Jacobi–Gauss–Lobatto collocation method for solving nonlinear reaction–diffusion equations subject to Dirichlet boundary conditions
This paper extends the application of the spectral Jacobi–Gauss–Lobatto collocation (J-GL-C) method based on Gauss–Lobatto nodes to obtain semi-analytical solutions of nonlinear time-dependent reaction–diffusion equations (RDEs) subject to Dirichlet boundary conditions. This approach has the advanta...
Saved in:
Published in | Applied mathematical modelling Vol. 40; no. 3; pp. 1703 - 1716 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.02.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0307-904X |
DOI | 10.1016/j.apm.2015.09.009 |
Cover
Loading…
Abstract | This paper extends the application of the spectral Jacobi–Gauss–Lobatto collocation (J-GL-C) method based on Gauss–Lobatto nodes to obtain semi-analytical solutions of nonlinear time-dependent reaction–diffusion equations (RDEs) subject to Dirichlet boundary conditions. This approach has the advantage of allowing us to obtain the solution in terms of the Jacobi parameters α and β, which therefore means that the method holds a number of collocation methods as a special case. In addition, the problem is reduced to the solution of system of ordinary differential equations (SODEs) in the time variable, which may then be solved by any standard numerical technique. We consider five applications of the general method to concrete examples. In each of the examples considered, the numerical results show that the proposed method is of high accuracy and is efficient for solving nonlinear time-dependent RDEs. |
---|---|
AbstractList | This paper extends the application of the spectral Jacobi–Gauss–Lobatto collocation (J-GL-C) method based on Gauss–Lobatto nodes to obtain semi-analytical solutions of nonlinear time-dependent reaction–diffusion equations (RDEs) subject to Dirichlet boundary conditions. This approach has the advantage of allowing us to obtain the solution in terms of the Jacobi parameters α and β, which therefore means that the method holds a number of collocation methods as a special case. In addition, the problem is reduced to the solution of system of ordinary differential equations (SODEs) in the time variable, which may then be solved by any standard numerical technique. We consider five applications of the general method to concrete examples. In each of the examples considered, the numerical results show that the proposed method is of high accuracy and is efficient for solving nonlinear time-dependent RDEs. |
Author | Doha, E.H. Abdelkawy, M.A. Van Gorder, R.A. Bhrawy, A.H. |
Author_xml | – sequence: 1 givenname: A.H. surname: Bhrawy fullname: Bhrawy, A.H. email: alibhrawy@yahoo.co.uk organization: Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia – sequence: 2 givenname: E.H. surname: Doha fullname: Doha, E.H. email: eiddoha@frcu.eun.eg organization: Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt – sequence: 3 givenname: M.A. surname: Abdelkawy fullname: Abdelkawy, M.A. email: melkawy@yahoo.com organization: Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt – sequence: 4 givenname: R.A. surname: Van Gorder fullname: Van Gorder, R.A. email: Robert.VanGorder@maths.ox.ac.uk organization: Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG United Kingdom |
BookMark | eNp9kLFOwzAQhj0UibbwAGx-gYZz0yaxmFCBAqrEAhKb5dgX6iiNi-1UYmNl5g15EpyWiaHTydZ9d_d_IzJobYuEXDBIGLDssk7kdpNMgc0T4AkAH5AhpJBPOMxeT8nI-xoA5vE1JF-PUtnS_Hx-L2XnfawrW8oQLFW2aaySwdiWbjCsraaVddTbZmfaNxp3NqZF6ahDqfquyGpTVZ3vCXzv9qinvitrVIHGkTfGGbVuMNDSdq2W7iNuabXZN56Rk0o2Hs__6pi83N0-L-4nq6flw-J6NVFplocJqiIHmGKRcoaayWzO84yBVFkqdZn1wbDifDpL02k2lyydzYoqfkheFAXTVTom7DBXOeu9w0psndnEWwQD0fsTtYj-RO9PABfRX2Tyf4wyYZ8vOGmao-TVgcQYaWfQCa8Mtgq1cdGK0NYcoX8BhJGVwg |
CitedBy_id | crossref_primary_10_1140_epjp_s13360_020_00847_1 crossref_primary_10_1016_j_camwa_2017_12_007 crossref_primary_10_1016_j_eswa_2023_121626 crossref_primary_10_1088_0253_6102_69_5_519 crossref_primary_10_1016_j_apnum_2017_08_003 crossref_primary_10_18185_erzifbed_1217232 crossref_primary_10_1007_s40995_017_0224_y crossref_primary_10_1007_s40314_022_02106_8 crossref_primary_10_1016_j_matcom_2024_09_028 crossref_primary_10_1142_S0129183121500960 crossref_primary_10_1016_j_advengsoft_2018_08_012 crossref_primary_10_1155_2017_9407656 |
Cites_doi | 10.1016/0022-0396(89)90122-8 10.1016/j.amc.2014.08.062 10.1002/num.20369 10.1016/j.cnsns.2011.07.036 10.1016/j.amc.2003.10.050 10.1111/j.1469-1809.1937.tb02153.x 10.1016/j.cnsns.2011.06.018 10.1063/1.1664771 10.1137/0723002 10.1007/s11075-008-9216-5 10.1016/j.apm.2008.12.010 10.1016/j.physd.2005.08.001 10.1137/0726001 10.1016/j.chaos.2005.10.012 10.1119/1.17120 10.1016/j.physleta.2008.05.068 10.1016/S0021-9991(05)80008-7 10.1016/j.jcp.2004.03.004 10.1017/S0022112069000127 10.1016/S0960-0779(01)00247-8 10.1016/j.cnsns.2011.10.014 10.1016/j.nonrwa.2010.02.019 10.1016/j.apm.2011.12.031 10.1016/j.nonrwa.2009.10.016 10.4134/JKMS.2012.49.1.099 10.1515/zna-2002-0809 10.1016/j.cnsns.2012.02.027 10.1016/j.bpc.2006.01.008 10.1016/j.mcm.2011.01.002 10.1016/j.amc.2006.09.013 10.1016/j.apnum.2008.08.007 10.1016/j.chaos.2005.10.001 10.1088/0253-6102/58/1/02 10.1016/j.cnsns.2011.04.025 10.1186/1687-2770-2012-62 10.1016/j.physd.2006.03.011 10.1017/S0022112069000176 10.1155/2012/418943 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. |
Copyright_xml | – notice: 2015 Elsevier Inc. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.apm.2015.09.009 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EndPage | 1716 |
ExternalDocumentID | 10_1016_j_apm_2015_09_009 S0307904X15004953 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABAOU ABMAC ABVKL ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IXB J1W JJJVA KOM LG9 LY7 M26 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SST SSW SSZ T5K TN5 WH7 ZMT ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FGOYB G-2 HZ~ MVM R2- SEW SSH WUQ XJT XPP |
ID | FETCH-LOGICAL-c367t-ec87002e8391ed1a6597610ac63adb60005ef992433265a13448ff99a98881df3 |
IEDL.DBID | .~1 |
ISSN | 0307-904X |
IngestDate | Tue Jul 01 02:00:53 EDT 2025 Thu Apr 24 23:10:45 EDT 2025 Fri Feb 23 02:30:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Nonlinear reaction–diffusion equations Collocation method Jacobi–Gauss–Lobatto quadrature |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-ec87002e8391ed1a6597610ac63adb60005ef992433265a13448ff99a98881df3 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1016_j_apm_2015_09_009 crossref_citationtrail_10_1016_j_apm_2015_09_009 elsevier_sciencedirect_doi_10_1016_j_apm_2015_09_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-01 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Applied mathematical modelling |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Kolmogorov, Petrovskii, Piscounov (bib0024) 1991 Szegö (bib0022) 1939 Zhu, Fan (bib0009) 2012; 17 Frank (bib0043) 1955 Tal-Ezer (bib0015) 1989; 26 Ma, Wu, Zhu (bib0039) 2007; 31 Gorder, Vajravelu (bib0031) 2010; 11 Wazwaz (bib0044) 2007; 187 Murray (bib0035) 1989 Gorder (bib0033) 2012; 58 Doha, Bhrawy, Hafez (bib0020) 2011; 53 Luke (bib0023) 1969 Gorder, Vajravelu (bib0052) 2011; 9 Tan, Xu, Liao (bib0046) 2007; 31 Bhrawy, Al-shomrani (bib0016) 2012; 2012 Saadatmandi, Dehghan (bib0011) 2012; 17 Gilding, Kersner (bib0028) 2004; 60 Tal-Ezer (bib0014) 1986; 23 Malfliet (bib0045) 1992; 60 Khater, Malfliet, Callebaut, Kamel (bib0001) 2002; 14 Ismail, Raslan, Rabboh (bib0047) 2004; 159 Beals, Wong (bib0021) 2010 Bhrawy (bib0050) 2014; 247 Newell, Whitehead (bib0025) 1969; 38 Doha, Bhrawy, Ezz-Eldien (bib0010) 2012; 36 Gorder, Vajravelu (bib0029) 2008; 372 Canuto, Hussaini, Quarteroni, Zang (bib0004) 2006 Veksler, Zarmi (bib0038) 2006; 217 Bhrawy, Alghamdi (bib0008) 2012; 2012 El-Kady (bib0019) 2012; 49 Gorder (bib0032) 2012; 17 Canosa (bib0049) 1969; 31 Guo, Yan (bib0007) 2009; 59 Fisher (bib0040) 1937; 7 Mayawala, Vlachos, Edwards (bib0002) 2006; 121 Glenn, Brian, Rodney (bib0013) 1992; 102 Khattak (bib0041) 2009; 33 Segel (bib0026) 1969; 38 Bhrawy, Alofi (bib0006) 2012; 17 Zeldovich, Frank-Kamenetsky (bib0027) 1938; 9 Veksler, Zarmi (bib0037) 2005; 211 Doha, Bhrawy, Abd-Elhameed (bib0017) 2009; 50 Khattak (bib0048) 2009; 33 Fife (bib0036) 1979 Doha, Bhrawy (bib0018) 2009; 25 Britton (bib0042) 1986 Doha, Bhrawy, Hafez (bib0012) 2012; 17 Murray (bib0034) 1977 Nguyen, Delcarte (bib0005) 2004; 200 Markowich, Szmolyan (bib0003) 1989; 81 Gorder, Vajravelu (bib0030) 2010; 11 Fan, Hon (bib0051) 2002; 57a Murray (10.1016/j.apm.2015.09.009_bib0034) 1977 Canuto (10.1016/j.apm.2015.09.009_bib0004) 2006 Fisher (10.1016/j.apm.2015.09.009_bib0040) 1937; 7 Murray (10.1016/j.apm.2015.09.009_bib0035) 1989 Bhrawy (10.1016/j.apm.2015.09.009_bib0050) 2014; 247 Frank (10.1016/j.apm.2015.09.009_bib0043) 1955 El-Kady (10.1016/j.apm.2015.09.009_bib0019) 2012; 49 Zhu (10.1016/j.apm.2015.09.009_bib0009) 2012; 17 Malfliet (10.1016/j.apm.2015.09.009_bib0045) 1992; 60 Fan (10.1016/j.apm.2015.09.009_bib0051) 2002; 57a Zeldovich (10.1016/j.apm.2015.09.009_bib0027) 1938; 9 Kolmogorov (10.1016/j.apm.2015.09.009_sbref0024) 1991 Bhrawy (10.1016/j.apm.2015.09.009_bib0008) 2012; 2012 Tal-Ezer (10.1016/j.apm.2015.09.009_bib0014) 1986; 23 Doha (10.1016/j.apm.2015.09.009_bib0018) 2009; 25 Doha (10.1016/j.apm.2015.09.009_bib0012) 2012; 17 Khattak (10.1016/j.apm.2015.09.009_bib0048) 2009; 33 Doha (10.1016/j.apm.2015.09.009_bib0020) 2011; 53 Szegö (10.1016/j.apm.2015.09.009_sbref0022) 1939 Gorder (10.1016/j.apm.2015.09.009_bib0032) 2012; 17 Veksler (10.1016/j.apm.2015.09.009_bib0038) 2006; 217 Guo (10.1016/j.apm.2015.09.009_bib0007) 2009; 59 Khattak (10.1016/j.apm.2015.09.009_bib0041) 2009; 33 Nguyen (10.1016/j.apm.2015.09.009_bib0005) 2004; 200 Khater (10.1016/j.apm.2015.09.009_bib0001) 2002; 14 Markowich (10.1016/j.apm.2015.09.009_bib0003) 1989; 81 Saadatmandi (10.1016/j.apm.2015.09.009_bib0011) 2012; 17 Tal-Ezer (10.1016/j.apm.2015.09.009_bib0015) 1989; 26 Bhrawy (10.1016/j.apm.2015.09.009_sbref0016) 2012; 2012 Fife (10.1016/j.apm.2015.09.009_bib0036) 1979 Beals (10.1016/j.apm.2015.09.009_bib0021) 2010 Wazwaz (10.1016/j.apm.2015.09.009_bib0044) 2007; 187 Glenn (10.1016/j.apm.2015.09.009_bib0013) 1992; 102 Gorder (10.1016/j.apm.2015.09.009_bib0033) 2012; 58 Ismail (10.1016/j.apm.2015.09.009_bib0047) 2004; 159 Luke (10.1016/j.apm.2015.09.009_bib0023) 1969 Newell (10.1016/j.apm.2015.09.009_bib0025) 1969; 38 Mayawala (10.1016/j.apm.2015.09.009_bib0002) 2006; 121 Veksler (10.1016/j.apm.2015.09.009_bib0037) 2005; 211 Ma (10.1016/j.apm.2015.09.009_bib0039) 2007; 31 Britton (10.1016/j.apm.2015.09.009_bib0042) 1986 Segel (10.1016/j.apm.2015.09.009_bib0026) 1969; 38 Gorder (10.1016/j.apm.2015.09.009_bib0030) 2010; 11 Bhrawy (10.1016/j.apm.2015.09.009_bib0006) 2012; 17 Doha (10.1016/j.apm.2015.09.009_bib0010) 2012; 36 Gorder (10.1016/j.apm.2015.09.009_bib0031) 2010; 11 Doha (10.1016/j.apm.2015.09.009_bib0017) 2009; 50 Gorder (10.1016/j.apm.2015.09.009_bib0052) 2011; 9 Tan (10.1016/j.apm.2015.09.009_bib0046) 2007; 31 Gilding (10.1016/j.apm.2015.09.009_bib0028) 2004; 60 Gorder (10.1016/j.apm.2015.09.009_bib0029) 2008; 372 Canosa (10.1016/j.apm.2015.09.009_bib0049) 1969; 31 |
References_xml | – volume: 247 start-page: 30 year: 2014 end-page: 46 ident: bib0050 article-title: An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system publication-title: Appl. Math. Comput. – volume: 53 start-page: 1820 year: 2011 end-page: 1832 ident: bib0020 article-title: A Jacobi–Jacobi dual-Petrov–Galerkin method for third- and fifth-order differential equations publication-title: Math. Comput. Model. – year: 1939 ident: bib0022 article-title: Orthogonal Polynomials, Colloquium Publications, XXIII publication-title: American Mathematical Society – volume: 59 start-page: 1386 year: 2009 end-page: 1408 ident: bib0007 article-title: Legendre–Gauss collocation method for initial value problems of second order ordinary differential equations publication-title: Appl. Numer. Math. – volume: 26 start-page: 1 year: 1989 end-page: 11 ident: bib0015 article-title: Spectral methods in time for parabolic problems publication-title: SIAM J. Numer. Anal. – volume: 57a start-page: 692 year: 2002 end-page: 700 ident: bib0051 article-title: Generalized tanh method extended to special types of nonlinear equations publication-title: Z. Naturforsch. – year: 1989 ident: bib0035 publication-title: Mathematical Biology – year: 2010 ident: bib0021 publication-title: Special Functions – volume: 11 start-page: 3923 year: 2010 end-page: 3929 ident: bib0031 article-title: Analytical and numerical Solutions for a density dependent Nagumo telegraph equation publication-title: Nonlinear Anal. Ser. B: Real World Appl. – volume: 17 start-page: 3802 year: 2012 end-page: 3810 ident: bib0012 article-title: On shifted Jacobi spectral method for high-order multi-point boundary value problems publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 36 start-page: 4931 year: 2012 end-page: 4943 ident: bib0010 article-title: A new Jacobi operational matrix: an application for solving fractional differential equation publication-title: Appl. Math. Model. – volume: 49 start-page: 99 year: 2012 end-page: 112 ident: bib0019 article-title: Jacobi discrete approximation for solving optimal control problems publication-title: J. Korean Math. Soc. – volume: 17 start-page: 593 year: 2012 end-page: 601 ident: bib0011 article-title: The use of Sinc-collocation method for solving multi-point boundary value problems publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 187 start-page: 1131 year: 2007 end-page: 1142 ident: bib0044 article-title: The extended tanh method for abundant solitary wave solutions of nonlinear wave equations publication-title: Appl. Math. Comput. – volume: 211 start-page: 57 year: 2005 end-page: 73 ident: bib0037 article-title: Wave interactions and the analysis of the perturbed Burgers equation publication-title: Physica D – volume: 31 start-page: 1862 year: 1969 end-page: 1869 ident: bib0049 article-title: Diffusion in nonlinear multiplicate media publication-title: J. Math. Phys. – volume: 14 start-page: 513 year: 2002 end-page: 522 ident: bib0001 article-title: The tanh method, a simple transformation and exact analytical solutions for nonlinear reaction–diffusion equations publication-title: Chaos Solitons Fract. – year: 1955 ident: bib0043 publication-title: Diffusion and Heat Exchange in Chemical Kinetics – volume: 50 start-page: 67 year: 2009 end-page: 91 ident: bib0017 article-title: Jacobi spectral Galerkin method for elliptic Neumann problems publication-title: Numer. Algorithms – volume: 200 start-page: 34 year: 2004 end-page: 49 ident: bib0005 article-title: A spectral collocation method to solve Helmholtz problems with boundary conditions involving mixed tangential and normal derivatives publication-title: J. Comput. Phys. – volume: 33 start-page: 3718 year: 2009 end-page: 3729 ident: bib0048 article-title: A computational meshless method for the generalized Burgers’–Huxley equation publication-title: Appl. Math. Model. – volume: 31 start-page: 462 year: 2007 end-page: 472 ident: bib0046 article-title: Explicit series solution of travelling waves with a front of Fisher equation publication-title: Chaos Solitons Fract. – volume: 81 start-page: 234 year: 1989 end-page: 254 ident: bib0003 article-title: A system of convection–diffusion equations with small diffusion coefficient arising in semiconductor physics publication-title: J. Differ. Equ. – volume: 31 start-page: 648 year: 2007 end-page: 657 ident: bib0039 article-title: Multisoliton excitations for the Kadomtsev–Petviashvili equation and the coupled Burgers equation publication-title: Chaos Solitons Fract. – year: 1977 ident: bib0034 article-title: Nonlinear Differential Equation Models in Biology – volume: 102 start-page: 88 year: 1992 end-page: 97 ident: bib0013 article-title: Spectral methods in time for a class of parabolic partial differential equations publication-title: J. Comput. Phys. – volume: 7 start-page: 353 year: 1937 end-page: 369 ident: bib0040 article-title: The wave of advance of advantageous genes publication-title: Ann. Eugen. – year: 1979 ident: bib0036 publication-title: Mathematical Aspects of Reacting and Diffusing Systems – volume: 23 start-page: 11 year: 1986 end-page: 26 ident: bib0014 article-title: Spectral methods in time for hyperbolic problems publication-title: SIAM J. Numer. Anal. – volume: 2012 start-page: 16 year: 2012 ident: bib0016 article-title: A Jacobi dual-Petrov Galerkin–Jacobi collocation method for solving Korteweg–de Vries equations publication-title: Abstr. Appl. Anal. – start-page: 248-270 year: 1991 ident: bib0024 article-title: A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem publication-title: Selected Works of A. N. Kolmogorov – volume: 159 start-page: 291 year: 2004 end-page: 301 ident: bib0047 article-title: Adomian decomposition method for Burgers’–Huxley and Burgers’–Fisher equations publication-title: Appl. Math. Comput. – year: 1969 ident: bib0023 publication-title: The Special Functions and Their Approximations – volume: 372 start-page: 5152 year: 2008 end-page: 5158 ident: bib0029 article-title: Analytical and numerical solutions of the density dependent diffusion Nagumo equation publication-title: Phys. Lett. A – volume: 9 start-page: 341 year: 1938 end-page: 350 ident: bib0027 article-title: A theory of thermal propagation of flame publication-title: Acta Physicochim. – volume: 17 start-page: 62 year: 2012 end-page: 70 ident: bib0006 article-title: A Jacobi–Gauss collocation method for solving nonlinear Lane–Emden type equations publication-title: Commun. Nonlinear. Sci. Numer. Simul. – volume: 38 start-page: 279 year: 1969 end-page: 303 ident: bib0025 article-title: Finite bandwidth, finite amplitude convection publication-title: J. Fluid Mech. – volume: 60 start-page: 650 year: 1992 end-page: 654 ident: bib0045 article-title: Solitary wave solutions of nonlinear wave equations publication-title: Am. J. Phys. – volume: 121 start-page: 194 year: 2006 end-page: 208 ident: bib0002 article-title: Spatial modeling of dimerization reaction dynamics in the plasma membrane: Monte Carlo vs. continuum differential equations publication-title: Biophys. Chem. – volume: 38 start-page: 203 year: 1969 end-page: 224 ident: bib0026 article-title: Distant sidewalls cause slow amplitude modulation of cellular convection publication-title: J. Fluid Mech. – volume: 33 start-page: 3718 year: 2009 end-page: 3729 ident: bib0041 article-title: A computational meshless method for the generalized Burgers’–Huxley equation publication-title: Appl. Math. Model. – volume: 17 start-page: 1233 year: 2012 end-page: 1240 ident: bib0032 article-title: Gaussian waves in the Fitzhugh–Nagumo equation demonstrate one role of the auxiliary function publication-title: Commun. Nonlinear Sci. Numer. Simul. – year: 1986 ident: bib0042 publication-title: Reaction-Diffusion Equations and Their Applications to Biology – volume: 25 start-page: 712 year: 2009 end-page: 739 ident: bib0018 article-title: A Jacobi spectral Galerkin method for the integrated forms of fourth-order elliptic differential equations publication-title: Numer. Methods Partial Differ. Equ. – year: 2006 ident: bib0004 publication-title: Spectral Methods: Fundamentals in Single Domains – volume: 60 start-page: 209 year: 2004 ident: bib0028 publication-title: Travelling Waves in Nonlinear Diffusion Convection Reaction, Nonlinear Differential Equations and their Applications – volume: 58 start-page: 5 year: 2012 end-page: 11 ident: bib0033 article-title: Travelling waves for a density dependent diffusion Nagumo equation over the real line publication-title: Commun. Theor. Phys. – volume: 11 start-page: 2957 year: 2010 end-page: 2962 ident: bib0030 article-title: A variational formulation of the Nagumo reaction–diffusion equation and the Nagumo telegraph equation publication-title: Nonlinear Anal. Ser. B: Real World Appl. – volume: 217 start-page: 77 year: 2006 end-page: 87 ident: bib0038 article-title: Freedom in the expansion and obstacles to integrability in multiple-soliton solutions of the perturbed KdV equation publication-title: Physica D – volume: 17 start-page: 2333 year: 2012 end-page: 2341 ident: bib0009 article-title: Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 9 start-page: 1182 year: 2011 end-page: 1194 ident: bib0052 article-title: Nonlinear dispersion of a pollutant ejected into a channel flow publication-title: Cent. Eur. J. Phys. – volume: 2012 start-page: 62 year: 2012 ident: bib0008 article-title: A shifted Jacobi–Gauss–Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals publication-title: Bound. Value Probl. – volume: 81 start-page: 234 issue: 2 year: 1989 ident: 10.1016/j.apm.2015.09.009_bib0003 article-title: A system of convection–diffusion equations with small diffusion coefficient arising in semiconductor physics publication-title: J. Differ. Equ. doi: 10.1016/0022-0396(89)90122-8 – volume: 247 start-page: 30 year: 2014 ident: 10.1016/j.apm.2015.09.009_bib0050 article-title: An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2014.08.062 – volume: 25 start-page: 712 year: 2009 ident: 10.1016/j.apm.2015.09.009_bib0018 article-title: A Jacobi spectral Galerkin method for the integrated forms of fourth-order elliptic differential equations publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.20369 – volume: 17 start-page: 1233 year: 2012 ident: 10.1016/j.apm.2015.09.009_bib0032 article-title: Gaussian waves in the Fitzhugh–Nagumo equation demonstrate one role of the auxiliary function H(x) in the homotopy analysis method publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2011.07.036 – volume: 159 start-page: 291 year: 2004 ident: 10.1016/j.apm.2015.09.009_bib0047 article-title: Adomian decomposition method for Burgers’–Huxley and Burgers’–Fisher equations publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2003.10.050 – volume: 7 start-page: 353 year: 1937 ident: 10.1016/j.apm.2015.09.009_bib0040 article-title: The wave of advance of advantageous genes publication-title: Ann. Eugen. doi: 10.1111/j.1469-1809.1937.tb02153.x – volume: 17 start-page: 593 year: 2012 ident: 10.1016/j.apm.2015.09.009_bib0011 article-title: The use of Sinc-collocation method for solving multi-point boundary value problems publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2011.06.018 – volume: 31 start-page: 1862 year: 1969 ident: 10.1016/j.apm.2015.09.009_bib0049 article-title: Diffusion in nonlinear multiplicate media publication-title: J. Math. Phys. doi: 10.1063/1.1664771 – volume: 23 start-page: 11 year: 1986 ident: 10.1016/j.apm.2015.09.009_bib0014 article-title: Spectral methods in time for hyperbolic problems publication-title: SIAM J. Numer. Anal. doi: 10.1137/0723002 – volume: 50 start-page: 67 year: 2009 ident: 10.1016/j.apm.2015.09.009_bib0017 article-title: Jacobi spectral Galerkin method for elliptic Neumann problems publication-title: Numer. Algorithms doi: 10.1007/s11075-008-9216-5 – volume: 33 start-page: 3718 year: 2009 ident: 10.1016/j.apm.2015.09.009_bib0048 article-title: A computational meshless method for the generalized Burgers’–Huxley equation publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2008.12.010 – volume: 211 start-page: 57 year: 2005 ident: 10.1016/j.apm.2015.09.009_bib0037 article-title: Wave interactions and the analysis of the perturbed Burgers equation publication-title: Physica D doi: 10.1016/j.physd.2005.08.001 – volume: 26 start-page: 1 year: 1989 ident: 10.1016/j.apm.2015.09.009_bib0015 article-title: Spectral methods in time for parabolic problems publication-title: SIAM J. Numer. Anal. doi: 10.1137/0726001 – volume: 31 start-page: 648 year: 2007 ident: 10.1016/j.apm.2015.09.009_bib0039 article-title: Multisoliton excitations for the Kadomtsev–Petviashvili equation and the coupled Burgers equation publication-title: Chaos Solitons Fract. doi: 10.1016/j.chaos.2005.10.012 – volume: 60 start-page: 650 issue: 7 year: 1992 ident: 10.1016/j.apm.2015.09.009_bib0045 article-title: Solitary wave solutions of nonlinear wave equations publication-title: Am. J. Phys. doi: 10.1119/1.17120 – volume: 372 start-page: 5152 year: 2008 ident: 10.1016/j.apm.2015.09.009_bib0029 article-title: Analytical and numerical solutions of the density dependent diffusion Nagumo equation publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2008.05.068 – year: 1939 ident: 10.1016/j.apm.2015.09.009_sbref0022 article-title: Orthogonal Polynomials, Colloquium Publications, XXIII publication-title: American Mathematical Society – year: 1969 ident: 10.1016/j.apm.2015.09.009_bib0023 – volume: 60 start-page: 209 year: 2004 ident: 10.1016/j.apm.2015.09.009_bib0028 – volume: 102 start-page: 88 year: 1992 ident: 10.1016/j.apm.2015.09.009_bib0013 article-title: Spectral methods in time for a class of parabolic partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/S0021-9991(05)80008-7 – year: 1989 ident: 10.1016/j.apm.2015.09.009_bib0035 – volume: 9 start-page: 1182 year: 2011 ident: 10.1016/j.apm.2015.09.009_bib0052 article-title: Nonlinear dispersion of a pollutant ejected into a channel flow publication-title: Cent. Eur. J. Phys. – volume: 200 start-page: 34 year: 2004 ident: 10.1016/j.apm.2015.09.009_bib0005 article-title: A spectral collocation method to solve Helmholtz problems with boundary conditions involving mixed tangential and normal derivatives publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2004.03.004 – year: 1955 ident: 10.1016/j.apm.2015.09.009_bib0043 – volume: 38 start-page: 203 year: 1969 ident: 10.1016/j.apm.2015.09.009_bib0026 article-title: Distant sidewalls cause slow amplitude modulation of cellular convection publication-title: J. Fluid Mech. doi: 10.1017/S0022112069000127 – volume: 14 start-page: 513 year: 2002 ident: 10.1016/j.apm.2015.09.009_bib0001 article-title: The tanh method, a simple transformation and exact analytical solutions for nonlinear reaction–diffusion equations publication-title: Chaos Solitons Fract. doi: 10.1016/S0960-0779(01)00247-8 – volume: 17 start-page: 2333 year: 2012 ident: 10.1016/j.apm.2015.09.009_bib0009 article-title: Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2011.10.014 – volume: 11 start-page: 3923 year: 2010 ident: 10.1016/j.apm.2015.09.009_bib0031 article-title: Analytical and numerical Solutions for a density dependent Nagumo telegraph equation publication-title: Nonlinear Anal. Ser. B: Real World Appl. doi: 10.1016/j.nonrwa.2010.02.019 – volume: 36 start-page: 4931 year: 2012 ident: 10.1016/j.apm.2015.09.009_bib0010 article-title: A new Jacobi operational matrix: an application for solving fractional differential equation publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2011.12.031 – volume: 11 start-page: 2957 year: 2010 ident: 10.1016/j.apm.2015.09.009_bib0030 article-title: A variational formulation of the Nagumo reaction–diffusion equation and the Nagumo telegraph equation publication-title: Nonlinear Anal. Ser. B: Real World Appl. doi: 10.1016/j.nonrwa.2009.10.016 – volume: 49 start-page: 99 year: 2012 ident: 10.1016/j.apm.2015.09.009_bib0019 article-title: Jacobi discrete approximation for solving optimal control problems publication-title: J. Korean Math. Soc. doi: 10.4134/JKMS.2012.49.1.099 – volume: 57a start-page: 692 year: 2002 ident: 10.1016/j.apm.2015.09.009_bib0051 article-title: Generalized tanh method extended to special types of nonlinear equations publication-title: Z. Naturforsch. doi: 10.1515/zna-2002-0809 – volume: 17 start-page: 3802 year: 2012 ident: 10.1016/j.apm.2015.09.009_bib0012 article-title: On shifted Jacobi spectral method for high-order multi-point boundary value problems publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2012.02.027 – volume: 9 start-page: 341 year: 1938 ident: 10.1016/j.apm.2015.09.009_bib0027 article-title: A theory of thermal propagation of flame publication-title: Acta Physicochim. – volume: 121 start-page: 194 issue: 3 year: 2006 ident: 10.1016/j.apm.2015.09.009_bib0002 article-title: Spatial modeling of dimerization reaction dynamics in the plasma membrane: Monte Carlo vs. continuum differential equations publication-title: Biophys. Chem. doi: 10.1016/j.bpc.2006.01.008 – year: 1977 ident: 10.1016/j.apm.2015.09.009_bib0034 – volume: 33 start-page: 3718 year: 2009 ident: 10.1016/j.apm.2015.09.009_bib0041 article-title: A computational meshless method for the generalized Burgers’–Huxley equation publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2008.12.010 – volume: 53 start-page: 1820 year: 2011 ident: 10.1016/j.apm.2015.09.009_bib0020 article-title: A Jacobi–Jacobi dual-Petrov–Galerkin method for third- and fifth-order differential equations publication-title: Math. Comput. Model. doi: 10.1016/j.mcm.2011.01.002 – volume: 187 start-page: 1131 year: 2007 ident: 10.1016/j.apm.2015.09.009_bib0044 article-title: The extended tanh method for abundant solitary wave solutions of nonlinear wave equations publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2006.09.013 – year: 1986 ident: 10.1016/j.apm.2015.09.009_bib0042 – volume: 59 start-page: 1386 year: 2009 ident: 10.1016/j.apm.2015.09.009_bib0007 article-title: Legendre–Gauss collocation method for initial value problems of second order ordinary differential equations publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2008.08.007 – volume: 31 start-page: 462 year: 2007 ident: 10.1016/j.apm.2015.09.009_bib0046 article-title: Explicit series solution of travelling waves with a front of Fisher equation publication-title: Chaos Solitons Fract. doi: 10.1016/j.chaos.2005.10.001 – year: 2010 ident: 10.1016/j.apm.2015.09.009_bib0021 – volume: 58 start-page: 5 year: 2012 ident: 10.1016/j.apm.2015.09.009_bib0033 article-title: Travelling waves for a density dependent diffusion Nagumo equation over the real line publication-title: Commun. Theor. Phys. doi: 10.1088/0253-6102/58/1/02 – start-page: 248-270 year: 1991 ident: 10.1016/j.apm.2015.09.009_sbref0024 article-title: A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem – volume: 17 start-page: 62 year: 2012 ident: 10.1016/j.apm.2015.09.009_bib0006 article-title: A Jacobi–Gauss collocation method for solving nonlinear Lane–Emden type equations publication-title: Commun. Nonlinear. Sci. Numer. Simul. doi: 10.1016/j.cnsns.2011.04.025 – volume: 2012 start-page: 62 year: 2012 ident: 10.1016/j.apm.2015.09.009_bib0008 article-title: A shifted Jacobi–Gauss–Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals publication-title: Bound. Value Probl. doi: 10.1186/1687-2770-2012-62 – volume: 217 start-page: 77 year: 2006 ident: 10.1016/j.apm.2015.09.009_bib0038 article-title: Freedom in the expansion and obstacles to integrability in multiple-soliton solutions of the perturbed KdV equation publication-title: Physica D doi: 10.1016/j.physd.2006.03.011 – year: 2006 ident: 10.1016/j.apm.2015.09.009_bib0004 – volume: 38 start-page: 279 year: 1969 ident: 10.1016/j.apm.2015.09.009_bib0025 article-title: Finite bandwidth, finite amplitude convection publication-title: J. Fluid Mech. doi: 10.1017/S0022112069000176 – year: 1979 ident: 10.1016/j.apm.2015.09.009_bib0036 – volume: 2012 start-page: 16 year: 2012 ident: 10.1016/j.apm.2015.09.009_sbref0016 article-title: A Jacobi dual-Petrov Galerkin–Jacobi collocation method for solving Korteweg–de Vries equations publication-title: Abstr. Appl. Anal. doi: 10.1155/2012/418943 |
SSID | ssj0005904 |
Score | 2.1951876 |
Snippet | This paper extends the application of the spectral Jacobi–Gauss–Lobatto collocation (J-GL-C) method based on Gauss–Lobatto nodes to obtain semi-analytical... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1703 |
SubjectTerms | Collocation method Jacobi–Gauss–Lobatto quadrature Nonlinear reaction–diffusion equations |
Title | Jacobi–Gauss–Lobatto collocation method for solving nonlinear reaction–diffusion equations subject to Dirichlet boundary conditions |
URI | https://dx.doi.org/10.1016/j.apm.2015.09.009 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaqssCAeIryqDwwIYXGxHl4LBWlLbQLVMoW2YkjilBbmmRgQazM_EN-CXd5VEUCBqbIkS-xfOe77-zzHSGnLlNMezI2pCMsgwsZGWCElWGLyPGkZfEwxhPd4cjpjfnAt_0a6VR3YTCsstT9hU7PtXX5plXOZms-mbTuUDyFyX2ANCZGSeINdu5i_vzz15UwD2HyKhki9q5ONvMYLznHy-jMzlOdYkziT7Zpxd50t8hmCRRpuxjLNqnp6Q7ZGC6zrCa75H0A6kxNPt8-rmWWJPC8hdWZpjOK3J0Vm3G0qBFNAZxSkDPcP6DTIj-GXFCAjPnFBqDFUikZ7p1R_Vzk_05okincp6HwSdCNk_ABuExVXolp8QJ_wfNu7LhHxt2r-07PKEsrGKHluKmhQ1in5oUGeMR0xKQDfgUAKRk6loyUg_OmYwG-mQXwzpbMAi8uhhdSgMfMotjaJ3UYqz4gFKxbpEytXe0xrgFwOlK5EfdYHIPzGIoGMatJDcIy7ziWv3gKqgCzxwD4ECAfAlMEwIcGOVuSzIukG3915hWngm-SE4BR-J3s8H9kR2QdWmXc9jGpp4tMnwAsSVUzl7smWWv3b3ojaPX9yy_b2eiw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKOwAD4inK0wMTUtSYPD1WFSWlj4VW6mbZiSOKUFuadGBjZeYf8ku4y6OABAxMkRxfYvnOd9_Z5ztCLjymmPZlbEiXW4bNZWSAEVaGwyPXl5ZlhzGe6PYHbjCyb8fOuEJa5V0YDKssdH-u0zNtXbQ0itlszCeTxh2KJzftMUAaE6Mk10gNs1OBsNeanW4w-Iz04KZd5kNEgvJwMwvzknO8j86cLNsphiX-ZJ6-mJz2NtkqsCJt5sPZIRU93SWb_VWi1WSPvN6CRlOT95e3G7lMEnj2YIGm6Ywig2f5fhzNy0RTwKcURA23EOg0T5EhFxRQY3a3AWixWsoSt8-ofspTgCc0WSrcqqHwSVCPk_AeGE1VVoxp8Qx_wSNv7LhPRu3rYSswiuoKRmi5XmroEJaqeaUBITEdMemCawFYSoauJSPl4rzpmIN7ZgHCcySzwJGLoUFycJpZFFsHpApj1YeEgoGLlKm1p31ma8CcrlReZPssjsF_DHmdmOWkirBIPY4VMB5FGWP2IIAPAvkgTC6AD3VyuSKZ53k3_upsl5wS34RHgF34nezof2TnZD0Y9nui1xl0j8kGvCnCuE9INV0s9SmglFSdFVL4AVSg6l0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jacobi%E2%80%93Gauss%E2%80%93Lobatto+collocation+method+for+solving+nonlinear+reaction%E2%80%93diffusion+equations+subject+to+Dirichlet+boundary+conditions&rft.jtitle=Applied+mathematical+modelling&rft.au=Bhrawy%2C+A.H.&rft.au=Doha%2C+E.H.&rft.au=Abdelkawy%2C+M.A.&rft.au=Van+Gorder%2C+R.A.&rft.date=2016-02-01&rft.issn=0307-904X&rft.volume=40&rft.issue=3&rft.spage=1703&rft.epage=1716&rft_id=info:doi/10.1016%2Fj.apm.2015.09.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apm_2015_09_009 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon |