Segmented Bayesian calibration approach for estimating age in forensic science

Forensic age estimation is receiving growing attention from researchers in the last few years. Accurate estimates of age are needed both for identifying real age in individuals without any identity document and assessing it for human remains. The methods applied in such context are mostly based on r...

Full description

Saved in:
Bibliographic Details
Published inBiometrical journal Vol. 61; no. 6; pp. 1575 - 1594
Main Authors Bucci, Andrea, Skrami, Edlira, Faragalli, Andrea, Gesuita, Rosaria, Cameriere, Roberto, Carle, Flavia, Ferrante, Luigi
Format Journal Article
LanguageEnglish
Published Germany Wiley - VCH Verlag GmbH & Co. KGaA 01.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Forensic age estimation is receiving growing attention from researchers in the last few years. Accurate estimates of age are needed both for identifying real age in individuals without any identity document and assessing it for human remains. The methods applied in such context are mostly based on radiological analysis of some anatomical districts and entail the use of a regression model. However, estimating chronological age by regression models leads to overestimated ages in younger subjects and underestimated ages in older ones. We introduced a full Bayesian calibration method combined with a segmented function for age estimation that relied on a Normal distribution as a density model to mitigate this bias. In this way, we were also able to model the decreasing growth rate in juveniles. We compared our new Bayesian‐segmented model with other existing approaches. The proposed method helped producing more robust and precise forecasts of age than compared models while exhibited comparable accuracy in terms of forecasting measures. Our method seemed to overcome the estimation bias also when applied to a real data set of South‐African juvenile subjects.
AbstractList Forensic age estimation is receiving growing attention from researchers in the last few years. Accurate estimates of age are needed both for identifying real age in individuals without any identity document and assessing it for human remains. The methods applied in such context are mostly based on radiological analysis of some anatomical districts and entail the use of a regression model. However, estimating chronological age by regression models leads to overestimated ages in younger subjects and underestimated ages in older ones. We introduced a full Bayesian calibration method combined with a segmented function for age estimation that relied on a Normal distribution as a density model to mitigate this bias. In this way, we were also able to model the decreasing growth rate in juveniles. We compared our new Bayesian-segmented model with other existing approaches. The proposed method helped producing more robust and precise forecasts of age than compared models while exhibited comparable accuracy in terms of forecasting measures. Our method seemed to overcome the estimation bias also when applied to a real data set of South-African juvenile subjects.
Forensic age estimation is receiving growing attention from researchers in the last few years. Accurate estimates of age are needed both for identifying real age in individuals without any identity document and assessing it for human remains. The methods applied in such context are mostly based on radiological analysis of some anatomical districts and entail the use of a regression model. However, estimating chronological age by regression models leads to overestimated ages in younger subjects and underestimated ages in older ones. We introduced a full Bayesian calibration method combined with a segmented function for age estimation that relied on a Normal distribution as a density model to mitigate this bias. In this way, we were also able to model the decreasing growth rate in juveniles. We compared our new Bayesian‐segmented model with other existing approaches. The proposed method helped producing more robust and precise forecasts of age than compared models while exhibited comparable accuracy in terms of forecasting measures. Our method seemed to overcome the estimation bias also when applied to a real data set of South‐African juvenile subjects.
Forensic age estimation is receiving growing attention from researchers in the last few years. Accurate estimates of age are needed both for identifying real age in individuals without any identity document and assessing it for human remains. The methods applied in such context are mostly based on radiological analysis of some anatomical districts and entail the use of a regression model. However, estimating chronological age by regression models leads to overestimated ages in younger subjects and underestimated ages in older ones. We introduced a full Bayesian calibration method combined with a segmented function for age estimation that relied on a Normal distribution as a density model to mitigate this bias. In this way, we were also able to model the decreasing growth rate in juveniles. We compared our new Bayesian-segmented model with other existing approaches. The proposed method helped producing more robust and precise forecasts of age than compared models while exhibited comparable accuracy in terms of forecasting measures. Our method seemed to overcome the estimation bias also when applied to a real data set of South-African juvenile subjects.Forensic age estimation is receiving growing attention from researchers in the last few years. Accurate estimates of age are needed both for identifying real age in individuals without any identity document and assessing it for human remains. The methods applied in such context are mostly based on radiological analysis of some anatomical districts and entail the use of a regression model. However, estimating chronological age by regression models leads to overestimated ages in younger subjects and underestimated ages in older ones. We introduced a full Bayesian calibration method combined with a segmented function for age estimation that relied on a Normal distribution as a density model to mitigate this bias. In this way, we were also able to model the decreasing growth rate in juveniles. We compared our new Bayesian-segmented model with other existing approaches. The proposed method helped producing more robust and precise forecasts of age than compared models while exhibited comparable accuracy in terms of forecasting measures. Our method seemed to overcome the estimation bias also when applied to a real data set of South-African juvenile subjects.
Author Skrami, Edlira
Bucci, Andrea
Ferrante, Luigi
Cameriere, Roberto
Faragalli, Andrea
Gesuita, Rosaria
Carle, Flavia
Author_xml – sequence: 1
  givenname: Andrea
  orcidid: 0000-0001-9872-9761
  surname: Bucci
  fullname: Bucci, Andrea
  organization: Università Politecnica delle Marche
– sequence: 2
  givenname: Edlira
  surname: Skrami
  fullname: Skrami, Edlira
  email: e.skrami@staff.univpm.it
  organization: Università Politecnica delle Marche
– sequence: 3
  givenname: Andrea
  surname: Faragalli
  fullname: Faragalli, Andrea
  organization: Università Politecnica delle Marche
– sequence: 4
  givenname: Rosaria
  surname: Gesuita
  fullname: Gesuita, Rosaria
  organization: Università Politecnica delle Marche
– sequence: 5
  givenname: Roberto
  surname: Cameriere
  fullname: Cameriere, Roberto
  organization: Università degli Studi di Macerata
– sequence: 6
  givenname: Flavia
  surname: Carle
  fullname: Carle, Flavia
  organization: Università Politecnica delle Marche
– sequence: 7
  givenname: Luigi
  surname: Ferrante
  fullname: Ferrante, Luigi
  organization: Università Politecnica delle Marche
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31389072$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1PHDEMxSNEVRbaK0c0EpdeZuvEmY8cAfWDiraHtucoyXiWrGYySzKrav_7ZsvCAanqyZL1e_az3yk7DlMgxs45LDmAeG_9uF4K4AoAeH3EFrwSvJSA9TFbAAossZXNCTtNaZ0RBVK8ZifIsVXQiAX79oNWI4WZuuLa7Ch5EwpnBm-jmf0UCrPZxMm4-6KfYkFp9mPuh1VhVlT4sO9SSN4VyXkKjt6wV70ZEr091DP26-OHnzefy7vvn25vru5Kh3ULJbrKonQWWtcLgqqqjQMBplJYW2o70ckKSZG1aBu0ssPWcQu9EZ1CqDmesXePc7O7h232pUefHA2DCTRtkxaiVqgq3qiMXr5A19M2huxOC4RW1iCbNlMXB2prR-r0JuZL404_fSoD8hFwcUopUq-dn__-aI7GD5qD3gei94Ho50CybPlC9jT5n4LDnt9-oN1_aH19-_WLgBz3H2Hem8M
CitedBy_id crossref_primary_10_3390_ijerph20021201
crossref_primary_10_1016_j_medcli_2024_07_008
crossref_primary_10_1016_j_medcle_2024_07_007
crossref_primary_10_1016_j_forsciint_2024_112353
crossref_primary_10_1007_s40300_021_00223_8
crossref_primary_10_1007_s00414_020_02438_2
crossref_primary_10_17816_dent637462
Cites_doi 10.1007/s00414-012-0754-y
10.1007/s00414-005-0530-3
10.1002/(SICI)1096-8644(199710)104:2<259::AID-AJPA11>3.0.CO;2-Z
10.2307/2998540
10.1080/03014460701556296
10.2174/1874210601610010099
10.1177/00220345630420062701
10.14219/jada.archive.1950.0132
10.1214/aoms/1177732214
10.1007/s00414-005-0047-9
10.1520/JFS15346J
10.1002/sim.1545
10.1016/0379-0738(95)01760-G
10.1007/s00414-007-0210-6
10.1016/j.forsciint.2009.09.008
10.1002/sim.6448
10.1016/S0379-0738(03)00263-9
10.1111/j.1556-4029.2012.02120.x
10.1214/aos/1176343000
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
P64
7X8
DOI 10.1002/bimj.201900016
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
ProQuest Health & Medical Complete (Alumni)
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Dentistry
EISSN 1521-4036
EndPage 1594
ExternalDocumentID 31389072
10_1002_bimj_201900016
BIMJ2040
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Università Politecnica delle Marche
  funderid: Decision n.321,2016
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
3-9
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M67
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
Y6R
YHZ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AMVHM
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3680-3c5b34cb08cf2e0556ac020a5936be8d2d453e9ebb3b73b4d38c1b0fa2d930613
IEDL.DBID DR2
ISSN 0323-3847
1521-4036
IngestDate Fri Jul 11 08:29:42 EDT 2025
Sun Jul 13 03:51:05 EDT 2025
Thu Apr 03 07:07:02 EDT 2025
Tue Jul 01 04:18:02 EDT 2025
Thu Apr 24 23:04:36 EDT 2025
Wed Jan 22 16:38:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Bayesian calibration
healthcare in young people
age estimation
segmented regression
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3680-3c5b34cb08cf2e0556ac020a5936be8d2d453e9ebb3b73b4d38c1b0fa2d930613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9872-9761
PMID 31389072
PQID 2308460478
PQPubID 105592
PageCount 20
ParticipantIDs proquest_miscellaneous_2269395179
proquest_journals_2308460478
pubmed_primary_31389072
crossref_citationtrail_10_1002_bimj_201900016
crossref_primary_10_1002_bimj_201900016
wiley_primary_10_1002_bimj_201900016_BIMJ2040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2019
2019-11-00
20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: November 2019
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Biometrical journal
PublicationTitleAlternate Biom J
PublicationYear 2019
Publisher Wiley - VCH Verlag GmbH & Co. KGaA
Publisher_xml – name: Wiley - VCH Verlag GmbH & Co. KGaA
References 2015; 34
1995; 74
1963; 42
1950; 41
2011
1939; 10
2016; 10
2005; 119
2005
2003; 136
2008; 122
2008; 2
1998; 66
2007a; 174
1997; 104
1995; 40
1997; 76
2009; 193
1973; 45
2012b; 57
2006; 120
2012a; 126
1975; 3
1989
2003; 22
2007b; 34
e_1_2_8_25_1
e_1_2_8_26_1
Demirjian A. (e_1_2_8_10_1) 1973; 45
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_23_1
Cameriere R. (e_1_2_8_7_1) 2007; 174
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
Stavrianos C. (e_1_2_8_27_1) 2008; 2
Masset C. (e_1_2_8_21_1) 1989
Pelsmaekers B. (e_1_2_8_24_1) 1997; 76
Lucy D. (e_1_2_8_19_1) 2005
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – year: 2011
– volume: 104
  start-page: 259
  issue: 2
  year: 1997
  end-page: 265
  article-title: Technical note: Regression analysis in adult age estimation
  publication-title: American Journal of Physical Anthropology
– volume: 45
  start-page: 211
  issue: 2
  year: 1973
  end-page: 227
  article-title: A new system of dental age assessment
  publication-title: Human Biology
– volume: 10
  start-page: 99
  year: 2016
  end-page: 108
  article-title: Dental and chronological ages as determinants of peak growth period and its relationship with dental calcification stages
  publication-title: Open Dentistry Journal
– volume: 119
  start-page: 349
  issue: 6
  year: 2005
  end-page: 354
  article-title: Evaluation of chronological age based on third molar development in the Spanish population
  publication-title: International Journal of Legal Medicine
– year: 2005
– volume: 74
  start-page: 175
  issue: 3
  year: 1995
  end-page: 185
  article-title: Age estimation of adults from dental radiographs
  publication-title: Forensic Science International
– volume: 66
  start-page: 47
  year: 1998
  end-page: 78
  article-title: Estimating and testing linear models with multiple structural changes
  publication-title: Econometrica
– volume: 40
  start-page: 222
  issue: 2
  year: 1995
  end-page: 227
  article-title: Further comments on the estimation of error associated with the Gustafson dental age estimation method
  publication-title: Journal of Forensic Science
– year: 1989
– volume: 34
  start-page: 1779
  issue: 10
  year: 2015
  end-page: 1990
  article-title: Bayesian calibration for forensic age estimation
  publication-title: Statistics in Medicine
– volume: 136
  start-page: 52
  issue: 1
  year: 2003
  end-page: 57
  article-title: Third molar root development in relation to chronological age: A large sample size retrospective study
  publication-title: Forensic Sciences International
– volume: 2
  start-page: 258
  issue: 5
  year: 2008
  end-page: 268
  article-title: Dental age estimation of adults: A review of methods and principles
  publication-title: Research Journal of Medical Science
– volume: 76
  start-page: 1337
  issue: 7
  year: 1997
  end-page: 1340
  article-title: The genetic contribution to dental maturation
  publication-title: Journal of Dental Maturation
– volume: 120
  start-page: 49
  issue: 1
  year: 2006
  end-page: 52
  article-title: Age estimation in children by measurement of open apices in teeth
  publication-title: International Journal of Legal Medicine
– volume: 57
  start-page: 1263
  issue: 5
  year: 2012b
  end-page: 1270
  article-title: Accuracy of three age estimation methods in children by measurements of developing teeth and carpals and epiphyses of the ulna and radius
  publication-title: Journal of Forensic Sciences
– volume: 42
  start-page: 1490
  year: 1963
  end-page: 1502
  article-title: Age variation of formation stages for ten permanent teeth
  publication-title: Journal of Dental Research
– volume: 174
  start-page: 178
  issue: 2
  year: 2007a
  end-page: 181
  article-title: Age estimation using carpals: Study of a Slovenian sample to test Cameriere's method
  publication-title: Forensic Science International
– volume: 34
  start-page: 547
  issue: 5
  year: 2007b
  end-page: 556
  article-title: Effects of nutrition on timing of mineralization in teeth in a Peruvian sample by the Cameriere and Demirjian methods
  publication-title: Annals of Human Biology
– volume: 193
  start-page: 1
  issue: 1
  year: 2009
  end-page: 13
  article-title: The problem of aging human remains and living individuals: A review
  publication-title: Forensic Science International
– volume: 3
  start-page: 84
  issue: 1
  year: 1975
  end-page: 97
  article-title: The log likelihood ratio in segmented regression
  publication-title: Annals of Statistics
– volume: 10
  start-page: 162
  issue: 2
  year: 1939
  end-page: 186
  article-title: The interpretation of certain regression methods and their use in biological and industrial research
  publication-title: Annals of Mathematical Statistics
– volume: 126
  start-page: 889
  issue: 6
  year: 2012a
  end-page: 899
  article-title: Radiographic analysis of epiphyseal fusion at knee joint to assess likelihood of having attained 18 years of age
  publication-title: International Journal of Legal Medicine
– volume: 122
  start-page: 55
  issue: 1
  year: 2008
  end-page: 58
  article-title: Radiographic staging of ossification of the medial clavicular epiphysis
  publication-title: International Journal of Legal Medicine
– volume: 41
  start-page: 45
  issue: 1
  year: 1950
  end-page: 54
  article-title: Age determination on teeth
  publication-title: Journal of the American Dental Association
– volume: 22
  start-page: 3055
  year: 2003
  end-page: 3071
  article-title: Estimating regression models with unknown break‐points
  publication-title: Statistics in Medicine
– ident: e_1_2_8_4_1
  doi: 10.1007/s00414-012-0754-y
– ident: e_1_2_8_25_1
  doi: 10.1007/s00414-005-0530-3
– ident: e_1_2_8_2_1
  doi: 10.1002/(SICI)1096-8644(199710)104:2<259::AID-AJPA11>3.0.CO;2-Z
– ident: e_1_2_8_3_1
  doi: 10.2307/2998540
– volume: 174
  start-page: 178
  issue: 2
  year: 2007
  ident: e_1_2_8_7_1
  article-title: Age estimation using carpals: Study of a Slovenian sample to test Cameriere's method
  publication-title: Forensic Science International
– ident: e_1_2_8_8_1
  doi: 10.1080/03014460701556296
– ident: e_1_2_8_18_1
  doi: 10.2174/1874210601610010099
– ident: e_1_2_8_22_1
  doi: 10.1177/00220345630420062701
– ident: e_1_2_8_16_1
  doi: 10.14219/jada.archive.1950.0132
– ident: e_1_2_8_11_1
  doi: 10.1214/aoms/1177732214
– ident: e_1_2_8_6_1
  doi: 10.1007/s00414-005-0047-9
– ident: e_1_2_8_20_1
  doi: 10.1520/JFS15346J
– volume-title: Introduction to statistics for forensic scientists
  year: 2005
  ident: e_1_2_8_19_1
– ident: e_1_2_8_23_1
  doi: 10.1002/sim.1545
– ident: e_1_2_8_17_1
  doi: 10.1016/0379-0738(95)01760-G
– ident: e_1_2_8_26_1
  doi: 10.1007/s00414-007-0210-6
– ident: e_1_2_8_9_1
  doi: 10.1016/j.forsciint.2009.09.008
– ident: e_1_2_8_12_1
– volume: 76
  start-page: 1337
  issue: 7
  year: 1997
  ident: e_1_2_8_24_1
  article-title: The genetic contribution to dental maturation
  publication-title: Journal of Dental Maturation
– ident: e_1_2_8_14_1
  doi: 10.1002/sim.6448
– ident: e_1_2_8_15_1
  doi: 10.1016/S0379-0738(03)00263-9
– volume: 2
  start-page: 258
  issue: 5
  year: 2008
  ident: e_1_2_8_27_1
  article-title: Dental age estimation of adults: A review of methods and principles
  publication-title: Research Journal of Medical Science
– ident: e_1_2_8_5_1
  doi: 10.1111/j.1556-4029.2012.02120.x
– volume: 45
  start-page: 211
  issue: 2
  year: 1973
  ident: e_1_2_8_10_1
  article-title: A new system of dental age assessment
  publication-title: Human Biology
– ident: e_1_2_8_13_1
  doi: 10.1214/aos/1176343000
– volume-title: Age estimation on the basis of cranial sutures
  year: 1989
  ident: e_1_2_8_21_1
SSID ssj0009042
Score 2.2427382
Snippet Forensic age estimation is receiving growing attention from researchers in the last few years. Accurate estimates of age are needed both for identifying real...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1575
SubjectTerms Age
Age determination
age estimation
Age Factors
Bayes Theorem
Bayesian analysis
Bayesian calibration
Bias
Biometry - methods
Calibration
Chronology
Dentistry
Estimation
Forensic science
Forensic sciences
Forensic Sciences - methods
Growth rate
healthcare in young people
Humans
Juveniles
Mathematical models
Model accuracy
Models, Statistical
Normal distribution
Regression analysis
Regression models
segmented regression
Statistical analysis
Title Segmented Bayesian calibration approach for estimating age in forensic science
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbimj.201900016
https://www.ncbi.nlm.nih.gov/pubmed/31389072
https://www.proquest.com/docview/2308460478
https://www.proquest.com/docview/2269395179
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA4iCF58P9YXEQRP1WzStMlRRVFBDz7AW8kkWfFVRXcP-uvNNG11FRHxmk5JmslMvmYm3xCy4bvcs66BREujktTIPNGW9ZJM51al3IKv2PVPTrPDy_T4Sl59usUf-SHaAze0jMpfo4EbeNn-IA2Fm4dbTM3SFWwJThgTthAVnX3wR2mWxjACF4kIfrhhbWR8e_j14V3pG9QcRq7V1nMwSUwz6Jhxcrc16MOWffvC5_ifr5oiEzUupTtxIU2TEV_OkLFYqfJ1lpye--uKvtPRXfPq8eYlDdrFrlCztKEmpwEDUyTuQCBcXtPgrehNia2YKG9pveHOkcuD_Yu9w6QuxZBYkangqa0EkVpgyvaCcqXMjA1A02A9QPDKcZdK4bUHEJALSJ1QtgusZ7jTAiHDPBktH0u_SKjKcqeUNFbnLs1ZDgwCBmTaOZBWCeiQpFFFYWueciyXcV9EhmVe4BwV7Rx1yGYr_xQZOn6UXGk0W9SW-lKEX7AAwZCjqEPW28fBxjBwYkr_OAgyPNNCI5lZhyzEFdF2JTDSy3Iehl3p9ZcxFLtHJ8c8eM6lP8ovk3FsjNcgV8ho_3ngVwMe6sNatebfAQJTAXU
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fTxQxEJ4gxsgL_oZD1JqY-LTQa7e77SMYyYHcPSgkvm06bY8gsBC4e8C_3s52d8lpjDG87s6m3U5n-rUz_QbgQxiKwIcWM6OsznKrysw4Ps0KUzqdC4ehYdcfT4rRcX7wXXXZhHQXJvFD9AduZBmNvyYDpwPp7TvWUDy9-EG5WabBLQ_gIZX1bnZVX-8YpAzPUyBByExGT9zxNnKxvfj94rr0B9hcxK7N4rP3BLDrdso5Oduaz3DL_fyN0fFe__UUVltoynbSXHoGS6F-Do9SscrbFzD5Fk4aBk_Pdu1toMuXLCqY2iLlso6dnEUYzIi7g7BwfcKiw2KnNT2lXHnH2jX3JRzvfT76NMraagyZk4WOztoplLlDrt006lepwrqINS2VBMSgvfC5ksEERImlxNxL7YbIp1Z4Iwk1vILl-rIO68B0UXqtlXWm9HnJS-QYYSA33qNyWuIAsk4XlWupyqlixnmVSJZFRWNU9WM0gI-9_FUi6fir5Gan2qo11psq7sIiCiOaogG8719HM6PYia3D5TzKiMJIQ3xmA1hLU6JvSlKwl5cidrtR7D_6UO3ujw9EdJ4b_yn_Dh6PjsaH1eH-5MtrWCGBdCtyE5Zn1_PwJsKjGb5tDOAXHB0FkA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEagX3pQtBYyExCmt14_EPlLKqi10hYBKvUUe21uVR1rB7qH8-nriJGVBCCGu8UR2PA9_8djfADyPYxH52GFhtTOFcroqrOezorSVN0p4jC27_sG03D1U-0f66Kdb_JkfYthwI89o4zU5-FmYbV2ShuLJ1090NMu2sOUqXFMlN2TXO-8vCaQsVzmPIGQhUyDuaRu52Fp-f3lZ-g1rLkPXdu2Z3ALXjzofOfm8uZjjpv_xC6Hj_3zWbbjZAVP2MlvSHbgSm7twPZeqPL8H0w_xuOXvDGzbnUe6esmSeqkrUi3ruclZAsGMmDsICTfHLIUrdtLQUzop71m34t6Hw8nrj692i64WQ-FlaVKo9hql8siNnyXtal06n5Cmo4KAGE0QQWkZbUSUWElUQRo_Rj5zIlhJmOEBrDSnTXwIzJRVMEY7b6ugKl4hxwQCuQ0BtTcSR1D0qqh9R1RO9TK-1JliWdQ0R_UwRyN4McifZYqOP0pu9JqtO1f9Xqd_sITBiKRoBM-G5uRklDlxTTxdJBlRWmmJzWwEa9kihq4kpXp5JdKwW73-ZQz19t7Bvkihc_0f5Z_CjXc7k_rt3vTNI1il9nwlcgNW5t8W8XHCRnN80pr_BRx6BEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmented+Bayesian+calibration+approach+for+estimating+age+in+forensic+science&rft.jtitle=Biometrical+journal&rft.au=Bucci%2C+Andrea&rft.au=Skrami%2C+Edlira&rft.au=Faragalli%2C+Andrea&rft.au=Gesuita%2C+Rosaria&rft.date=2019-11-01&rft.issn=1521-4036&rft.eissn=1521-4036&rft.volume=61&rft.issue=6&rft.spage=1575&rft_id=info:doi/10.1002%2Fbimj.201900016&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0323-3847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0323-3847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0323-3847&client=summon