Crack paths and the problem of global directional stability

Crack paths of original Griffith crack and edge crack under biaxial remote mode-I loading after different local disturbances are calculated by using integro-differential equations of first-order perturbation and numerical simulation with FEM respectively.Considering the asymptotic behaviour for larg...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of fracture Vol. 141; no. 3-4; pp. 513 - 534
Main Authors PHAM, V.-B, BAHR, H.-A, BAHR, U, FETT, T, BALKE, H
Format Journal Article
LanguageEnglish
Published Heidelberg Springer 01.10.2006
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Crack paths of original Griffith crack and edge crack under biaxial remote mode-I loading after different local disturbances are calculated by using integro-differential equations of first-order perturbation and numerical simulation with FEM respectively.Considering the asymptotic behaviour for large crack lengths the problem of global directional stability is reinvestigated extending the work by Melin. For the Griffith crack, correct power functions for the asymptotic path with one or both crack tips growing have been determined. The well- known critical stress biaxiality ratio Rc = 1 for the global directional stability has been obtained independently whether the crack is disturbed by local imperfections in geometry or in loading. For an edge crack the calculated critical stress biaxiality ratio for the global directional stability Rc = 0.616, also irrespective of the local disturbances, corresponds to a positive T-stress and is considerably smaller than the value R > 0.95 estimated by Melin (2002). In general, cracks need not propagate asymptotically in the direction perpendicular to the largest principal stress (without crack). This is found to be due to the effect of the boundaries.Considering the initial crack growth exclusively, it is shown that the solution for crack path prediction in series expansion form as derived by Cotterell and Rice (1980) for traction-free crack faces (after correction of a misprint) is exact in the two first terms in all cases. Thus, for small crack growth the Cotterell and Rice solution is universal with respect to all loading and geometrical situations.
AbstractList Crack paths of original Griffith crack and edge crack under biaxial remote mode-I loading after different local disturbances are calculated by using integro-differential equations of first-order perturbation and numerical simulation with FEM respectively.
Crack paths of original Griffith crack and edge crack under biaxial remote mode-I loading after different local disturbances are calculated by using integro-differential equations of first-order perturbation and numerical simulation with FEM respectively.Considering the asymptotic behaviour for large crack lengths the problem of global directional stability is reinvestigated extending the work by Melin. For the Griffith crack, correct power functions for the asymptotic path with one or both crack tips growing have been determined. The well- known critical stress biaxiality ratio R sub(c) = 1 for the global directional stability has been obtained independently whether the crack is disturbed by local imperfections in geometry or in loading. For an edge crack the calculated critical stress biaxiality ratio for the global directional stability R sub(c) = 0.616, also irrespective of the local disturbances, corresponds to a positive T-stress and is considerably smaller than the value R > 0.95 estimated by Melin (2002). In general, cracks need not propagate asymptotically in the direction perpendicular to the largest principal stress (without crack). This is found to be due to the effect of the boundaries.Considering the initial crack growth exclusively, it is shown that the solution for crack path prediction in series expansion form as derived by Cotterell and Rice (1980) for traction-free crack faces (after correction of a misprint) is exact in the two first terms in all cases. Thus, for small crack growth the Cotterell and Rice solution is universal with respect to all loading and geometrical situations.
Crack paths of original Griffith crack and edge crack under biaxial remote mode-I loading after different local disturbances are calculated by using integro-differential equations of first-order perturbation and numerical simulation with FEM respectively.Considering the asymptotic behaviour for large crack lengths the problem of global directional stability is reinvestigated extending the work by Melin. For the Griffith crack, correct power functions for the asymptotic path with one or both crack tips growing have been determined. The well- known critical stress biaxiality ratio Rc = 1 for the global directional stability has been obtained independently whether the crack is disturbed by local imperfections in geometry or in loading. For an edge crack the calculated critical stress biaxiality ratio for the global directional stability Rc = 0.616, also irrespective of the local disturbances, corresponds to a positive T-stress and is considerably smaller than the value R > 0.95 estimated by Melin (2002). In general, cracks need not propagate asymptotically in the direction perpendicular to the largest principal stress (without crack). This is found to be due to the effect of the boundaries.Considering the initial crack growth exclusively, it is shown that the solution for crack path prediction in series expansion form as derived by Cotterell and Rice (1980) for traction-free crack faces (after correction of a misprint) is exact in the two first terms in all cases. Thus, for small crack growth the Cotterell and Rice solution is universal with respect to all loading and geometrical situations.
Author FETT, T
BAHR, U
PHAM, V.-B
BAHR, H.-A
BALKE, H
Author_xml – sequence: 1
  givenname: V.-B
  surname: PHAM
  fullname: PHAM, V.-B
  organization: Technische Universität Dresden, Institut für Festkörpermechanik, 01062 Dresden, Germany
– sequence: 2
  givenname: H.-A
  surname: BAHR
  fullname: BAHR, H.-A
  organization: Technische Universität Dresden, Institut für Festkörpermechanik, 01062 Dresden, Germany
– sequence: 3
  givenname: U
  surname: BAHR
  fullname: BAHR, U
  organization: Technische Universität Dresden, Institut für Theoretische Physik, 01062 Dresden, Germany
– sequence: 4
  givenname: T
  surname: FETT
  fullname: FETT, T
  organization: Forschungszentrum Karlsruhe, Institut für Materialforschung II, Postfach 3640, 76021 Karlsruhe, Germany
– sequence: 5
  givenname: H
  surname: BALKE
  fullname: BALKE, H
  organization: Technische Universität Dresden, Institut für Festkörpermechanik, 01062 Dresden, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18344565$$DView record in Pascal Francis
BookMark eNp9kE1LAzEQhoNUsFZ_gLcFUbysTr42CZ6k-AUFL3oOSTprt253a7I99N-b0oLgwdMMzPO-M_OeklHXd0jIBYVbCqDuEgUFogSoSgMUSjgiYyoVL1ml-IiMgas8EcyckNOUlgBglBZjcj-NLnwVazcsUuG6eTEssFjH3re4Kvq6-Gx779pi3kQMQ9N3uU-D803bDNszcly7NuH5oU7Ix9Pj-_SlnL09v04fZmXglRpKNB79nEsp6oABTd4cPJXCIwIgqx147zQKo5nQxihRUy-0DoZJDkHN-YRc733zXd8bTINdNSlg27oO-02yTBuRZVUGb_4FKWhGtVKgMnr5B132m5jfy3ZMGl1JbSBTdE-F2KcUsbbr2Kxc3GYru8vd7nO3OXe7y93uNFcHZ5eCa-voutCkX6HmQshK8h8UX4Lf
CODEN IJFRAP
CitedBy_id crossref_primary_10_1103_PhysRevE_77_066114
crossref_primary_10_3139_146_101525
crossref_primary_10_1016_j_engfracmech_2007_10_003
crossref_primary_10_1016_j_tafmec_2017_07_007
crossref_primary_10_1111_ffe_12819
crossref_primary_10_1016_j_engfracmech_2014_10_013
crossref_primary_10_1103_PhysRevE_79_056103
Cites_doi 10.1103/PhysRevE.49.R51
10.1023/A:1015521629898
10.1016/S0022-5096(00)00022-3
10.1016/0013-7944(87)90060-9
10.1016/S0022-5096(01)00052-7
10.1007/BF01141553
10.1103/PhysRevLett.93.185502
10.1103/PhysRevE.58.7878
10.1016/0013-7944(85)90106-7
10.1103/PhysRevE.52.240
10.1007/BF00012619
10.1016/S0022-5096(02)00030-3
10.1016/S0013-7944(98)00038-1
10.1007/BF00034668
10.1016/S0955-2219(00)00002-9
10.1115/1.4011454
10.1103/PhysRevE.68.036601
10.1007/BF00032198
10.1007/BF00020156
10.1115/1.2901468
10.1103/PhysRevE.67.066209
10.1007/BF00048950
10.1016/j.tafmec.2003.11.018
10.1016/S0065-2156(08)70164-9
10.1007/s10704-005-0024-9
10.1038/362329a0
10.1007/s10704-004-3637-5
10.1016/S1365-6937(02)08025-5
10.1016/0020-7683(91)90069-R
10.1007/BF00155254
10.1016/0020-7683(92)90068-5
10.1103/PhysRevE.77.066114
10.1016/j.actamat.2003.08.034
10.1016/0022-5096(76)90010-7
10.1007/s004660050207
10.1111/j.1151-2916.1974.tb10799.x
10.1103/PhysRevE.52.4105
ContentType Journal Article
Copyright 2007 INIST-CNRS
International Journal of Fracture is a copyright of Springer, (2006). All Rights Reserved.
Copyright_xml – notice: 2007 INIST-CNRS
– notice: International Journal of Fracture is a copyright of Springer, (2006). All Rights Reserved.
DBID IQODW
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PQEST
PQQKQ
PQUKI
PTHSS
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1007/s10704-006-9010-0
DatabaseName Pascal-Francis
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Engineering Database
Technology Collection
ProQuest One Academic Eastern Edition
Materials Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
Engineering Collection
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database
Materials Research Database
ProQuest Materials Science Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1573-2673
EndPage 534
ExternalDocumentID 10_1007_s10704_006_9010_0
18344565
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
8WZ
95-
95.
95~
96X
A6W
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAIKT
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUCO
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJCF
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJGSW
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IQODW
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9N
PDBOC
PF0
PT4
PT5
PTHSS
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SCV
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z8Z
Z92
ZMTXR
~02
~8M
~A~
~EX
AACDK
AAJBT
AASML
AAYXX
ABAKF
ABJNI
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
HVGLF
DWQXO
PQEST
PQQKQ
PQUKI
7SR
7TB
8BQ
8FD
AAYZH
FR3
JG9
KR7
ID FETCH-LOGICAL-c367t-e9bebd3554fcece9097cb154bee00e2fa0bba8e4982489974f1b488c92530c7d3
IEDL.DBID BENPR
ISSN 0376-9429
IngestDate Fri Oct 25 21:38:13 EDT 2024
Fri Oct 25 02:00:13 EDT 2024
Thu Oct 10 22:06:14 EDT 2024
Thu Sep 12 16:36:28 EDT 2024
Sun Oct 22 16:03:11 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords Biaxial load
Modeling
Edge crack
Crack propagation
Finite element method
Crack path prediction, Global directional stability, Crack path stabílity
Edge effect
Series expansion
Crack length
Defect
Griffith crack
Crack tip
Asymptotic approximation
Principal stress
Integrodifferential equation
T-stress
T stress
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-e9bebd3554fcece9097cb154bee00e2fa0bba8e4982489974f1b488c92530c7d3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 2259865890
PQPubID 23500
PageCount 22
ParticipantIDs proquest_miscellaneous_28949746
proquest_miscellaneous_1082187707
proquest_journals_2259865890
crossref_primary_10_1007_s10704_006_9010_0
pascalfrancis_primary_18344565
PublicationCentury 2000
PublicationDate 2006-10-01
PublicationDateYYYYMMDD 2006-10-01
PublicationDate_xml – month: 10
  year: 2006
  text: 2006-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
– name: Dordrecht
PublicationTitle International journal of fracture
PublicationYear 2006
Publisher Springer
Springer Nature B.V
Publisher_xml – name: Springer
– name: Springer Nature B.V
References DA Zacharapoulos (9010_CR43) 2004; 41
JW Hutchinson (9010_CR19) 1992; 29
E Bouchbinder (9010_CR5) 2003; 68
S Melin (9010_CR26) 1992; 53
S Melin (9010_CR29) 2002; 114
HJ Schindler (9010_CR37) 1984; 25
M Marder (9010_CR22) 1994; 49
S Melin (9010_CR28) 1994; 61
ML Williams (9010_CR40) 1957; 24
Y Sumi (9010_CR38) 1985; 22
9010_CR23
JB Wachtman Jr (9010_CR39) 1974; 57
KB Broberg (9010_CR6) 1987; 28
S Melin (9010_CR24) 1983; 23
S Melin (9010_CR27) 1993; 46
A Yuse (9010_CR42) 1993; 362
RD Deegan (9010_CR9) 2003; 67
B Yang (9010_CR41) 2001; 49
T Fett (9010_CR13) 1997
O Ronsin (9010_CR35) 1998; 58
H-A Bahr (9010_CR4) 1995; 52
R Niefanger (9010_CR30) 2004; 52
M Adda-Bedia (9010_CR2) 1995; 52
9010_CR3
B Cotterell (9010_CR8) 1980; 16
J Gunnars (9010_CR18) 1997; 19
S Melin (9010_CR25) 1991; 50
PS Leevers (9010_CR20) 1976; 24
O Obrezanova (9010_CR32) 2002; 50
T Fett (9010_CR10) 1998; 60
M Adda-Bedia (9010_CR1) 2004; 93
9010_CR12
9010_CR34
9010_CR11
RV Goldstein (9010_CR17) 1974; 10
H Gao (9010_CR16) 1992; 29
V-B Pham (9010_CR33) 2005; 237
NA Fleck (9010_CR15) 1991; 27
AJ Sanchez-Herencia (9010_CR36) 2000; 20
T Fett (9010_CR14) 2005; 132
N Noda (9010_CR31) 1992; 58
SL dos Santose Lucato (9010_CR21) 2002; 50
KB Broberg (9010_CR7) 2005; 131
References_xml – volume: 49
  start-page: R51
  year: 1994
  ident: 9010_CR22
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.49.R51
  contributor:
    fullname: M Marder
– volume: 114
  start-page: 259
  year: 2002
  ident: 9010_CR29
  publication-title: Int J Fract
  doi: 10.1023/A:1015521629898
  contributor:
    fullname: S Melin
– volume: 49
  start-page: 91
  year: 2001
  ident: 9010_CR41
  publication-title: J Mech Phys Solids
  doi: 10.1016/S0022-5096(00)00022-3
  contributor:
    fullname: B Yang
– volume: 28
  start-page: 663
  year: 1987
  ident: 9010_CR6
  publication-title: Eng Fract Mech
  doi: 10.1016/0013-7944(87)90060-9
  contributor:
    fullname: KB Broberg
– volume: 50
  start-page: 57
  year: 2002
  ident: 9010_CR32
  publication-title: J Mech Phys Solids
  doi: 10.1016/S0022-5096(01)00052-7
  contributor:
    fullname: O Obrezanova
– volume: 25
  start-page: 95
  year: 1984
  ident: 9010_CR37
  publication-title: Int J Fract
  doi: 10.1007/BF01141553
  contributor:
    fullname: HJ Schindler
– volume: 93
  start-page: 185502
  year: 2004
  ident: 9010_CR1
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.93.185502
  contributor:
    fullname: M Adda-Bedia
– volume: 58
  start-page: 7878
  issue: 6
  year: 1998
  ident: 9010_CR35
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.58.7878
  contributor:
    fullname: O Ronsin
– volume: 22
  start-page: 759
  year: 1985
  ident: 9010_CR38
  publication-title: Eng Fract Mech
  doi: 10.1016/0013-7944(85)90106-7
  contributor:
    fullname: Y Sumi
– volume: 52
  start-page: 240
  year: 1995
  ident: 9010_CR4
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.52.240
  contributor:
    fullname: H-A Bahr
– volume: 16
  start-page: 155
  year: 1980
  ident: 9010_CR8
  publication-title: Int J Fract
  doi: 10.1007/BF00012619
  contributor:
    fullname: B Cotterell
– volume: 50
  start-page: 2333
  year: 2002
  ident: 9010_CR21
  publication-title: J Mech Phys Solids
  doi: 10.1016/S0022-5096(02)00030-3
  contributor:
    fullname: SL dos Santose Lucato
– volume: 60
  start-page: 631
  year: 1998
  ident: 9010_CR10
  publication-title: Eng Fract Mech
  doi: 10.1016/S0013-7944(98)00038-1
  contributor:
    fullname: T Fett
– ident: 9010_CR23
– volume: 53
  start-page: 121
  year: 1992
  ident: 9010_CR26
  publication-title: Int J Fract
  doi: 10.1007/BF00034668
  contributor:
    fullname: S Melin
– volume: 20
  start-page: 1297
  year: 2000
  ident: 9010_CR36
  publication-title: J Eur Ceram Soc
  doi: 10.1016/S0955-2219(00)00002-9
  contributor:
    fullname: AJ Sanchez-Herencia
– volume: 24
  start-page: 109
  year: 1957
  ident: 9010_CR40
  publication-title: J Appl Mech
  doi: 10.1115/1.4011454
  contributor:
    fullname: ML Williams
– volume: 237
  start-page: 99
  year: 2005
  ident: 9010_CR33
  publication-title: DVM-Bericht
  contributor:
    fullname: V-B Pham
– volume: 68
  start-page: 036601
  year: 2003
  ident: 9010_CR5
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.68.036601
  contributor:
    fullname: E Bouchbinder
– volume: 50
  start-page: 293
  year: 1991
  ident: 9010_CR25
  publication-title: Int J Fract
  doi: 10.1007/BF00032198
  contributor:
    fullname: S Melin
– volume: 23
  start-page: 37
  year: 1983
  ident: 9010_CR24
  publication-title: Int J Fract
  doi: 10.1007/BF00020156
  contributor:
    fullname: S Melin
– volume: 61
  start-page: 467
  year: 1994
  ident: 9010_CR28
  publication-title: J Appl Mech
  doi: 10.1115/1.2901468
  contributor:
    fullname: S Melin
– volume: 67
  start-page: 066209
  year: 2003
  ident: 9010_CR9
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.67.066209
  contributor:
    fullname: RD Deegan
– volume: 58
  start-page: 285
  year: 1992
  ident: 9010_CR31
  publication-title: Int J Fract
  doi: 10.1007/BF00048950
  contributor:
    fullname: N Noda
– volume: 41
  start-page: 327
  year: 2004
  ident: 9010_CR43
  publication-title: Theoret Appl Fract Mech
  doi: 10.1016/j.tafmec.2003.11.018
  contributor:
    fullname: DA Zacharapoulos
– ident: 9010_CR11
– volume: 29
  start-page: 63
  year: 1992
  ident: 9010_CR19
  publication-title: Adv Appl Mech
  doi: 10.1016/S0065-2156(08)70164-9
  contributor:
    fullname: JW Hutchinson
– volume: 46
  start-page: 511
  year: 1993
  ident: 9010_CR27
  publication-title: Int J Fract
  contributor:
    fullname: S Melin
– volume: 132
  start-page: L9
  year: 2005
  ident: 9010_CR14
  publication-title: Int J Fract
  doi: 10.1007/s10704-005-0024-9
  contributor:
    fullname: T Fett
– volume: 362
  start-page: 329
  year: 1993
  ident: 9010_CR42
  publication-title: Nature
  doi: 10.1038/362329a0
  contributor:
    fullname: A Yuse
– volume: 131
  start-page: 1
  year: 2005
  ident: 9010_CR7
  publication-title: Int J Fract
  doi: 10.1007/s10704-004-3637-5
  contributor:
    fullname: KB Broberg
– ident: 9010_CR3
  doi: 10.1016/S1365-6937(02)08025-5
– volume-title: Stress intensity factors and weight functions, International series on advances in fracture
  year: 1997
  ident: 9010_CR13
  contributor:
    fullname: T Fett
– volume: 27
  start-page: 1683
  year: 1991
  ident: 9010_CR15
  publication-title: Int J Solids Struct
  doi: 10.1016/0020-7683(91)90069-R
  contributor:
    fullname: NA Fleck
– volume: 10
  start-page: 507
  year: 1974
  ident: 9010_CR17
  publication-title: Int J Fract
  doi: 10.1007/BF00155254
  contributor:
    fullname: RV Goldstein
– volume: 29
  start-page: 947
  year: 1992
  ident: 9010_CR16
  publication-title: Int J Solids Struct
  doi: 10.1016/0020-7683(92)90068-5
  contributor:
    fullname: H Gao
– ident: 9010_CR34
  doi: 10.1103/PhysRevE.77.066114
– volume: 52
  start-page: 117
  year: 2004
  ident: 9010_CR30
  publication-title: Acta Mater
  doi: 10.1016/j.actamat.2003.08.034
  contributor:
    fullname: R Niefanger
– volume: 24
  start-page: 381
  year: 1976
  ident: 9010_CR20
  publication-title: J Mech Phys Solids
  doi: 10.1016/0022-5096(76)90010-7
  contributor:
    fullname: PS Leevers
– ident: 9010_CR12
– volume: 19
  start-page: 545
  year: 1997
  ident: 9010_CR18
  publication-title: Comput Mech
  doi: 10.1007/s004660050207
  contributor:
    fullname: J Gunnars
– volume: 57
  start-page: 509
  year: 1974
  ident: 9010_CR39
  publication-title: J Am Ceram Soc
  doi: 10.1111/j.1151-2916.1974.tb10799.x
  contributor:
    fullname: JB Wachtman Jr
– volume: 52
  start-page: 4105
  year: 1995
  ident: 9010_CR2
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.52.4105
  contributor:
    fullname: M Adda-Bedia
SSID ssj0009784
Score 1.8725435
Snippet Crack paths of original Griffith crack and edge crack under biaxial remote mode-I loading after different local disturbances are calculated by using...
SourceID proquest
crossref
pascalfrancis
SourceType Aggregation Database
Index Database
StartPage 513
SubjectTerms Asymptotic properties
Axial stress
Computer simulation
Crack propagation
Crack tips
Differential equations
Directional stability
Disturbances
Edge cracks
Exact sciences and technology
Finite element method
Fracture mechanics
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Griffith Irwin fracture
Mathematical analysis
Mathematical models
Path predictors
Perturbation methods
Physics
Series expansion
Solid mechanics
Stresses
Structural and continuum mechanics
Title Crack paths and the problem of global directional stability
URI https://www.proquest.com/docview/2259865890
https://search.proquest.com/docview/1082187707
https://search.proquest.com/docview/28949746
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NS8QwEB10vSgifmL9WCN4EoJpmzYJHkTFVQRFRMFbadLpReiu2_Xgv3fSdl1F9NyWkkky82YyeQ_giIJCqFNZ8MSIgsvQCm7jMOQqRp2mpqSMwyeKd_fpzbO8fUleuoJb3bVVTn1i46iLofM18hNad0ZTuDTibPTGvWqUP13tJDTmYSGiTEH0YOHi6v7hcUa7q3RLIKVSbsj1Ts8128tzyndgUEbdtCiIH5FpeZTXZKSyVbf45aib6DNYhZUONrLzdp7XYA6rdVj6Ria4AaeX49y9Mi8xXLO8KhhBO9bpxbBhyVrqD9bGsKYAyAgZNr2xH5vwPLh6urzhnTQCd3GqJhyNRVt4rFA6dGhooM4SGrKIQmBU5sLaXKM0OpKUUSlZhpa2qjNREguningLetWwwm1gceQvw0vlidhlUiR5jCG6SGtMjZFYBHA8NUs2ahkwshnXsbdh5nvjvA0zEUD_h-FmX3g9DwKPAexNLZl1u6XOZnMbwOHXY1rn_vAir3D4XnsiU0IjSgkVwMEf71DyKGms6c7_P9mFxaaQ0rTk7UFvMn7HfYIWE9uHeT247ner6BPo_Ms3
link.rule.ids 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,43612,43817
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB7UPaiI-MT6jOBJCKZt2jR4EJWV9bWIKHgrTTq9CN11ux78907arquInttSMklmvplMvg_giIKCn8Qy55EWOZe-EdyEvs9ViEkc64IyDpco3vfj3rO8eYle2oJb1bZVTnxi7ajzgXU18hNadzqhcKnF2fCNO9Uod7raSmjMQsdRVVHy1bno9h8ep7S7KmkIpFTMNbneyblmc3lOuQ4MyqjrFgXxIzItDbOKjFQ06ha_HHUdfa5WYLmFjey8medVmMFyDRa_kQmuw-nlKLOvzEkMVywrc0bQjrV6MWxQsIb6gzUxrC4AMkKGdW_sxwY8X3WfLnu8lUbgNozVmKM2aHKHFQqLFjUN1BpCQwZRCAyKTBiTJSh1EkjKqJQsfENb1eogCoVVebgJc-WgxC1gYeAuw0vliNhllEdZiD7aIEkw1lpi7sHxxCzpsGHASKdcx86GqeuNczZMhQf7Pww3_cLpeRB49GB3Ysm03S1VOp1bDw6_HtM6d4cXWYmD98oRmRIaUUooDw7-eIeSR0ljjbf__8kBzPee7u_Su-v-7Q4s1EWVuj1vF-bGo3fcI5gxNvvtWvoE7FfNSw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crack+paths+and+the+problem+of+global+directional+stability&rft.jtitle=International+journal+of+fracture&rft.au=Pham%2C+V.+-B.&rft.au=Bahr%2C+H.+-A.&rft.au=Bahr%2C+U.&rft.au=Fett%2C+T.&rft.date=2006-10-01&rft.issn=0376-9429&rft.eissn=1573-2673&rft.volume=141&rft.issue=3-4&rft.spage=513&rft.epage=534&rft_id=info:doi/10.1007%2Fs10704-006-9010-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10704_006_9010_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-9429&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-9429&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-9429&client=summon