Improvement of the Classification Accuracy of Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces by Combining L1-MCCA with SVM
Canonical correlation analysis (CCA) has been used for the steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) for a long time. However, the reference signal of CCA is relatively simple and lacks subject-specific information. Moreover, over-fitting may occur when a shor...
Saved in:
Published in | Applied sciences Vol. 11; no. 23; p. 11453 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Canonical correlation analysis (CCA) has been used for the steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) for a long time. However, the reference signal of CCA is relatively simple and lacks subject-specific information. Moreover, over-fitting may occur when a short time window (TW) length was used in CCA. In this article, an optimized L1-regularized multiway canonical correlation analysis (L1-MCCA) is combined with a support vector machine (SVM) to overcome the aforementioned shortcomings in CCA. The correlation coefficients obtained by L1-MCCA were transferred into a particle-swarm-optimization (PSO)-optimized support vector machine (SVM) classifier to improve the classification accuracy. The performance of the proposed method was evaluated and compared with the traditional CCA and power spectral density (PSD) methods. The results showed that the accuracy of the L1-MCCA-PSO-SVM was 96.36% and 98.18% respectively when the TW lengths were 2 s and 6 s. This accuracy is higher than that of the traditional CCA and PSD methods. |
---|---|
AbstractList | Canonical correlation analysis (CCA) has been used for the steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) for a long time. However, the reference signal of CCA is relatively simple and lacks subject-specific information. Moreover, over-fitting may occur when a short time window (TW) length was used in CCA. In this article, an optimized L1-regularized multiway canonical correlation analysis (L1-MCCA) is combined with a support vector machine (SVM) to overcome the aforementioned shortcomings in CCA. The correlation coefficients obtained by L1-MCCA were transferred into a particle-swarm-optimization (PSO)-optimized support vector machine (SVM) classifier to improve the classification accuracy. The performance of the proposed method was evaluated and compared with the traditional CCA and power spectral density (PSD) methods. The results showed that the accuracy of the L1-MCCA-PSO-SVM was 96.36% and 98.18% respectively when the TW lengths were 2 s and 6 s. This accuracy is higher than that of the traditional CCA and PSD methods. |
Author | Liu, Hao Chen, Jianhu Zhang, Yujin He, Qing Wu, Sijin Li, Weixian Si, Juanning Gao, Yuhang |
Author_xml | – sequence: 1 givenname: Yuhang surname: Gao fullname: Gao, Yuhang – sequence: 2 givenname: Juanning surname: Si fullname: Si, Juanning – sequence: 3 givenname: Sijin orcidid: 0000-0002-9722-9148 surname: Wu fullname: Wu, Sijin – sequence: 4 givenname: Weixian surname: Li fullname: Li, Weixian – sequence: 5 givenname: Hao surname: Liu fullname: Liu, Hao – sequence: 6 givenname: Jianhu surname: Chen fullname: Chen, Jianhu – sequence: 7 givenname: Qing surname: He fullname: He, Qing – sequence: 8 givenname: Yujin surname: Zhang fullname: Zhang, Yujin |
BookMark | eNptUctuFDEQHKEgEUJufIAlrgz4Na_jZhTIShuBtJCr1WO3Ey-z48H2BO1f5JNxsiBFCB_sdndVqbv6dXEy-QmL4i2jH4To6EeYZ8a4YExW4kVxymlTl0Ky5uRZ_Ko4j3FH8-mYaBk9LR7W-zn4e9zjlIi3JN0h6UeI0VmnITk_kZXWSwB9eCxvE4I5lNsECcmNiwuM5PLe_0BDvvqUNRyM5QXE_L8I4Kay9_t5SRjIesq3BY2RDAeS04Ob3HRLNqy87vsV-eXSHdneXL8pXloYI57_ec-K758uv_VX5ebL53W_2pRa1E0qUTRadoNhlUDJDTTYMtFZUXPbVADcYjtQYE09iM4IpNiZykhTt5zygXEjzor1Udd42Kk5uD2Eg_Lg1FPCh1sFITk9otK2taau8-RAJXLTSdt2FRsqkFLUKLLWu6NWtvLngjGpnV_ClNtXvKYtbSWXTUbxI0oHH2NAq7RLTxanbNWoGFWPi1TPF5lJ7_8h_W31v_Df49uhQg |
CitedBy_id | crossref_primary_10_3390_s23136001 crossref_primary_10_1080_2326263X_2022_2050513 |
Cites_doi | 10.1109/PROC.1977.10542 10.1088/1741-2552/aa5847 10.3389/fnins.2018.00696 10.1111/ejn.12936 10.1109/TBME.2006.889197 10.1088/1741-2552/ac0bfa 10.1109/TBME.2018.2882075 10.1109/ACCESS.2019.2892188 10.1007/s11571-020-09620-7 10.1016/j.isatra.2010.06.005 10.1016/j.neucom.2019.10.049 10.1109/SMC.2015.559 10.1016/j.medengphy.2008.01.004 10.1109/TNSRE.2013.2279680 10.1109/TNSRE.2020.2983275 10.1007/s11571-021-09664-3 10.1109/BSN.2017.7936032 10.1109/TSMC.2019.2917599 10.1016/j.neucom.2016.11.008 10.1109/TNSRE.2020.2980772 10.1109/TCYB.2018.2841847 10.1109/NER.2017.8008423 10.1088/1741-2552/aa6a23 10.1007/s11434-008-0547-3 10.1007/s10055-017-0328-x 10.1016/j.neunet.2018.02.011 10.1088/1741-2552/aaca6e 10.1142/S0129065717500393 10.3389/fnhum.2018.00198 10.3390/s21165309 10.1109/NER.2013.6696181 10.1109/TNNLS.2017.2766160 10.1016/j.eswa.2011.02.110 10.1088/1741-2552/abee51 10.3390/s19081867 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app112311453 |
DatabaseName | CrossRef ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ - Directory of Open Access Journals (Some content may be blocked by TCTC IT security protocols) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals (WRLC) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_cf8fd66eada04e2d94f8951b5a4436e3 10_3390_app112311453 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c367t-e37c49bd153e42da7e8139f362f75aa2fe8b0a176b39d3e0e9d5d4d68202b12d3 |
IEDL.DBID | BENPR |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:30:55 EDT 2025 Mon Jun 30 11:08:50 EDT 2025 Tue Jul 01 00:51:19 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-e37c49bd153e42da7e8139f362f75aa2fe8b0a176b39d3e0e9d5d4d68202b12d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9722-9148 |
OpenAccessLink | https://www.proquest.com/docview/2608084247?pq-origsite=%requestingapplication% |
PQID | 2608084247 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cf8fd66eada04e2d94f8951b5a4436e3 proquest_journals_2608084247 crossref_citationtrail_10_3390_app112311453 crossref_primary_10_3390_app112311453 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Shi (ref_33) 2017; 29 Hakvoort (ref_25) 2011; 78 Brogin (ref_13) 2020; 55 Zhang (ref_30) 2013; 21 ref_35 Zerafa (ref_12) 2018; 15 ref_34 Tavares (ref_7) 2019; 768 Feng (ref_16) 2018; 102 Liu (ref_39) 2020; 378 Zhou (ref_40) 2019; 15 Borgheai (ref_10) 2020; 28 Jia (ref_4) 2019; 7 Neghabi (ref_41) 2018; 10 ref_19 Zhao (ref_45) 2020; 28 Zhao (ref_1) 2009; 54 Pan (ref_9) 2018; 12 Chen (ref_18) 2021; 18 Lin (ref_24) 2007; 54 ref_37 Alchalabi (ref_23) 2021; 18 Medeiros (ref_31) 2016; 191 Qi (ref_38) 2020; 11 Li (ref_32) 2016; 7 Twomey (ref_14) 2015; 42 Rathi (ref_15) 2021; 15 Jiao (ref_27) 2017; 28 Gupta (ref_21) 2019; 51 Shao (ref_28) 2020; 14 Islam (ref_43) 2017; 14 Zhang (ref_42) 2016; 225 Vidal (ref_2) 1977; 65 ref_22 Spyrou (ref_29) 2017; 15 Shu (ref_3) 2018; 66 Wu (ref_11) 2008; 30 Zhang (ref_17) 2018; 49 Iscan (ref_20) 2011; 38 Kerous (ref_8) 2018; 22 ref_26 Chen (ref_44) 2017; 14 ref_5 ref_6 Ranaee (ref_36) 2010; 49 |
References_xml | – volume: 65 start-page: 633 year: 1977 ident: ref_2 article-title: Real-time detection of brain events in EEG publication-title: Proc. IEEE doi: 10.1109/PROC.1977.10542 – volume: 14 start-page: 026007 year: 2017 ident: ref_43 article-title: Unsupervised frequency-recognition method of SSVEPs using a filter bank implementation of binary subband CCA publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa5847 – volume: 78 start-page: 183 year: 2011 ident: ref_25 article-title: Comparison of PSDA and CCA detection methods in a SSVEP-based BCI-system publication-title: Cent. Telemat. Inf. Technol. Univ. Twente – ident: ref_5 doi: 10.3389/fnins.2018.00696 – ident: ref_26 – volume: 768 start-page: 795 year: 2019 ident: ref_7 article-title: Steady-State Visual Evoked Potential-Based Real-Time BCI for Smart Appliance Control publication-title: Cogn. Inform. Soft Comput. – volume: 42 start-page: 1636 year: 2015 ident: ref_14 article-title: The classic P300 encodes a build-to-threshold decision variable publication-title: Eur. J. Neurosci. doi: 10.1111/ejn.12936 – volume: 54 start-page: 1172 year: 2007 ident: ref_24 article-title: Frequency Recognition Based on Canonical Correlation Analysis for SSVEP-Based BCIs publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.889197 – volume: 18 start-page: 046094 year: 2021 ident: ref_18 article-title: Implementing a calibration-free SSVEP-based BCI system with 160 targets publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ac0bfa – volume: 15 start-page: 45 year: 2019 ident: ref_40 article-title: Optimization of penalty coefficient and kernel function coefficient for ventilation system fault diagnosis based on SVM publication-title: China Work. Saf. Sci. Technol. – volume: 66 start-page: 1987 year: 2018 ident: ref_3 article-title: Tactile Stimulation Improves Sensorimotor Rhythm-based BCI Performance in Stroke Patients publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2882075 – volume: 7 start-page: 11318 year: 2019 ident: ref_4 article-title: EEG processing in Internet of Medical Things using non-harmonic analysis: Application and Evolution for SSVEP responses publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2892188 – volume: 14 start-page: 689 year: 2020 ident: ref_28 article-title: Filter bank temporally local canonical correlation analysis for short time window SSVEPs classification publication-title: Cogn. Neurodynamics doi: 10.1007/s11571-020-09620-7 – volume: 49 start-page: 577 year: 2010 ident: ref_36 article-title: Application of the PSO-SVM model for recognition of control chart patterns publication-title: Isa Trans. doi: 10.1016/j.isatra.2010.06.005 – volume: 378 start-page: 36 year: 2020 ident: ref_39 article-title: Efficient representations of EEG signals for SSVEP frequency recognition based on deep multiset CCA publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.10.049 – volume: 10 start-page: 245 year: 2018 ident: ref_41 article-title: A Comprehensive Comparison between Steady-State Visual Evoked Potentials Frequency Estimation Methods in Brain-Computer Interface with The Minimum Number of EEG Channels publication-title: Basic Clin. Neurosci. – ident: ref_37 doi: 10.1109/SMC.2015.559 – volume: 30 start-page: 1079 year: 2008 ident: ref_11 article-title: Stimulator selection in SSVEP-based BCI publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2008.01.004 – volume: 21 start-page: 887 year: 2013 ident: ref_30 article-title: L1-Regularized Multiway Canonical Correlation Analysis for SSVEP-Based BCI publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2013.2279680 – volume: 28 start-page: 1128 year: 2020 ident: ref_45 article-title: Decision-Making Selector (DMS) for Integrating CCA-Based Methods to Improve Performance of SSVEP-Based BCIs publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.2983275 – volume: 15 start-page: 046024 year: 2017 ident: ref_29 article-title: Tensor-driven extraction of developmental features from varying paediatric EEG datasets publication-title: J. Neural Eng. – volume: 15 start-page: 805 year: 2021 ident: ref_15 article-title: A novel approach for designing authentication system using a picture based P300 speller publication-title: Cogn. Neurodynamics doi: 10.1007/s11571-021-09664-3 – ident: ref_22 doi: 10.1109/BSN.2017.7936032 – volume: 51 start-page: 3080 year: 2019 ident: ref_21 article-title: On the Utility of Power Spectral Techniques with Feature Selection Techniques for Effective Mental Task Classification in Noninvasive BCI publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2019.2917599 – volume: 225 start-page: 103 year: 2016 ident: ref_42 article-title: Sparse Bayesian multiway canonical correlation analysis for EEG pattern recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.11.008 – volume: 28 start-page: 1198 year: 2020 ident: ref_10 article-title: Enhancing Communication for People in Late-Stage ALS Using an fNIRS-Based BCI System publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.2980772 – volume: 49 start-page: 3322 year: 2018 ident: ref_17 article-title: Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2841847 – volume: 55 start-page: 101644.1 year: 2020 ident: ref_13 article-title: Enhanced use practices in SSVEP-based BCIs using an analytical approach of canonical correlation analysis publication-title: Biomed. Signal Process. Control – ident: ref_35 doi: 10.1109/NER.2017.8008423 – volume: 14 start-page: 046028 year: 2017 ident: ref_44 article-title: A new multivariate empirical mode decomposition method for improving the performance of SSVEP-based brain computer interface publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa6a23 – volume: 54 start-page: 78 year: 2009 ident: ref_1 article-title: EEG-based asynchronous BCI control of a car in 3D virtual reality environments publication-title: Chin. Sci. Bull. doi: 10.1007/s11434-008-0547-3 – volume: 22 start-page: 119 year: 2018 ident: ref_8 article-title: EEG-based BCI and video games: A progress report publication-title: Virtual Real. doi: 10.1007/s10055-017-0328-x – volume: 102 start-page: 87 year: 2018 ident: ref_16 article-title: Towards correlation-based time window selection method for motor imagery BCIs publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.02.011 – volume: 15 start-page: 051001.1 year: 2018 ident: ref_12 article-title: To train or not to train? A survey on training of feature extraction methods for SSVEP-based BCIs publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aaca6e – volume: 28 start-page: 1750039 year: 2017 ident: ref_27 article-title: A Novel Multilayer Correlation Maximization Model for Improving CCA-Based Frequency Recognition in SSVEP Brain–Computer Interface publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065717500393 – volume: 191 start-page: 255 year: 2016 ident: ref_31 article-title: l1-Regularization of High-Dimensional Time-Series Models with Flexible Innovations publication-title: SSRN Electron. J. – volume: 12 start-page: 198 year: 2018 ident: ref_9 article-title: Emotion-Related Consciousness Detection in Patients With Disorders of Consciousness Through an EEG-Based BCI System publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2018.00198 – ident: ref_19 doi: 10.3390/s21165309 – ident: ref_34 doi: 10.1109/NER.2013.6696181 – volume: 29 start-page: 4744 year: 2017 ident: ref_33 article-title: Rank-One Matrix Completion with Automatic Rank Estimation via L1-Norm Regularization publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2017.2766160 – volume: 11 start-page: 1 year: 2020 ident: ref_38 article-title: Channel and Feature Selection for a Motor Imagery-Based BCI System Using Multilevel Particle Swarm Optimization publication-title: Comput. Intell. Neurosci. – volume: 38 start-page: 10499 year: 2011 ident: ref_20 article-title: Classification of electroencephalogram signals with combined time and frequency features publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.02.110 – volume: 18 start-page: 51 year: 2021 ident: ref_23 article-title: A multi-modal modified feedback self-paced BCI to control the gait of an avatar publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abee51 – ident: ref_6 doi: 10.3390/s19081867 – volume: 7 start-page: 16 year: 2016 ident: ref_32 article-title: A fast algorithm for Earth Mover’s Distance based on optimal transport and L1 type Regularization publication-title: UCLA Comput. Appl. Math. Rep. |
SSID | ssj0000913810 |
Score | 2.217166 |
Snippet | Canonical correlation analysis (CCA) has been used for the steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) for a long time.... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 11453 |
SubjectTerms | Accuracy Brain research brain-computer interface (BCI) Classification Correlation analysis Electrodes Electroencephalography Experiments l1-regularized multiway canonical correlation analysis (L1-MCCA) Optimization particle swarm optimization (PSO) Signal to noise ratio steady-state visual evoked potential (SSVEP) support vector machine (SVM) |
SummonAdditionalLinks | – databaseName: DOAJ - Directory of Open Access Journals (Some content may be blocked by TCTC IT security protocols) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOSgoEmyTNG2Pu4si4orgA28lTxBlV_Yh7L_wJzuTdmVFxIvXJpA2mcx8M_34hpDDTPkAY4GFIuOQoATJtNcJs7nmVtvC2yiZ37tRlw_y6il7mmv1hZywWh643rgzG4rglIIP1on03JUyFIAKTKalFMpHnU-IeXPJVPTBZYrSVTXTXUBej_-DAVoIgP-Z-BaDolT_D08cw8vFKllpcCFt1--zRhZ8f50sz6kFrpO15h6O6HEjFn2yQT7qqkAs8tFBoIDnaGx0iRSguOu0be1kqO0Uh5G-66YsQkz6-DyawJrn74MX7-jtYIzMIf3KOhDZHO1g8wg26_pAY-kwIIGLmimFxya2lqDXKet1u22KBV1699jbJA8X5_fdS9Z0WWBWqHzMvMitLI0D1-cldzr3BaDCAIEt5JnWPPjCJDrNlRGlEz7xpcucdAqgAzcpd2KLLPYHfb9NqE6cURD9gg4WfIM2VqROIbkKs0YbWuR0tu-VbSTIsRPGawWpCJ5SNX9KLXL0Nfutlt74ZV4Hj_BrDgpmxwdgRlVjRtVfZtQiezMDqJpbPKog1yuSQnKZ7_zHGrtkiSMjJpJh9sjieDjx-wBpxuYgWu8nZjf2bQ priority: 102 providerName: Directory of Open Access Journals |
Title | Improvement of the Classification Accuracy of Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces by Combining L1-MCCA with SVM |
URI | https://www.proquest.com/docview/2608084247 https://doaj.org/article/cf8fd66eada04e2d94f8951b5a4436e3 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxQxEA62fdEHsVWxth55UFAkuJtks7knuTvuWsQrRW3p25KfRSy37f0Q7r_on9yZXO6sSH1Nwi5kkplvJh_zEfK2UiHCXGRRVxwSlCiZCaZgrjbcGaeDSy3zxyfq-Ex-uagucsFtlmmVa5-YHLVvHdbIPwHu1oWWXNafr28Yqkbh62qW0NgiO-CCNSRfO_3hyem3TZUFu17qslgx3gXk9_guDBBDQBpQib9iUWrZ_49HTmFm9Iw8zfiQ9lYG3SWPwmSPPLnXNXCP7Ob7OKPvc9PoD8_J7ao6kIp9tI0UcB1NgpdIBUq7T3vOLabGLXEaabx-yRLUpOc_Zwv45_B3-yt4etrOkUFkrlgfIpynfRSRYGv1B5pKiBGJXNQuKQzbJDFBv5ZsPBj0KBZ26ffz8QtyNhr-GByzrLbAnFD1nAVRO9m1HlxgkNybOmhAhxECXKwrY3gM2hamrJUVXS9CEbq-8tIrgBDcltyLl2R70k7CK0JN4a2CKBhNdOAjjHWi9ApJVpg9urhPPq73vXG5FTkqYlw1kJKglZr7Vton7zarr1ctOB5Y10cTbtZg4-w00E4vm3wPGxd19ErBHptCBu67MmoAmbYyUgoV4COH6wPQ5Ns8a_6cvdf_nz4gjzlyXhLd5ZBsz6eL8AZAy9x2yJYeHXXy-eyk1P8OuF_wPw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLVKWQALRAuIlgJeUAmELBLbcTILhGaGDlM6UyHRVt2lfiLUalLmAZq_4Ev4Ru51kqEIwa7b2Eok3_f1yT2EPM-UD7AWWCgyDgVKkEx7nTCba261LbyNI_PHh2p4LD-cZqdr5Gf7LwzCKlufGB21qyz2yF9D3l0kheQyf3v5lSFrFN6uthQatVoc-OV3KNlmb_bfgXx3OR_sHfWHrGEVYFaofM68yK3sGAem7iV3OvcFZEEBHHnIM6158IVJdJorIzpO-MR3XOakUxAquUm5E_DeG-SmFKKDFlUM3q96Ojhjs0iTGl8P6wneQkNCI6DoyMQfkS8SBPzl_2NQG9wjd5tslHZr9dkga36ySe5cmVG4STYa65_RF82I6pf3yY-6FxFbi7QKFLJIGuk1EXgUZU271i6m2i5xGUHDbsliYktPvswW8M29b9W5d_RjNUe8kr5gPYinjvaQsoK1XBM0NiwDwsaoWVJ4bCKhBR2lbNzvdym2kemnk_EDcnwtUnhI1ifVxD8iVCfOKIi5QQcLHkkbK1KnENKFtaoNW-RVe-6lbQafI__GRQkFEEqpvCqlLbK72n1ZD_z4x74einC1B8d0xwfV9HPZWH1pQxGcUnDGOpGeu44MBaS0JtNSCuXhJTutApSN75iVvzV9-__Lz8it4dF4VI72Dw8ek9sc0TYRaLND1ufThX8C6dLcPI06SsnZdRvFLxMhKhs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyF4QGyAGAzwA5NAyFpiO07ygFDbtdrYWlXApr0FxxeEmJrRC6j_gt_Dr-McJylDCN72aluO5HN8bv5yPkKeJ8p5mPPMZwmHBMVLpp2OmEk1N9pkzoSW-aOxOjyVb8-T8w3ys_0XBmGVrU0MhtpWBmvk-xB3Z1EmuUz3fQOLmBwM31x-ZcgghS-tLZ1GrSLHbvUd0rf566MDkPUe58PBh_4haxgGmBEqXTAnUiPz0sK1d5JbnboMIiIPRt2nidbcu6yMdJyqUuRWuMjlNrHSKnCbvIy5FbDvDbKZQlYUdchmbzCevFtXeLDjZhZHNdpeiDzCN2kIbwSkIIn4ww8GuoC_vEFwccO75E4Tm9JurUxbZMNNt8ntKx0Lt8lWYwvm9EXTsPrlPfKjrkyEQiOtPIWYkgayTYQhBcnTrjHLmTYrnEYIsV2xEObSs8_zJXxz8K364iydVAtEL-kL1gPvamkPCSxYyzxBQ_nSI4iMlisKw2Wgt6AnMRv1-12KRWX6_mx0n5xeixwekM60mrqHhOrIlgo8sNfegH3SpRGxVQjwwszV-B3yqj33wjRt0JGN46KAdAilVFyV0g7ZW6--rNt__GNdD0W4XoNNu8NANftUNDagMD7zVik4Yx1Jx20ufQYBbploKYVysMluqwBFY0nmxW-9f_T_6WfkJlyI4uRofPyY3OIIvQmom13SWcyW7gnETovyaaOklHy87nvxC762L60 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+the+Classification+Accuracy+of+Steady-State+Visual+Evoked+Potential-Based+Brain-Computer+Interfaces+by+Combining+L1-MCCA+with+SVM&rft.jtitle=Applied+sciences&rft.au=Gao%2C+Yuhang&rft.au=Si%2C+Juanning&rft.au=Wu%2C+Sijin&rft.au=Li%2C+Weixian&rft.date=2021-12-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=23&rft.spage=11453&rft_id=info:doi/10.3390%2Fapp112311453&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |