Jacobi–Gauss–Lobatto collocation method for solving nonlinear reaction–diffusion equations subject to Dirichlet boundary conditions

This paper extends the application of the spectral Jacobi–Gauss–Lobatto collocation (J-GL-C) method based on Gauss–Lobatto nodes to obtain semi-analytical solutions of nonlinear time-dependent reaction–diffusion equations (RDEs) subject to Dirichlet boundary conditions. This approach has the advanta...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematical modelling Vol. 40; no. 3; pp. 1703 - 1716
Main Authors Bhrawy, A.H., Doha, E.H., Abdelkawy, M.A., Van Gorder, R.A.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.02.2016
Subjects
Online AccessGet full text
ISSN0307-904X
DOI10.1016/j.apm.2015.09.009

Cover

Loading…
Abstract This paper extends the application of the spectral Jacobi–Gauss–Lobatto collocation (J-GL-C) method based on Gauss–Lobatto nodes to obtain semi-analytical solutions of nonlinear time-dependent reaction–diffusion equations (RDEs) subject to Dirichlet boundary conditions. This approach has the advantage of allowing us to obtain the solution in terms of the Jacobi parameters α and β, which therefore means that the method holds a number of collocation methods as a special case. In addition, the problem is reduced to the solution of system of ordinary differential equations (SODEs) in the time variable, which may then be solved by any standard numerical technique. We consider five applications of the general method to concrete examples. In each of the examples considered, the numerical results show that the proposed method is of high accuracy and is efficient for solving nonlinear time-dependent RDEs.
AbstractList This paper extends the application of the spectral Jacobi–Gauss–Lobatto collocation (J-GL-C) method based on Gauss–Lobatto nodes to obtain semi-analytical solutions of nonlinear time-dependent reaction–diffusion equations (RDEs) subject to Dirichlet boundary conditions. This approach has the advantage of allowing us to obtain the solution in terms of the Jacobi parameters α and β, which therefore means that the method holds a number of collocation methods as a special case. In addition, the problem is reduced to the solution of system of ordinary differential equations (SODEs) in the time variable, which may then be solved by any standard numerical technique. We consider five applications of the general method to concrete examples. In each of the examples considered, the numerical results show that the proposed method is of high accuracy and is efficient for solving nonlinear time-dependent RDEs.
Author Doha, E.H.
Abdelkawy, M.A.
Van Gorder, R.A.
Bhrawy, A.H.
Author_xml – sequence: 1
  givenname: A.H.
  surname: Bhrawy
  fullname: Bhrawy, A.H.
  email: alibhrawy@yahoo.co.uk
  organization: Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
– sequence: 2
  givenname: E.H.
  surname: Doha
  fullname: Doha, E.H.
  email: eiddoha@frcu.eun.eg
  organization: Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt
– sequence: 3
  givenname: M.A.
  surname: Abdelkawy
  fullname: Abdelkawy, M.A.
  email: melkawy@yahoo.com
  organization: Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
– sequence: 4
  givenname: R.A.
  surname: Van Gorder
  fullname: Van Gorder, R.A.
  email: Robert.VanGorder@maths.ox.ac.uk
  organization: Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG United Kingdom
BookMark eNp9kLFOwzAQhj0UibbwAGx-gYZz0yaxmFCBAqrEAhKb5dgX6iiNi-1UYmNl5g15EpyWiaHTydZ9d_d_IzJobYuEXDBIGLDssk7kdpNMgc0T4AkAH5AhpJBPOMxeT8nI-xoA5vE1JF-PUtnS_Hx-L2XnfawrW8oQLFW2aaySwdiWbjCsraaVddTbZmfaNxp3NqZF6ahDqfquyGpTVZ3vCXzv9qinvitrVIHGkTfGGbVuMNDSdq2W7iNuabXZN56Rk0o2Hs__6pi83N0-L-4nq6flw-J6NVFplocJqiIHmGKRcoaayWzO84yBVFkqdZn1wbDifDpL02k2lyydzYoqfkheFAXTVTom7DBXOeu9w0psndnEWwQD0fsTtYj-RO9PABfRX2Tyf4wyYZ8vOGmao-TVgcQYaWfQCa8Mtgq1cdGK0NYcoX8BhJGVwg
CitedBy_id crossref_primary_10_1140_epjp_s13360_020_00847_1
crossref_primary_10_1016_j_camwa_2017_12_007
crossref_primary_10_1016_j_eswa_2023_121626
crossref_primary_10_1088_0253_6102_69_5_519
crossref_primary_10_1016_j_apnum_2017_08_003
crossref_primary_10_18185_erzifbed_1217232
crossref_primary_10_1007_s40995_017_0224_y
crossref_primary_10_1007_s40314_022_02106_8
crossref_primary_10_1016_j_matcom_2024_09_028
crossref_primary_10_1142_S0129183121500960
crossref_primary_10_1016_j_advengsoft_2018_08_012
crossref_primary_10_1155_2017_9407656
Cites_doi 10.1016/0022-0396(89)90122-8
10.1016/j.amc.2014.08.062
10.1002/num.20369
10.1016/j.cnsns.2011.07.036
10.1016/j.amc.2003.10.050
10.1111/j.1469-1809.1937.tb02153.x
10.1016/j.cnsns.2011.06.018
10.1063/1.1664771
10.1137/0723002
10.1007/s11075-008-9216-5
10.1016/j.apm.2008.12.010
10.1016/j.physd.2005.08.001
10.1137/0726001
10.1016/j.chaos.2005.10.012
10.1119/1.17120
10.1016/j.physleta.2008.05.068
10.1016/S0021-9991(05)80008-7
10.1016/j.jcp.2004.03.004
10.1017/S0022112069000127
10.1016/S0960-0779(01)00247-8
10.1016/j.cnsns.2011.10.014
10.1016/j.nonrwa.2010.02.019
10.1016/j.apm.2011.12.031
10.1016/j.nonrwa.2009.10.016
10.4134/JKMS.2012.49.1.099
10.1515/zna-2002-0809
10.1016/j.cnsns.2012.02.027
10.1016/j.bpc.2006.01.008
10.1016/j.mcm.2011.01.002
10.1016/j.amc.2006.09.013
10.1016/j.apnum.2008.08.007
10.1016/j.chaos.2005.10.001
10.1088/0253-6102/58/1/02
10.1016/j.cnsns.2011.04.025
10.1186/1687-2770-2012-62
10.1016/j.physd.2006.03.011
10.1017/S0022112069000176
10.1155/2012/418943
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright_xml – notice: 2015 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.apm.2015.09.009
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 1716
ExternalDocumentID 10_1016_j_apm_2015_09_009
S0307904X15004953
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IXB
J1W
JJJVA
KOM
LG9
LY7
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WH7
ZMT
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FGOYB
G-2
HZ~
MVM
R2-
SEW
SSH
WUQ
XJT
XPP
ID FETCH-LOGICAL-c367t-ec87002e8391ed1a6597610ac63adb60005ef992433265a13448ff99a98881df3
IEDL.DBID .~1
ISSN 0307-904X
IngestDate Tue Jul 01 02:00:53 EDT 2025
Thu Apr 24 23:10:45 EDT 2025
Fri Feb 23 02:30:55 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Nonlinear reaction–diffusion equations
Collocation method
Jacobi–Gauss–Lobatto quadrature
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-ec87002e8391ed1a6597610ac63adb60005ef992433265a13448ff99a98881df3
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_apm_2015_09_009
crossref_citationtrail_10_1016_j_apm_2015_09_009
elsevier_sciencedirect_doi_10_1016_j_apm_2015_09_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied mathematical modelling
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kolmogorov, Petrovskii, Piscounov (bib0024) 1991
Szegö (bib0022) 1939
Zhu, Fan (bib0009) 2012; 17
Frank (bib0043) 1955
Tal-Ezer (bib0015) 1989; 26
Ma, Wu, Zhu (bib0039) 2007; 31
Gorder, Vajravelu (bib0031) 2010; 11
Wazwaz (bib0044) 2007; 187
Murray (bib0035) 1989
Gorder (bib0033) 2012; 58
Doha, Bhrawy, Hafez (bib0020) 2011; 53
Luke (bib0023) 1969
Gorder, Vajravelu (bib0052) 2011; 9
Tan, Xu, Liao (bib0046) 2007; 31
Bhrawy, Al-shomrani (bib0016) 2012; 2012
Saadatmandi, Dehghan (bib0011) 2012; 17
Gilding, Kersner (bib0028) 2004; 60
Tal-Ezer (bib0014) 1986; 23
Malfliet (bib0045) 1992; 60
Khater, Malfliet, Callebaut, Kamel (bib0001) 2002; 14
Ismail, Raslan, Rabboh (bib0047) 2004; 159
Beals, Wong (bib0021) 2010
Bhrawy (bib0050) 2014; 247
Newell, Whitehead (bib0025) 1969; 38
Doha, Bhrawy, Ezz-Eldien (bib0010) 2012; 36
Gorder, Vajravelu (bib0029) 2008; 372
Canuto, Hussaini, Quarteroni, Zang (bib0004) 2006
Veksler, Zarmi (bib0038) 2006; 217
Bhrawy, Alghamdi (bib0008) 2012; 2012
El-Kady (bib0019) 2012; 49
Gorder (bib0032) 2012; 17
Canosa (bib0049) 1969; 31
Guo, Yan (bib0007) 2009; 59
Fisher (bib0040) 1937; 7
Mayawala, Vlachos, Edwards (bib0002) 2006; 121
Glenn, Brian, Rodney (bib0013) 1992; 102
Khattak (bib0041) 2009; 33
Segel (bib0026) 1969; 38
Bhrawy, Alofi (bib0006) 2012; 17
Zeldovich, Frank-Kamenetsky (bib0027) 1938; 9
Veksler, Zarmi (bib0037) 2005; 211
Doha, Bhrawy, Abd-Elhameed (bib0017) 2009; 50
Khattak (bib0048) 2009; 33
Fife (bib0036) 1979
Doha, Bhrawy (bib0018) 2009; 25
Britton (bib0042) 1986
Doha, Bhrawy, Hafez (bib0012) 2012; 17
Murray (bib0034) 1977
Nguyen, Delcarte (bib0005) 2004; 200
Markowich, Szmolyan (bib0003) 1989; 81
Gorder, Vajravelu (bib0030) 2010; 11
Fan, Hon (bib0051) 2002; 57a
Murray (10.1016/j.apm.2015.09.009_bib0034) 1977
Canuto (10.1016/j.apm.2015.09.009_bib0004) 2006
Fisher (10.1016/j.apm.2015.09.009_bib0040) 1937; 7
Murray (10.1016/j.apm.2015.09.009_bib0035) 1989
Bhrawy (10.1016/j.apm.2015.09.009_bib0050) 2014; 247
Frank (10.1016/j.apm.2015.09.009_bib0043) 1955
El-Kady (10.1016/j.apm.2015.09.009_bib0019) 2012; 49
Zhu (10.1016/j.apm.2015.09.009_bib0009) 2012; 17
Malfliet (10.1016/j.apm.2015.09.009_bib0045) 1992; 60
Fan (10.1016/j.apm.2015.09.009_bib0051) 2002; 57a
Zeldovich (10.1016/j.apm.2015.09.009_bib0027) 1938; 9
Kolmogorov (10.1016/j.apm.2015.09.009_sbref0024) 1991
Bhrawy (10.1016/j.apm.2015.09.009_bib0008) 2012; 2012
Tal-Ezer (10.1016/j.apm.2015.09.009_bib0014) 1986; 23
Doha (10.1016/j.apm.2015.09.009_bib0018) 2009; 25
Doha (10.1016/j.apm.2015.09.009_bib0012) 2012; 17
Khattak (10.1016/j.apm.2015.09.009_bib0048) 2009; 33
Doha (10.1016/j.apm.2015.09.009_bib0020) 2011; 53
Szegö (10.1016/j.apm.2015.09.009_sbref0022) 1939
Gorder (10.1016/j.apm.2015.09.009_bib0032) 2012; 17
Veksler (10.1016/j.apm.2015.09.009_bib0038) 2006; 217
Guo (10.1016/j.apm.2015.09.009_bib0007) 2009; 59
Khattak (10.1016/j.apm.2015.09.009_bib0041) 2009; 33
Nguyen (10.1016/j.apm.2015.09.009_bib0005) 2004; 200
Khater (10.1016/j.apm.2015.09.009_bib0001) 2002; 14
Markowich (10.1016/j.apm.2015.09.009_bib0003) 1989; 81
Saadatmandi (10.1016/j.apm.2015.09.009_bib0011) 2012; 17
Tal-Ezer (10.1016/j.apm.2015.09.009_bib0015) 1989; 26
Bhrawy (10.1016/j.apm.2015.09.009_sbref0016) 2012; 2012
Fife (10.1016/j.apm.2015.09.009_bib0036) 1979
Beals (10.1016/j.apm.2015.09.009_bib0021) 2010
Wazwaz (10.1016/j.apm.2015.09.009_bib0044) 2007; 187
Glenn (10.1016/j.apm.2015.09.009_bib0013) 1992; 102
Gorder (10.1016/j.apm.2015.09.009_bib0033) 2012; 58
Ismail (10.1016/j.apm.2015.09.009_bib0047) 2004; 159
Luke (10.1016/j.apm.2015.09.009_bib0023) 1969
Newell (10.1016/j.apm.2015.09.009_bib0025) 1969; 38
Mayawala (10.1016/j.apm.2015.09.009_bib0002) 2006; 121
Veksler (10.1016/j.apm.2015.09.009_bib0037) 2005; 211
Ma (10.1016/j.apm.2015.09.009_bib0039) 2007; 31
Britton (10.1016/j.apm.2015.09.009_bib0042) 1986
Segel (10.1016/j.apm.2015.09.009_bib0026) 1969; 38
Gorder (10.1016/j.apm.2015.09.009_bib0030) 2010; 11
Bhrawy (10.1016/j.apm.2015.09.009_bib0006) 2012; 17
Doha (10.1016/j.apm.2015.09.009_bib0010) 2012; 36
Gorder (10.1016/j.apm.2015.09.009_bib0031) 2010; 11
Doha (10.1016/j.apm.2015.09.009_bib0017) 2009; 50
Gorder (10.1016/j.apm.2015.09.009_bib0052) 2011; 9
Tan (10.1016/j.apm.2015.09.009_bib0046) 2007; 31
Gilding (10.1016/j.apm.2015.09.009_bib0028) 2004; 60
Gorder (10.1016/j.apm.2015.09.009_bib0029) 2008; 372
Canosa (10.1016/j.apm.2015.09.009_bib0049) 1969; 31
References_xml – volume: 247
  start-page: 30
  year: 2014
  end-page: 46
  ident: bib0050
  article-title: An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system
  publication-title: Appl. Math. Comput.
– volume: 53
  start-page: 1820
  year: 2011
  end-page: 1832
  ident: bib0020
  article-title: A Jacobi–Jacobi dual-Petrov–Galerkin method for third- and fifth-order differential equations
  publication-title: Math. Comput. Model.
– year: 1939
  ident: bib0022
  article-title: Orthogonal Polynomials, Colloquium Publications, XXIII
  publication-title: American Mathematical Society
– volume: 59
  start-page: 1386
  year: 2009
  end-page: 1408
  ident: bib0007
  article-title: Legendre–Gauss collocation method for initial value problems of second order ordinary differential equations
  publication-title: Appl. Numer. Math.
– volume: 26
  start-page: 1
  year: 1989
  end-page: 11
  ident: bib0015
  article-title: Spectral methods in time for parabolic problems
  publication-title: SIAM J. Numer. Anal.
– volume: 57a
  start-page: 692
  year: 2002
  end-page: 700
  ident: bib0051
  article-title: Generalized tanh method extended to special types of nonlinear equations
  publication-title: Z. Naturforsch.
– year: 1989
  ident: bib0035
  publication-title: Mathematical Biology
– year: 2010
  ident: bib0021
  publication-title: Special Functions
– volume: 11
  start-page: 3923
  year: 2010
  end-page: 3929
  ident: bib0031
  article-title: Analytical and numerical Solutions for a density dependent Nagumo telegraph equation
  publication-title: Nonlinear Anal. Ser. B: Real World Appl.
– volume: 17
  start-page: 3802
  year: 2012
  end-page: 3810
  ident: bib0012
  article-title: On shifted Jacobi spectral method for high-order multi-point boundary value problems
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 36
  start-page: 4931
  year: 2012
  end-page: 4943
  ident: bib0010
  article-title: A new Jacobi operational matrix: an application for solving fractional differential equation
  publication-title: Appl. Math. Model.
– volume: 49
  start-page: 99
  year: 2012
  end-page: 112
  ident: bib0019
  article-title: Jacobi discrete approximation for solving optimal control problems
  publication-title: J. Korean Math. Soc.
– volume: 17
  start-page: 593
  year: 2012
  end-page: 601
  ident: bib0011
  article-title: The use of Sinc-collocation method for solving multi-point boundary value problems
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 187
  start-page: 1131
  year: 2007
  end-page: 1142
  ident: bib0044
  article-title: The extended tanh method for abundant solitary wave solutions of nonlinear wave equations
  publication-title: Appl. Math. Comput.
– volume: 211
  start-page: 57
  year: 2005
  end-page: 73
  ident: bib0037
  article-title: Wave interactions and the analysis of the perturbed Burgers equation
  publication-title: Physica D
– volume: 31
  start-page: 1862
  year: 1969
  end-page: 1869
  ident: bib0049
  article-title: Diffusion in nonlinear multiplicate media
  publication-title: J. Math. Phys.
– volume: 14
  start-page: 513
  year: 2002
  end-page: 522
  ident: bib0001
  article-title: The tanh method, a simple transformation and exact analytical solutions for nonlinear reaction–diffusion equations
  publication-title: Chaos Solitons Fract.
– year: 1955
  ident: bib0043
  publication-title: Diffusion and Heat Exchange in Chemical Kinetics
– volume: 50
  start-page: 67
  year: 2009
  end-page: 91
  ident: bib0017
  article-title: Jacobi spectral Galerkin method for elliptic Neumann problems
  publication-title: Numer. Algorithms
– volume: 200
  start-page: 34
  year: 2004
  end-page: 49
  ident: bib0005
  article-title: A spectral collocation method to solve Helmholtz problems with boundary conditions involving mixed tangential and normal derivatives
  publication-title: J. Comput. Phys.
– volume: 33
  start-page: 3718
  year: 2009
  end-page: 3729
  ident: bib0048
  article-title: A computational meshless method for the generalized Burgers’–Huxley equation
  publication-title: Appl. Math. Model.
– volume: 31
  start-page: 462
  year: 2007
  end-page: 472
  ident: bib0046
  article-title: Explicit series solution of travelling waves with a front of Fisher equation
  publication-title: Chaos Solitons Fract.
– volume: 81
  start-page: 234
  year: 1989
  end-page: 254
  ident: bib0003
  article-title: A system of convection–diffusion equations with small diffusion coefficient arising in semiconductor physics
  publication-title: J. Differ. Equ.
– volume: 31
  start-page: 648
  year: 2007
  end-page: 657
  ident: bib0039
  article-title: Multisoliton excitations for the Kadomtsev–Petviashvili equation and the coupled Burgers equation
  publication-title: Chaos Solitons Fract.
– year: 1977
  ident: bib0034
  article-title: Nonlinear Differential Equation Models in Biology
– volume: 102
  start-page: 88
  year: 1992
  end-page: 97
  ident: bib0013
  article-title: Spectral methods in time for a class of parabolic partial differential equations
  publication-title: J. Comput. Phys.
– volume: 7
  start-page: 353
  year: 1937
  end-page: 369
  ident: bib0040
  article-title: The wave of advance of advantageous genes
  publication-title: Ann. Eugen.
– year: 1979
  ident: bib0036
  publication-title: Mathematical Aspects of Reacting and Diffusing Systems
– volume: 23
  start-page: 11
  year: 1986
  end-page: 26
  ident: bib0014
  article-title: Spectral methods in time for hyperbolic problems
  publication-title: SIAM J. Numer. Anal.
– volume: 2012
  start-page: 16
  year: 2012
  ident: bib0016
  article-title: A Jacobi dual-Petrov Galerkin–Jacobi collocation method for solving Korteweg–de Vries equations
  publication-title: Abstr. Appl. Anal.
– start-page: 248-270
  year: 1991
  ident: bib0024
  article-title: A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem
  publication-title: Selected Works of A. N. Kolmogorov
– volume: 159
  start-page: 291
  year: 2004
  end-page: 301
  ident: bib0047
  article-title: Adomian decomposition method for Burgers’–Huxley and Burgers’–Fisher equations
  publication-title: Appl. Math. Comput.
– year: 1969
  ident: bib0023
  publication-title: The Special Functions and Their Approximations
– volume: 372
  start-page: 5152
  year: 2008
  end-page: 5158
  ident: bib0029
  article-title: Analytical and numerical solutions of the density dependent diffusion Nagumo equation
  publication-title: Phys. Lett. A
– volume: 9
  start-page: 341
  year: 1938
  end-page: 350
  ident: bib0027
  article-title: A theory of thermal propagation of flame
  publication-title: Acta Physicochim.
– volume: 17
  start-page: 62
  year: 2012
  end-page: 70
  ident: bib0006
  article-title: A Jacobi–Gauss collocation method for solving nonlinear Lane–Emden type equations
  publication-title: Commun. Nonlinear. Sci. Numer. Simul.
– volume: 38
  start-page: 279
  year: 1969
  end-page: 303
  ident: bib0025
  article-title: Finite bandwidth, finite amplitude convection
  publication-title: J. Fluid Mech.
– volume: 60
  start-page: 650
  year: 1992
  end-page: 654
  ident: bib0045
  article-title: Solitary wave solutions of nonlinear wave equations
  publication-title: Am. J. Phys.
– volume: 121
  start-page: 194
  year: 2006
  end-page: 208
  ident: bib0002
  article-title: Spatial modeling of dimerization reaction dynamics in the plasma membrane: Monte Carlo vs. continuum differential equations
  publication-title: Biophys. Chem.
– volume: 38
  start-page: 203
  year: 1969
  end-page: 224
  ident: bib0026
  article-title: Distant sidewalls cause slow amplitude modulation of cellular convection
  publication-title: J. Fluid Mech.
– volume: 33
  start-page: 3718
  year: 2009
  end-page: 3729
  ident: bib0041
  article-title: A computational meshless method for the generalized Burgers’–Huxley equation
  publication-title: Appl. Math. Model.
– volume: 17
  start-page: 1233
  year: 2012
  end-page: 1240
  ident: bib0032
  article-title: Gaussian waves in the Fitzhugh–Nagumo equation demonstrate one role of the auxiliary function
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– year: 1986
  ident: bib0042
  publication-title: Reaction-Diffusion Equations and Their Applications to Biology
– volume: 25
  start-page: 712
  year: 2009
  end-page: 739
  ident: bib0018
  article-title: A Jacobi spectral Galerkin method for the integrated forms of fourth-order elliptic differential equations
  publication-title: Numer. Methods Partial Differ. Equ.
– year: 2006
  ident: bib0004
  publication-title: Spectral Methods: Fundamentals in Single Domains
– volume: 60
  start-page: 209
  year: 2004
  ident: bib0028
  publication-title: Travelling Waves in Nonlinear Diffusion Convection Reaction, Nonlinear Differential Equations and their Applications
– volume: 58
  start-page: 5
  year: 2012
  end-page: 11
  ident: bib0033
  article-title: Travelling waves for a density dependent diffusion Nagumo equation over the real line
  publication-title: Commun. Theor. Phys.
– volume: 11
  start-page: 2957
  year: 2010
  end-page: 2962
  ident: bib0030
  article-title: A variational formulation of the Nagumo reaction–diffusion equation and the Nagumo telegraph equation
  publication-title: Nonlinear Anal. Ser. B: Real World Appl.
– volume: 217
  start-page: 77
  year: 2006
  end-page: 87
  ident: bib0038
  article-title: Freedom in the expansion and obstacles to integrability in multiple-soliton solutions of the perturbed KdV equation
  publication-title: Physica D
– volume: 17
  start-page: 2333
  year: 2012
  end-page: 2341
  ident: bib0009
  article-title: Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 9
  start-page: 1182
  year: 2011
  end-page: 1194
  ident: bib0052
  article-title: Nonlinear dispersion of a pollutant ejected into a channel flow
  publication-title: Cent. Eur. J. Phys.
– volume: 2012
  start-page: 62
  year: 2012
  ident: bib0008
  article-title: A shifted Jacobi–Gauss–Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals
  publication-title: Bound. Value Probl.
– volume: 81
  start-page: 234
  issue: 2
  year: 1989
  ident: 10.1016/j.apm.2015.09.009_bib0003
  article-title: A system of convection–diffusion equations with small diffusion coefficient arising in semiconductor physics
  publication-title: J. Differ. Equ.
  doi: 10.1016/0022-0396(89)90122-8
– volume: 247
  start-page: 30
  year: 2014
  ident: 10.1016/j.apm.2015.09.009_bib0050
  article-title: An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2014.08.062
– volume: 25
  start-page: 712
  year: 2009
  ident: 10.1016/j.apm.2015.09.009_bib0018
  article-title: A Jacobi spectral Galerkin method for the integrated forms of fourth-order elliptic differential equations
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.20369
– volume: 17
  start-page: 1233
  year: 2012
  ident: 10.1016/j.apm.2015.09.009_bib0032
  article-title: Gaussian waves in the Fitzhugh–Nagumo equation demonstrate one role of the auxiliary function H(x) in the homotopy analysis method
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2011.07.036
– volume: 159
  start-page: 291
  year: 2004
  ident: 10.1016/j.apm.2015.09.009_bib0047
  article-title: Adomian decomposition method for Burgers’–Huxley and Burgers’–Fisher equations
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2003.10.050
– volume: 7
  start-page: 353
  year: 1937
  ident: 10.1016/j.apm.2015.09.009_bib0040
  article-title: The wave of advance of advantageous genes
  publication-title: Ann. Eugen.
  doi: 10.1111/j.1469-1809.1937.tb02153.x
– volume: 17
  start-page: 593
  year: 2012
  ident: 10.1016/j.apm.2015.09.009_bib0011
  article-title: The use of Sinc-collocation method for solving multi-point boundary value problems
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2011.06.018
– volume: 31
  start-page: 1862
  year: 1969
  ident: 10.1016/j.apm.2015.09.009_bib0049
  article-title: Diffusion in nonlinear multiplicate media
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1664771
– volume: 23
  start-page: 11
  year: 1986
  ident: 10.1016/j.apm.2015.09.009_bib0014
  article-title: Spectral methods in time for hyperbolic problems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0723002
– volume: 50
  start-page: 67
  year: 2009
  ident: 10.1016/j.apm.2015.09.009_bib0017
  article-title: Jacobi spectral Galerkin method for elliptic Neumann problems
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-008-9216-5
– volume: 33
  start-page: 3718
  year: 2009
  ident: 10.1016/j.apm.2015.09.009_bib0048
  article-title: A computational meshless method for the generalized Burgers’–Huxley equation
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2008.12.010
– volume: 211
  start-page: 57
  year: 2005
  ident: 10.1016/j.apm.2015.09.009_bib0037
  article-title: Wave interactions and the analysis of the perturbed Burgers equation
  publication-title: Physica D
  doi: 10.1016/j.physd.2005.08.001
– volume: 26
  start-page: 1
  year: 1989
  ident: 10.1016/j.apm.2015.09.009_bib0015
  article-title: Spectral methods in time for parabolic problems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0726001
– volume: 31
  start-page: 648
  year: 2007
  ident: 10.1016/j.apm.2015.09.009_bib0039
  article-title: Multisoliton excitations for the Kadomtsev–Petviashvili equation and the coupled Burgers equation
  publication-title: Chaos Solitons Fract.
  doi: 10.1016/j.chaos.2005.10.012
– volume: 60
  start-page: 650
  issue: 7
  year: 1992
  ident: 10.1016/j.apm.2015.09.009_bib0045
  article-title: Solitary wave solutions of nonlinear wave equations
  publication-title: Am. J. Phys.
  doi: 10.1119/1.17120
– volume: 372
  start-page: 5152
  year: 2008
  ident: 10.1016/j.apm.2015.09.009_bib0029
  article-title: Analytical and numerical solutions of the density dependent diffusion Nagumo equation
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2008.05.068
– year: 1939
  ident: 10.1016/j.apm.2015.09.009_sbref0022
  article-title: Orthogonal Polynomials, Colloquium Publications, XXIII
  publication-title: American Mathematical Society
– year: 1969
  ident: 10.1016/j.apm.2015.09.009_bib0023
– volume: 60
  start-page: 209
  year: 2004
  ident: 10.1016/j.apm.2015.09.009_bib0028
– volume: 102
  start-page: 88
  year: 1992
  ident: 10.1016/j.apm.2015.09.009_bib0013
  article-title: Spectral methods in time for a class of parabolic partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/S0021-9991(05)80008-7
– year: 1989
  ident: 10.1016/j.apm.2015.09.009_bib0035
– volume: 9
  start-page: 1182
  year: 2011
  ident: 10.1016/j.apm.2015.09.009_bib0052
  article-title: Nonlinear dispersion of a pollutant ejected into a channel flow
  publication-title: Cent. Eur. J. Phys.
– volume: 200
  start-page: 34
  year: 2004
  ident: 10.1016/j.apm.2015.09.009_bib0005
  article-title: A spectral collocation method to solve Helmholtz problems with boundary conditions involving mixed tangential and normal derivatives
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2004.03.004
– year: 1955
  ident: 10.1016/j.apm.2015.09.009_bib0043
– volume: 38
  start-page: 203
  year: 1969
  ident: 10.1016/j.apm.2015.09.009_bib0026
  article-title: Distant sidewalls cause slow amplitude modulation of cellular convection
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112069000127
– volume: 14
  start-page: 513
  year: 2002
  ident: 10.1016/j.apm.2015.09.009_bib0001
  article-title: The tanh method, a simple transformation and exact analytical solutions for nonlinear reaction–diffusion equations
  publication-title: Chaos Solitons Fract.
  doi: 10.1016/S0960-0779(01)00247-8
– volume: 17
  start-page: 2333
  year: 2012
  ident: 10.1016/j.apm.2015.09.009_bib0009
  article-title: Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2011.10.014
– volume: 11
  start-page: 3923
  year: 2010
  ident: 10.1016/j.apm.2015.09.009_bib0031
  article-title: Analytical and numerical Solutions for a density dependent Nagumo telegraph equation
  publication-title: Nonlinear Anal. Ser. B: Real World Appl.
  doi: 10.1016/j.nonrwa.2010.02.019
– volume: 36
  start-page: 4931
  year: 2012
  ident: 10.1016/j.apm.2015.09.009_bib0010
  article-title: A new Jacobi operational matrix: an application for solving fractional differential equation
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2011.12.031
– volume: 11
  start-page: 2957
  year: 2010
  ident: 10.1016/j.apm.2015.09.009_bib0030
  article-title: A variational formulation of the Nagumo reaction–diffusion equation and the Nagumo telegraph equation
  publication-title: Nonlinear Anal. Ser. B: Real World Appl.
  doi: 10.1016/j.nonrwa.2009.10.016
– volume: 49
  start-page: 99
  year: 2012
  ident: 10.1016/j.apm.2015.09.009_bib0019
  article-title: Jacobi discrete approximation for solving optimal control problems
  publication-title: J. Korean Math. Soc.
  doi: 10.4134/JKMS.2012.49.1.099
– volume: 57a
  start-page: 692
  year: 2002
  ident: 10.1016/j.apm.2015.09.009_bib0051
  article-title: Generalized tanh method extended to special types of nonlinear equations
  publication-title: Z. Naturforsch.
  doi: 10.1515/zna-2002-0809
– volume: 17
  start-page: 3802
  year: 2012
  ident: 10.1016/j.apm.2015.09.009_bib0012
  article-title: On shifted Jacobi spectral method for high-order multi-point boundary value problems
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2012.02.027
– volume: 9
  start-page: 341
  year: 1938
  ident: 10.1016/j.apm.2015.09.009_bib0027
  article-title: A theory of thermal propagation of flame
  publication-title: Acta Physicochim.
– volume: 121
  start-page: 194
  issue: 3
  year: 2006
  ident: 10.1016/j.apm.2015.09.009_bib0002
  article-title: Spatial modeling of dimerization reaction dynamics in the plasma membrane: Monte Carlo vs. continuum differential equations
  publication-title: Biophys. Chem.
  doi: 10.1016/j.bpc.2006.01.008
– year: 1977
  ident: 10.1016/j.apm.2015.09.009_bib0034
– volume: 33
  start-page: 3718
  year: 2009
  ident: 10.1016/j.apm.2015.09.009_bib0041
  article-title: A computational meshless method for the generalized Burgers’–Huxley equation
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2008.12.010
– volume: 53
  start-page: 1820
  year: 2011
  ident: 10.1016/j.apm.2015.09.009_bib0020
  article-title: A Jacobi–Jacobi dual-Petrov–Galerkin method for third- and fifth-order differential equations
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2011.01.002
– volume: 187
  start-page: 1131
  year: 2007
  ident: 10.1016/j.apm.2015.09.009_bib0044
  article-title: The extended tanh method for abundant solitary wave solutions of nonlinear wave equations
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.09.013
– year: 1986
  ident: 10.1016/j.apm.2015.09.009_bib0042
– volume: 59
  start-page: 1386
  year: 2009
  ident: 10.1016/j.apm.2015.09.009_bib0007
  article-title: Legendre–Gauss collocation method for initial value problems of second order ordinary differential equations
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2008.08.007
– volume: 31
  start-page: 462
  year: 2007
  ident: 10.1016/j.apm.2015.09.009_bib0046
  article-title: Explicit series solution of travelling waves with a front of Fisher equation
  publication-title: Chaos Solitons Fract.
  doi: 10.1016/j.chaos.2005.10.001
– year: 2010
  ident: 10.1016/j.apm.2015.09.009_bib0021
– volume: 58
  start-page: 5
  year: 2012
  ident: 10.1016/j.apm.2015.09.009_bib0033
  article-title: Travelling waves for a density dependent diffusion Nagumo equation over the real line
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/58/1/02
– start-page: 248-270
  year: 1991
  ident: 10.1016/j.apm.2015.09.009_sbref0024
  article-title: A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem
– volume: 17
  start-page: 62
  year: 2012
  ident: 10.1016/j.apm.2015.09.009_bib0006
  article-title: A Jacobi–Gauss collocation method for solving nonlinear Lane–Emden type equations
  publication-title: Commun. Nonlinear. Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2011.04.025
– volume: 2012
  start-page: 62
  year: 2012
  ident: 10.1016/j.apm.2015.09.009_bib0008
  article-title: A shifted Jacobi–Gauss–Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals
  publication-title: Bound. Value Probl.
  doi: 10.1186/1687-2770-2012-62
– volume: 217
  start-page: 77
  year: 2006
  ident: 10.1016/j.apm.2015.09.009_bib0038
  article-title: Freedom in the expansion and obstacles to integrability in multiple-soliton solutions of the perturbed KdV equation
  publication-title: Physica D
  doi: 10.1016/j.physd.2006.03.011
– year: 2006
  ident: 10.1016/j.apm.2015.09.009_bib0004
– volume: 38
  start-page: 279
  year: 1969
  ident: 10.1016/j.apm.2015.09.009_bib0025
  article-title: Finite bandwidth, finite amplitude convection
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112069000176
– year: 1979
  ident: 10.1016/j.apm.2015.09.009_bib0036
– volume: 2012
  start-page: 16
  year: 2012
  ident: 10.1016/j.apm.2015.09.009_sbref0016
  article-title: A Jacobi dual-Petrov Galerkin–Jacobi collocation method for solving Korteweg–de Vries equations
  publication-title: Abstr. Appl. Anal.
  doi: 10.1155/2012/418943
SSID ssj0005904
Score 2.1951876
Snippet This paper extends the application of the spectral Jacobi–Gauss–Lobatto collocation (J-GL-C) method based on Gauss–Lobatto nodes to obtain semi-analytical...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 1703
SubjectTerms Collocation method
Jacobi–Gauss–Lobatto quadrature
Nonlinear reaction–diffusion equations
Title Jacobi–Gauss–Lobatto collocation method for solving nonlinear reaction–diffusion equations subject to Dirichlet boundary conditions
URI https://dx.doi.org/10.1016/j.apm.2015.09.009
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDwwIYXGxHl4LBWlLbQLVMoW2YkjilBbmmRgQazM_EN-CXd5VEUCBqbIkS-xfOe77-zzHSGnLlNMezI2pCMsgwsZGWCElWGLyPGkZfEwxhPd4cjpjfnAt_0a6VR3YTCsstT9hU7PtXX5plXOZms-mbTuUDyFyX2ANCZGSeINdu5i_vzz15UwD2HyKhki9q5ONvMYLznHy-jMzlOdYkziT7Zpxd50t8hmCRRpuxjLNqnp6Q7ZGC6zrCa75H0A6kxNPt8-rmWWJPC8hdWZpjOK3J0Vm3G0qBFNAZxSkDPcP6DTIj-GXFCAjPnFBqDFUikZ7p1R_Vzk_05okincp6HwSdCNk_ABuExVXolp8QJ_wfNu7LhHxt2r-07PKEsrGKHluKmhQ1in5oUGeMR0xKQDfgUAKRk6loyUg_OmYwG-mQXwzpbMAi8uhhdSgMfMotjaJ3UYqz4gFKxbpEytXe0xrgFwOlK5EfdYHIPzGIoGMatJDcIy7ziWv3gKqgCzxwD4ECAfAlMEwIcGOVuSzIukG3915hWngm-SE4BR-J3s8H9kR2QdWmXc9jGpp4tMnwAsSVUzl7smWWv3b3ojaPX9yy_b2eiw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKOwAD4inK0wMTUtSYPD1WFSWlj4VW6mbZiSOKUFuadGBjZeYf8ku4y6OABAxMkRxfYvnOd9_Z5ztCLjymmPZlbEiXW4bNZWSAEVaGwyPXl5ZlhzGe6PYHbjCyb8fOuEJa5V0YDKssdH-u0zNtXbQ0itlszCeTxh2KJzftMUAaE6Mk10gNs1OBsNeanW4w-Iz04KZd5kNEgvJwMwvzknO8j86cLNsphiX-ZJ6-mJz2NtkqsCJt5sPZIRU93SWb_VWi1WSPvN6CRlOT95e3G7lMEnj2YIGm6Ywig2f5fhzNy0RTwKcURA23EOg0T5EhFxRQY3a3AWixWsoSt8-ofspTgCc0WSrcqqHwSVCPk_AeGE1VVoxp8Qx_wSNv7LhPRu3rYSswiuoKRmi5XmroEJaqeaUBITEdMemCawFYSoauJSPl4rzpmIN7ZgHCcySzwJGLoUFycJpZFFsHpApj1YeEgoGLlKm1p31ma8CcrlReZPssjsF_DHmdmOWkirBIPY4VMB5FGWP2IIAPAvkgTC6AD3VyuSKZ53k3_upsl5wS34RHgF34nezof2TnZD0Y9nui1xl0j8kGvCnCuE9INV0s9SmglFSdFVL4AVSg6l0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jacobi%E2%80%93Gauss%E2%80%93Lobatto+collocation+method+for+solving+nonlinear+reaction%E2%80%93diffusion+equations+subject+to+Dirichlet+boundary+conditions&rft.jtitle=Applied+mathematical+modelling&rft.au=Bhrawy%2C+A.H.&rft.au=Doha%2C+E.H.&rft.au=Abdelkawy%2C+M.A.&rft.au=Van+Gorder%2C+R.A.&rft.date=2016-02-01&rft.issn=0307-904X&rft.volume=40&rft.issue=3&rft.spage=1703&rft.epage=1716&rft_id=info:doi/10.1016%2Fj.apm.2015.09.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apm_2015_09_009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon