Efficient text-based evolution algorithm to hard-label adversarial attacks on text
Deep neural networks that play a pivotal role in fields such as images, text, and audio are vulnerable to adversarial attacks. In current textual adversarial attacks, the vast majority are configured with a black-box soft-label which is achieved by the gradient information or confidence of the model...
Saved in:
Published in | Journal of King Saud University. Computer and information sciences Vol. 35; no. 5; p. 101539 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2023
Springer |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep neural networks that play a pivotal role in fields such as images, text, and audio are vulnerable to adversarial attacks. In current textual adversarial attacks, the vast majority are configured with a black-box soft-label which is achieved by the gradient information or confidence of the model. Therefore, it becomes challenging and realistic to implement adversarial attacks using only the predicted top labels of the hard-label model. Existing methods to implement hard-label adversarial attacks use population-based genetic optimization algorithms. However, this approach requires significant query consumption, which is a considerable shortcoming. To solve this problem, we propose a new textual black-box hard-label adversarial attack algorithm based on the idea of differential evolution of populations, called the text-based differential evolution (TDE) algorithm. First, the method will judge the importance of the words of the initial rough adversarial examples, according to which only the keywords in the text sentence will be operated, and the rest of the words will be gradually replaced with the original words so as to reduce the words in the sentence in which the replacement occurs. Our method judges the quality of semantic similarity of the adversarial examples in the replacement process and deposits high-quality adversarial example individuals into the population. Secondly, the optimization process of adversarial examples is combined and optimized according to the word importance. Compared with existing methods based on genetic algorithm guidance, our method avoids a large number of meaningless repetitive queries and significantly improves the overall attack efficiency of the algorithm and the semantic quality of the generated adversarial examples. We experimented with multiple datasets on three text tasks of sentiment classification, natural language inference, and toxic comment, and also perform experimental comparisons on models and APIs in realistic scenarios. For example, in the Google Cloud commercial API adversarial attack experiment, compared to the existing hard-label method, our method reduces the average number of queries required for the attack from 6986 to 176, and increases semantic similarity from 0.844 to 0.876. It is shown through extensive experimental data that our approach not only significantly reduces the number of queries, but also significantly outperforms existing methods in terms of the quality of adversarial examples. |
---|---|
AbstractList | Deep neural networks that play a pivotal role in fields such as images, text, and audio are vulnerable to adversarial attacks. In current textual adversarial attacks, the vast majority are configured with a black-box soft-label which is achieved by the gradient information or confidence of the model. Therefore, it becomes challenging and realistic to implement adversarial attacks using only the predicted top labels of the hard-label model. Existing methods to implement hard-label adversarial attacks use population-based genetic optimization algorithms. However, this approach requires significant query consumption, which is a considerable shortcoming. To solve this problem, we propose a new textual black-box hard-label adversarial attack algorithm based on the idea of differential evolution of populations, called the text-based differential evolution (TDE) algorithm. First, the method will judge the importance of the words of the initial rough adversarial examples, according to which only the keywords in the text sentence will be operated, and the rest of the words will be gradually replaced with the original words so as to reduce the words in the sentence in which the replacement occurs. Our method judges the quality of semantic similarity of the adversarial examples in the replacement process and deposits high-quality adversarial example individuals into the population. Secondly, the optimization process of adversarial examples is combined and optimized according to the word importance. Compared with existing methods based on genetic algorithm guidance, our method avoids a large number of meaningless repetitive queries and significantly improves the overall attack efficiency of the algorithm and the semantic quality of the generated adversarial examples. We experimented with multiple datasets on three text tasks of sentiment classification, natural language inference, and toxic comment, and also perform experimental comparisons on models and APIs in realistic scenarios. For example, in the Google Cloud commercial API adversarial attack experiment, compared to the existing hard-label method, our method reduces the average number of queries required for the attack from 6986 to 176, and increases semantic similarity from 0.844 to 0.876. It is shown through extensive experimental data that our approach not only significantly reduces the number of queries, but also significantly outperforms existing methods in terms of the quality of adversarial examples. |
ArticleNumber | 101539 |
Author | Wang, Zhe Peng, Hao Han, Jianming Wu, Yiming Zhao, Dandan Zhong, Ming Guo, Shixin Ji, Shouling |
Author_xml | – sequence: 1 givenname: Hao surname: Peng fullname: Peng, Hao organization: College of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China – sequence: 2 givenname: Zhe surname: Wang fullname: Wang, Zhe organization: College of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China – sequence: 3 givenname: Dandan surname: Zhao fullname: Zhao, Dandan organization: College of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China – sequence: 4 givenname: Yiming surname: Wu fullname: Wu, Yiming organization: Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, Zhejiang 310027, China – sequence: 5 givenname: Jianming surname: Han fullname: Han, Jianming organization: College of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China – sequence: 6 givenname: Shixin surname: Guo fullname: Guo, Shixin organization: College of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China – sequence: 7 givenname: Shouling surname: Ji fullname: Ji, Shouling organization: College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China – sequence: 8 givenname: Ming orcidid: 0000-0002-9132-3782 surname: Zhong fullname: Zhong, Ming email: zhongming@zjnu.edu.cn organization: College of Computer Science and Technology, Zhejiang Normal University, Jinhua 321004, China |
BookMark | eNp9kF1LHTEQhoNY6Kn1H_Ri_8Ce5muzmxtBxC8QCqW9DpNkolnXE0niQf-9WY_0svDCDMPMwzvvN3K8Szsk5AejW0aZ-jlv58fy4uKWUy62tImNR2TDORM943I6JhsmmO7ZME5fyWkpM6VtRQ1SqA35fRlCdBF3tav4WnsLBX2H-7S81Jh2HSz3Kcf68NTV1D1A9v0CFpcO_B5zgRyh9bWCeyxdW18Z38mXAEvB0896Qv5eXf65uOnvfl3fXpzf9U6osfbByyEoJT3nWtnJUtAgYbDW2UH5EKZRSidZkEGKYXRcy5FphPbRgMriKE7I7YHrE8zmOccnyG8mQTQfg5TvDeQa3YKGB0uF5opq6aX1wySspUGjDC5YrUVjyQPL5VRKxvCPx6hZYzazOcRs1pgNbWKrhbPDGbY_9xGzKWuWDn3M6GozEv8PeAcqW4rD |
Cites_doi | 10.1016/j.cose.2022.102695 10.1007/s10462-016-9486-6 10.3115/1225403.1225421 10.1016/j.neunet.2014.09.003 10.18653/v1/2022.naacl-main.339 10.1162/neco.1997.9.8.1735 10.1109/ICIP46576.2022.9897705 10.18653/v1/2022.findings-naacl.14 10.18653/v1/2021.emnlp-demo.21 10.1109/MNET.011.1900472 10.18653/v1/D15-1075 10.1016/j.cose.2022.102730 10.2528/PIERB09011308 10.1162/tacl_a_00290 10.1609/aaai.v34i05.6311 10.18653/v1/2020.emnlp-demos.16 10.1016/j.aeue.2022.154478 10.1016/j.cose.2022.102694 10.1109/TEVC.2010.2059031 10.18653/v1/2021.emnlp-main.661 10.3115/1118693.1118704 10.18653/v1/2020.emnlp-main.498 10.18653/v1/N18-1101 10.18653/v1/W18-2501 10.1609/aaai.v35i15.17595 10.1016/j.neucom.2022.04.020 10.18653/v1/D18-2029 10.18653/v1/P18-2006 10.18653/v1/2020.acl-main.540 10.3115/v1/D14-1181 10.24963/ijcai.2018/585 10.14722/ndss.2019.23138 10.18653/v1/D18-1316 10.18653/v1/2020.emnlp-main.500 10.3115/1219840.1219855 10.18653/v1/P19-1103 |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.jksuci.2023.03.017 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2213-1248 |
ExternalDocumentID | oai_doaj_org_article_2fb03926094d4bd583bb0f9e4fcfb993 10_1016_j_jksuci_2023_03_017 S131915782300085X |
GroupedDBID | --K 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQXK AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BCNDV EBS EJD FDB FEDTE FGOYB GROUPED_DOAJ HVGLF HZ~ IPNFZ IXB KQ8 M41 NCXOZ O-L O9- OK1 R2- RIG ROL SES SSZ XH2 AAJSJ AASML AAYWO AAYXX ABEEZ ABWVN ACULB ADVLN AFGXO AFJKZ AGQPQ APXCP C6C CITATION SOJ |
ID | FETCH-LOGICAL-c367t-fd45f664d2296b8b0a9a4a5bbcb56dff8744c41f4f4357c294719ea2485e6be73 |
IEDL.DBID | DOA |
ISSN | 1319-1578 |
IngestDate | Wed Aug 27 01:31:11 EDT 2025 Tue Jul 01 04:25:22 EDT 2025 Fri Feb 23 02:35:35 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Natural language processing Black-box attack Language model Adversarial attack Hard-label Machine learning |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-fd45f664d2296b8b0a9a4a5bbcb56dff8744c41f4f4357c294719ea2485e6be73 |
ORCID | 0000-0002-9132-3782 |
OpenAccessLink | https://doaj.org/article/2fb03926094d4bd583bb0f9e4fcfb993 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2fb03926094d4bd583bb0f9e4fcfb993 crossref_primary_10_1016_j_jksuci_2023_03_017 elsevier_sciencedirect_doi_10_1016_j_jksuci_2023_03_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2023 2023-05-00 2023-05-01 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
PublicationDecade | 2020 |
PublicationTitle | Journal of King Saud University. Computer and information sciences |
PublicationYear | 2023 |
Publisher | Elsevier B.V Springer |
Publisher_xml | – name: Elsevier B.V – name: Springer |
References | Maheshwary, R., Maheshwary, S., Pudi, V., 2021b. A strong baseline for query efficient attacks in a black box setting. arXiv preprint arXiv:2109.04775. Ji, Du, Li, Shen, Li (b0085) 2020; 32 Maas, A., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C., 2011. Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150. Maheshwary, R., Maheshwary, S., Pudi, V., 2021a. Generating natural language attacks in a hard label black box setting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 13525–13533. Radford, Wu, Child, Luan, Amodei, Sutskever (b0205) 2019; 1 Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R., 2013. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199. Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C., 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R., 2019. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942. Ren, S., Deng, Y., He, K., Che, W., 2019. Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 1085–1097. Schmidhuber (b0230) 2015; 61 Wang, D., Lin, J., Wang, Y.-G., 2022b. Query-efficient adversarial attack based on latin hypercube sampling. In: 2022 IEEE International Conference on Image Processing (ICIP), pp. 546–550. Hosseini, H., Kannan, S., Zhang, B., Poovendran, R., 2017. Deceiving google’s perspective api built for detecting toxic comments. arXiv preprint arXiv:1702.08138. Garg, S., Ramakrishnan, G., 2020. Bae: Bert-based adversarial examples for text classification. arXiv preprint arXiv:2004.01970. Kim, Y., 2014. Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar. Association for Computational Linguistics. pp. 1746–1751. Gao, Lanchantin, Soffa, Qi (b0050) 2018 Shao, Zhang, Yang, Li, Liu (b0235) 2022; 118 Alzantot, M., Sharma, Y., Elgohary, A., Ho, B.-J., Srivastava, M., and Chang, K.-W., 2018. Generating natural language adversarial examples. arXiv preprint arXiv:1804.07998. Lhoest, Q., Villanova del Moral, A., Jernite, Y., Thakur, A., von Platen, P., Patil, S., Chaumond, J., Drame, M., Plu, J., Tunstall, L., Davison, J., Šaško, M., Chhablani, G., Malik, B., Brandeis, S., Le Scao, T., Sanh, V., Xu, C., Patry, N., McMillan-Major, A., Schmid, P., Gugger, S., Delangue, C., Matussière, T., Debut, L., Bekman, S., Cistac, P., Goehringer, T., Mustar, V., Lagunas, F., Rush, A., Wolf, T., 2021. Datasets: A community library for natural language processing. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics. pp. 175–184. Zhang, Sheng, Alhazmi, Li (b0300) 2020; 11 Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., Stoyanov, V., 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692. Wang, B., Xu, C., Liu, X., Cheng, Y., Li, B., 2022a. SemAttack: Natural Textual Attacks via Different Semantic Spaces. arXiv preprint arXiv:2205.01287. Wang, X., Wang, H., Yang, D., 2021. Measure and Improve Robustness in NLP Models: A Survey. arXiv preprint arXiv:2112.08313. Li, J., Ji, S., Du, T., Li, B., Wang, T., 2018. Textbugger: Generating adversarial text against real-world applications. arXiv preprint arXiv:1812.05271. Jin, D., Jin, Z., Zhou, J.T., Szolovits, P., 2020. Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: Proceedings of the AAAI conference on artificial intelligence, vol. 34, pp. 8018–8025. Ebrahimi, J., Rao, A., Lowd, D., Dou, D., 2017. Hotflip: White-box adversarial examples for text classification. arXiv preprint arXiv:1712.06751. Panduro, Brizuela, Balderas, Acosta (b0175) 2009; 13 Bowman, S.R., Angeli, G., Potts, C., Manning, C.D., 2015. A large annotated corpus for learning natural language inference. arXiv preprint arXiv:1508.05326. Kwon, Lee (b0110) 2022; 117 Xu, Wu, Liu, Liu (b0285) 2020; 34 Goodfellow, I.J., Shlens, J., Szegedy, C., 2014. Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572. Gong, Z., Wang, W., Li, B., Song, D., Ku, W.-S., 2018. Adversarial texts with gradient methods. arXiv preprint arXiv:1801.07175. Liang, B., Li, H., Su, M., Bian, P., Li, X., Shi, W., 2017. Deep text classification can be fooled. arXiv preprint arXiv:1704.08006. Zhang, X., Zhao, J., LeCun, Y., 2015. Character-level convolutional networks for text classification. Adv. Neural Informat. Process. Syst. 28. Cer, D., Yang, Y., Kong, S.-Y., Hua, N., Limtiaco, N., John, R.S., Constant, N., Guajardo-Cespedes, M., Yuan, S., Tar, C., et al., 2018. Universal sentence encoder. arXiv preprint arXiv:1803.11175. Pang, B., Lee, L., 2005. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. arXiv preprint cs/0506075. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K., 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. Alatas, Bingol (b0010) 2020; 28 Morris, J., Lifland, E., Yoo, J.Y., Grigsby, J., Jin, D., Qi, Y., 2020. TextAttack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 119–126. Das, Suganthan (b0035) 2010; 15 Qin, Yue (b0195) 2022; 117 Williams, A., Nangia, N., Bowman, S.R., 2017. A broad-coverage challenge corpus for sentence understanding through inference. arXiv preprint arXiv:1704.05426. Wang, W., Wang, R., Wang, L., Wang, Z., Ye, A., 2019. Towards a robust deep neural network in texts: A survey. arXiv preprint arXiv:1902.07285. Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., Mikolov, T., 2016. Fasttext.zip: Compressing text classification models. arXiv preprint arXiv:1612.03651. Bird, S., 2006. NLTK: the natural language toolkit. In: Proceedings of the COLING/ACL 2006 Interactive Presentation Sessions, pp. 69–72. Pang, B., Lee, L., Vaithyanathan, S., 2002. Thumbs up? sentiment classification using machine learning techniques. arXiv preprint cs/0205070. Saxena, S., 2020. Textdecepter: Hard label black box attack on text classifiers. arXiv preprint arXiv:2008.06860. Papernot, McDaniel, Swami, Harang (b0190) 2016 Li, L., Ma, R., Guo, Q., Xue, X., Qiu, X., 2020. Bert-attack: Adversarial attack against bert using bert. arXiv preprint arXiv:2004.09984. Qiu, Liu, Zhou, Huang (b0200) 2022; 492 Sanh, V., Debut, L., Chaumond, J., Wolf, T., 2019. Distilbert a distilled version of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, year=2019. Hochreiter, Schmidhuber (b0075) 1997; 9 Samanta, S., Mehta, S., 2017. Towards crafting text adversarial samples. arXiv preprint arXiv:1707.02812. Karaboğa, Ökdem (b0100) 2004; 12 Lee, Moon, Lee, Song (b0120) 2022 Xu, Xu, An, Nielsen, Shen (b0290) 2023; 159 Gardner, M., Grus, J., Neumann, M., Tafjord, O., Dasigi, P., Liu, N., Peters, M., Schmitz, M., Zettlemoyer, L., 2018. Allennlp: A deep semantic natural language processing platform. arXiv preprint arXiv:1803.07640. Vesterstrom, J., Thomsen, R., 2004. A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), vol. 2, IEEE. pp. 1980–1987. Zang, Y., Qi, F., Yang, C., Liu, Z., Zhang, M., Liu, Q., Sun, M., 2019. Word-level textual adversarial attacking as combinatorial optimization. arXiv preprint arXiv:1910.12196. Lei, Wu, Chen, Dimakis, Dhillon, Witbrock (b0125) 2019; 1 Akyol, Alatas (b0005) 2017; 47 Warstadt, Singh, Bowman (b0275) 2019; 7 Warstadt (10.1016/j.jksuci.2023.03.017_b0275) 2019; 7 Panduro (10.1016/j.jksuci.2023.03.017_b0175) 2009; 13 Ji (10.1016/j.jksuci.2023.03.017_b0085) 2020; 32 10.1016/j.jksuci.2023.03.017_b0260 10.1016/j.jksuci.2023.03.017_b0140 10.1016/j.jksuci.2023.03.017_b0020 10.1016/j.jksuci.2023.03.017_b0185 10.1016/j.jksuci.2023.03.017_b0065 Papernot (10.1016/j.jksuci.2023.03.017_b0190) 2016 10.1016/j.jksuci.2023.03.017_b0180 10.1016/j.jksuci.2023.03.017_b0060 10.1016/j.jksuci.2023.03.017_b0225 10.1016/j.jksuci.2023.03.017_b0105 Xu (10.1016/j.jksuci.2023.03.017_b0290) 2023; 159 10.1016/j.jksuci.2023.03.017_b0220 10.1016/j.jksuci.2023.03.017_b0265 10.1016/j.jksuci.2023.03.017_b0145 10.1016/j.jksuci.2023.03.017_b0025 Qin (10.1016/j.jksuci.2023.03.017_b0195) 2022; 117 Zhang (10.1016/j.jksuci.2023.03.017_b0300) 2020; 11 10.1016/j.jksuci.2023.03.017_b0305 10.1016/j.jksuci.2023.03.017_b0150 10.1016/j.jksuci.2023.03.017_b0030 Alatas (10.1016/j.jksuci.2023.03.017_b0010) 2020; 28 10.1016/j.jksuci.2023.03.017_b0070 10.1016/j.jksuci.2023.03.017_b0270 Gao (10.1016/j.jksuci.2023.03.017_b0050) 2018 10.1016/j.jksuci.2023.03.017_b0115 Schmidhuber (10.1016/j.jksuci.2023.03.017_b0230) 2015; 61 10.1016/j.jksuci.2023.03.017_b0155 Radford (10.1016/j.jksuci.2023.03.017_b0205) 2019; 1 Lei (10.1016/j.jksuci.2023.03.017_b0125) 2019; 1 Das (10.1016/j.jksuci.2023.03.017_b0035) 2010; 15 10.1016/j.jksuci.2023.03.017_b0040 Karaboğa (10.1016/j.jksuci.2023.03.017_b0100) 2004; 12 Kwon (10.1016/j.jksuci.2023.03.017_b0110) 2022; 117 10.1016/j.jksuci.2023.03.017_b0240 10.1016/j.jksuci.2023.03.017_b0080 10.1016/j.jksuci.2023.03.017_b0280 10.1016/j.jksuci.2023.03.017_b0160 Shao (10.1016/j.jksuci.2023.03.017_b0235) 2022; 118 10.1016/j.jksuci.2023.03.017_b0165 10.1016/j.jksuci.2023.03.017_b0045 Lee (10.1016/j.jksuci.2023.03.017_b0120) 2022 10.1016/j.jksuci.2023.03.017_b0245 Hochreiter (10.1016/j.jksuci.2023.03.017_b0075) 1997; 9 Xu (10.1016/j.jksuci.2023.03.017_b0285) 2020; 34 Akyol (10.1016/j.jksuci.2023.03.017_b0005) 2017; 47 10.1016/j.jksuci.2023.03.017_b0090 Qiu (10.1016/j.jksuci.2023.03.017_b0200) 2022; 492 10.1016/j.jksuci.2023.03.017_b0095 10.1016/j.jksuci.2023.03.017_b0250 10.1016/j.jksuci.2023.03.017_b0130 10.1016/j.jksuci.2023.03.017_b0295 10.1016/j.jksuci.2023.03.017_b0170 10.1016/j.jksuci.2023.03.017_b0015 10.1016/j.jksuci.2023.03.017_b0215 10.1016/j.jksuci.2023.03.017_b0055 10.1016/j.jksuci.2023.03.017_b0210 10.1016/j.jksuci.2023.03.017_b0255 10.1016/j.jksuci.2023.03.017_b0135 |
References_xml | – reference: Li, L., Ma, R., Guo, Q., Xue, X., Qiu, X., 2020. Bert-attack: Adversarial attack against bert using bert. arXiv preprint arXiv:2004.09984. – volume: 13 start-page: 171 year: 2009 end-page: 186 ident: b0175 article-title: A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays publication-title: Progress Electromagnet. Res. B – reference: Vesterstrom, J., Thomsen, R., 2004. A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In: Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), vol. 2, IEEE. pp. 1980–1987. – reference: Wang, B., Xu, C., Liu, X., Cheng, Y., Li, B., 2022a. SemAttack: Natural Textual Attacks via Different Semantic Spaces. arXiv preprint arXiv:2205.01287. – reference: Gong, Z., Wang, W., Li, B., Song, D., Ku, W.-S., 2018. Adversarial texts with gradient methods. arXiv preprint arXiv:1801.07175. – reference: Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R., 2019. Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942. – reference: Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R., 2013. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199. – reference: Liang, B., Li, H., Su, M., Bian, P., Li, X., Shi, W., 2017. Deep text classification can be fooled. arXiv preprint arXiv:1704.08006. – reference: Wang, W., Wang, R., Wang, L., Wang, Z., Ye, A., 2019. Towards a robust deep neural network in texts: A survey. arXiv preprint arXiv:1902.07285. – reference: Ren, S., Deng, Y., He, K., Che, W., 2019. Generating natural language adversarial examples through probability weighted word saliency. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 1085–1097. – reference: Pang, B., Lee, L., Vaithyanathan, S., 2002. Thumbs up? sentiment classification using machine learning techniques. arXiv preprint cs/0205070. – start-page: 50 year: 2018 end-page: 56 ident: b0050 article-title: Black-box generation of adversarial text sequences to evade deep learning classifiers publication-title: 2018 IEEE Security and Privacy Workshops (SPW) – volume: 1 start-page: 146 year: 2019 end-page: 165 ident: b0125 article-title: Discrete adversarial attacks and submodular optimization with applications to text classification publication-title: Proc. Mach. Learn. Syst. – reference: Goodfellow, I.J., Shlens, J., Szegedy, C., 2014. Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572. – reference: Bird, S., 2006. NLTK: the natural language toolkit. In: Proceedings of the COLING/ACL 2006 Interactive Presentation Sessions, pp. 69–72. – reference: Cer, D., Yang, Y., Kong, S.-Y., Hua, N., Limtiaco, N., John, R.S., Constant, N., Guajardo-Cespedes, M., Yuan, S., Tar, C., et al., 2018. Universal sentence encoder. arXiv preprint arXiv:1803.11175. – reference: Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C., 2013. Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642. – volume: 15 start-page: 4 year: 2010 end-page: 31 ident: b0035 article-title: Differential evolution: A survey of the state-of-the-art publication-title: IEEE Trans. Evol. Comput. – reference: Hosseini, H., Kannan, S., Zhang, B., Poovendran, R., 2017. Deceiving google’s perspective api built for detecting toxic comments. arXiv preprint arXiv:1702.08138. – start-page: 49 year: 2016 end-page: 54 ident: b0190 article-title: Crafting adversarial input sequences for recurrent neural networks publication-title: MILCOM 2016–2016 IEEE Military Communications Conference – volume: 118 start-page: 102730 year: 2022 ident: b0235 article-title: The triggers that open the NLP model backdoors are hidden in the adversarial samples publication-title: Comput. Sec. – reference: Devlin, J., Chang, M.-W., Lee, K., Toutanova, K., 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. – reference: Gardner, M., Grus, J., Neumann, M., Tafjord, O., Dasigi, P., Liu, N., Peters, M., Schmitz, M., Zettlemoyer, L., 2018. Allennlp: A deep semantic natural language processing platform. arXiv preprint arXiv:1803.07640. – reference: Wang, X., Wang, H., Yang, D., 2021. Measure and Improve Robustness in NLP Models: A Survey. arXiv preprint arXiv:2112.08313. – reference: Alzantot, M., Sharma, Y., Elgohary, A., Ho, B.-J., Srivastava, M., and Chang, K.-W., 2018. Generating natural language adversarial examples. arXiv preprint arXiv:1804.07998. – volume: 159 start-page: 154478 year: 2023 ident: b0290 article-title: Adversarial attacks and active defense on deep learning based identification of GaN power amplifiers under physical perturbation publication-title: AEU-Int. J. Electron. Commun. – volume: 34 start-page: 42 year: 2020 end-page: 48 ident: b0285 article-title: A community detection method based on local optimization in social networks publication-title: Ieee Network – volume: 117 start-page: 102694 year: 2022 ident: b0195 article-title: Fuzzing-based hard-label black-box attacks against machine learning models publication-title: Comput. Sec. – volume: 12 start-page: 53 year: 2004 end-page: 60 ident: b0100 article-title: A simple and global optimization algorithm for engineering problems: differential evolution algorithm publication-title: Turkish J. Electr. Eng. Comput. Sci. – reference: Zhang, X., Zhao, J., LeCun, Y., 2015. Character-level convolutional networks for text classification. Adv. Neural Informat. Process. Syst. 28. – reference: Pang, B., Lee, L., 2005. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. arXiv preprint cs/0506075. – reference: Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., Mikolov, T., 2016. Fasttext.zip: Compressing text classification models. arXiv preprint arXiv:1612.03651. – reference: Samanta, S., Mehta, S., 2017. Towards crafting text adversarial samples. arXiv preprint arXiv:1707.02812. – reference: Zang, Y., Qi, F., Yang, C., Liu, Z., Zhang, M., Liu, Q., Sun, M., 2019. Word-level textual adversarial attacking as combinatorial optimization. arXiv preprint arXiv:1910.12196. – reference: Maheshwary, R., Maheshwary, S., Pudi, V., 2021a. Generating natural language attacks in a hard label black box setting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 13525–13533. – start-page: 12478 year: 2022 end-page: 12497 ident: b0120 article-title: Query-efficient and scalable black-box adversarial attacks on discrete sequential data via bayesian optimization publication-title: International Conference on Machine Learning – volume: 28 year: 2020 ident: b0010 article-title: Comparative assessment of light-based intelligent search and optimization algorithms publication-title: Light Eng. – reference: Maheshwary, R., Maheshwary, S., Pudi, V., 2021b. A strong baseline for query efficient attacks in a black box setting. arXiv preprint arXiv:2109.04775. – volume: 47 start-page: 417 year: 2017 end-page: 462 ident: b0005 article-title: Plant intelligence based metaheuristic optimization algorithms publication-title: Artif. Intell. Rev. – reference: Wang, D., Lin, J., Wang, Y.-G., 2022b. Query-efficient adversarial attack based on latin hypercube sampling. In: 2022 IEEE International Conference on Image Processing (ICIP), pp. 546–550. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0075 article-title: Long short-term memory publication-title: Neural Comput. – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: b0230 article-title: Deep learning in neural networks: An overview publication-title: Neural Networks – reference: Ebrahimi, J., Rao, A., Lowd, D., Dou, D., 2017. Hotflip: White-box adversarial examples for text classification. arXiv preprint arXiv:1712.06751. – reference: Kim, Y., 2014. Convolutional neural networks for sentence classification. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar. Association for Computational Linguistics. pp. 1746–1751. – volume: 32 start-page: 41 year: 2020 end-page: 67 ident: b0085 article-title: Machine learning model security and privacy research: A survey publication-title: J. Softw. – reference: Bowman, S.R., Angeli, G., Potts, C., Manning, C.D., 2015. A large annotated corpus for learning natural language inference. arXiv preprint arXiv:1508.05326. – reference: Jin, D., Jin, Z., Zhou, J.T., Szolovits, P., 2020. Is bert really robust? a strong baseline for natural language attack on text classification and entailment. In: Proceedings of the AAAI conference on artificial intelligence, vol. 34, pp. 8018–8025. – volume: 492 start-page: 278 year: 2022 end-page: 307 ident: b0200 article-title: Adversarial attack and defense technologies in natural language processing: A survey publication-title: Neurocomputing – reference: Li, J., Ji, S., Du, T., Li, B., Wang, T., 2018. Textbugger: Generating adversarial text against real-world applications. arXiv preprint arXiv:1812.05271. – reference: Garg, S., Ramakrishnan, G., 2020. Bae: Bert-based adversarial examples for text classification. arXiv preprint arXiv:2004.01970. – reference: Morris, J., Lifland, E., Yoo, J.Y., Grigsby, J., Jin, D., Qi, Y., 2020. TextAttack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pp. 119–126. – reference: Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., Stoyanov, V., 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692. – reference: Saxena, S., 2020. Textdecepter: Hard label black box attack on text classifiers. arXiv preprint arXiv:2008.06860. – reference: Sanh, V., Debut, L., Chaumond, J., Wolf, T., 2019. Distilbert a distilled version of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, year=2019. – reference: Maas, A., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C., 2011. Learning word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp. 142–150. – volume: 11 start-page: 1 year: 2020 end-page: 41 ident: b0300 article-title: Adversarial attacks on deep-learning models in natural language processing: A survey publication-title: ACM Trans. Intell. Syst. Technol. (TIST) – volume: 1 start-page: 9 year: 2019 ident: b0205 article-title: Language models are unsupervised multitask learners publication-title: OpenAI blog – reference: Williams, A., Nangia, N., Bowman, S.R., 2017. A broad-coverage challenge corpus for sentence understanding through inference. arXiv preprint arXiv:1704.05426. – volume: 7 start-page: 625 year: 2019 end-page: 641 ident: b0275 article-title: Neural network acceptability judgments publication-title: Trans. Assoc. Comput. Linguist. – volume: 117 start-page: 102695 year: 2022 ident: b0110 article-title: Ensemble transfer attack targeting text classification systems publication-title: Comput. Sec. – reference: Lhoest, Q., Villanova del Moral, A., Jernite, Y., Thakur, A., von Platen, P., Patil, S., Chaumond, J., Drame, M., Plu, J., Tunstall, L., Davison, J., Šaško, M., Chhablani, G., Malik, B., Brandeis, S., Le Scao, T., Sanh, V., Xu, C., Patry, N., McMillan-Major, A., Schmid, P., Gugger, S., Delangue, C., Matussière, T., Debut, L., Bekman, S., Cistac, P., Goehringer, T., Mustar, V., Lagunas, F., Rush, A., Wolf, T., 2021. Datasets: A community library for natural language processing. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics. pp. 175–184. – start-page: 12478 year: 2022 ident: 10.1016/j.jksuci.2023.03.017_b0120 article-title: Query-efficient and scalable black-box adversarial attacks on discrete sequential data via bayesian optimization – start-page: 50 year: 2018 ident: 10.1016/j.jksuci.2023.03.017_b0050 article-title: Black-box generation of adversarial text sequences to evade deep learning classifiers – ident: 10.1016/j.jksuci.2023.03.017_b0095 – volume: 117 start-page: 102695 year: 2022 ident: 10.1016/j.jksuci.2023.03.017_b0110 article-title: Ensemble transfer attack targeting text classification systems publication-title: Comput. Sec. doi: 10.1016/j.cose.2022.102695 – volume: 47 start-page: 417 issue: 4 year: 2017 ident: 10.1016/j.jksuci.2023.03.017_b0005 article-title: Plant intelligence based metaheuristic optimization algorithms publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-016-9486-6 – ident: 10.1016/j.jksuci.2023.03.017_b0020 doi: 10.3115/1225403.1225421 – ident: 10.1016/j.jksuci.2023.03.017_b0265 – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.jksuci.2023.03.017_b0230 article-title: Deep learning in neural networks: An overview publication-title: Neural Networks doi: 10.1016/j.neunet.2014.09.003 – ident: 10.1016/j.jksuci.2023.03.017_b0245 – ident: 10.1016/j.jksuci.2023.03.017_b0270 doi: 10.18653/v1/2022.naacl-main.339 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.jksuci.2023.03.017_b0075 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: 10.1016/j.jksuci.2023.03.017_b0260 doi: 10.1109/ICIP46576.2022.9897705 – ident: 10.1016/j.jksuci.2023.03.017_b0255 doi: 10.18653/v1/2022.findings-naacl.14 – ident: 10.1016/j.jksuci.2023.03.017_b0130 doi: 10.18653/v1/2021.emnlp-demo.21 – start-page: 49 year: 2016 ident: 10.1016/j.jksuci.2023.03.017_b0190 article-title: Crafting adversarial input sequences for recurrent neural networks – volume: 34 start-page: 42 issue: 4 year: 2020 ident: 10.1016/j.jksuci.2023.03.017_b0285 article-title: A community detection method based on local optimization in social networks publication-title: Ieee Network doi: 10.1109/MNET.011.1900472 – ident: 10.1016/j.jksuci.2023.03.017_b0025 doi: 10.18653/v1/D15-1075 – ident: 10.1016/j.jksuci.2023.03.017_b0065 – volume: 118 start-page: 102730 year: 2022 ident: 10.1016/j.jksuci.2023.03.017_b0235 article-title: The triggers that open the NLP model backdoors are hidden in the adversarial samples publication-title: Comput. Sec. doi: 10.1016/j.cose.2022.102730 – volume: 13 start-page: 171 year: 2009 ident: 10.1016/j.jksuci.2023.03.017_b0175 article-title: A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays publication-title: Progress Electromagnet. Res. B doi: 10.2528/PIERB09011308 – volume: 7 start-page: 625 year: 2019 ident: 10.1016/j.jksuci.2023.03.017_b0275 article-title: Neural network acceptability judgments publication-title: Trans. Assoc. Comput. Linguist. doi: 10.1162/tacl_a_00290 – ident: 10.1016/j.jksuci.2023.03.017_b0090 doi: 10.1609/aaai.v34i05.6311 – ident: 10.1016/j.jksuci.2023.03.017_b0040 – volume: 12 start-page: 53 issue: 1 year: 2004 ident: 10.1016/j.jksuci.2023.03.017_b0100 article-title: A simple and global optimization algorithm for engineering problems: differential evolution algorithm publication-title: Turkish J. Electr. Eng. Comput. Sci. – ident: 10.1016/j.jksuci.2023.03.017_b0170 doi: 10.18653/v1/2020.emnlp-demos.16 – volume: 11 start-page: 1 issue: 3 year: 2020 ident: 10.1016/j.jksuci.2023.03.017_b0300 article-title: Adversarial attacks on deep-learning models in natural language processing: A survey publication-title: ACM Trans. Intell. Syst. Technol. (TIST) – ident: 10.1016/j.jksuci.2023.03.017_b0225 – volume: 159 start-page: 154478 year: 2023 ident: 10.1016/j.jksuci.2023.03.017_b0290 article-title: Adversarial attacks and active defense on deep learning based identification of GaN power amplifiers under physical perturbation publication-title: AEU-Int. J. Electron. Commun. doi: 10.1016/j.aeue.2022.154478 – volume: 117 start-page: 102694 year: 2022 ident: 10.1016/j.jksuci.2023.03.017_b0195 article-title: Fuzzing-based hard-label black-box attacks against machine learning models publication-title: Comput. Sec. doi: 10.1016/j.cose.2022.102694 – volume: 1 start-page: 9 issue: 8 year: 2019 ident: 10.1016/j.jksuci.2023.03.017_b0205 article-title: Language models are unsupervised multitask learners publication-title: OpenAI blog – ident: 10.1016/j.jksuci.2023.03.017_b0150 – volume: 15 start-page: 4 issue: 1 year: 2010 ident: 10.1016/j.jksuci.2023.03.017_b0035 article-title: Differential evolution: A survey of the state-of-the-art publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2010.2059031 – ident: 10.1016/j.jksuci.2023.03.017_b0165 doi: 10.18653/v1/2021.emnlp-main.661 – ident: 10.1016/j.jksuci.2023.03.017_b0185 doi: 10.3115/1118693.1118704 – ident: 10.1016/j.jksuci.2023.03.017_b0060 doi: 10.18653/v1/2020.emnlp-main.498 – volume: 32 start-page: 41 issue: 1 year: 2020 ident: 10.1016/j.jksuci.2023.03.017_b0085 article-title: Machine learning model security and privacy research: A survey publication-title: J. Softw. – ident: 10.1016/j.jksuci.2023.03.017_b0280 doi: 10.18653/v1/N18-1101 – ident: 10.1016/j.jksuci.2023.03.017_b0220 – ident: 10.1016/j.jksuci.2023.03.017_b0305 – ident: 10.1016/j.jksuci.2023.03.017_b0115 – ident: 10.1016/j.jksuci.2023.03.017_b0055 doi: 10.18653/v1/W18-2501 – ident: 10.1016/j.jksuci.2023.03.017_b0160 doi: 10.1609/aaai.v35i15.17595 – volume: 492 start-page: 278 year: 2022 ident: 10.1016/j.jksuci.2023.03.017_b0200 article-title: Adversarial attack and defense technologies in natural language processing: A survey publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.04.020 – ident: 10.1016/j.jksuci.2023.03.017_b0215 – ident: 10.1016/j.jksuci.2023.03.017_b0030 doi: 10.18653/v1/D18-2029 – ident: 10.1016/j.jksuci.2023.03.017_b0045 doi: 10.18653/v1/P18-2006 – ident: 10.1016/j.jksuci.2023.03.017_b0295 doi: 10.18653/v1/2020.acl-main.540 – ident: 10.1016/j.jksuci.2023.03.017_b0105 doi: 10.3115/v1/D14-1181 – ident: 10.1016/j.jksuci.2023.03.017_b0145 doi: 10.24963/ijcai.2018/585 – volume: 1 start-page: 146 year: 2019 ident: 10.1016/j.jksuci.2023.03.017_b0125 article-title: Discrete adversarial attacks and submodular optimization with applications to text classification publication-title: Proc. Mach. Learn. Syst. – ident: 10.1016/j.jksuci.2023.03.017_b0135 doi: 10.14722/ndss.2019.23138 – ident: 10.1016/j.jksuci.2023.03.017_b0155 – volume: 28 issue: 6 year: 2020 ident: 10.1016/j.jksuci.2023.03.017_b0010 article-title: Comparative assessment of light-based intelligent search and optimization algorithms publication-title: Light Eng. – ident: 10.1016/j.jksuci.2023.03.017_b0015 doi: 10.18653/v1/D18-1316 – ident: 10.1016/j.jksuci.2023.03.017_b0080 – ident: 10.1016/j.jksuci.2023.03.017_b0140 doi: 10.18653/v1/2020.emnlp-main.500 – ident: 10.1016/j.jksuci.2023.03.017_b0250 – ident: 10.1016/j.jksuci.2023.03.017_b0180 doi: 10.3115/1219840.1219855 – ident: 10.1016/j.jksuci.2023.03.017_b0240 – ident: 10.1016/j.jksuci.2023.03.017_b0070 – ident: 10.1016/j.jksuci.2023.03.017_b0210 doi: 10.18653/v1/P19-1103 |
SSID | ssj0001765436 |
Score | 2.2975311 |
Snippet | Deep neural networks that play a pivotal role in fields such as images, text, and audio are vulnerable to adversarial attacks. In current textual adversarial... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 101539 |
SubjectTerms | Adversarial attack Black-box attack Hard-label Language model Machine learning Natural language processing |
SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect Open Access Journals dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqJhbeiPKSB1bTNPEjHqFqhRgYeEjdovhVwqNFJfD7uXMSKAsDUhZbthPdXe4u0X3fEXKmJZfGhoxl4P4ZFz5l2pqcGZUE7oVz2sdqixt59cCvp2LaI6MOC4Nlla3vb3x69NbtzKCV5uCtqgZ3Q7CeIbKxZzFxmIIfzngeQXzTy5__LArRkxFkhHgd3NAh6GKZ19Pz-4etzrGLeGQ7jZ3LfiJUJPJfCVQrwWeyRTbarJFeNA-2TXp-vkM2u44MtH1Bd8ntODJCQCChWNHBMEY56j9b-6Lly2yxrOrHV1ovKOKtGBiBf6EltmV-L9EYaVnXiLunsBzP2CMPk_H96Iq1XROYzaSqWXBcBCm5S1MtTW6SUpe8FMZYI6QLAfnuLR8GHiBTUjbVEJ60L5HazEvjVbZP1uaLuT8gVDmfWqV95hyoUlmtRQ4DL0KQENbSPmGdpIq3hhyj6KrGnopGsgVKtkjgGqo-uURxfq9Faus4sVjOila3RRpMAkmbhO9Ox40TeWZMErTnwQYD2VSfqE4ZxS9LgaOqP29_-O-dR2QdR02h4zFZq5cf_gSSkdqcRmv7An3s3hc priority: 102 providerName: Elsevier |
Title | Efficient text-based evolution algorithm to hard-label adversarial attacks on text |
URI | https://dx.doi.org/10.1016/j.jksuci.2023.03.017 https://doaj.org/article/2fb03926094d4bd583bb0f9e4fcfb993 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQWVh4I8pLHlgNaeJHPRbUqnRg4CF1i-IXtECLSsrv585JoBMsSFGkRNY5urv4O1t33xFyriWXxoaMZbD8My58yrQ1XWZUErgXzmkfsy1u5fCRj8ZivNLqC3PCKnrgSnGXaTAJYLiEbYjjxoluZkwStOfBBgPgiqsvYN7KZiqeriismYylRVil0wG_bOrmYnLX9OVjaScX2Ds8cpzGfmU_uBTp-1fgaQVyBttks44Vaa_6xh2y5me7ZKvpw0Dr33KP3PUjDwTAB8U8DobI5Kj_rL2KFq9P88WkfH6j5ZxilRUD0_tXWmAz5o8CXZAWZYnV9hSGo4x98jjoP1wPWd0rgdlMqpIFx0WQkrs01dJ0TVLoghfCGGuEdCEgy73lncADxEfKphpASfsCCc28NF5lB6Q1m8_8IaHK-dQq7TPnwIDKai268OBFCBLALG0T1mgqf68oMfImV2yaV5rNUbN5AldHtckVqvN7LBJaxxdg5rw2c_6XmdtENcbI69igwnwQNfl1-qP_mP6YbKDIKtPxhLTKxdKfQjRSmjOy3uuN7kdn0QHhfjO--gJs49_J |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ROLQXCn2oSx_40Ku72cSP9bEg0PI8tCDtzYpfNJTuoiX093fGSQq9cKiUSxzbiWYmM1-imW8APhsllPOp4hW6fy5kLLnxbsqdLpKIMgQTc7bFuZpdiuO5nK_B_lALQ2mVve_vfHr21v3IuJfm-LZpxt8naD0TYmOvMnCYP4MNRAOa-jcczfcefrRoKp_MVUZUsEMrhhK6nOd1_fPu3jdfqI14pjvNrcseQlRm8n8UqR5Fn8Mt2OxhI_vaPdk2rMXFK3g5tGRg_Rv6Gr4dZEoIjCSMUjo4BanA4u_ewFh9c7VcNe2PX6xdMiq44mgF8YbV1Jf5riZrZHXbUuE9w-m0xxu4PDy42J_xvm0C95XSLU9ByKSUCGVplJu6oja1qKVz3kkVUiLCey8mSSSEStqXBuOTiTVxm0Xloq7ewvpiuYjvgOkQS69NrEJAXWpvjJziSZQpKYxr5Qj4ICl727Fj2CFt7Np2krUkWVvgMdEj2CNx_p1L3NZ5YLm6sr1ybZlcgahN4YdnEC7IaeVckUwUySeHcGoEelCG_cdUcKvmydvv_PfKXXg-uzg7tadH5yfv4QVd6bIeP8B6u7qPHxGZtO5Ttrw_sTbhNg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+text-based+evolution+algorithm+to+hard-label+adversarial+attacks+on+text&rft.jtitle=Journal+of+King+Saud+University.+Computer+and+information+sciences&rft.au=Hao+Peng&rft.au=Zhe+Wang&rft.au=Dandan+Zhao&rft.au=Yiming+Wu&rft.date=2023-05-01&rft.pub=Springer&rft.issn=1319-1578&rft.volume=35&rft.issue=5&rft.spage=101539&rft_id=info:doi/10.1016%2Fj.jksuci.2023.03.017&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2fb03926094d4bd583bb0f9e4fcfb993 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1319-1578&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1319-1578&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1319-1578&client=summon |