An algorithm for minimizing a linear objective function subject to the fuzzy relation inequalities with addition–min composition
In this paper, we study the optimal solution of minimizing a linear objective function subject to the fuzzy relation inequalities with addition–min composition. We first discuss some properties about the minimal solutions of fuzzy relation inequalities with addition–min composition, and define the p...
Saved in:
Published in | Fuzzy sets and systems Vol. 255; pp. 41 - 51 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
16.11.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we study the optimal solution of minimizing a linear objective function subject to the fuzzy relation inequalities with addition–min composition. We first discuss some properties about the minimal solutions of fuzzy relation inequalities with addition–min composition, and define the pseudo-minimal indexes of this system. Next we give an algorithm to get the set of the pseudo-minimal indexes, which is called PMI algorithm. Finally, we obtain an algorithm for this optimization system by utilizing these concepts and results. The example is provided to show that our algorithm is simple and convenient. |
---|---|
AbstractList | In this paper, we study the optimal solution of minimizing a linear objective function subject to the fuzzy relation inequalities with addition–min composition. We first discuss some properties about the minimal solutions of fuzzy relation inequalities with addition–min composition, and define the pseudo-minimal indexes of this system. Next we give an algorithm to get the set of the pseudo-minimal indexes, which is called PMI algorithm. Finally, we obtain an algorithm for this optimization system by utilizing these concepts and results. The example is provided to show that our algorithm is simple and convenient. |
Author | Yang, Shao-Jun |
Author_xml | – sequence: 1 givenname: Shao-Jun surname: Yang fullname: Yang, Shao-Jun email: yangsj1986@126.com organization: Department of Mathematics, Beijing Institute of Technology, Beijing 100081, PR China |
BookMark | eNp9kM9KAzEQxoMo2KoP4C0vsDXZbDdbPJXiPyh40XPIJrM6ZTepybbSnsRX8A19EtPWkwdhYIZv5jeTfENy7LwDQi45G3HGy6vFqIlxlDNejFgKJo_IgFcyz8qK8WMySDPjjHFenJJhjAvGUl2yAfmcOqrbFx-wf-1o4wPt0GGHW3QvVNMWHehAfb0A0-MaaLNyqfCOxtVeo72n_etO3243NECr992Eva10iz1CpO9pN9XW4q71_fGVLlDju6WPe-WcnDS6jXDxm8_I8-3N0-w-mz_ePcym88yIUvZZwytb5lJOgOW6ySWfaAlG1AXkk7EQlbCsMlaYsbBVLeyENxJqaWqQRQFCa3FG5GGvCT7GAI0y2O-f2weNreJM7axUC5WsVDsrFUvBZCL5H3IZsNNh8y9zfWAgfWmNEFQ0CM6AxZB8U9bjP_QPcCqTzQ |
CitedBy_id | crossref_primary_10_1007_s40314_024_02945_7 crossref_primary_10_1016_j_fss_2019_04_029 crossref_primary_10_1109_TFUZZ_2022_3213884 crossref_primary_10_1109_TFUZZ_2021_3078529 crossref_primary_10_1016_j_jfranklin_2019_02_007 crossref_primary_10_1109_TFUZZ_2016_2598367 crossref_primary_10_1155_2019_8179763 crossref_primary_10_1016_j_fss_2024_109037 crossref_primary_10_1007_s00500_018_3236_4 crossref_primary_10_1109_TFUZZ_2020_3028641 crossref_primary_10_1016_j_fiae_2017_12_002 crossref_primary_10_1016_j_cie_2018_03_038 crossref_primary_10_1109_TFUZZ_2017_2771406 crossref_primary_10_1007_s40815_018_0530_3 crossref_primary_10_3233_JIFS_234499 crossref_primary_10_1007_s10700_019_09305_9 crossref_primary_10_1016_j_cie_2020_106644 crossref_primary_10_1016_j_fss_2023_108825 crossref_primary_10_1016_j_ins_2020_03_047 crossref_primary_10_1007_s00500_023_09376_2 crossref_primary_10_1109_TFUZZ_2023_3305641 crossref_primary_10_1142_S0218488515500348 crossref_primary_10_1109_TFUZZ_2017_2648864 crossref_primary_10_1109_TFUZZ_2023_3284392 crossref_primary_10_1016_j_fss_2025_109369 crossref_primary_10_1016_j_ins_2023_119696 crossref_primary_10_1016_j_asoc_2018_04_029 crossref_primary_10_31829_2637_9252_AIE_1_1__103 crossref_primary_10_1016_j_aej_2022_09_009 crossref_primary_10_31829_2637_9252_AIE_1_1__105 crossref_primary_10_1007_s13042_016_0527_x crossref_primary_10_1016_j_fss_2024_109067 crossref_primary_10_3233_JIFS_151820 crossref_primary_10_1016_j_ins_2016_04_014 crossref_primary_10_1007_s00500_025_10473_7 crossref_primary_10_3233_JIFS_202590 crossref_primary_10_1016_j_fss_2017_08_001 crossref_primary_10_1109_TFUZZ_2022_3201982 crossref_primary_10_1155_2019_4960638 crossref_primary_10_1109_ACCESS_2024_3467191 crossref_primary_10_1007_s10700_021_09377_6 crossref_primary_10_1016_j_ins_2021_03_021 crossref_primary_10_1109_ACCESS_2020_3034279 crossref_primary_10_1016_j_fss_2022_03_017 crossref_primary_10_1016_j_fss_2024_109011 crossref_primary_10_1109_TFUZZ_2016_2593496 crossref_primary_10_1109_TFUZZ_2020_2991304 crossref_primary_10_1109_TFUZZ_2020_3029633 crossref_primary_10_1109_ACCESS_2018_2834231 crossref_primary_10_1109_TFUZZ_2019_2920806 crossref_primary_10_1016_j_ins_2019_06_058 crossref_primary_10_1007_s10700_019_09306_8 crossref_primary_10_1007_s40815_022_01316_w crossref_primary_10_3390_math12203183 crossref_primary_10_1007_s10700_021_09368_7 crossref_primary_10_3233_IFS_151546 crossref_primary_10_1155_2019_6901818 crossref_primary_10_1016_j_ins_2016_04_041 crossref_primary_10_1109_TFUZZ_2024_3514746 crossref_primary_10_1007_s10700_022_09390_3 crossref_primary_10_1016_j_fss_2021_08_007 crossref_primary_10_1016_j_fss_2022_02_005 crossref_primary_10_31829_2637_9252_aie2018_1_1__105 crossref_primary_10_1109_TFUZZ_2015_2428716 crossref_primary_10_1016_j_ins_2017_07_032 crossref_primary_10_31829_2637_9252_aie2018_1_1__103 crossref_primary_10_1016_j_fss_2020_09_014 crossref_primary_10_1007_s10700_021_09371_y crossref_primary_10_1016_j_cie_2020_106537 crossref_primary_10_1109_TFUZZ_2020_3021726 crossref_primary_10_1109_ACCESS_2018_2878748 crossref_primary_10_1016_j_ins_2022_01_023 crossref_primary_10_1016_j_fss_2017_04_002 |
Cites_doi | 10.1109/TSMC.1987.289361 10.1007/s00500-006-0103-5 10.1016/S0165-0114(96)00246-1 10.1109/91.784204 10.1109/TFUZZ.2002.800657 10.1016/j.fss.2005.02.010 10.1016/j.fss.2004.09.010 10.1016/0165-0114(79)90023-X 10.1016/S0165-0114(01)00052-5 10.1016/j.fss.2008.02.017 10.1016/S0165-0114(97)00184-X 10.1016/0165-0114(84)90015-0 10.1016/0165-0114(80)90062-7 10.1016/S0019-9958(76)90446-0 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. |
Copyright_xml | – notice: 2014 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.fss.2014.04.007 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1872-6801 |
EndPage | 51 |
ExternalDocumentID | 10_1016_j_fss_2014_04_007 S0165011414001687 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNCT ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA K-O KOM LG9 LY1 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 WH7 ZMT ~02 ~G- 1OL 29H AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION F0J FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW SSH VH1 WUQ XPP |
ID | FETCH-LOGICAL-c367t-f18d62779e02af2719a7ec3b4e2953383d08cd3c53d8b3d91f7eb7cbe744e3aa3 |
IEDL.DBID | .~1 |
ISSN | 0165-0114 |
IngestDate | Thu Apr 24 23:01:42 EDT 2025 Tue Jul 01 00:51:00 EDT 2025 Fri Feb 23 02:36:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pseudo-minimal index The minimal solutions The optimal solution The optimization system Fuzzy relation inequalities |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-f18d62779e02af2719a7ec3b4e2953383d08cd3c53d8b3d91f7eb7cbe744e3aa3 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1016_j_fss_2014_04_007 crossref_primary_10_1016_j_fss_2014_04_007 elsevier_sciencedirect_doi_10_1016_j_fss_2014_04_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-11-16 |
PublicationDateYYYYMMDD | 2014-11-16 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-16 day: 16 |
PublicationDecade | 2010 |
PublicationTitle | Fuzzy sets and systems |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Loetamonphong, Fang (br0100) 1999; 7 Pedrycz (br0140) 1984; 13 Wu, Guu, Liu (br0190) 2002; 10 Li, Hu (br0080) 2010; 3 Loetamonphong, Fang, Young (br0110) 2002; 127 Sanchez (br0160) 1976; 30 Li, Hu (br0060) 1997; 11 Ou, Zhang (br0130) 1988 Wu, Guu (br0180) 2005; 150 Li, Yang (br0090) 2012 Yue (br0240) 2009 Markovskii (br0120) 2005; 153 Zheng, Ou (br0220) 1982; 3 Lee, Guu (br0040) 2002; 2 Xu, Lu (br0200) 1987; 17 Fang, Li (br0030) 1999; 103 Li (br0050) 2008; 159 Dubois, Prade (br0020) 1986 Li, Hu (br0070) 2009; 4 Bourke, Fisher (br0010) 1998; 94 Peeva, Kyosev (br0150) 2007; 11 Thole, Zimmermann, Zysno (br0170) 1979; 2 Zimmermann, Zysno (br0230) 1980; 4 Peeva (10.1016/j.fss.2014.04.007_br0150) 2007; 11 Yue (10.1016/j.fss.2014.04.007_br0240) 2009 Xu (10.1016/j.fss.2014.04.007_br0200) 1987; 17 Zheng (10.1016/j.fss.2014.04.007_br0220) 1982; 3 Ou (10.1016/j.fss.2014.04.007_br0130) 1988 Markovskii (10.1016/j.fss.2014.04.007_br0120) 2005; 153 Li (10.1016/j.fss.2014.04.007_br0050) 2008; 159 Loetamonphong (10.1016/j.fss.2014.04.007_br0110) 2002; 127 Dubois (10.1016/j.fss.2014.04.007_br0020) 1986 Lee (10.1016/j.fss.2014.04.007_br0040) 2002; 2 Loetamonphong (10.1016/j.fss.2014.04.007_br0100) 1999; 7 Thole (10.1016/j.fss.2014.04.007_br0170) 1979; 2 Wu (10.1016/j.fss.2014.04.007_br0180) 2005; 150 Wu (10.1016/j.fss.2014.04.007_br0190) 2002; 10 Zimmermann (10.1016/j.fss.2014.04.007_br0230) 1980; 4 Li (10.1016/j.fss.2014.04.007_br0070) 2009; 4 Li (10.1016/j.fss.2014.04.007_br0080) 2010; 3 Li (10.1016/j.fss.2014.04.007_br0060) 1997; 11 Sanchez (10.1016/j.fss.2014.04.007_br0160) 1976; 30 Bourke (10.1016/j.fss.2014.04.007_br0010) 1998; 94 Li (10.1016/j.fss.2014.04.007_br0090) 2012 Pedrycz (10.1016/j.fss.2014.04.007_br0140) 1984; 13 Fang (10.1016/j.fss.2014.04.007_br0030) 1999; 103 |
References_xml | – volume: 159 start-page: 2278 year: 2008 end-page: 2298 ident: br0050 article-title: A new algorithm for minimizing a linear objective function with fuzzy relation equation constraints publication-title: Fuzzy Sets Syst. – volume: 13 start-page: 153 year: 1984 end-page: 167 ident: br0140 article-title: An identification algorithm in fuzzy relation systems publication-title: Fuzzy Sets Syst. – start-page: 190 year: 1988 end-page: 277 ident: br0130 article-title: The Principle of Fuzzy Mathematics and Its Applications – volume: 94 start-page: 61 year: 1998 end-page: 69 ident: br0010 article-title: Solution algorithms for fuzzy relational equations with max-product composition publication-title: Fuzzy Sets Syst. – volume: 150 start-page: 147 year: 2005 end-page: 162 ident: br0180 article-title: Minimizing a linear function under a fuzzy max–min relational equation constraint publication-title: Fuzzy Sets Syst. – start-page: 59 year: 1986 end-page: 75 ident: br0020 article-title: New results about properties and semantics of fuzzy set-theoretic operators publication-title: Fuzzy Sets – volume: 3 start-page: 39 year: 1982 end-page: 47 ident: br0220 article-title: A method for the solution of fuzzy relation equations publication-title: J. Chengdu Inst. Radio Eng. – volume: 11 start-page: 44 year: 1997 end-page: 52 ident: br0060 article-title: The construction of the max–min fuzzy relation equations that have an unique minimal solution publication-title: Fuzzy Syst. Math. – volume: 2 start-page: 31 year: 2002 end-page: 39 ident: br0040 article-title: On the optimal three-tier multimedia streaming services publication-title: Fuzzy Optim. Decis. Mak. – volume: 17 start-page: 683 year: 1987 end-page: 689 ident: br0200 article-title: Fuzzy model identification and self-learning for dynamic systems publication-title: IEEE Trans. Syst. Man Cybern. – volume: 3 start-page: 229 year: 2010 end-page: 247 ident: br0080 article-title: A new algorithm for minimizing a linear objective function subject to a system of fuzzy relation equations with max-product composition publication-title: Fuzzy Inf. Eng. – volume: 2 start-page: 167 year: 1979 end-page: 180 ident: br0170 article-title: On the suit-ability of minimum and product operators for intersection of fuzzy sets publication-title: Fuzzy Sets Syst. – volume: 153 start-page: 261 year: 2005 end-page: 273 ident: br0120 article-title: On the relation between equations with max-product composition and the covering problem publication-title: Fuzzy Sets Syst. – year: 2009 ident: br0240 article-title: Operational Research – volume: 4 start-page: 37 year: 1980 end-page: 51 ident: br0230 article-title: Latent connectives in human decision-making publication-title: Fuzzy Sets Syst. – volume: 127 start-page: 141 year: 2002 end-page: 164 ident: br0110 article-title: Multi-objective optimization problems with fuzzy relation equation constrain publication-title: Fuzzy Sets Syst. – volume: 7 start-page: 331 year: 1999 end-page: 445 ident: br0100 article-title: An efficient solution procedure for fuzzy relational equations with max-product composition publication-title: IEEE Trans. Fuzzy Syst. – volume: 11 start-page: 593 year: 2007 end-page: 605 ident: br0150 article-title: Algorithm for solving max-product fuzzy relational equations publication-title: Soft Comput. – volume: 30 start-page: 38 year: 1976 end-page: 48 ident: br0160 article-title: The notion of fuzzy relation equations with the max–min composition was first investigated by Sanchez publication-title: Inf. Control – volume: 10 start-page: 552 year: 2002 end-page: 558 ident: br0190 article-title: An accelerated approach for solving fuzzy relation equations with a linear objective function publication-title: IEEE Trans. Fuzzy Syst. – start-page: 452 year: 2012 end-page: 456 ident: br0090 article-title: Fuzzy relation inequalities about the data transmission mechanism in bittorrent-like peer-to-peer file sharing systems publication-title: Proceedings – 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2012 – volume: 103 start-page: 107 year: 1999 end-page: 113 ident: br0030 article-title: Solving fuzzy relation equations with a linear objective function publication-title: Fuzzy Sets Syst. – volume: 4 start-page: 1 year: 2009 end-page: 21 ident: br0070 article-title: An algorithm for fuzzy relation equations with max-product composition publication-title: Adv. Fuzzy Sets Syst. – volume: 17 start-page: 683 year: 1987 ident: 10.1016/j.fss.2014.04.007_br0200 article-title: Fuzzy model identification and self-learning for dynamic systems publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1987.289361 – volume: 11 start-page: 593 year: 2007 ident: 10.1016/j.fss.2014.04.007_br0150 article-title: Algorithm for solving max-product fuzzy relational equations publication-title: Soft Comput. doi: 10.1007/s00500-006-0103-5 – volume: 94 start-page: 61 year: 1998 ident: 10.1016/j.fss.2014.04.007_br0010 article-title: Solution algorithms for fuzzy relational equations with max-product composition publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(96)00246-1 – volume: 11 start-page: 44 issue: 1 year: 1997 ident: 10.1016/j.fss.2014.04.007_br0060 article-title: The construction of the max–min fuzzy relation equations that have an unique minimal solution publication-title: Fuzzy Syst. Math. – volume: 7 start-page: 331 year: 1999 ident: 10.1016/j.fss.2014.04.007_br0100 article-title: An efficient solution procedure for fuzzy relational equations with max-product composition publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.784204 – volume: 10 start-page: 552 issue: 4 year: 2002 ident: 10.1016/j.fss.2014.04.007_br0190 article-title: An accelerated approach for solving fuzzy relation equations with a linear objective function publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2002.800657 – volume: 2 start-page: 31 issue: 31 year: 2002 ident: 10.1016/j.fss.2014.04.007_br0040 article-title: On the optimal three-tier multimedia streaming services publication-title: Fuzzy Optim. Decis. Mak. – start-page: 59 year: 1986 ident: 10.1016/j.fss.2014.04.007_br0020 article-title: New results about properties and semantics of fuzzy set-theoretic operators – volume: 3 start-page: 229 year: 2010 ident: 10.1016/j.fss.2014.04.007_br0080 article-title: A new algorithm for minimizing a linear objective function subject to a system of fuzzy relation equations with max-product composition publication-title: Fuzzy Inf. Eng. – start-page: 452 year: 2012 ident: 10.1016/j.fss.2014.04.007_br0090 article-title: Fuzzy relation inequalities about the data transmission mechanism in bittorrent-like peer-to-peer file sharing systems – volume: 153 start-page: 261 year: 2005 ident: 10.1016/j.fss.2014.04.007_br0120 article-title: On the relation between equations with max-product composition and the covering problem publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2005.02.010 – start-page: 190 year: 1988 ident: 10.1016/j.fss.2014.04.007_br0130 – volume: 150 start-page: 147 year: 2005 ident: 10.1016/j.fss.2014.04.007_br0180 article-title: Minimizing a linear function under a fuzzy max–min relational equation constraint publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2004.09.010 – volume: 2 start-page: 167 year: 1979 ident: 10.1016/j.fss.2014.04.007_br0170 article-title: On the suit-ability of minimum and product operators for intersection of fuzzy sets publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(79)90023-X – year: 2009 ident: 10.1016/j.fss.2014.04.007_br0240 – volume: 4 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.fss.2014.04.007_br0070 article-title: An algorithm for fuzzy relation equations with max-product composition publication-title: Adv. Fuzzy Sets Syst. – volume: 127 start-page: 141 year: 2002 ident: 10.1016/j.fss.2014.04.007_br0110 article-title: Multi-objective optimization problems with fuzzy relation equation constrain publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(01)00052-5 – volume: 159 start-page: 2278 year: 2008 ident: 10.1016/j.fss.2014.04.007_br0050 article-title: A new algorithm for minimizing a linear objective function with fuzzy relation equation constraints publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2008.02.017 – volume: 103 start-page: 107 year: 1999 ident: 10.1016/j.fss.2014.04.007_br0030 article-title: Solving fuzzy relation equations with a linear objective function publication-title: Fuzzy Sets Syst. doi: 10.1016/S0165-0114(97)00184-X – volume: 13 start-page: 153 year: 1984 ident: 10.1016/j.fss.2014.04.007_br0140 article-title: An identification algorithm in fuzzy relation systems publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(84)90015-0 – volume: 3 start-page: 39 year: 1982 ident: 10.1016/j.fss.2014.04.007_br0220 article-title: A method for the solution of fuzzy relation equations publication-title: J. Chengdu Inst. Radio Eng. – volume: 4 start-page: 37 year: 1980 ident: 10.1016/j.fss.2014.04.007_br0230 article-title: Latent connectives in human decision-making publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(80)90062-7 – volume: 30 start-page: 38 year: 1976 ident: 10.1016/j.fss.2014.04.007_br0160 article-title: The notion of fuzzy relation equations with the max–min composition was first investigated by Sanchez publication-title: Inf. Control doi: 10.1016/S0019-9958(76)90446-0 |
SSID | ssj0001160 |
Score | 2.4220963 |
Snippet | In this paper, we study the optimal solution of minimizing a linear objective function subject to the fuzzy relation inequalities with addition–min... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 41 |
SubjectTerms | Fuzzy relation inequalities Pseudo-minimal index The minimal solutions The optimal solution The optimization system |
Title | An algorithm for minimizing a linear objective function subject to the fuzzy relation inequalities with addition–min composition |
URI | https://dx.doi.org/10.1016/j.fss.2014.04.007 |
Volume | 255 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIpndQMTUmgSu7EzVhVVAbULVGKLYseBVtCitgx0QIi_wD_kl3CXRwEJGJAyJI4viXzWPZzvOzN25GphY8m5Y5RraLVKO6FqBI4MbIrRgW8SRQTnbi_o9MX5deO6wlolF4ZglYXtz216Zq2LlnoxmvWHwaB-SUQcCucxRcBTRYxyISTN8pPnT5iH52VMYersUO_yz2aG8UqnVLHbEyd5De2ffdMXf9NeY6tFoAjN_FvWWcWONthKd1FldbrJXpsjiO9uxpjf394DRp9AhULuB3N0RxADBZDxBMZ6mBs1IB9GeoDpY9YGszHg47B9Pn-CSQGLAxTLqZaYRAOt0wKBjujW-8sbvgEIhl5gvbZYv3161eo4xZ4KjuGBnDmpp5LAlzK0rh-nvvTCWFrDUWM-AU0VT1xlEm4aPFGaJ6GXSqul0VYKYXkc821WHY1HdoeB0ak0aBNsI8G0R2exXKiUSDClCbkKdplbjmZkioLjtO_FXVQiy4YRKiAiBUQuHq7cZccLkYe82sZfnUWpoujblInQG_wutvc_sX22TFdEQ_SCA1adTR7tIcYjM13LJlyNLTXPLjq9D_z04s0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagDMCAeIryvIEJKTSJ09gZKwQq0HahlbpFseNAEbSoj4EOCPEX-If8Eu7yKCABA1KGyPYlkS-5-8757szYka08EwnOLS1tTatVygpk1beEbxJEB66OJSU4N1t-veNddqvdOXZa5MIQrTK3_ZlNT6113lLJZ7Py2OtVrikRh-A8hgh4KsU8W_Dw86VtDE6eP3kejpOmCtNoi4YXvzZTklcyopLdjneSFdH-2Tl9cTjnq2wlR4pQyx5mjc2Z_jpbbs7KrI422GutD9H9zQAD_NsHQPgJVCnkoTdFfwQREIKMhjBQd5lVA3JipAgYTdI2GA8AL4ft0-kTDHNeHKBYlmuJUTTQQi0Q64i63l_e8A5APPSc7LXJOudn7dO6lW-qYGnui7GVODL2XSECY7tR4goniITRHFXmEtNU8tiWOua6ymOpeBw4iTBKaGWE5xkeRXyLlfqDvtlmoFUiNBoFU40x7lEpmAuk9GKMaQIu_TKzi9kMdV5xnDa-uA8LatldiAoISQGhjYctyux4JvKYldv4a7BXqCj89s6E6A5-F9v5n9ghW6y3m42wcdG62mVL1EM5iY6_x0rj4cTsIzgZq4P05fsAP2vkWw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+algorithm+for+minimizing+a+linear+objective+function+subject+to+the+fuzzy+relation+inequalities+with+addition%E2%80%93min+composition&rft.jtitle=Fuzzy+sets+and+systems&rft.au=Yang%2C+Shao-Jun&rft.date=2014-11-16&rft.pub=Elsevier+B.V&rft.issn=0165-0114&rft.eissn=1872-6801&rft.volume=255&rft.spage=41&rft.epage=51&rft_id=info:doi/10.1016%2Fj.fss.2014.04.007&rft.externalDocID=S0165011414001687 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-0114&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-0114&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-0114&client=summon |