Dropout vs. batch normalization: an empirical study of their impact to deep learning

Overfitting and long training time are two fundamental challenges in multilayered neural network learning and deep learning in particular. Dropout and batch normalization are two well-recognized approaches to tackle these challenges. While both approaches share overlapping design principles, numerou...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 79; no. 19-20; pp. 12777 - 12815
Main Authors Garbin, Christian, Zhu, Xingquan, Marques, Oge
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Overfitting and long training time are two fundamental challenges in multilayered neural network learning and deep learning in particular. Dropout and batch normalization are two well-recognized approaches to tackle these challenges. While both approaches share overlapping design principles, numerous research results have shown that they have unique strengths to improve deep learning. Many tools simplify these two approaches as a simple function call, allowing flexible stacking to form deep learning architectures. Although their usage guidelines are available, unfortunately no well-defined set of rules or comprehensive studies to investigate them concerning data input, network configurations, learning efficiency, and accuracy. It is not clear when users should consider using dropout and/or batch normalization, and how they should be combined (or used alternatively) to achieve optimized deep learning outcomes. In this paper we conduct an empirical study to investigate the effect of dropout and batch normalization on training deep learning models. We use multilayered dense neural networks and convolutional neural networks (CNN) as the deep learning models, and mix dropout and batch normalization to design different architectures and subsequently observe their performance in terms of training and test CPU time, number of parameters in the model (as a proxy for model size), and classification accuracy. The interplay between network structures, dropout, and batch normalization, allow us to conclude when and how dropout and batch normalization should be considered in deep learning. The empirical study quantified the increase in training time when dropout and batch normalization are used, as well as the increase in prediction time (important for constrained environments, such as smartphones and low-powered IoT devices). It showed that a non-adaptive optimizer (e.g. SGD) can outperform adaptive optimizers, but only at the cost of a significant amount of training times to perform hyperparameter tuning, while an adaptive optimizer (e.g. RMSProp) performs well without much tuning. Finally, it showed that dropout and batch normalization should be used in CNNs only with caution and experimentation (when in doubt and short on time to experiment, use only batch normalization).
AbstractList Overfitting and long training time are two fundamental challenges in multilayered neural network learning and deep learning in particular. Dropout and batch normalization are two well-recognized approaches to tackle these challenges. While both approaches share overlapping design principles, numerous research results have shown that they have unique strengths to improve deep learning. Many tools simplify these two approaches as a simple function call, allowing flexible stacking to form deep learning architectures. Although their usage guidelines are available, unfortunately no well-defined set of rules or comprehensive studies to investigate them concerning data input, network configurations, learning efficiency, and accuracy. It is not clear when users should consider using dropout and/or batch normalization, and how they should be combined (or used alternatively) to achieve optimized deep learning outcomes. In this paper we conduct an empirical study to investigate the effect of dropout and batch normalization on training deep learning models. We use multilayered dense neural networks and convolutional neural networks (CNN) as the deep learning models, and mix dropout and batch normalization to design different architectures and subsequently observe their performance in terms of training and test CPU time, number of parameters in the model (as a proxy for model size), and classification accuracy. The interplay between network structures, dropout, and batch normalization, allow us to conclude when and how dropout and batch normalization should be considered in deep learning. The empirical study quantified the increase in training time when dropout and batch normalization are used, as well as the increase in prediction time (important for constrained environments, such as smartphones and low-powered IoT devices). It showed that a non-adaptive optimizer (e.g. SGD) can outperform adaptive optimizers, but only at the cost of a significant amount of training times to perform hyperparameter tuning, while an adaptive optimizer (e.g. RMSProp) performs well without much tuning. Finally, it showed that dropout and batch normalization should be used in CNNs only with caution and experimentation (when in doubt and short on time to experiment, use only batch normalization).
Author Garbin, Christian
Marques, Oge
Zhu, Xingquan
Author_xml – sequence: 1
  givenname: Christian
  surname: Garbin
  fullname: Garbin, Christian
  organization: Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University
– sequence: 2
  givenname: Xingquan
  orcidid: 0000-0003-4129-9611
  surname: Zhu
  fullname: Zhu, Xingquan
  email: xzhu3@fau.edu
  organization: Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University
– sequence: 3
  givenname: Oge
  surname: Marques
  fullname: Marques, Oge
  organization: Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University
BookMark eNp9kMtKxDAUhoMoeH0BVwHX1VzbxJ14hwE34zqk6ZmZDJ2kJhlBn946FQQXrs5Z_N-5fMdoP8QACJ1TckkJaa4ypUSwilBdESUkr_QeOqKy4VXTMLo_9lyRqpGEHqLjnNeE0FoycYTmdykOcVvwe77ErS1uhUNMG9v7T1t8DNfYBgybwSfvbI9z2XYfOC5wWYFP2G8G6wouEXcAA-7BpuDD8hQdLGyf4eynnqDXh_v57VM1e3l8vr2ZVY7XTamgEV0rQdasBcc4qTUHAc4qcKCdFJ3iynKqBa1pzVTbtrIlvGPAlaadVvwEXUxzhxTftpCLWcdtCuNKwwSRQlKu2ZhSU8qlmHOChXG-7J4ryfreUGK-HZrJoRkdmp1Do0eU_UGH5Dc2ffwP8QnKYzgsIf1e9Q_1BQQ-hew
CitedBy_id crossref_primary_10_1002_mp_17361
crossref_primary_10_1038_s41598_023_41543_1
crossref_primary_10_1515_nleng_2022_0290
crossref_primary_10_1016_j_seta_2023_103537
crossref_primary_10_1038_s41592_022_01746_2
crossref_primary_10_3390_su152416789
crossref_primary_10_1088_1475_7516_2023_09_029
crossref_primary_10_3390_app13031624
crossref_primary_10_3390_electronics11192994
crossref_primary_10_1016_j_mex_2024_102946
crossref_primary_10_1016_j_jqsrt_2020_107496
crossref_primary_10_1109_TSE_2023_3308952
crossref_primary_10_7717_peerj_cs_1031
crossref_primary_10_1007_s11042_021_10872_6
crossref_primary_10_1007_s10489_024_06019_3
crossref_primary_10_1016_j_autcon_2024_105793
crossref_primary_10_34133_2022_9757948
crossref_primary_10_1007_s11069_024_06585_2
crossref_primary_10_1007_s13762_023_05452_0
crossref_primary_10_1088_1361_6560_abe917
crossref_primary_10_1007_s11042_023_17179_8
crossref_primary_10_3390_math12233661
crossref_primary_10_1016_j_cropro_2024_106867
crossref_primary_10_21015_vtess_v15i3_976
crossref_primary_10_1007_s00477_022_02188_0
crossref_primary_10_1016_j_ejphar_2022_175320
crossref_primary_10_1016_j_soildyn_2023_108386
crossref_primary_10_1080_1206212X_2025_2465727
crossref_primary_10_1063_5_0253675
crossref_primary_10_1016_j_saa_2024_125626
crossref_primary_10_1007_s10651_024_00642_6
crossref_primary_10_1007_s10489_022_04387_2
crossref_primary_10_3390_en17040829
crossref_primary_10_1016_j_infsof_2024_107449
crossref_primary_10_32604_csse_2022_022003
crossref_primary_10_1016_j_enbenv_2023_09_001
crossref_primary_10_1109_TNSE_2022_3163358
crossref_primary_10_3390_atmos15111290
crossref_primary_10_25046_aj050570
crossref_primary_10_3389_fendo_2022_945020
crossref_primary_10_1016_j_egyai_2024_100449
crossref_primary_10_1016_j_heliyon_2024_e34420
crossref_primary_10_1016_j_ijcce_2021_02_002
crossref_primary_10_1016_j_radonc_2022_06_024
crossref_primary_10_1109_ACCESS_2022_3202893
crossref_primary_10_1109_TITS_2024_3420409
crossref_primary_10_1007_s11831_023_09899_9
crossref_primary_10_1109_ACCESS_2020_3038386
crossref_primary_10_1038_s41598_023_40693_6
crossref_primary_10_3390_machines11070677
crossref_primary_10_1109_ACCESS_2024_3425166
crossref_primary_10_1007_s10479_023_05326_1
crossref_primary_10_3390_drones8020057
crossref_primary_10_1016_j_optlaseng_2024_108238
crossref_primary_10_3390_pharmaceutics15041139
crossref_primary_10_3390_ijms25115820
crossref_primary_10_1016_j_ecoinf_2023_102113
crossref_primary_10_1016_j_engappai_2024_109376
crossref_primary_10_1002_adma_202413430
crossref_primary_10_3390_pr10040634
crossref_primary_10_1007_s11548_023_02985_0
crossref_primary_10_1016_j_oceaneng_2023_114915
crossref_primary_10_1016_j_engappai_2023_105910
crossref_primary_10_1109_ACCESS_2020_3019937
crossref_primary_10_1016_j_cose_2023_103264
crossref_primary_10_1111_mice_13242
crossref_primary_10_1007_s11042_024_19955_6
crossref_primary_10_3390_app10217817
crossref_primary_10_46387_bjesr_1262841
crossref_primary_10_1109_THMS_2023_3308614
crossref_primary_10_3233_AIS_220017
crossref_primary_10_3390_app14198860
crossref_primary_10_1080_14763141_2024_2315243
crossref_primary_10_3390_info15090517
crossref_primary_10_1007_s11665_024_10167_5
crossref_primary_10_1007_s11042_022_14232_w
crossref_primary_10_1016_j_asoc_2022_109650
crossref_primary_10_1177_20552076221092543
crossref_primary_10_1007_s12539_022_00535_x
crossref_primary_10_1063_5_0245543
crossref_primary_10_1088_2057_1976_ad6dcd
crossref_primary_10_1109_TCSVT_2022_3218104
crossref_primary_10_1016_j_atmosres_2024_107362
crossref_primary_10_1007_s00466_021_02112_3
crossref_primary_10_1109_TMTT_2024_3367290
crossref_primary_10_3390_electronics10192347
crossref_primary_10_3390_electronics12194099
crossref_primary_10_1109_TSP_2022_3141896
crossref_primary_10_1016_j_bspc_2022_104479
crossref_primary_10_1109_TSP_2022_3154969
crossref_primary_10_1007_s10921_021_00757_x
crossref_primary_10_1109_ACCESS_2021_3137824
crossref_primary_10_1109_ACCESS_2024_3468163
crossref_primary_10_3390_rs13234921
crossref_primary_10_3390_rs14225760
crossref_primary_10_1109_TTE_2023_3324760
crossref_primary_10_1016_j_asoc_2022_109401
crossref_primary_10_1109_ACCESS_2024_3362646
crossref_primary_10_3390_electronics11091504
crossref_primary_10_1007_s42235_023_00477_0
crossref_primary_10_1016_j_apenergy_2020_115862
crossref_primary_10_1016_j_compmedimag_2024_102451
crossref_primary_10_1016_j_apor_2024_104163
crossref_primary_10_1080_17455030_2024_2366837
crossref_primary_10_1016_j_bios_2024_116982
crossref_primary_10_1007_s10845_024_02408_0
crossref_primary_10_1016_j_ijbiomac_2024_134601
crossref_primary_10_3390_jimaging9100201
crossref_primary_10_5194_tc_16_1447_2022
crossref_primary_10_1016_j_ultras_2025_107639
crossref_primary_10_3390_rs14040992
crossref_primary_10_1109_TGRS_2024_3496855
crossref_primary_10_1007_s10489_023_04685_3
crossref_primary_10_3390_rs15225304
crossref_primary_10_3934_mbe_2023366
crossref_primary_10_1109_TIM_2021_3132998
crossref_primary_10_1080_10447318_2024_2432455
crossref_primary_10_55525_tjst_1056283
crossref_primary_10_1109_TMC_2022_3193847
crossref_primary_10_1016_j_ijdrr_2024_104785
crossref_primary_10_33851_JMIS_2024_11_1_57
crossref_primary_10_1093_bioinformatics_btae708
crossref_primary_10_3390_rs14041038
crossref_primary_10_3390_su16114432
crossref_primary_10_3390_app112210861
crossref_primary_10_1109_JSEN_2023_3295407
crossref_primary_10_1016_j_bspc_2023_105893
crossref_primary_10_1038_s41598_024_65351_3
crossref_primary_10_1109_ACCESS_2021_3050838
crossref_primary_10_1016_j_prime_2024_100738
crossref_primary_10_1016_j_epsr_2023_109473
crossref_primary_10_1021_acsmaterialslett_1c00204
crossref_primary_10_3390_s20247195
crossref_primary_10_1016_j_cj_2024_12_023
crossref_primary_10_1016_j_epsr_2022_108887
crossref_primary_10_1186_s40537_023_00727_2
crossref_primary_10_1007_s11554_021_01071_5
crossref_primary_10_1016_j_aei_2024_102919
crossref_primary_10_1109_ACCESS_2023_3309810
crossref_primary_10_1016_j_engappai_2025_110583
crossref_primary_10_1007_s12652_022_04105_3
crossref_primary_10_1016_j_ymssp_2024_111770
crossref_primary_10_3390_math12182800
crossref_primary_10_1109_OJITS_2022_3177007
crossref_primary_10_1038_s41598_022_21070_1
crossref_primary_10_1016_j_jretconser_2024_103865
crossref_primary_10_1038_s41598_025_86689_2
crossref_primary_10_3390_s22103902
crossref_primary_10_1016_j_jwpe_2024_105776
crossref_primary_10_1109_ACCESS_2024_3407534
crossref_primary_10_1145_3542944
crossref_primary_10_1080_00051144_2023_2296798
crossref_primary_10_1364_PRJ_428425
crossref_primary_10_1109_ACCESS_2023_3310472
crossref_primary_10_1016_j_est_2024_113130
crossref_primary_10_3390_bioengineering11101021
crossref_primary_10_1038_s41598_025_85237_2
crossref_primary_10_1080_19942060_2024_2440075
crossref_primary_10_1007_s11042_023_14688_4
crossref_primary_10_3389_fenvs_2024_1291327
crossref_primary_10_3389_fpls_2023_1230886
crossref_primary_10_1007_s44196_023_00390_8
crossref_primary_10_1016_j_engappai_2023_106504
crossref_primary_10_1080_10298436_2022_2092617
crossref_primary_10_3390_s21051734
crossref_primary_10_1007_s11760_023_02847_x
crossref_primary_10_1016_j_jwpe_2024_105187
crossref_primary_10_1016_j_cryogenics_2025_104053
crossref_primary_10_1109_ACCESS_2023_3303131
crossref_primary_10_3390_app15052320
crossref_primary_10_3390_bios11030069
crossref_primary_10_1007_s10489_021_02285_7
crossref_primary_10_1016_j_est_2025_116022
crossref_primary_10_1016_j_enbuild_2023_113216
crossref_primary_10_32628_IJSRST2411490
crossref_primary_10_1007_s00500_023_07813_w
crossref_primary_10_1080_19475683_2023_2165544
crossref_primary_10_3390_fi14040100
crossref_primary_10_1016_j_engstruct_2021_112735
crossref_primary_10_1103_PhysRevC_107_034308
crossref_primary_10_1007_s13389_024_00361_5
crossref_primary_10_1016_j_ijmedinf_2025_105792
crossref_primary_10_1063_5_0230001
crossref_primary_10_1016_j_asej_2023_102605
crossref_primary_10_1088_1742_6596_2621_1_012003
crossref_primary_10_1016_j_ast_2024_109886
crossref_primary_10_3390_s21051846
crossref_primary_10_1016_j_compositesa_2022_106973
crossref_primary_10_1007_s42979_024_03508_7
crossref_primary_10_2139_ssrn_4186638
crossref_primary_10_1109_ACCESS_2023_3343189
crossref_primary_10_1016_j_ipm_2020_102439
crossref_primary_10_1021_acs_jpcc_4c03379
crossref_primary_10_1142_S0218339023300014
crossref_primary_10_1038_s41598_024_83765_x
crossref_primary_10_3390_s23041748
crossref_primary_10_1016_j_jcsr_2024_109113
crossref_primary_10_1016_j_renene_2023_119389
crossref_primary_10_1007_s10479_023_05810_8
crossref_primary_10_1016_j_compag_2023_107864
crossref_primary_10_7717_peerj_cs_2052
crossref_primary_10_3390_bioengineering9080391
crossref_primary_10_1007_s10489_023_05120_3
crossref_primary_10_4018_IJIIT_309584
crossref_primary_10_3390_informatics9010018
crossref_primary_10_3390_app13063530
crossref_primary_10_3390_s21206841
crossref_primary_10_1007_s11227_022_04970_x
crossref_primary_10_1007_s42081_024_00242_5
crossref_primary_10_1016_j_compbiomed_2021_104659
crossref_primary_10_3390_s25020531
crossref_primary_10_1142_S0218126623502420
crossref_primary_10_3390_app14062424
crossref_primary_10_1007_s10489_024_05420_2
crossref_primary_10_3389_fpubh_2024_1445425
crossref_primary_10_1016_j_health_2023_100159
crossref_primary_10_2139_ssrn_3996743
crossref_primary_10_3390_s24134050
crossref_primary_10_47836_pjst_32_6_11
crossref_primary_10_3390_s23177543
crossref_primary_10_3390_s23104786
crossref_primary_10_3390_drones8080407
crossref_primary_10_1016_j_petrol_2021_108975
crossref_primary_10_1103_PhysRevE_110_024129
crossref_primary_10_3390_technologies12110214
crossref_primary_10_1117_1_JEI_31_4_043055
crossref_primary_10_3934_mbe_2022584
crossref_primary_10_1016_j_artmed_2021_102139
crossref_primary_10_1007_s12613_022_2560_y
crossref_primary_10_1016_j_eswa_2022_117925
crossref_primary_10_1093_jamiaopen_ooae014
crossref_primary_10_3390_pr11082440
crossref_primary_10_3390_s24041159
crossref_primary_10_3390_app14177478
crossref_primary_10_1007_s00466_022_02250_2
crossref_primary_10_3390_s23218909
crossref_primary_10_1007_s11053_024_10452_z
crossref_primary_10_1016_j_chemolab_2022_104750
crossref_primary_10_3390_app15052525
crossref_primary_10_3390_diagnostics14232708
crossref_primary_10_1109_JSEN_2020_3036465
crossref_primary_10_1016_j_jag_2021_102459
crossref_primary_10_1299_jamdsm_2022jamdsm0029
crossref_primary_10_1007_s11063_023_11235_y
crossref_primary_10_1088_2632_2153_abd614
crossref_primary_10_32604_iasc_2023_036871
crossref_primary_10_3390_electronics9111790
crossref_primary_10_1016_j_bspc_2024_106869
crossref_primary_10_1016_j_egyai_2025_100483
crossref_primary_10_1016_j_neucom_2025_129414
crossref_primary_10_1016_j_ijcce_2025_01_004
crossref_primary_10_1155_2021_8890226
crossref_primary_10_1007_s11042_023_17965_4
crossref_primary_10_1007_s12652_020_02612_9
crossref_primary_10_1007_s00138_020_01128_8
crossref_primary_10_1061_JCCEE5_CPENG_5169
crossref_primary_10_1109_JLT_2024_3446236
crossref_primary_10_1109_TASE_2023_3277331
crossref_primary_10_1007_s42979_022_01579_y
crossref_primary_10_1016_j_isprsjprs_2023_12_011
crossref_primary_10_1155_2021_7550670
crossref_primary_10_1080_10256016_2025_2467863
crossref_primary_10_1016_j_ndteint_2025_103360
crossref_primary_10_1016_j_asoc_2025_112765
crossref_primary_10_1109_ACCESS_2024_3384277
crossref_primary_10_3390_math11194189
crossref_primary_10_7256_2454_0714_2024_3_70849
crossref_primary_10_1016_j_procs_2022_09_362
crossref_primary_10_3390_ma16175956
crossref_primary_10_1016_j_crfs_2021_01_002
crossref_primary_10_32604_cmes_2022_016621
crossref_primary_10_3390_su16187940
crossref_primary_10_1587_transinf_2022DLP0022
Cites_doi 10.1142/S1469026818500086
10.1109/LSP.2016.2611485
10.1109/TMM.2017.2749159
10.1016/j.patrec.2014.01.008
10.1038/nature14539
10.1145/3065386
10.1111/insr.12016
10.1016/j.cviu.2017.05.007
10.1109/CVPR.2019.00279
10.1007/BF00994018
10.1109/icassp.2013.6639344
10.21236/ada164453
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-019-08453-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 12815
ExternalDocumentID 10_1007_s11042_019_08453_9
GrantInformation_xml – fundername: National Science Foundation
  grantid: IIS-1763452
– fundername: National Science Foundation
  grantid: CNS-1828181
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c367t-e74db5e562bec230693e4eca8ece9c54d838a3194161628bbb5b03d2e3891d983
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Fri Jul 25 08:39:34 EDT 2025
Thu Apr 24 23:01:19 EDT 2025
Tue Jul 01 02:07:05 EDT 2025
Fri Feb 21 02:37:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 19-20
Keywords Deep learning
Regularization
Batch normalization
Optimization
Overfitting
Dropout
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-e74db5e562bec230693e4eca8ece9c54d838a3194161628bbb5b03d2e3891d983
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4129-9611
PQID 2405451392
PQPubID 54626
PageCount 39
ParticipantIDs proquest_journals_2405451392
crossref_citationtrail_10_1007_s11042_019_08453_9
crossref_primary_10_1007_s11042_019_08453_9
springer_journals_10_1007_s11042_019_08453_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Mishkin, Sergievskiy, Matas (CR21) 2017; 161
Hinz, Navarro-Guerrero, Magg, Wermter (CR6) 2018; 17
CR18
Wang, Gao, Wang, Sun, Liu (CR33) 2018; 20
CR17
CR15
CR12
CR34
CR11
CR10
Wang, Gao, Song, Shen, Beyond frame-level (CR32) 2017; 24
CR31
CR30
Bengio (CR1) 2012
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR28) 2014; 15
Goodfellow, Bengio, Courville (CR5) 2016
CR2
Loh (CR19) 2014; 82
CR4
CR3
Krizhevsky, Sutskever, Hinton (CR13) 2017; 60
CR8
CR7
CR29
CR9
CR27
CR26
CR25
CR24
CR23
CR22
CR20
LeCun, Bengio, Hinton (CR16) 2015; 521
Längkvist, Karlsson, Loutfi (CR14) 2014; 42
T Hinz (8453_CR6) 2018; 17
Y LeCun (8453_CR16) 2015; 521
8453_CR3
8453_CR2
Dmytro Mishkin (8453_CR21) 2017; 161
8453_CR30
8453_CR10
N Srivastava (8453_CR28) 2014; 15
8453_CR31
8453_CR12
8453_CR34
8453_CR11
Wei-Yin Loh (8453_CR19) 2014; 82
cr-split#-8453_CR22.1
8453_CR15
X Wang (8453_CR33) 2018; 20
8453_CR18
8453_CR17
cr-split#-8453_CR22.2
X Wang (8453_CR32) 2017; 24
Yoshua Bengio (8453_CR1) 2012
8453_CR4
8453_CR7
8453_CR20
8453_CR9
8453_CR23
8453_CR8
8453_CR25
8453_CR24
8453_CR27
8453_CR26
Alex Krizhevsky (8453_CR13) 2017; 60
Martin Längkvist (8453_CR14) 2014; 42
8453_CR29
IJ Goodfellow (8453_CR5) 2016
References_xml – ident: CR22
– ident: CR18
– start-page: 437
  year: 2012
  end-page: 478
  ident: CR1
  article-title: Practical Recommendations for Gradient-Based Training of Deep Architectures
  publication-title: Lecture Notes in Computer Science
– ident: CR4
– ident: CR2
– ident: CR12
– ident: CR30
– volume: 17
  start-page: 1850008
  issue: 2
  year: 2018
  ident: CR6
  article-title: Speeding up the Hyperparameter Optimization of Deep Convolutional Neural Networks
  publication-title: International Journal of Computation Intelligence and Applications
  doi: 10.1142/S1469026818500086
– ident: CR10
– ident: CR29
– ident: CR8
– ident: CR25
– ident: CR27
– ident: CR23
– volume: 24
  start-page: 510
  issue: 4
  year: 2017
  ident: CR32
  article-title: Saliency-aware 3-D CNN with lstm for video action recognition
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2016.2611485
– volume: 20
  start-page: 634
  issue: 3
  year: 2018
  ident: CR33
  article-title: Two-stream 3-D convnet fusion for action recognition in videos with arbitrary size and length
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2017.2749159
– volume: 42
  start-page: 11
  year: 2014
  end-page: 24
  ident: CR14
  article-title: A review of unsupervised feature learning and deep learning for time-series modeling
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2014.01.008
– ident: CR3
– ident: CR15
– volume: 521
  start-page: 436
  year: 2015
  ident: CR16
  publication-title: Deep Learning
  doi: 10.1038/nature14539
– ident: CR17
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  end-page: 90
  ident: CR13
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Communications of the ACM
  doi: 10.1145/3065386
– ident: CR31
– ident: CR11
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: CR28
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: CR9
– ident: CR34
– volume: 82
  start-page: 329
  issue: 3
  year: 2014
  end-page: 348
  ident: CR19
  article-title: Fifty Years of Classification and Regression Trees
  publication-title: International Statistical Review
  doi: 10.1111/insr.12016
– year: 2016
  ident: CR5
  publication-title: Deep learning. Adaptive Computation and Machine Learning
– ident: CR7
– ident: CR26
– ident: CR24
– ident: CR20
– volume: 161
  start-page: 11
  year: 2017
  end-page: 19
  ident: CR21
  article-title: Systematic evaluation of convolution neural network advances on the Imagenet
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2017.05.007
– volume: 42
  start-page: 11
  year: 2014
  ident: 8453_CR14
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2014.01.008
– ident: 8453_CR20
– volume: 20
  start-page: 634
  issue: 3
  year: 2018
  ident: 8453_CR33
  publication-title: IEEE Trans Multimed
  doi: 10.1109/TMM.2017.2749159
– ident: 8453_CR17
  doi: 10.1109/CVPR.2019.00279
– ident: 8453_CR3
  doi: 10.1007/BF00994018
– ident: 8453_CR30
– ident: 8453_CR8
– ident: 8453_CR2
– ident: 8453_CR18
– volume: 24
  start-page: 510
  issue: 4
  year: 2017
  ident: 8453_CR32
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2016.2611485
– volume: 82
  start-page: 329
  issue: 3
  year: 2014
  ident: 8453_CR19
  publication-title: International Statistical Review
  doi: 10.1111/insr.12016
– volume: 161
  start-page: 11
  year: 2017
  ident: 8453_CR21
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2017.05.007
– ident: 8453_CR34
– ident: 8453_CR11
– ident: 8453_CR4
  doi: 10.1109/icassp.2013.6639344
– ident: 8453_CR26
  doi: 10.21236/ada164453
– start-page: 437
  volume-title: Lecture Notes in Computer Science
  year: 2012
  ident: 8453_CR1
– ident: 8453_CR27
– ident: #cr-split#-8453_CR22.2
– ident: 8453_CR25
– volume: 17
  start-page: 1850008
  issue: 2
  year: 2018
  ident: 8453_CR6
  publication-title: International Journal of Computation Intelligence and Applications
  doi: 10.1142/S1469026818500086
– ident: 8453_CR29
– ident: 8453_CR23
– ident: 8453_CR15
– ident: 8453_CR9
– ident: 8453_CR7
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 8453_CR13
  publication-title: Communications of the ACM
  doi: 10.1145/3065386
– ident: 8453_CR10
– ident: 8453_CR31
– ident: 8453_CR12
– volume-title: Deep learning. Adaptive Computation and Machine Learning
  year: 2016
  ident: 8453_CR5
– volume: 521
  start-page: 436
  year: 2015
  ident: 8453_CR16
  publication-title: Deep Learning
  doi: 10.1038/nature14539
– ident: #cr-split#-8453_CR22.1
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 8453_CR28
  publication-title: J Mach Learn Res
– ident: 8453_CR24
SSID ssj0016524
Score 2.638675
Snippet Overfitting and long training time are two fundamental challenges in multilayered neural network learning and deep learning in particular. Dropout and batch...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12777
SubjectTerms Artificial neural networks
Computer Communication Networks
Computer programming
Computer Science
Data Structures and Information Theory
Deep learning
Experimentation
Machine learning
Model accuracy
Multimedia Information Systems
Neural networks
Smartphones
Special Purpose and Application-Based Systems
Training
Tuning
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgLDDwUUAUCvLABkZJbCcOWwVUFRJMrdQtsuMLIJW0oim_H9t1GkCAxBYpjoe7nO-dzu8eQueJLgItpSAgVESYTgURBYB9UnEhgIZgyckPj_FgxO7HfOxJYfP6tnvdknQndUN2Cy2VJLCkG8E4Jek62uCmdrcXuUZRb9U7iLmXshUBMfkw9FSZn_f4mo4ajPmtLeqyTX8XbXuYiHtLv-6hNSjbaKeWYMA-Itto69M8wX00vLWaB4sKv8-vsDKH7DMuLSadeLLlNZYlhtfZi5sLgt1oWTwtsOsW4CVhEldTrAFm2OtJPB2gUf9ueDMgXjaB5DROKgIJ04qDATbGP7bCSCkwyKWAHNKcMy2okCbybGkTR0IpxVVAdQS2ZWmcRQ9Rq5yWcIQwAGVCJkInLGeykEob-EdpIblMBSR5B4W19bLczxS30haTrJmGbC2eGYtnzuJZ2kEXq29my4kaf67u1k7JfHTNM4NCDPAz2DXqoMvaUc3r33c7_t_yE7QZ2fLa3W_solb1toBTg0EqdeZ-uQ_jqtJw
  priority: 102
  providerName: Springer Nature
Title Dropout vs. batch normalization: an empirical study of their impact to deep learning
URI https://link.springer.com/article/10.1007/s11042-019-08453-9
https://www.proquest.com/docview/2405451392
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH-C9rId-NomCqXygdvmrY2d5IULaqEFbVo1TVRip8iOXwAJ0kIDfz926tCBRE-J5MSH9_w-7Off-wEcxibvGqWQE-qAS5Mgx5zIvekoRxI9cuDk3-PofCJ_XoaX_sBt7q9V1j6xctRmmrkz8h828thgb_OV4Hh2zx1rlKuuegqNdWhaF4zYgOZgOP7z96WOEIWe1ha73MbGnofNLMBzPQdN6ToQD8pQ8OR1aFrmm29KpFXkGW3Bhk8ZWX-h421Yo2IHNms6Buatcwc-_tdb8BNcnDr-g8eSPc2_M20d7jUrXH5664GXR0wVjO5mN1WPEFa1mWXTnFWVA7YAT7JyygzRjHluiavPMBkNL07OuadQ4JmI4pJTLI0OySY5Vldut5EIkpQppIySLJQGBSprhW6bEwWotQ51V5iAXPnSKk58gUYxLWgXGJGQqGI0scykypU2NhUUIlehSpDirAW9Wnpp5vuLO5qL23TZGdlJPLUSTyuJp0kLvr78M1t011j5dbtWSuotbZ4u10ULvtWKWg6_P9ve6tn24UPgttbV3cY2NMqHRzqw-UepO7COo7MONPujwWDsnmf_fg07funZ0UnQfwZM3du4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED512wPbAxuDaWXd8AM8gVkbO4kzCaFpXelou6dO2luw4wsgjbTQbIg_xW_ElzgrQ2Jve4uUxErOl7vPOX_3AbyMbd61WiuOygRc2kRxlSPSkYlyhaKHRE6enEfDC_nxMrxswe-GC0PbKpuYWAVqO8voH_mhyzwu2Tu8Eryff-ekGkXV1UZCo3aLEf766ZZsi3dnfTe_r4JgcDo9GXKvKsAzEcUlx1haE6LL--7xCYAnAiVmWmGGSRZKq4TSzjEJ-UeBMsaEpitsgFTRc-8i3LgrsCaFy-TETB98uK1aRKEX0VVd7jJxz5N0aqpej4gwXaIMKRkKntxNhEt0-09Btspzgy147AEqO6496gm0sNiGzUb8gflYsA0bf3UyfArTPqktXJfsZvGWGRfev7CC0PCVp3keMV0w_Db_WnUkYVVTWzbLWVWnYDVVk5UzZhHnzCtZfH4GFw9i2h1YLWYF7gJDFFLpWNlYZlLn2lgHPIXIdagThXHWhl5jvTTz3cxJVOMqXfZhJounzuJpZfE0acPr23vmdS-Pe6_uNJOS-u96kS69sA1vmolanv7_aM_vH-0FPBpOJ-N0fHY-2oP1gBb11a7KDqyWP65x3yGf0hxU7sbg00P79x8zTRJM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3BIlX0QClt1aVQfCin1mU3dhKnUlVRlhUf7QpVIHFL7XgCSJBd2FDEX-PX4UkctiDBjVukJJY8nsw8Z_zmAXyKbd6xWiuOygRc2kRxlSPSlYlyhaKLRE7-PYi2DuTOYXg4BTcNF4aOVTYxsQrUdpjRP_I1l3lcsnd4JVjL_bGIvV7_x-ick4IUVVobOY3aRXbx-spt38bft3turVeDoL-5v7HFvcIAz0QUlxxjaU2IDgO4qRAYTwRKzLTCDJMslFYJpZ2T0i4gCpQxJjQdYQOk6p6bl3DjTsNMTLuiFsz83Bzs_bmrYUShl9RVHe7yctdTdmriXpdoMR0iECkZCp7cT4sTrPugPFtlvf48zHm4ytZr_3oNU1gswKtGCoL5yLAAL__ra_gG9nukvXBZsn_jr8y4YH_MCsLGp570-Y3pguHZ6KTqT8KqFrdsmLOqasFq4iYrh8wijpjXtTh6CwfPYtx30CqGBb4Hhiik0rGyscykzrWxDoYKketQJwrjrA3dxnpp5nubk8TGaTrpykwWT53F08riadKGz3fvjOrOHk8-vdQsSuq_8nE68ck2fGkWanL78dEWnx5tBV44305_bQ92P8BsQDv86ojlErTKi0tcdjCoNB-9vzH4-9wufguwPxfe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dropout+vs.+batch+normalization%3A+an+empirical+study+of+their+impact+to+deep+learning&rft.jtitle=Multimedia+tools+and+applications&rft.au=Garbin%2C+Christian&rft.au=Zhu+Xingquan&rft.au=Marques+Oge&rft.date=2020-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=79&rft.issue=19-20&rft.spage=12777&rft.epage=12815&rft_id=info:doi/10.1007%2Fs11042-019-08453-9&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon