accurate estimates of age are needed both for identifying real age in individuals without any identity document and assessing it for human remains. The methods applied in such context are mostly based on radiological analysis of some anatomical districts and entail the use of a regression model. However, estimating chronological age by regression models leads to overestimated ages in younger subjects and underestimated ages in older ones. We introduced a full Bayesian calibration method combined with a segmented function for age estimation that relied on a Normal distribution as a density model to mitigate this bias. In this way, we were also able to model the decreasing growth rate in juveniles. We compared our new Bayesian‐segmented model with other existing approaches. The proposed method helped producing more robust and precise forecasts of age than compared models while exhibited comparable accuracy in terms of forecasting measures. Our method seemed to overcome the estimation bias also when applied to a real data set of South‐African juvenile subjects. |
---|---|
AbstractList | Forensic age estimation is receiving growing attention from researchers in the last few years. Accurate estimates of age are needed both for identifying real age in individuals without any identity document and assessing it for human remains. The methods applied in such context are mostly based on radiological analysis of some anatomical districts and entail the use of a regression model. However, estimating chronological age by regression models leads to overestimated ages in younger subjects and underestimated ages in older ones. We introduced a full Bayesian calibration method combined with a segmented function for age estimation that relied on a Normal distribution as a density model to mitigate this bias. In this way, we were also able to model the decreasing growth rate in juveniles. We compared our new Bayesian-segmented model with other existing approaches. The proposed method helped producing more robust and precise forecasts of age than compared models while exhibited comparable accuracy in terms of forecasting measures. Our method seemed to overcome the estimation bias also when applied to a real data set of South-African juvenile subjects. Forensic age estimation is receiving growing attention from researchers in the last few years. Accurate estimates of age are needed both for identifying real age in individuals without any identity document and assessing it for human remains. The methods applied in such context are mostly based on radiological analysis of some anatomical districts and entail the use of a regression model. However, estimating chronological age by regression models leads to overestimated ages in younger subjects and underestimated ages in older ones. We introduced a full Bayesian calibration method combined with a segmented function for age estimation that relied on a Normal distribution as a density model to mitigate this bias. In this way, we were also able to model the decreasing growth rate in juveniles. We compared our new Bayesian‐segmented model with other existing approaches. The proposed method helped producing more robust and precise forecasts of age than compared models while exhibited comparable accuracy in terms of forecasting measures. Our method seemed to overcome the estimation bias also when applied to a real data set of South‐African juvenile subjects. Forensic age estimation is receiving growing attention from researchers in the last few years. Accurate estimates of age are needed both for identifying real age in individuals without any identity document and assessing it for human remains. The methods applied in such context are mostly based on radiological analysis of some anatomical districts and entail the use of a regression model. However, estimating chronological age by regression models leads to overestimated ages in younger subjects and underestimated ages in older ones. We introduced a full Bayesian calibration method combined with a segmented function for age estimation that relied on a Normal distribution as a density model to mitigate this bias. In this way, we were also able to model the decreasing growth rate in juveniles. We compared our new Bayesian-segmented model with other existing approaches. The proposed method helped producing more robust and precise forecasts of age than compared models while exhibited comparable accuracy in terms of forecasting measures. Our method seemed to overcome the estimation bias also when applied to a real data set of South-African juvenile subjects.Forensic age estimation is receiving growing attention from researchers in the last few years. Accurate estimates of age are needed both for identifying real age in individuals without any identity document and assessing it for human remains. The methods applied in such context are mostly based on radiological analysis of some anatomical districts and entail the use of a regression model. However, estimating chronological age by regression models leads to overestimated ages in younger subjects and underestimated ages in older ones. We introduced a full Bayesian calibration method combined with a segmented function for age estimation that relied on a Normal distribution as a density model to mitigate this bias. In this way, we were also able to model the decreasing growth rate in juveniles. We compared our new Bayesian-segmented model with other existing approaches. The proposed method helped producing more robust and precise forecasts of age than compared models while exhibited comparable accuracy in terms of forecasting measures. Our method seemed to overcome the estimation bias also when applied to a real data set of South-African juvenile subjects. |
Author | Skrami, Edlira Bucci, Andrea Ferrante, Luigi Cameriere, Roberto Faragalli, Andrea Gesuita, Rosaria Carle, Flavia |
Author_xml | – sequence: 1 givenname: Andrea orcidid: 0000-0001-9872-9761 surname: Bucci fullname: Bucci, Andrea organization: Università Politecnica delle Marche – sequence: 2 givenname: Edlira surname: Skrami fullname: Skrami, Edlira email: e.skrami@staff.univpm.it organization: Università Politecnica delle Marche – sequence: 3 givenname: Andrea surname: Faragalli fullname: Faragalli, Andrea organization: Università Politecnica delle Marche – sequence: 4 givenname: Rosaria surname: Gesuita fullname: Gesuita, Rosaria organization: Università Politecnica delle Marche – sequence: 5 givenname: Roberto surname: Cameriere fullname: Cameriere, Roberto organization: Università degli Studi di Macerata – sequence: 6 givenname: Flavia surname: Carle fullname: Carle, Flavia organization: Università Politecnica delle Marche – sequence: 7 givenname: Luigi surname: Ferrante fullname: Ferrante, Luigi organization: Università Politecnica delle Marche |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31389072$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1PHDEMxSNEVRbaK0c0EpdeZuvEmY8cAfWDiraHtucoyXiWrGYySzKrav_7ZsvCAanqyZL1e_az3yk7DlMgxs45LDmAeG_9uF4K4AoAeH3EFrwSvJSA9TFbAAossZXNCTtNaZ0RBVK8ZifIsVXQiAX79oNWI4WZuuLa7Ch5EwpnBm-jmf0UCrPZxMm4-6KfYkFp9mPuh1VhVlT4sO9SSN4VyXkKjt6wV70ZEr091DP26-OHnzefy7vvn25vru5Kh3ULJbrKonQWWtcLgqqqjQMBplJYW2o70ckKSZG1aBu0ssPWcQu9EZ1CqDmesXePc7O7h232pUefHA2DCTRtkxaiVqgq3qiMXr5A19M2huxOC4RW1iCbNlMXB2prR-r0JuZL404_fSoD8hFwcUopUq-dn__-aI7GD5qD3gei94Ho50CybPlC9jT5n4LDnt9-oN1_aH19-_WLgBz3H2Hem8M |
CitedBy_id | crossref_primary_10_3390_ijerph20021201 crossref_primary_10_1016_j_medcli_2024_07_008 crossref_primary_10_1016_j_medcle_2024_07_007 crossref_primary_10_1016_j_forsciint_2024_112353 crossref_primary_10_1007_s40300_021_00223_8 crossref_primary_10_1007_s00414_020_02438_2 crossref_primary_10_17816_dent637462 |
Cites_doi | 10.1007/s00414-012-0754-y 10.1007/s00414-005-0530-3 10.1002/(SICI)1096-8644(199710)104:2<259::AID-AJPA11>3.0.CO;2-Z 10.2307/2998540 10.1080/03014460701556296 10.2174/1874210601610010099 10.1177/00220345630420062701 10.14219/jada.archive.1950.0132 10.1214/aoms/1177732214 10.1007/s00414-005-0047-9 10.1520/JFS15346J 10.1002/sim.1545 10.1016/0379-0738(95)01760-G 10.1007/s00414-007-0210-6 10.1016/j.forsciint.2009.09.008 10.1002/sim.6448 10.1016/S0379-0738(03)00263-9 10.1111/j.1556-4029.2012.02120.x 10.1214/aos/1176343000 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/bimj.201900016 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Health & Medical Complete (Alumni) CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Dentistry |
EISSN | 1521-4036 |
EndPage | 1594 |
ExternalDocumentID | 31389072 10_1002_bimj_201900016 BIMJ2040 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Università Politecnica delle Marche funderid: Decision n.321,2016 |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 3-9 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DUUFO EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M67 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RX1 RYL SAMSI SUPJJ SV3 TN5 UB1 V2E VH1 W8V W99 WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XPP XV2 Y6R YHZ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c3680-3c5b34cb08cf2e0556ac020a5936be8d2d453e9ebb3b73b4d38c1b0fa2d930613 |
IEDL.DBID | DR2 |
ISSN | 0323-3847 1521-4036 |
IngestDate | Fri Jul 11 08:29:42 EDT 2025 Sun Jul 13 03:51:05 EDT 2025 Thu Apr 03 07:07:02 EDT 2025 Tue Jul 01 04:18:02 EDT 2025 Thu Apr 24 23:04:36 EDT 2025 Wed Jan 22 16:38:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Bayesian calibration healthcare in young people age estimation segmented regression |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3680-3c5b34cb08cf2e0556ac020a5936be8d2d453e9ebb3b73b4d38c1b0fa2d930613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9872-9761 |
PMID | 31389072 |
PQID | 2308460478 |
PQPubID | 105592 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2269395179 proquest_journals_2308460478 pubmed_primary_31389072 crossref_citationtrail_10_1002_bimj_201900016 crossref_primary_10_1002_bimj_201900016 wiley_primary_10_1002_bimj_201900016_BIMJ2040 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2019 2019-11-00 20191101 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: November 2019 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Biometrical journal |
PublicationTitleAlternate | Biom J |
PublicationYear | 2019 |
Publisher | Wiley - VCH Verlag GmbH & Co. KGaA |
Publisher_xml | – name: Wiley - VCH Verlag GmbH & Co. KGaA |
References | 2015; 34 1995; 74 1963; 42 1950; 41 2011 1939; 10 2016; 10 2005; 119 2005 2003; 136 2008; 122 2008; 2 1998; 66 2007a; 174 1997; 104 1995; 40 1997; 76 2009; 193 1973; 45 2012b; 57 2006; 120 2012a; 126 1975; 3 1989 2003; 22 2007b; 34 e_1_2_8_25_1 e_1_2_8_26_1 Demirjian A. (e_1_2_8_10_1) 1973; 45 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_23_1 Cameriere R. (e_1_2_8_7_1) 2007; 174 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 Stavrianos C. (e_1_2_8_27_1) 2008; 2 Masset C. (e_1_2_8_21_1) 1989 Pelsmaekers B. (e_1_2_8_24_1) 1997; 76 Lucy D. (e_1_2_8_19_1) 2005 e_1_2_8_11_1 e_1_2_8_12_1 |
References_xml | – year: 2011 – volume: 104 start-page: 259 issue: 2 year: 1997 end-page: 265 article-title: Technical note: Regression analysis in adult age estimation publication-title: American Journal of Physical Anthropology – volume: 45 start-page: 211 issue: 2 year: 1973 end-page: 227 article-title: A new system of dental age assessment publication-title: Human Biology – volume: 10 start-page: 99 year: 2016 end-page: 108 article-title: Dental and chronological ages as determinants of peak growth period and its relationship with dental calcification stages publication-title: Open Dentistry Journal – volume: 119 start-page: 349 issue: 6 year: 2005 end-page: 354 article-title: Evaluation of chronological age based on third molar development in the Spanish population publication-title: International Journal of Legal Medicine – year: 2005 – volume: 74 start-page: 175 issue: 3 year: 1995 end-page: 185 article-title: Age estimation of adults from dental radiographs publication-title: Forensic Science International – volume: 66 start-page: 47 year: 1998 end-page: 78 article-title: Estimating and testing linear models with multiple structural changes publication-title: Econometrica – volume: 40 start-page: 222 issue: 2 year: 1995 end-page: 227 article-title: Further comments on the estimation of error associated with the Gustafson dental age estimation method publication-title: Journal of Forensic Science – year: 1989 – volume: 34 start-page: 1779 issue: 10 year: 2015 end-page: 1990 article-title: Bayesian calibration for forensic age estimation publication-title: Statistics in Medicine – volume: 136 start-page: 52 issue: 1 year: 2003 end-page: 57 article-title: Third molar root development in relation to chronological age: A large sample size retrospective study publication-title: Forensic Sciences International – volume: 2 start-page: 258 issue: 5 year: 2008 end-page: 268 article-title: Dental age estimation of adults: A review of methods and principles publication-title: Research Journal of Medical Science – volume: 76 start-page: 1337 issue: 7 year: 1997 end-page: 1340 article-title: The genetic contribution to dental maturation publication-title: Journal of Dental Maturation – volume: 120 start-page: 49 issue: 1 year: 2006 end-page: 52 article-title: Age estimation in children by measurement of open apices in teeth publication-title: International Journal of Legal Medicine – volume: 57 start-page: 1263 issue: 5 year: 2012b end-page: 1270 article-title: Accuracy of three age estimation methods in children by measurements of developing teeth and carpals and epiphyses of the ulna and radius publication-title: Journal of Forensic Sciences – volume: 42 start-page: 1490 year: 1963 end-page: 1502 article-title: Age variation of formation stages for ten permanent teeth publication-title: Journal of Dental Research – volume: 174 start-page: 178 issue: 2 year: 2007a end-page: 181 article-title: Age estimation using carpals: Study of a Slovenian sample to test Cameriere's method publication-title: Forensic Science International – volume: 34 start-page: 547 issue: 5 year: 2007b end-page: 556 article-title: Effects of nutrition on timing of mineralization in teeth in a Peruvian sample by the Cameriere and Demirjian methods publication-title: Annals of Human Biology – volume: 193 start-page: 1 issue: 1 year: 2009 end-page: 13 article-title: The problem of aging human remains and living individuals: A review publication-title: Forensic Science International – volume: 3 start-page: 84 issue: 1 year: 1975 end-page: 97 article-title: The log likelihood ratio in segmented regression publication-title: Annals of Statistics – volume: 10 start-page: 162 issue: 2 year: 1939 end-page: 186 article-title: The interpretation of certain regression methods and their use in biological and industrial research publication-title: Annals of Mathematical Statistics – volume: 126 start-page: 889 issue: 6 year: 2012a end-page: 899 article-title: Radiographic analysis of epiphyseal fusion at knee joint to assess likelihood of having attained 18 years of age publication-title: International Journal of Legal Medicine – volume: 122 start-page: 55 issue: 1 year: 2008 end-page: 58 article-title: Radiographic staging of ossification of the medial clavicular epiphysis publication-title: International Journal of Legal Medicine – volume: 41 start-page: 45 issue: 1 year: 1950 end-page: 54 article-title: Age determination on teeth publication-title: Journal of the American Dental Association – volume: 22 start-page: 3055 year: 2003 end-page: 3071 article-title: Estimating regression models with unknown break‐points publication-title: Statistics in Medicine – ident: e_1_2_8_4_1 doi: 10.1007/s00414-012-0754-y – ident: e_1_2_8_25_1 doi: 10.1007/s00414-005-0530-3 – ident: e_1_2_8_2_1 doi: 10.1002/(SICI)1096-8644(199710)104:2<259::AID-AJPA11>3.0.CO;2-Z – ident: e_1_2_8_3_1 doi: 10.2307/2998540 – volume: 174 start-page: 178 issue: 2 year: 2007 ident: e_1_2_8_7_1 article-title: Age estimation using carpals: Study of a Slovenian sample to test Cameriere's method publication-title: Forensic Science International – ident: e_1_2_8_8_1 doi: 10.1080/03014460701556296 – ident: e_1_2_8_18_1 doi: 10.2174/1874210601610010099 – ident: e_1_2_8_22_1 doi: 10.1177/00220345630420062701 – ident: e_1_2_8_16_1 doi: 10.14219/jada.archive.1950.0132 – ident: e_1_2_8_11_1 doi: 10.1214/aoms/1177732214 – ident: e_1_2_8_6_1 doi: 10.1007/s00414-005-0047-9 – ident: e_1_2_8_20_1 doi: 10.1520/JFS15346J – volume-title: Introduction to statistics for forensic scientists year: 2005 ident: e_1_2_8_19_1 – ident: e_1_2_8_23_1 doi: 10.1002/sim.1545 – ident: e_1_2_8_17_1 doi: 10.1016/0379-0738(95)01760-G – ident: e_1_2_8_26_1 doi: 10.1007/s00414-007-0210-6 – ident: e_1_2_8_9_1 doi: 10.1016/j.forsciint.2009.09.008 – ident: e_1_2_8_12_1 – volume: 76 start-page: 1337 issue: 7 year: 1997 ident: e_1_2_8_24_1 article-title: The genetic contribution to dental maturation publication-title: Journal of Dental Maturation – ident: e_1_2_8_14_1 doi: 10.1002/sim.6448 – ident: e_1_2_8_15_1 doi: 10.1016/S0379-0738(03)00263-9 – volume: 2 start-page: 258 issue: 5 year: 2008 ident: e_1_2_8_27_1 article-title: Dental age estimation of adults: A review of methods and principles publication-title: Research Journal of Medical Science – ident: e_1_2_8_5_1 doi: 10.1111/j.1556-4029.2012.02120.x – volume: 45 start-page: 211 issue: 2 year: 1973 ident: e_1_2_8_10_1 article-title: A new system of dental age assessment publication-title: Human Biology – ident: e_1_2_8_13_1 doi: 10.1214/aos/1176343000 – volume-title: Age estimation on the basis of cranial sutures year: 1989 ident: e_1_2_8_21_1 |
SSID | ssj0009042 |
Score | 2.2427382 |
Snippet | Forensic age estimation is receiving growing attention from researchers in the last few years. Accurate estimates of age are needed both for identifying real... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1575 |
SubjectTerms | Age Age determination age estimation Age Factors Bayes Theorem Bayesian analysis Bayesian calibration Bias Biometry - methods Calibration Chronology Dentistry Estimation Forensic science Forensic sciences Forensic Sciences - methods Growth rate healthcare in young people Humans Juveniles Mathematical models Model accuracy Models, Statistical Normal distribution Regression analysis Regression models segmented regression Statistical analysis |
Title | Segmented Bayesian calibration approach for estimating age in forensic science |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.201900016 https://www.ncbi.nlm.nih.gov/pubmed/31389072 https://www.proquest.com/docview/2308460478 https://www.proquest.com/docview/2269395179 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4iCF58P9YXEQRP1WzStMlRRVFBDz7AW8kkWfFVRXcP-uvNNG11FRHxmk5JmslMvmYm3xCy4bvcs66BREujktTIPNGW9ZJM51al3IKv2PVPTrPDy_T4Sl59usUf-SHaAze0jMpfo4EbeNn-IA2Fm4dbTM3SFWwJThgTthAVnX3wR2mWxjACF4kIfrhhbWR8e_j14V3pG9QcRq7V1nMwSUwz6Jhxcrc16MOWffvC5_ifr5oiEzUupTtxIU2TEV_OkLFYqfJ1lpye--uKvtPRXfPq8eYlDdrFrlCztKEmpwEDUyTuQCBcXtPgrehNia2YKG9pveHOkcuD_Yu9w6QuxZBYkangqa0EkVpgyvaCcqXMjA1A02A9QPDKcZdK4bUHEJALSJ1QtgusZ7jTAiHDPBktH0u_SKjKcqeUNFbnLs1ZDgwCBmTaOZBWCeiQpFFFYWueciyXcV9EhmVe4BwV7Rx1yGYr_xQZOn6UXGk0W9SW-lKEX7AAwZCjqEPW28fBxjBwYkr_OAgyPNNCI5lZhyzEFdF2JTDSy3Iehl3p9ZcxFLtHJ8c8eM6lP8ovk3FsjNcgV8ho_3ngVwMe6sNatebfAQJTAXU |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fTxQxEJ4gxsgL_oZD1JqY-LTQa7e77SMYyYHcPSgkvm06bY8gsBC4e8C_3s52d8lpjDG87s6m3U5n-rUz_QbgQxiKwIcWM6OsznKrysw4Ps0KUzqdC4ehYdcfT4rRcX7wXXXZhHQXJvFD9AduZBmNvyYDpwPp7TvWUDy9-EG5WabBLQ_gIZX1bnZVX-8YpAzPUyBByExGT9zxNnKxvfj94rr0B9hcxK7N4rP3BLDrdso5Oduaz3DL_fyN0fFe__UUVltoynbSXHoGS6F-Do9SscrbFzD5Fk4aBk_Pdu1toMuXLCqY2iLlso6dnEUYzIi7g7BwfcKiw2KnNT2lXHnH2jX3JRzvfT76NMraagyZk4WOztoplLlDrt006lepwrqINS2VBMSgvfC5ksEERImlxNxL7YbIp1Z4Iwk1vILl-rIO68B0UXqtlXWm9HnJS-QYYSA33qNyWuIAsk4XlWupyqlixnmVSJZFRWNU9WM0gI-9_FUi6fir5Gan2qo11psq7sIiCiOaogG8719HM6PYia3D5TzKiMJIQ3xmA1hLU6JvSlKwl5cidrtR7D_6UO3ujw9EdJ4b_yn_Dh6PjsaH1eH-5MtrWCGBdCtyE5Zn1_PwJsKjGb5tDOAXHB0FkA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEagX3pQtBYyExCmt14_EPlLKqi10hYBKvUUe21uVR1rB7qH8-nriJGVBCCGu8UR2PA9_8djfADyPYxH52GFhtTOFcroqrOezorSVN0p4jC27_sG03D1U-0f66Kdb_JkfYthwI89o4zU5-FmYbV2ShuLJ1090NMu2sOUqXFMlN2TXO-8vCaQsVzmPIGQhUyDuaRu52Fp-f3lZ-g1rLkPXdu2Z3ALXjzofOfm8uZjjpv_xC6Hj_3zWbbjZAVP2MlvSHbgSm7twPZeqPL8H0w_xuOXvDGzbnUe6esmSeqkrUi3ruclZAsGMmDsICTfHLIUrdtLQUzop71m34t6Hw8nrj692i64WQ-FlaVKo9hql8siNnyXtal06n5Cmo4KAGE0QQWkZbUSUWElUQRo_Rj5zIlhJmOEBrDSnTXwIzJRVMEY7b6ugKl4hxwQCuQ0BtTcSR1D0qqh9R1RO9TK-1JliWdQ0R_UwRyN4McifZYqOP0pu9JqtO1f9Xqd_sITBiKRoBM-G5uRklDlxTTxdJBlRWmmJzWwEa9kihq4kpXp5JdKwW73-ZQz19t7Bvkihc_0f5Z_CjXc7k_rt3vTNI1il9nwlcgNW5t8W8XHCRnN80pr_BRx6BEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmented+Bayesian+calibration+approach+for+estimating+age+in+forensic+science&rft.jtitle=Biometrical+journal&rft.au=Bucci%2C+Andrea&rft.au=Skrami%2C+Edlira&rft.au=Faragalli%2C+Andrea&rft.au=Gesuita%2C+Rosaria&rft.date=2019-11-01&rft.issn=1521-4036&rft.eissn=1521-4036&rft.volume=61&rft.issue=6&rft.spage=1575&rft_id=info:doi/10.1002%2Fbimj.201900016&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0323-3847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0323-3847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0323-3847&client=summon |