Crack paths and the problem of global directional stability
Crack paths of original Griffith crack and edge crack under biaxial remote mode-I loading after different local disturbances are calculated by using integro-differential equations of first-order perturbation and numerical simulation with FEM respectively.Considering the asymptotic behaviour for larg...
Saved in:
Published in | International journal of fracture Vol. 141; no. 3-4; pp. 513 - 534 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Springer
01.10.2006
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Crack paths of original Griffith crack and edge crack under biaxial remote mode-I loading after different local disturbances are calculated by using integro-differential equations of first-order perturbation and numerical simulation with FEM respectively.Considering the asymptotic behaviour for large crack lengths the problem of global directional stability is reinvestigated extending the work by Melin. For the Griffith crack, correct power functions for the asymptotic path with one or both crack tips growing have been determined. The well- known critical stress biaxiality ratio Rc = 1 for the global directional stability has been obtained independently whether the crack is disturbed by local imperfections in geometry or in loading. For an edge crack the calculated critical stress biaxiality ratio for the global directional stability Rc = 0.616, also irrespective of the local disturbances, corresponds to a positive T-stress and is considerably smaller than the value R > 0.95 estimated by Melin (2002). In general, cracks need not propagate asymptotically in the direction perpendicular to the largest principal stress (without crack). This is found to be due to the effect of the boundaries.Considering the initial crack growth exclusively, it is shown that the solution for crack path prediction in series expansion form as derived by Cotterell and Rice (1980) for traction-free crack faces (after correction of a misprint) is exact in the two first terms in all cases. Thus, for small crack growth the Cotterell and Rice solution is universal with respect to all loading and geometrical situations. |
---|---|
AbstractList | Crack paths of original Griffith crack and edge crack under biaxial remote mode-I loading after different local disturbances are calculated by using integro-differential equations of first-order perturbation and numerical simulation with FEM respectively. Crack paths of original Griffith crack and edge crack under biaxial remote mode-I loading after different local disturbances are calculated by using integro-differential equations of first-order perturbation and numerical simulation with FEM respectively.Considering the asymptotic behaviour for large crack lengths the problem of global directional stability is reinvestigated extending the work by Melin. For the Griffith crack, correct power functions for the asymptotic path with one or both crack tips growing have been determined. The well- known critical stress biaxiality ratio R sub(c) = 1 for the global directional stability has been obtained independently whether the crack is disturbed by local imperfections in geometry or in loading. For an edge crack the calculated critical stress biaxiality ratio for the global directional stability R sub(c) = 0.616, also irrespective of the local disturbances, corresponds to a positive T-stress and is considerably smaller than the value R > 0.95 estimated by Melin (2002). In general, cracks need not propagate asymptotically in the direction perpendicular to the largest principal stress (without crack). This is found to be due to the effect of the boundaries.Considering the initial crack growth exclusively, it is shown that the solution for crack path prediction in series expansion form as derived by Cotterell and Rice (1980) for traction-free crack faces (after correction of a misprint) is exact in the two first terms in all cases. Thus, for small crack growth the Cotterell and Rice solution is universal with respect to all loading and geometrical situations. Crack paths of original Griffith crack and edge crack under biaxial remote mode-I loading after different local disturbances are calculated by using integro-differential equations of first-order perturbation and numerical simulation with FEM respectively.Considering the asymptotic behaviour for large crack lengths the problem of global directional stability is reinvestigated extending the work by Melin. For the Griffith crack, correct power functions for the asymptotic path with one or both crack tips growing have been determined. The well- known critical stress biaxiality ratio Rc = 1 for the global directional stability has been obtained independently whether the crack is disturbed by local imperfections in geometry or in loading. For an edge crack the calculated critical stress biaxiality ratio for the global directional stability Rc = 0.616, also irrespective of the local disturbances, corresponds to a positive T-stress and is considerably smaller than the value R > 0.95 estimated by Melin (2002). In general, cracks need not propagate asymptotically in the direction perpendicular to the largest principal stress (without crack). This is found to be due to the effect of the boundaries.Considering the initial crack growth exclusively, it is shown that the solution for crack path prediction in series expansion form as derived by Cotterell and Rice (1980) for traction-free crack faces (after correction of a misprint) is exact in the two first terms in all cases. Thus, for small crack growth the Cotterell and Rice solution is universal with respect to all loading and geometrical situations. |
Author | FETT, T BAHR, U PHAM, V.-B BAHR, H.-A BALKE, H |
Author_xml | – sequence: 1 givenname: V.-B surname: PHAM fullname: PHAM, V.-B organization: Technische Universität Dresden, Institut für Festkörpermechanik, 01062 Dresden, Germany – sequence: 2 givenname: H.-A surname: BAHR fullname: BAHR, H.-A organization: Technische Universität Dresden, Institut für Festkörpermechanik, 01062 Dresden, Germany – sequence: 3 givenname: U surname: BAHR fullname: BAHR, U organization: Technische Universität Dresden, Institut für Theoretische Physik, 01062 Dresden, Germany – sequence: 4 givenname: T surname: FETT fullname: FETT, T organization: Forschungszentrum Karlsruhe, Institut für Materialforschung II, Postfach 3640, 76021 Karlsruhe, Germany – sequence: 5 givenname: H surname: BALKE fullname: BALKE, H organization: Technische Universität Dresden, Institut für Festkörpermechanik, 01062 Dresden, Germany |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18344565$$DView record in Pascal Francis |
BookMark | eNp9kE1LAzEQhoNUsFZ_gLcFUbysTr42CZ6k-AUFL3oOSTprt253a7I99N-b0oLgwdMMzPO-M_OeklHXd0jIBYVbCqDuEgUFogSoSgMUSjgiYyoVL1ml-IiMgas8EcyckNOUlgBglBZjcj-NLnwVazcsUuG6eTEssFjH3re4Kvq6-Gx779pi3kQMQ9N3uU-D803bDNszcly7NuH5oU7Ix9Pj-_SlnL09v04fZmXglRpKNB79nEsp6oABTd4cPJXCIwIgqx147zQKo5nQxihRUy-0DoZJDkHN-YRc733zXd8bTINdNSlg27oO-02yTBuRZVUGb_4FKWhGtVKgMnr5B132m5jfy3ZMGl1JbSBTdE-F2KcUsbbr2Kxc3GYru8vd7nO3OXe7y93uNFcHZ5eCa-voutCkX6HmQshK8h8UX4Lf |
CODEN | IJFRAP |
CitedBy_id | crossref_primary_10_1103_PhysRevE_77_066114 crossref_primary_10_3139_146_101525 crossref_primary_10_1016_j_engfracmech_2007_10_003 crossref_primary_10_1016_j_tafmec_2017_07_007 crossref_primary_10_1111_ffe_12819 crossref_primary_10_1016_j_engfracmech_2014_10_013 crossref_primary_10_1103_PhysRevE_79_056103 |
Cites_doi | 10.1103/PhysRevE.49.R51 10.1023/A:1015521629898 10.1016/S0022-5096(00)00022-3 10.1016/0013-7944(87)90060-9 10.1016/S0022-5096(01)00052-7 10.1007/BF01141553 10.1103/PhysRevLett.93.185502 10.1103/PhysRevE.58.7878 10.1016/0013-7944(85)90106-7 10.1103/PhysRevE.52.240 10.1007/BF00012619 10.1016/S0022-5096(02)00030-3 10.1016/S0013-7944(98)00038-1 10.1007/BF00034668 10.1016/S0955-2219(00)00002-9 10.1115/1.4011454 10.1103/PhysRevE.68.036601 10.1007/BF00032198 10.1007/BF00020156 10.1115/1.2901468 10.1103/PhysRevE.67.066209 10.1007/BF00048950 10.1016/j.tafmec.2003.11.018 10.1016/S0065-2156(08)70164-9 10.1007/s10704-005-0024-9 10.1038/362329a0 10.1007/s10704-004-3637-5 10.1016/S1365-6937(02)08025-5 10.1016/0020-7683(91)90069-R 10.1007/BF00155254 10.1016/0020-7683(92)90068-5 10.1103/PhysRevE.77.066114 10.1016/j.actamat.2003.08.034 10.1016/0022-5096(76)90010-7 10.1007/s004660050207 10.1111/j.1151-2916.1974.tb10799.x 10.1103/PhysRevE.52.4105 |
ContentType | Journal Article |
Copyright | 2007 INIST-CNRS International Journal of Fracture is a copyright of Springer, (2006). All Rights Reserved. |
Copyright_xml | – notice: 2007 INIST-CNRS – notice: International Journal of Fracture is a copyright of Springer, (2006). All Rights Reserved. |
DBID | IQODW AAYXX CITATION 8FE 8FG ABJCF AFKRA BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PQEST PQQKQ PQUKI PTHSS 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1007/s10704-006-9010-0 |
DatabaseName | Pascal-Francis CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Engineering Database Materials Science Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Engineering Database Technology Collection ProQuest One Academic Eastern Edition Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic Engineering Collection Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database Materials Research Database ProQuest Materials Science Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1573-2673 |
EndPage | 534 |
ExternalDocumentID | 10_1007_s10704_006_9010_0 18344565 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .86 .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 8WZ 95- 95. 95~ 96X A6W AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAIKT AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUCO AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJCF ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJGSW AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HZ~ I-F I09 IHE IJ- IKXTQ IQODW ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9N PDBOC PF0 PT4 PT5 PTHSS QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SCV SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WH7 WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z8Z Z92 ZMTXR ~02 ~8M ~A~ ~EX AACDK AAJBT AASML AAYXX ABAKF ABJNI ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION HVGLF DWQXO PQEST PQQKQ PQUKI 7SR 7TB 8BQ 8FD AAYZH FR3 JG9 KR7 |
ID | FETCH-LOGICAL-c367t-e9bebd3554fcece9097cb154bee00e2fa0bba8e4982489974f1b488c92530c7d3 |
IEDL.DBID | BENPR |
ISSN | 0376-9429 |
IngestDate | Fri Oct 25 21:38:13 EDT 2024 Fri Oct 25 02:00:13 EDT 2024 Thu Oct 10 22:06:14 EDT 2024 Thu Sep 12 16:36:28 EDT 2024 Sun Oct 22 16:03:11 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3-4 |
Keywords | Biaxial load Modeling Edge crack Crack propagation Finite element method Crack path prediction, Global directional stability, Crack path stabílity Edge effect Series expansion Crack length Defect Griffith crack Crack tip Asymptotic approximation Principal stress Integrodifferential equation T-stress T stress |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-e9bebd3554fcece9097cb154bee00e2fa0bba8e4982489974f1b488c92530c7d3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 2259865890 |
PQPubID | 23500 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_28949746 proquest_miscellaneous_1082187707 proquest_journals_2259865890 crossref_primary_10_1007_s10704_006_9010_0 pascalfrancis_primary_18344565 |
PublicationCentury | 2000 |
PublicationDate | 2006-10-01 |
PublicationDateYYYYMMDD | 2006-10-01 |
PublicationDate_xml | – month: 10 year: 2006 text: 2006-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg – name: Dordrecht |
PublicationTitle | International journal of fracture |
PublicationYear | 2006 |
Publisher | Springer Springer Nature B.V |
Publisher_xml | – name: Springer – name: Springer Nature B.V |
References | DA Zacharapoulos (9010_CR43) 2004; 41 JW Hutchinson (9010_CR19) 1992; 29 E Bouchbinder (9010_CR5) 2003; 68 S Melin (9010_CR26) 1992; 53 S Melin (9010_CR29) 2002; 114 HJ Schindler (9010_CR37) 1984; 25 M Marder (9010_CR22) 1994; 49 S Melin (9010_CR28) 1994; 61 ML Williams (9010_CR40) 1957; 24 Y Sumi (9010_CR38) 1985; 22 9010_CR23 JB Wachtman Jr (9010_CR39) 1974; 57 KB Broberg (9010_CR6) 1987; 28 S Melin (9010_CR24) 1983; 23 S Melin (9010_CR27) 1993; 46 A Yuse (9010_CR42) 1993; 362 RD Deegan (9010_CR9) 2003; 67 B Yang (9010_CR41) 2001; 49 T Fett (9010_CR13) 1997 O Ronsin (9010_CR35) 1998; 58 H-A Bahr (9010_CR4) 1995; 52 R Niefanger (9010_CR30) 2004; 52 M Adda-Bedia (9010_CR2) 1995; 52 9010_CR3 B Cotterell (9010_CR8) 1980; 16 J Gunnars (9010_CR18) 1997; 19 S Melin (9010_CR25) 1991; 50 PS Leevers (9010_CR20) 1976; 24 O Obrezanova (9010_CR32) 2002; 50 T Fett (9010_CR10) 1998; 60 M Adda-Bedia (9010_CR1) 2004; 93 9010_CR12 9010_CR34 9010_CR11 RV Goldstein (9010_CR17) 1974; 10 H Gao (9010_CR16) 1992; 29 V-B Pham (9010_CR33) 2005; 237 NA Fleck (9010_CR15) 1991; 27 AJ Sanchez-Herencia (9010_CR36) 2000; 20 T Fett (9010_CR14) 2005; 132 N Noda (9010_CR31) 1992; 58 SL dos Santose Lucato (9010_CR21) 2002; 50 KB Broberg (9010_CR7) 2005; 131 |
References_xml | – volume: 49 start-page: R51 year: 1994 ident: 9010_CR22 publication-title: Phys Rev E doi: 10.1103/PhysRevE.49.R51 contributor: fullname: M Marder – volume: 114 start-page: 259 year: 2002 ident: 9010_CR29 publication-title: Int J Fract doi: 10.1023/A:1015521629898 contributor: fullname: S Melin – volume: 49 start-page: 91 year: 2001 ident: 9010_CR41 publication-title: J Mech Phys Solids doi: 10.1016/S0022-5096(00)00022-3 contributor: fullname: B Yang – volume: 28 start-page: 663 year: 1987 ident: 9010_CR6 publication-title: Eng Fract Mech doi: 10.1016/0013-7944(87)90060-9 contributor: fullname: KB Broberg – volume: 50 start-page: 57 year: 2002 ident: 9010_CR32 publication-title: J Mech Phys Solids doi: 10.1016/S0022-5096(01)00052-7 contributor: fullname: O Obrezanova – volume: 25 start-page: 95 year: 1984 ident: 9010_CR37 publication-title: Int J Fract doi: 10.1007/BF01141553 contributor: fullname: HJ Schindler – volume: 93 start-page: 185502 year: 2004 ident: 9010_CR1 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.93.185502 contributor: fullname: M Adda-Bedia – volume: 58 start-page: 7878 issue: 6 year: 1998 ident: 9010_CR35 publication-title: Phys Rev E doi: 10.1103/PhysRevE.58.7878 contributor: fullname: O Ronsin – volume: 22 start-page: 759 year: 1985 ident: 9010_CR38 publication-title: Eng Fract Mech doi: 10.1016/0013-7944(85)90106-7 contributor: fullname: Y Sumi – volume: 52 start-page: 240 year: 1995 ident: 9010_CR4 publication-title: Phys Rev E doi: 10.1103/PhysRevE.52.240 contributor: fullname: H-A Bahr – volume: 16 start-page: 155 year: 1980 ident: 9010_CR8 publication-title: Int J Fract doi: 10.1007/BF00012619 contributor: fullname: B Cotterell – volume: 50 start-page: 2333 year: 2002 ident: 9010_CR21 publication-title: J Mech Phys Solids doi: 10.1016/S0022-5096(02)00030-3 contributor: fullname: SL dos Santose Lucato – volume: 60 start-page: 631 year: 1998 ident: 9010_CR10 publication-title: Eng Fract Mech doi: 10.1016/S0013-7944(98)00038-1 contributor: fullname: T Fett – ident: 9010_CR23 – volume: 53 start-page: 121 year: 1992 ident: 9010_CR26 publication-title: Int J Fract doi: 10.1007/BF00034668 contributor: fullname: S Melin – volume: 20 start-page: 1297 year: 2000 ident: 9010_CR36 publication-title: J Eur Ceram Soc doi: 10.1016/S0955-2219(00)00002-9 contributor: fullname: AJ Sanchez-Herencia – volume: 24 start-page: 109 year: 1957 ident: 9010_CR40 publication-title: J Appl Mech doi: 10.1115/1.4011454 contributor: fullname: ML Williams – volume: 237 start-page: 99 year: 2005 ident: 9010_CR33 publication-title: DVM-Bericht contributor: fullname: V-B Pham – volume: 68 start-page: 036601 year: 2003 ident: 9010_CR5 publication-title: Phys Rev E doi: 10.1103/PhysRevE.68.036601 contributor: fullname: E Bouchbinder – volume: 50 start-page: 293 year: 1991 ident: 9010_CR25 publication-title: Int J Fract doi: 10.1007/BF00032198 contributor: fullname: S Melin – volume: 23 start-page: 37 year: 1983 ident: 9010_CR24 publication-title: Int J Fract doi: 10.1007/BF00020156 contributor: fullname: S Melin – volume: 61 start-page: 467 year: 1994 ident: 9010_CR28 publication-title: J Appl Mech doi: 10.1115/1.2901468 contributor: fullname: S Melin – volume: 67 start-page: 066209 year: 2003 ident: 9010_CR9 publication-title: Phys Rev E doi: 10.1103/PhysRevE.67.066209 contributor: fullname: RD Deegan – volume: 58 start-page: 285 year: 1992 ident: 9010_CR31 publication-title: Int J Fract doi: 10.1007/BF00048950 contributor: fullname: N Noda – volume: 41 start-page: 327 year: 2004 ident: 9010_CR43 publication-title: Theoret Appl Fract Mech doi: 10.1016/j.tafmec.2003.11.018 contributor: fullname: DA Zacharapoulos – ident: 9010_CR11 – volume: 29 start-page: 63 year: 1992 ident: 9010_CR19 publication-title: Adv Appl Mech doi: 10.1016/S0065-2156(08)70164-9 contributor: fullname: JW Hutchinson – volume: 46 start-page: 511 year: 1993 ident: 9010_CR27 publication-title: Int J Fract contributor: fullname: S Melin – volume: 132 start-page: L9 year: 2005 ident: 9010_CR14 publication-title: Int J Fract doi: 10.1007/s10704-005-0024-9 contributor: fullname: T Fett – volume: 362 start-page: 329 year: 1993 ident: 9010_CR42 publication-title: Nature doi: 10.1038/362329a0 contributor: fullname: A Yuse – volume: 131 start-page: 1 year: 2005 ident: 9010_CR7 publication-title: Int J Fract doi: 10.1007/s10704-004-3637-5 contributor: fullname: KB Broberg – ident: 9010_CR3 doi: 10.1016/S1365-6937(02)08025-5 – volume-title: Stress intensity factors and weight functions, International series on advances in fracture year: 1997 ident: 9010_CR13 contributor: fullname: T Fett – volume: 27 start-page: 1683 year: 1991 ident: 9010_CR15 publication-title: Int J Solids Struct doi: 10.1016/0020-7683(91)90069-R contributor: fullname: NA Fleck – volume: 10 start-page: 507 year: 1974 ident: 9010_CR17 publication-title: Int J Fract doi: 10.1007/BF00155254 contributor: fullname: RV Goldstein – volume: 29 start-page: 947 year: 1992 ident: 9010_CR16 publication-title: Int J Solids Struct doi: 10.1016/0020-7683(92)90068-5 contributor: fullname: H Gao – ident: 9010_CR34 doi: 10.1103/PhysRevE.77.066114 – volume: 52 start-page: 117 year: 2004 ident: 9010_CR30 publication-title: Acta Mater doi: 10.1016/j.actamat.2003.08.034 contributor: fullname: R Niefanger – volume: 24 start-page: 381 year: 1976 ident: 9010_CR20 publication-title: J Mech Phys Solids doi: 10.1016/0022-5096(76)90010-7 contributor: fullname: PS Leevers – ident: 9010_CR12 – volume: 19 start-page: 545 year: 1997 ident: 9010_CR18 publication-title: Comput Mech doi: 10.1007/s004660050207 contributor: fullname: J Gunnars – volume: 57 start-page: 509 year: 1974 ident: 9010_CR39 publication-title: J Am Ceram Soc doi: 10.1111/j.1151-2916.1974.tb10799.x contributor: fullname: JB Wachtman Jr – volume: 52 start-page: 4105 year: 1995 ident: 9010_CR2 publication-title: Phys Rev E doi: 10.1103/PhysRevE.52.4105 contributor: fullname: M Adda-Bedia |
SSID | ssj0009784 |
Score | 1.8725435 |
Snippet | Crack paths of original Griffith crack and edge crack under biaxial remote mode-I loading after different local disturbances are calculated by using... |
SourceID | proquest crossref pascalfrancis |
SourceType | Aggregation Database Index Database |
StartPage | 513 |
SubjectTerms | Asymptotic properties Axial stress Computer simulation Crack propagation Crack tips Differential equations Directional stability Disturbances Edge cracks Exact sciences and technology Finite element method Fracture mechanics Fracture mechanics (crack, fatigue, damage...) Fundamental areas of phenomenology (including applications) Griffith Irwin fracture Mathematical analysis Mathematical models Path predictors Perturbation methods Physics Series expansion Solid mechanics Stresses Structural and continuum mechanics |
Title | Crack paths and the problem of global directional stability |
URI | https://www.proquest.com/docview/2259865890 https://search.proquest.com/docview/1082187707 https://search.proquest.com/docview/28949746 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8QwEB10vSgifmL9WCN4EoJpmzYJHkTFVQRFRMFbadLpReiu2_Xgv3fSdl1F9NyWkkky82YyeQ_giIJCqFNZ8MSIgsvQCm7jMOQqRp2mpqSMwyeKd_fpzbO8fUleuoJb3bVVTn1i46iLofM18hNad0ZTuDTibPTGvWqUP13tJDTmYSGiTEH0YOHi6v7hcUa7q3RLIKVSbsj1Ts8128tzyndgUEbdtCiIH5FpeZTXZKSyVbf45aib6DNYhZUONrLzdp7XYA6rdVj6Ria4AaeX49y9Mi8xXLO8KhhBO9bpxbBhyVrqD9bGsKYAyAgZNr2xH5vwPLh6urzhnTQCd3GqJhyNRVt4rFA6dGhooM4SGrKIQmBU5sLaXKM0OpKUUSlZhpa2qjNREguningLetWwwm1gceQvw0vlidhlUiR5jCG6SGtMjZFYBHA8NUs2ahkwshnXsbdh5nvjvA0zEUD_h-FmX3g9DwKPAexNLZl1u6XOZnMbwOHXY1rn_vAir3D4XnsiU0IjSgkVwMEf71DyKGms6c7_P9mFxaaQ0rTk7UFvMn7HfYIWE9uHeT247ner6BPo_Ms3 |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB7UPaiI-MT6jOBJCKZt2jR4EJWV9bWIKHgrTTq9CN11ux78907arquInttSMklmvplMvg_giIKCn8Qy55EWOZe-EdyEvs9ViEkc64IyDpco3vfj3rO8eYle2oJb1bZVTnxi7ajzgXU18hNadzqhcKnF2fCNO9Uod7raSmjMQsdRVVHy1bno9h8ep7S7KmkIpFTMNbneyblmc3lOuQ4MyqjrFgXxIzItDbOKjFQ06ha_HHUdfa5WYLmFjey8medVmMFyDRa_kQmuw-nlKLOvzEkMVywrc0bQjrV6MWxQsIb6gzUxrC4AMkKGdW_sxwY8X3WfLnu8lUbgNozVmKM2aHKHFQqLFjUN1BpCQwZRCAyKTBiTJSh1EkjKqJQsfENb1eogCoVVebgJc-WgxC1gYeAuw0vliNhllEdZiD7aIEkw1lpi7sHxxCzpsGHASKdcx86GqeuNczZMhQf7Pww3_cLpeRB49GB3Ysm03S1VOp1bDw6_HtM6d4cXWYmD98oRmRIaUUooDw7-eIeSR0ljjbf__8kBzPee7u_Su-v-7Q4s1EWVuj1vF-bGo3fcI5gxNvvtWvoE7FfNSw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crack+paths+and+the+problem+of+global+directional+stability&rft.jtitle=International+journal+of+fracture&rft.au=Pham%2C+V.+-B.&rft.au=Bahr%2C+H.+-A.&rft.au=Bahr%2C+U.&rft.au=Fett%2C+T.&rft.date=2006-10-01&rft.issn=0376-9429&rft.eissn=1573-2673&rft.volume=141&rft.issue=3-4&rft.spage=513&rft.epage=534&rft_id=info:doi/10.1007%2Fs10704-006-9010-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10704_006_9010_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-9429&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-9429&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-9429&client=summon |