Dropout vs. batch normalization: an empirical study of their impact to deep learning
Overfitting and long training time are two fundamental challenges in multilayered neural network learning and deep learning in particular. Dropout and batch normalization are two well-recognized approaches to tackle these challenges. While both approaches share overlapping design principles, numerou...
Saved in:
Published in | Multimedia tools and applications Vol. 79; no. 19-20; pp. 12777 - 12815 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Overfitting and long training time are two fundamental challenges in multilayered neural network learning and deep learning in particular. Dropout and batch normalization are two well-recognized approaches to tackle these challenges. While both approaches share overlapping design principles, numerous research results have shown that they have unique strengths to improve deep learning. Many tools simplify these two approaches as a simple function call, allowing flexible stacking to form deep learning architectures. Although their usage guidelines are available, unfortunately no well-defined set of rules or comprehensive studies to investigate them concerning data input, network configurations, learning efficiency, and accuracy. It is not clear when users should consider using dropout and/or batch normalization, and how they should be combined (or used alternatively) to achieve optimized deep learning outcomes. In this paper we conduct an empirical study to investigate the effect of dropout and batch normalization on training deep learning models. We use multilayered dense neural networks and convolutional neural networks (CNN) as the deep learning models, and mix dropout and batch normalization to design different architectures and subsequently observe their performance in terms of training and test CPU time, number of parameters in the model (as a proxy for model size), and classification accuracy. The interplay between network structures, dropout, and batch normalization, allow us to conclude when and how dropout and batch normalization should be considered in deep learning. The empirical study quantified the increase in training time when dropout and batch normalization are used, as well as the increase in prediction time (important for constrained environments, such as smartphones and low-powered IoT devices). It showed that a non-adaptive optimizer (e.g. SGD) can outperform adaptive optimizers, but only at the cost of a significant amount of training times to perform hyperparameter tuning, while an adaptive optimizer (e.g. RMSProp) performs well without much tuning. Finally, it showed that dropout and batch normalization should be used in CNNs only with caution and experimentation (when in doubt and short on time to experiment, use only batch normalization). |
---|---|
AbstractList | Overfitting and long training time are two fundamental challenges in multilayered neural network learning and deep learning in particular. Dropout and batch normalization are two well-recognized approaches to tackle these challenges. While both approaches share overlapping design principles, numerous research results have shown that they have unique strengths to improve deep learning. Many tools simplify these two approaches as a simple function call, allowing flexible stacking to form deep learning architectures. Although their usage guidelines are available, unfortunately no well-defined set of rules or comprehensive studies to investigate them concerning data input, network configurations, learning efficiency, and accuracy. It is not clear when users should consider using dropout and/or batch normalization, and how they should be combined (or used alternatively) to achieve optimized deep learning outcomes. In this paper we conduct an empirical study to investigate the effect of dropout and batch normalization on training deep learning models. We use multilayered dense neural networks and convolutional neural networks (CNN) as the deep learning models, and mix dropout and batch normalization to design different architectures and subsequently observe their performance in terms of training and test CPU time, number of parameters in the model (as a proxy for model size), and classification accuracy. The interplay between network structures, dropout, and batch normalization, allow us to conclude when and how dropout and batch normalization should be considered in deep learning. The empirical study quantified the increase in training time when dropout and batch normalization are used, as well as the increase in prediction time (important for constrained environments, such as smartphones and low-powered IoT devices). It showed that a non-adaptive optimizer (e.g. SGD) can outperform adaptive optimizers, but only at the cost of a significant amount of training times to perform hyperparameter tuning, while an adaptive optimizer (e.g. RMSProp) performs well without much tuning. Finally, it showed that dropout and batch normalization should be used in CNNs only with caution and experimentation (when in doubt and short on time to experiment, use only batch normalization). |
Author | Garbin, Christian Marques, Oge Zhu, Xingquan |
Author_xml | – sequence: 1 givenname: Christian surname: Garbin fullname: Garbin, Christian organization: Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University – sequence: 2 givenname: Xingquan orcidid: 0000-0003-4129-9611 surname: Zhu fullname: Zhu, Xingquan email: xzhu3@fau.edu organization: Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University – sequence: 3 givenname: Oge surname: Marques fullname: Marques, Oge organization: Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University |
BookMark | eNp9kMtKxDAUhoMoeH0BVwHX1VzbxJ14hwE34zqk6ZmZDJ2kJhlBn946FQQXrs5Z_N-5fMdoP8QACJ1TckkJaa4ypUSwilBdESUkr_QeOqKy4VXTMLo_9lyRqpGEHqLjnNeE0FoycYTmdykOcVvwe77ErS1uhUNMG9v7T1t8DNfYBgybwSfvbI9z2XYfOC5wWYFP2G8G6wouEXcAA-7BpuDD8hQdLGyf4eynnqDXh_v57VM1e3l8vr2ZVY7XTamgEV0rQdasBcc4qTUHAc4qcKCdFJ3iynKqBa1pzVTbtrIlvGPAlaadVvwEXUxzhxTftpCLWcdtCuNKwwSRQlKu2ZhSU8qlmHOChXG-7J4ryfreUGK-HZrJoRkdmp1Do0eU_UGH5Dc2ffwP8QnKYzgsIf1e9Q_1BQQ-hew |
CitedBy_id | crossref_primary_10_1002_mp_17361 crossref_primary_10_1038_s41598_023_41543_1 crossref_primary_10_1515_nleng_2022_0290 crossref_primary_10_1016_j_seta_2023_103537 crossref_primary_10_1038_s41592_022_01746_2 crossref_primary_10_3390_su152416789 crossref_primary_10_1088_1475_7516_2023_09_029 crossref_primary_10_3390_app13031624 crossref_primary_10_3390_electronics11192994 crossref_primary_10_1016_j_mex_2024_102946 crossref_primary_10_1016_j_jqsrt_2020_107496 crossref_primary_10_1109_TSE_2023_3308952 crossref_primary_10_7717_peerj_cs_1031 crossref_primary_10_1007_s11042_021_10872_6 crossref_primary_10_1007_s10489_024_06019_3 crossref_primary_10_1016_j_autcon_2024_105793 crossref_primary_10_34133_2022_9757948 crossref_primary_10_1007_s11069_024_06585_2 crossref_primary_10_1007_s13762_023_05452_0 crossref_primary_10_1088_1361_6560_abe917 crossref_primary_10_1007_s11042_023_17179_8 crossref_primary_10_3390_math12233661 crossref_primary_10_1016_j_cropro_2024_106867 crossref_primary_10_21015_vtess_v15i3_976 crossref_primary_10_1007_s00477_022_02188_0 crossref_primary_10_1016_j_ejphar_2022_175320 crossref_primary_10_1016_j_soildyn_2023_108386 crossref_primary_10_1080_1206212X_2025_2465727 crossref_primary_10_1063_5_0253675 crossref_primary_10_1016_j_saa_2024_125626 crossref_primary_10_1007_s10651_024_00642_6 crossref_primary_10_1007_s10489_022_04387_2 crossref_primary_10_3390_en17040829 crossref_primary_10_1016_j_infsof_2024_107449 crossref_primary_10_32604_csse_2022_022003 crossref_primary_10_1016_j_enbenv_2023_09_001 crossref_primary_10_1109_TNSE_2022_3163358 crossref_primary_10_3390_atmos15111290 crossref_primary_10_25046_aj050570 crossref_primary_10_3389_fendo_2022_945020 crossref_primary_10_1016_j_egyai_2024_100449 crossref_primary_10_1016_j_heliyon_2024_e34420 crossref_primary_10_1016_j_ijcce_2021_02_002 crossref_primary_10_1016_j_radonc_2022_06_024 crossref_primary_10_1109_ACCESS_2022_3202893 crossref_primary_10_1109_TITS_2024_3420409 crossref_primary_10_1007_s11831_023_09899_9 crossref_primary_10_1109_ACCESS_2020_3038386 crossref_primary_10_1038_s41598_023_40693_6 crossref_primary_10_3390_machines11070677 crossref_primary_10_1109_ACCESS_2024_3425166 crossref_primary_10_1007_s10479_023_05326_1 crossref_primary_10_3390_drones8020057 crossref_primary_10_1016_j_optlaseng_2024_108238 crossref_primary_10_3390_pharmaceutics15041139 crossref_primary_10_3390_ijms25115820 crossref_primary_10_1016_j_ecoinf_2023_102113 crossref_primary_10_1016_j_engappai_2024_109376 crossref_primary_10_1002_adma_202413430 crossref_primary_10_3390_pr10040634 crossref_primary_10_1007_s11548_023_02985_0 crossref_primary_10_1016_j_oceaneng_2023_114915 crossref_primary_10_1016_j_engappai_2023_105910 crossref_primary_10_1109_ACCESS_2020_3019937 crossref_primary_10_1016_j_cose_2023_103264 crossref_primary_10_1111_mice_13242 crossref_primary_10_1007_s11042_024_19955_6 crossref_primary_10_3390_app10217817 crossref_primary_10_46387_bjesr_1262841 crossref_primary_10_1109_THMS_2023_3308614 crossref_primary_10_3233_AIS_220017 crossref_primary_10_3390_app14198860 crossref_primary_10_1080_14763141_2024_2315243 crossref_primary_10_3390_info15090517 crossref_primary_10_1007_s11665_024_10167_5 crossref_primary_10_1007_s11042_022_14232_w crossref_primary_10_1016_j_asoc_2022_109650 crossref_primary_10_1177_20552076221092543 crossref_primary_10_1007_s12539_022_00535_x crossref_primary_10_1063_5_0245543 crossref_primary_10_1088_2057_1976_ad6dcd crossref_primary_10_1109_TCSVT_2022_3218104 crossref_primary_10_1016_j_atmosres_2024_107362 crossref_primary_10_1007_s00466_021_02112_3 crossref_primary_10_1109_TMTT_2024_3367290 crossref_primary_10_3390_electronics10192347 crossref_primary_10_3390_electronics12194099 crossref_primary_10_1109_TSP_2022_3141896 crossref_primary_10_1016_j_bspc_2022_104479 crossref_primary_10_1109_TSP_2022_3154969 crossref_primary_10_1007_s10921_021_00757_x crossref_primary_10_1109_ACCESS_2021_3137824 crossref_primary_10_1109_ACCESS_2024_3468163 crossref_primary_10_3390_rs13234921 crossref_primary_10_3390_rs14225760 crossref_primary_10_1109_TTE_2023_3324760 crossref_primary_10_1016_j_asoc_2022_109401 crossref_primary_10_1109_ACCESS_2024_3362646 crossref_primary_10_3390_electronics11091504 crossref_primary_10_1007_s42235_023_00477_0 crossref_primary_10_1016_j_apenergy_2020_115862 crossref_primary_10_1016_j_compmedimag_2024_102451 crossref_primary_10_1016_j_apor_2024_104163 crossref_primary_10_1080_17455030_2024_2366837 crossref_primary_10_1016_j_bios_2024_116982 crossref_primary_10_1007_s10845_024_02408_0 crossref_primary_10_1016_j_ijbiomac_2024_134601 crossref_primary_10_3390_jimaging9100201 crossref_primary_10_5194_tc_16_1447_2022 crossref_primary_10_1016_j_ultras_2025_107639 crossref_primary_10_3390_rs14040992 crossref_primary_10_1109_TGRS_2024_3496855 crossref_primary_10_1007_s10489_023_04685_3 crossref_primary_10_3390_rs15225304 crossref_primary_10_3934_mbe_2023366 crossref_primary_10_1109_TIM_2021_3132998 crossref_primary_10_1080_10447318_2024_2432455 crossref_primary_10_55525_tjst_1056283 crossref_primary_10_1109_TMC_2022_3193847 crossref_primary_10_1016_j_ijdrr_2024_104785 crossref_primary_10_33851_JMIS_2024_11_1_57 crossref_primary_10_1093_bioinformatics_btae708 crossref_primary_10_3390_rs14041038 crossref_primary_10_3390_su16114432 crossref_primary_10_3390_app112210861 crossref_primary_10_1109_JSEN_2023_3295407 crossref_primary_10_1016_j_bspc_2023_105893 crossref_primary_10_1038_s41598_024_65351_3 crossref_primary_10_1109_ACCESS_2021_3050838 crossref_primary_10_1016_j_prime_2024_100738 crossref_primary_10_1016_j_epsr_2023_109473 crossref_primary_10_1021_acsmaterialslett_1c00204 crossref_primary_10_3390_s20247195 crossref_primary_10_1016_j_cj_2024_12_023 crossref_primary_10_1016_j_epsr_2022_108887 crossref_primary_10_1186_s40537_023_00727_2 crossref_primary_10_1007_s11554_021_01071_5 crossref_primary_10_1016_j_aei_2024_102919 crossref_primary_10_1109_ACCESS_2023_3309810 crossref_primary_10_1016_j_engappai_2025_110583 crossref_primary_10_1007_s12652_022_04105_3 crossref_primary_10_1016_j_ymssp_2024_111770 crossref_primary_10_3390_math12182800 crossref_primary_10_1109_OJITS_2022_3177007 crossref_primary_10_1038_s41598_022_21070_1 crossref_primary_10_1016_j_jretconser_2024_103865 crossref_primary_10_1038_s41598_025_86689_2 crossref_primary_10_3390_s22103902 crossref_primary_10_1016_j_jwpe_2024_105776 crossref_primary_10_1109_ACCESS_2024_3407534 crossref_primary_10_1145_3542944 crossref_primary_10_1080_00051144_2023_2296798 crossref_primary_10_1364_PRJ_428425 crossref_primary_10_1109_ACCESS_2023_3310472 crossref_primary_10_1016_j_est_2024_113130 crossref_primary_10_3390_bioengineering11101021 crossref_primary_10_1038_s41598_025_85237_2 crossref_primary_10_1080_19942060_2024_2440075 crossref_primary_10_1007_s11042_023_14688_4 crossref_primary_10_3389_fenvs_2024_1291327 crossref_primary_10_3389_fpls_2023_1230886 crossref_primary_10_1007_s44196_023_00390_8 crossref_primary_10_1016_j_engappai_2023_106504 crossref_primary_10_1080_10298436_2022_2092617 crossref_primary_10_3390_s21051734 crossref_primary_10_1007_s11760_023_02847_x crossref_primary_10_1016_j_jwpe_2024_105187 crossref_primary_10_1016_j_cryogenics_2025_104053 crossref_primary_10_1109_ACCESS_2023_3303131 crossref_primary_10_3390_app15052320 crossref_primary_10_3390_bios11030069 crossref_primary_10_1007_s10489_021_02285_7 crossref_primary_10_1016_j_est_2025_116022 crossref_primary_10_1016_j_enbuild_2023_113216 crossref_primary_10_32628_IJSRST2411490 crossref_primary_10_1007_s00500_023_07813_w crossref_primary_10_1080_19475683_2023_2165544 crossref_primary_10_3390_fi14040100 crossref_primary_10_1016_j_engstruct_2021_112735 crossref_primary_10_1103_PhysRevC_107_034308 crossref_primary_10_1007_s13389_024_00361_5 crossref_primary_10_1016_j_ijmedinf_2025_105792 crossref_primary_10_1063_5_0230001 crossref_primary_10_1016_j_asej_2023_102605 crossref_primary_10_1088_1742_6596_2621_1_012003 crossref_primary_10_1016_j_ast_2024_109886 crossref_primary_10_3390_s21051846 crossref_primary_10_1016_j_compositesa_2022_106973 crossref_primary_10_1007_s42979_024_03508_7 crossref_primary_10_2139_ssrn_4186638 crossref_primary_10_1109_ACCESS_2023_3343189 crossref_primary_10_1016_j_ipm_2020_102439 crossref_primary_10_1021_acs_jpcc_4c03379 crossref_primary_10_1142_S0218339023300014 crossref_primary_10_1038_s41598_024_83765_x crossref_primary_10_3390_s23041748 crossref_primary_10_1016_j_jcsr_2024_109113 crossref_primary_10_1016_j_renene_2023_119389 crossref_primary_10_1007_s10479_023_05810_8 crossref_primary_10_1016_j_compag_2023_107864 crossref_primary_10_7717_peerj_cs_2052 crossref_primary_10_3390_bioengineering9080391 crossref_primary_10_1007_s10489_023_05120_3 crossref_primary_10_4018_IJIIT_309584 crossref_primary_10_3390_informatics9010018 crossref_primary_10_3390_app13063530 crossref_primary_10_3390_s21206841 crossref_primary_10_1007_s11227_022_04970_x crossref_primary_10_1007_s42081_024_00242_5 crossref_primary_10_1016_j_compbiomed_2021_104659 crossref_primary_10_3390_s25020531 crossref_primary_10_1142_S0218126623502420 crossref_primary_10_3390_app14062424 crossref_primary_10_1007_s10489_024_05420_2 crossref_primary_10_3389_fpubh_2024_1445425 crossref_primary_10_1016_j_health_2023_100159 crossref_primary_10_2139_ssrn_3996743 crossref_primary_10_3390_s24134050 crossref_primary_10_47836_pjst_32_6_11 crossref_primary_10_3390_s23177543 crossref_primary_10_3390_s23104786 crossref_primary_10_3390_drones8080407 crossref_primary_10_1016_j_petrol_2021_108975 crossref_primary_10_1103_PhysRevE_110_024129 crossref_primary_10_3390_technologies12110214 crossref_primary_10_1117_1_JEI_31_4_043055 crossref_primary_10_3934_mbe_2022584 crossref_primary_10_1016_j_artmed_2021_102139 crossref_primary_10_1007_s12613_022_2560_y crossref_primary_10_1016_j_eswa_2022_117925 crossref_primary_10_1093_jamiaopen_ooae014 crossref_primary_10_3390_pr11082440 crossref_primary_10_3390_s24041159 crossref_primary_10_3390_app14177478 crossref_primary_10_1007_s00466_022_02250_2 crossref_primary_10_3390_s23218909 crossref_primary_10_1007_s11053_024_10452_z crossref_primary_10_1016_j_chemolab_2022_104750 crossref_primary_10_3390_app15052525 crossref_primary_10_3390_diagnostics14232708 crossref_primary_10_1109_JSEN_2020_3036465 crossref_primary_10_1016_j_jag_2021_102459 crossref_primary_10_1299_jamdsm_2022jamdsm0029 crossref_primary_10_1007_s11063_023_11235_y crossref_primary_10_1088_2632_2153_abd614 crossref_primary_10_32604_iasc_2023_036871 crossref_primary_10_3390_electronics9111790 crossref_primary_10_1016_j_bspc_2024_106869 crossref_primary_10_1016_j_egyai_2025_100483 crossref_primary_10_1016_j_neucom_2025_129414 crossref_primary_10_1016_j_ijcce_2025_01_004 crossref_primary_10_1155_2021_8890226 crossref_primary_10_1007_s11042_023_17965_4 crossref_primary_10_1007_s12652_020_02612_9 crossref_primary_10_1007_s00138_020_01128_8 crossref_primary_10_1061_JCCEE5_CPENG_5169 crossref_primary_10_1109_JLT_2024_3446236 crossref_primary_10_1109_TASE_2023_3277331 crossref_primary_10_1007_s42979_022_01579_y crossref_primary_10_1016_j_isprsjprs_2023_12_011 crossref_primary_10_1155_2021_7550670 crossref_primary_10_1080_10256016_2025_2467863 crossref_primary_10_1016_j_ndteint_2025_103360 crossref_primary_10_1016_j_asoc_2025_112765 crossref_primary_10_1109_ACCESS_2024_3384277 crossref_primary_10_3390_math11194189 crossref_primary_10_7256_2454_0714_2024_3_70849 crossref_primary_10_1016_j_procs_2022_09_362 crossref_primary_10_3390_ma16175956 crossref_primary_10_1016_j_crfs_2021_01_002 crossref_primary_10_32604_cmes_2022_016621 crossref_primary_10_3390_su16187940 crossref_primary_10_1587_transinf_2022DLP0022 |
Cites_doi | 10.1142/S1469026818500086 10.1109/LSP.2016.2611485 10.1109/TMM.2017.2749159 10.1016/j.patrec.2014.01.008 10.1038/nature14539 10.1145/3065386 10.1111/insr.12016 10.1016/j.cviu.2017.05.007 10.1109/CVPR.2019.00279 10.1007/BF00994018 10.1109/icassp.2013.6639344 10.21236/ada164453 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s11042-019-08453-9 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 12815 |
ExternalDocumentID | 10_1007_s11042_019_08453_9 |
GrantInformation_xml | – fundername: National Science Foundation grantid: IIS-1763452 – fundername: National Science Foundation grantid: CNS-1828181 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c367t-e74db5e562bec230693e4eca8ece9c54d838a3194161628bbb5b03d2e3891d983 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Fri Jul 25 08:39:34 EDT 2025 Thu Apr 24 23:01:19 EDT 2025 Tue Jul 01 02:07:05 EDT 2025 Fri Feb 21 02:37:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19-20 |
Keywords | Deep learning Regularization Batch normalization Optimization Overfitting Dropout |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-e74db5e562bec230693e4eca8ece9c54d838a3194161628bbb5b03d2e3891d983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4129-9611 |
PQID | 2405451392 |
PQPubID | 54626 |
PageCount | 39 |
ParticipantIDs | proquest_journals_2405451392 crossref_citationtrail_10_1007_s11042_019_08453_9 crossref_primary_10_1007_s11042_019_08453_9 springer_journals_10_1007_s11042_019_08453_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Mishkin, Sergievskiy, Matas (CR21) 2017; 161 Hinz, Navarro-Guerrero, Magg, Wermter (CR6) 2018; 17 CR18 Wang, Gao, Wang, Sun, Liu (CR33) 2018; 20 CR17 CR15 CR12 CR34 CR11 CR10 Wang, Gao, Song, Shen, Beyond frame-level (CR32) 2017; 24 CR31 CR30 Bengio (CR1) 2012 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR28) 2014; 15 Goodfellow, Bengio, Courville (CR5) 2016 CR2 Loh (CR19) 2014; 82 CR4 CR3 Krizhevsky, Sutskever, Hinton (CR13) 2017; 60 CR8 CR7 CR29 CR9 CR27 CR26 CR25 CR24 CR23 CR22 CR20 LeCun, Bengio, Hinton (CR16) 2015; 521 Längkvist, Karlsson, Loutfi (CR14) 2014; 42 T Hinz (8453_CR6) 2018; 17 Y LeCun (8453_CR16) 2015; 521 8453_CR3 8453_CR2 Dmytro Mishkin (8453_CR21) 2017; 161 8453_CR30 8453_CR10 N Srivastava (8453_CR28) 2014; 15 8453_CR31 8453_CR12 8453_CR34 8453_CR11 Wei-Yin Loh (8453_CR19) 2014; 82 cr-split#-8453_CR22.1 8453_CR15 X Wang (8453_CR33) 2018; 20 8453_CR18 8453_CR17 cr-split#-8453_CR22.2 X Wang (8453_CR32) 2017; 24 Yoshua Bengio (8453_CR1) 2012 8453_CR4 8453_CR7 8453_CR20 8453_CR9 8453_CR23 8453_CR8 8453_CR25 8453_CR24 8453_CR27 8453_CR26 Alex Krizhevsky (8453_CR13) 2017; 60 Martin Längkvist (8453_CR14) 2014; 42 8453_CR29 IJ Goodfellow (8453_CR5) 2016 |
References_xml | – ident: CR22 – ident: CR18 – start-page: 437 year: 2012 end-page: 478 ident: CR1 article-title: Practical Recommendations for Gradient-Based Training of Deep Architectures publication-title: Lecture Notes in Computer Science – ident: CR4 – ident: CR2 – ident: CR12 – ident: CR30 – volume: 17 start-page: 1850008 issue: 2 year: 2018 ident: CR6 article-title: Speeding up the Hyperparameter Optimization of Deep Convolutional Neural Networks publication-title: International Journal of Computation Intelligence and Applications doi: 10.1142/S1469026818500086 – ident: CR10 – ident: CR29 – ident: CR8 – ident: CR25 – ident: CR27 – ident: CR23 – volume: 24 start-page: 510 issue: 4 year: 2017 ident: CR32 article-title: Saliency-aware 3-D CNN with lstm for video action recognition publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2016.2611485 – volume: 20 start-page: 634 issue: 3 year: 2018 ident: CR33 article-title: Two-stream 3-D convnet fusion for action recognition in videos with arbitrary size and length publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2017.2749159 – volume: 42 start-page: 11 year: 2014 end-page: 24 ident: CR14 article-title: A review of unsupervised feature learning and deep learning for time-series modeling publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2014.01.008 – ident: CR3 – ident: CR15 – volume: 521 start-page: 436 year: 2015 ident: CR16 publication-title: Deep Learning doi: 10.1038/nature14539 – ident: CR17 – volume: 60 start-page: 84 issue: 6 year: 2017 end-page: 90 ident: CR13 article-title: ImageNet classification with deep convolutional neural networks publication-title: Communications of the ACM doi: 10.1145/3065386 – ident: CR31 – ident: CR11 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: CR28 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – ident: CR9 – ident: CR34 – volume: 82 start-page: 329 issue: 3 year: 2014 end-page: 348 ident: CR19 article-title: Fifty Years of Classification and Regression Trees publication-title: International Statistical Review doi: 10.1111/insr.12016 – year: 2016 ident: CR5 publication-title: Deep learning. Adaptive Computation and Machine Learning – ident: CR7 – ident: CR26 – ident: CR24 – ident: CR20 – volume: 161 start-page: 11 year: 2017 end-page: 19 ident: CR21 article-title: Systematic evaluation of convolution neural network advances on the Imagenet publication-title: Computer Vision and Image Understanding doi: 10.1016/j.cviu.2017.05.007 – volume: 42 start-page: 11 year: 2014 ident: 8453_CR14 publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2014.01.008 – ident: 8453_CR20 – volume: 20 start-page: 634 issue: 3 year: 2018 ident: 8453_CR33 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2017.2749159 – ident: 8453_CR17 doi: 10.1109/CVPR.2019.00279 – ident: 8453_CR3 doi: 10.1007/BF00994018 – ident: 8453_CR30 – ident: 8453_CR8 – ident: 8453_CR2 – ident: 8453_CR18 – volume: 24 start-page: 510 issue: 4 year: 2017 ident: 8453_CR32 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2016.2611485 – volume: 82 start-page: 329 issue: 3 year: 2014 ident: 8453_CR19 publication-title: International Statistical Review doi: 10.1111/insr.12016 – volume: 161 start-page: 11 year: 2017 ident: 8453_CR21 publication-title: Computer Vision and Image Understanding doi: 10.1016/j.cviu.2017.05.007 – ident: 8453_CR34 – ident: 8453_CR11 – ident: 8453_CR4 doi: 10.1109/icassp.2013.6639344 – ident: 8453_CR26 doi: 10.21236/ada164453 – start-page: 437 volume-title: Lecture Notes in Computer Science year: 2012 ident: 8453_CR1 – ident: 8453_CR27 – ident: #cr-split#-8453_CR22.2 – ident: 8453_CR25 – volume: 17 start-page: 1850008 issue: 2 year: 2018 ident: 8453_CR6 publication-title: International Journal of Computation Intelligence and Applications doi: 10.1142/S1469026818500086 – ident: 8453_CR29 – ident: 8453_CR23 – ident: 8453_CR15 – ident: 8453_CR9 – ident: 8453_CR7 – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 8453_CR13 publication-title: Communications of the ACM doi: 10.1145/3065386 – ident: 8453_CR10 – ident: 8453_CR31 – ident: 8453_CR12 – volume-title: Deep learning. Adaptive Computation and Machine Learning year: 2016 ident: 8453_CR5 – volume: 521 start-page: 436 year: 2015 ident: 8453_CR16 publication-title: Deep Learning doi: 10.1038/nature14539 – ident: #cr-split#-8453_CR22.1 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 8453_CR28 publication-title: J Mach Learn Res – ident: 8453_CR24 |
SSID | ssj0016524 |
Score | 2.638675 |
Snippet | Overfitting and long training time are two fundamental challenges in multilayered neural network learning and deep learning in particular. Dropout and batch... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12777 |
SubjectTerms | Artificial neural networks Computer Communication Networks Computer programming Computer Science Data Structures and Information Theory Deep learning Experimentation Machine learning Model accuracy Multimedia Information Systems Neural networks Smartphones Special Purpose and Application-Based Systems Training Tuning |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgLDDwUUAUCvLABkZJbCcOWwVUFRJMrdQtsuMLIJW0oim_H9t1GkCAxBYpjoe7nO-dzu8eQueJLgItpSAgVESYTgURBYB9UnEhgIZgyckPj_FgxO7HfOxJYfP6tnvdknQndUN2Cy2VJLCkG8E4Jek62uCmdrcXuUZRb9U7iLmXshUBMfkw9FSZn_f4mo4ajPmtLeqyTX8XbXuYiHtLv-6hNSjbaKeWYMA-Itto69M8wX00vLWaB4sKv8-vsDKH7DMuLSadeLLlNZYlhtfZi5sLgt1oWTwtsOsW4CVhEldTrAFm2OtJPB2gUf9ueDMgXjaB5DROKgIJ04qDATbGP7bCSCkwyKWAHNKcMy2okCbybGkTR0IpxVVAdQS2ZWmcRQ9Rq5yWcIQwAGVCJkInLGeykEob-EdpIblMBSR5B4W19bLczxS30haTrJmGbC2eGYtnzuJZ2kEXq29my4kaf67u1k7JfHTNM4NCDPAz2DXqoMvaUc3r33c7_t_yE7QZ2fLa3W_solb1toBTg0EqdeZ-uQ_jqtJw priority: 102 providerName: Springer Nature |
Title | Dropout vs. batch normalization: an empirical study of their impact to deep learning |
URI | https://link.springer.com/article/10.1007/s11042-019-08453-9 https://www.proquest.com/docview/2405451392 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT9swFH-C9rId-NomCqXygdvmrY2d5IULaqEFbVo1TVRip8iOXwAJ0kIDfz926tCBRE-J5MSH9_w-7Off-wEcxibvGqWQE-qAS5Mgx5zIvekoRxI9cuDk3-PofCJ_XoaX_sBt7q9V1j6xctRmmrkz8h828thgb_OV4Hh2zx1rlKuuegqNdWhaF4zYgOZgOP7z96WOEIWe1ha73MbGnofNLMBzPQdN6ToQD8pQ8OR1aFrmm29KpFXkGW3Bhk8ZWX-h421Yo2IHNms6Buatcwc-_tdb8BNcnDr-g8eSPc2_M20d7jUrXH5664GXR0wVjO5mN1WPEFa1mWXTnFWVA7YAT7JyygzRjHluiavPMBkNL07OuadQ4JmI4pJTLI0OySY5Vldut5EIkpQppIySLJQGBSprhW6bEwWotQ51V5iAXPnSKk58gUYxLWgXGJGQqGI0scykypU2NhUUIlehSpDirAW9Wnpp5vuLO5qL23TZGdlJPLUSTyuJp0kLvr78M1t011j5dbtWSuotbZ4u10ULvtWKWg6_P9ve6tn24UPgttbV3cY2NMqHRzqw-UepO7COo7MONPujwWDsnmf_fg07funZ0UnQfwZM3du4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED512wPbAxuDaWXd8AM8gVkbO4kzCaFpXelou6dO2luw4wsgjbTQbIg_xW_ElzgrQ2Jve4uUxErOl7vPOX_3AbyMbd61WiuOygRc2kRxlSPSkYlyhaKHRE6enEfDC_nxMrxswe-GC0PbKpuYWAVqO8voH_mhyzwu2Tu8Eryff-ekGkXV1UZCo3aLEf766ZZsi3dnfTe_r4JgcDo9GXKvKsAzEcUlx1haE6LL--7xCYAnAiVmWmGGSRZKq4TSzjEJ-UeBMsaEpitsgFTRc-8i3LgrsCaFy-TETB98uK1aRKEX0VVd7jJxz5N0aqpej4gwXaIMKRkKntxNhEt0-09Btspzgy147AEqO6496gm0sNiGzUb8gflYsA0bf3UyfArTPqktXJfsZvGWGRfev7CC0PCVp3keMV0w_Db_WnUkYVVTWzbLWVWnYDVVk5UzZhHnzCtZfH4GFw9i2h1YLWYF7gJDFFLpWNlYZlLn2lgHPIXIdagThXHWhl5jvTTz3cxJVOMqXfZhJounzuJpZfE0acPr23vmdS-Pe6_uNJOS-u96kS69sA1vmolanv7_aM_vH-0FPBpOJ-N0fHY-2oP1gBb11a7KDqyWP65x3yGf0hxU7sbg00P79x8zTRJM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3BIlX0QClt1aVQfCin1mU3dhKnUlVRlhUf7QpVIHFL7XgCSJBd2FDEX-PX4UkctiDBjVukJJY8nsw8Z_zmAXyKbd6xWiuOygRc2kRxlSPSlYlyhaKLRE7-PYi2DuTOYXg4BTcNF4aOVTYxsQrUdpjRP_I1l3lcsnd4JVjL_bGIvV7_x-ick4IUVVobOY3aRXbx-spt38bft3turVeDoL-5v7HFvcIAz0QUlxxjaU2IDgO4qRAYTwRKzLTCDJMslFYJpZ2T0i4gCpQxJjQdYQOk6p6bl3DjTsNMTLuiFsz83Bzs_bmrYUShl9RVHe7yctdTdmriXpdoMR0iECkZCp7cT4sTrPugPFtlvf48zHm4ytZr_3oNU1gswKtGCoL5yLAAL__ra_gG9nukvXBZsn_jr8y4YH_MCsLGp570-Y3pguHZ6KTqT8KqFrdsmLOqasFq4iYrh8wijpjXtTh6CwfPYtx30CqGBb4Hhiik0rGyscykzrWxDoYKketQJwrjrA3dxnpp5nubk8TGaTrpykwWT53F08riadKGz3fvjOrOHk8-vdQsSuq_8nE68ck2fGkWanL78dEWnx5tBV44305_bQ92P8BsQDv86ojlErTKi0tcdjCoNB-9vzH4-9wufguwPxfe |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dropout+vs.+batch+normalization%3A+an+empirical+study+of+their+impact+to+deep+learning&rft.jtitle=Multimedia+tools+and+applications&rft.au=Garbin%2C+Christian&rft.au=Zhu+Xingquan&rft.au=Marques+Oge&rft.date=2020-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=79&rft.issue=19-20&rft.spage=12777&rft.epage=12815&rft_id=info:doi/10.1007%2Fs11042-019-08453-9&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |