Improvement of the Classification Accuracy of Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces by Combining L1-MCCA with SVM

Canonical correlation analysis (CCA) has been used for the steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) for a long time. However, the reference signal of CCA is relatively simple and lacks subject-specific information. Moreover, over-fitting may occur when a shor...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 11; no. 23; p. 11453
Main Authors Gao, Yuhang, Si, Juanning, Wu, Sijin, Li, Weixian, Liu, Hao, Chen, Jianhu, He, Qing, Zhang, Yujin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Canonical correlation analysis (CCA) has been used for the steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) for a long time. However, the reference signal of CCA is relatively simple and lacks subject-specific information. Moreover, over-fitting may occur when a short time window (TW) length was used in CCA. In this article, an optimized L1-regularized multiway canonical correlation analysis (L1-MCCA) is combined with a support vector machine (SVM) to overcome the aforementioned shortcomings in CCA. The correlation coefficients obtained by L1-MCCA were transferred into a particle-swarm-optimization (PSO)-optimized support vector machine (SVM) classifier to improve the classification accuracy. The performance of the proposed method was evaluated and compared with the traditional CCA and power spectral density (PSD) methods. The results showed that the accuracy of the L1-MCCA-PSO-SVM was 96.36% and 98.18% respectively when the TW lengths were 2 s and 6 s. This accuracy is higher than that of the traditional CCA and PSD methods.
AbstractList Canonical correlation analysis (CCA) has been used for the steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) for a long time. However, the reference signal of CCA is relatively simple and lacks subject-specific information. Moreover, over-fitting may occur when a short time window (TW) length was used in CCA. In this article, an optimized L1-regularized multiway canonical correlation analysis (L1-MCCA) is combined with a support vector machine (SVM) to overcome the aforementioned shortcomings in CCA. The correlation coefficients obtained by L1-MCCA were transferred into a particle-swarm-optimization (PSO)-optimized support vector machine (SVM) classifier to improve the classification accuracy. The performance of the proposed method was evaluated and compared with the traditional CCA and power spectral density (PSD) methods. The results showed that the accuracy of the L1-MCCA-PSO-SVM was 96.36% and 98.18% respectively when the TW lengths were 2 s and 6 s. This accuracy is higher than that of the traditional CCA and PSD methods.
Author Liu, Hao
Chen, Jianhu
Zhang, Yujin
He, Qing
Wu, Sijin
Li, Weixian
Si, Juanning
Gao, Yuhang
Author_xml – sequence: 1
  givenname: Yuhang
  surname: Gao
  fullname: Gao, Yuhang
– sequence: 2
  givenname: Juanning
  surname: Si
  fullname: Si, Juanning
– sequence: 3
  givenname: Sijin
  orcidid: 0000-0002-9722-9148
  surname: Wu
  fullname: Wu, Sijin
– sequence: 4
  givenname: Weixian
  surname: Li
  fullname: Li, Weixian
– sequence: 5
  givenname: Hao
  surname: Liu
  fullname: Liu, Hao
– sequence: 6
  givenname: Jianhu
  surname: Chen
  fullname: Chen, Jianhu
– sequence: 7
  givenname: Qing
  surname: He
  fullname: He, Qing
– sequence: 8
  givenname: Yujin
  surname: Zhang
  fullname: Zhang, Yujin
BookMark eNptUctuFDEQHKEgEUJufIAlrgz4Na_jZhTIShuBtJCr1WO3Ey-z48H2BO1f5JNxsiBFCB_sdndVqbv6dXEy-QmL4i2jH4To6EeYZ8a4YExW4kVxymlTl0Ky5uRZ_Ko4j3FH8-mYaBk9LR7W-zn4e9zjlIi3JN0h6UeI0VmnITk_kZXWSwB9eCxvE4I5lNsECcmNiwuM5PLe_0BDvvqUNRyM5QXE_L8I4Kay9_t5SRjIesq3BY2RDAeS04Ob3HRLNqy87vsV-eXSHdneXL8pXloYI57_ec-K758uv_VX5ebL53W_2pRa1E0qUTRadoNhlUDJDTTYMtFZUXPbVADcYjtQYE09iM4IpNiZykhTt5zygXEjzor1Udd42Kk5uD2Eg_Lg1FPCh1sFITk9otK2taau8-RAJXLTSdt2FRsqkFLUKLLWu6NWtvLngjGpnV_ClNtXvKYtbSWXTUbxI0oHH2NAq7RLTxanbNWoGFWPi1TPF5lJ7_8h_W31v_Df49uhQg
CitedBy_id crossref_primary_10_3390_s23136001
crossref_primary_10_1080_2326263X_2022_2050513
Cites_doi 10.1109/PROC.1977.10542
10.1088/1741-2552/aa5847
10.3389/fnins.2018.00696
10.1111/ejn.12936
10.1109/TBME.2006.889197
10.1088/1741-2552/ac0bfa
10.1109/TBME.2018.2882075
10.1109/ACCESS.2019.2892188
10.1007/s11571-020-09620-7
10.1016/j.isatra.2010.06.005
10.1016/j.neucom.2019.10.049
10.1109/SMC.2015.559
10.1016/j.medengphy.2008.01.004
10.1109/TNSRE.2013.2279680
10.1109/TNSRE.2020.2983275
10.1007/s11571-021-09664-3
10.1109/BSN.2017.7936032
10.1109/TSMC.2019.2917599
10.1016/j.neucom.2016.11.008
10.1109/TNSRE.2020.2980772
10.1109/TCYB.2018.2841847
10.1109/NER.2017.8008423
10.1088/1741-2552/aa6a23
10.1007/s11434-008-0547-3
10.1007/s10055-017-0328-x
10.1016/j.neunet.2018.02.011
10.1088/1741-2552/aaca6e
10.1142/S0129065717500393
10.3389/fnhum.2018.00198
10.3390/s21165309
10.1109/NER.2013.6696181
10.1109/TNNLS.2017.2766160
10.1016/j.eswa.2011.02.110
10.1088/1741-2552/abee51
10.3390/s19081867
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app112311453
DatabaseName CrossRef
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ - Directory of Open Access Journals (Some content may be blocked by TCTC IT security protocols)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_cf8fd66eada04e2d94f8951b5a4436e3
10_3390_app112311453
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c367t-e37c49bd153e42da7e8139f362f75aa2fe8b0a176b39d3e0e9d5d4d68202b12d3
IEDL.DBID BENPR
ISSN 2076-3417
IngestDate Wed Aug 27 01:30:55 EDT 2025
Mon Jun 30 11:08:50 EDT 2025
Tue Jul 01 00:51:19 EDT 2025
Thu Apr 24 23:03:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-e37c49bd153e42da7e8139f362f75aa2fe8b0a176b39d3e0e9d5d4d68202b12d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9722-9148
OpenAccessLink https://www.proquest.com/docview/2608084247?pq-origsite=%requestingapplication%
PQID 2608084247
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_cf8fd66eada04e2d94f8951b5a4436e3
proquest_journals_2608084247
crossref_citationtrail_10_3390_app112311453
crossref_primary_10_3390_app112311453
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Shi (ref_33) 2017; 29
Hakvoort (ref_25) 2011; 78
Brogin (ref_13) 2020; 55
Zhang (ref_30) 2013; 21
ref_35
Zerafa (ref_12) 2018; 15
ref_34
Tavares (ref_7) 2019; 768
Feng (ref_16) 2018; 102
Liu (ref_39) 2020; 378
Zhou (ref_40) 2019; 15
Borgheai (ref_10) 2020; 28
Jia (ref_4) 2019; 7
Neghabi (ref_41) 2018; 10
ref_19
Zhao (ref_45) 2020; 28
Zhao (ref_1) 2009; 54
Pan (ref_9) 2018; 12
Chen (ref_18) 2021; 18
Lin (ref_24) 2007; 54
ref_37
Alchalabi (ref_23) 2021; 18
Medeiros (ref_31) 2016; 191
Qi (ref_38) 2020; 11
Li (ref_32) 2016; 7
Twomey (ref_14) 2015; 42
Rathi (ref_15) 2021; 15
Jiao (ref_27) 2017; 28
Gupta (ref_21) 2019; 51
Shao (ref_28) 2020; 14
Islam (ref_43) 2017; 14
Zhang (ref_42) 2016; 225
Vidal (ref_2) 1977; 65
ref_22
Spyrou (ref_29) 2017; 15
Shu (ref_3) 2018; 66
Wu (ref_11) 2008; 30
Zhang (ref_17) 2018; 49
Iscan (ref_20) 2011; 38
Kerous (ref_8) 2018; 22
ref_26
Chen (ref_44) 2017; 14
ref_5
ref_6
Ranaee (ref_36) 2010; 49
References_xml – volume: 65
  start-page: 633
  year: 1977
  ident: ref_2
  article-title: Real-time detection of brain events in EEG
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1977.10542
– volume: 14
  start-page: 026007
  year: 2017
  ident: ref_43
  article-title: Unsupervised frequency-recognition method of SSVEPs using a filter bank implementation of binary subband CCA
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa5847
– volume: 78
  start-page: 183
  year: 2011
  ident: ref_25
  article-title: Comparison of PSDA and CCA detection methods in a SSVEP-based BCI-system
  publication-title: Cent. Telemat. Inf. Technol. Univ. Twente
– ident: ref_5
  doi: 10.3389/fnins.2018.00696
– ident: ref_26
– volume: 768
  start-page: 795
  year: 2019
  ident: ref_7
  article-title: Steady-State Visual Evoked Potential-Based Real-Time BCI for Smart Appliance Control
  publication-title: Cogn. Inform. Soft Comput.
– volume: 42
  start-page: 1636
  year: 2015
  ident: ref_14
  article-title: The classic P300 encodes a build-to-threshold decision variable
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/ejn.12936
– volume: 54
  start-page: 1172
  year: 2007
  ident: ref_24
  article-title: Frequency Recognition Based on Canonical Correlation Analysis for SSVEP-Based BCIs
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.889197
– volume: 18
  start-page: 046094
  year: 2021
  ident: ref_18
  article-title: Implementing a calibration-free SSVEP-based BCI system with 160 targets
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac0bfa
– volume: 15
  start-page: 45
  year: 2019
  ident: ref_40
  article-title: Optimization of penalty coefficient and kernel function coefficient for ventilation system fault diagnosis based on SVM
  publication-title: China Work. Saf. Sci. Technol.
– volume: 66
  start-page: 1987
  year: 2018
  ident: ref_3
  article-title: Tactile Stimulation Improves Sensorimotor Rhythm-based BCI Performance in Stroke Patients
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2882075
– volume: 7
  start-page: 11318
  year: 2019
  ident: ref_4
  article-title: EEG processing in Internet of Medical Things using non-harmonic analysis: Application and Evolution for SSVEP responses
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2892188
– volume: 14
  start-page: 689
  year: 2020
  ident: ref_28
  article-title: Filter bank temporally local canonical correlation analysis for short time window SSVEPs classification
  publication-title: Cogn. Neurodynamics
  doi: 10.1007/s11571-020-09620-7
– volume: 49
  start-page: 577
  year: 2010
  ident: ref_36
  article-title: Application of the PSO-SVM model for recognition of control chart patterns
  publication-title: Isa Trans.
  doi: 10.1016/j.isatra.2010.06.005
– volume: 378
  start-page: 36
  year: 2020
  ident: ref_39
  article-title: Efficient representations of EEG signals for SSVEP frequency recognition based on deep multiset CCA
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.10.049
– volume: 10
  start-page: 245
  year: 2018
  ident: ref_41
  article-title: A Comprehensive Comparison between Steady-State Visual Evoked Potentials Frequency Estimation Methods in Brain-Computer Interface with The Minimum Number of EEG Channels
  publication-title: Basic Clin. Neurosci.
– ident: ref_37
  doi: 10.1109/SMC.2015.559
– volume: 30
  start-page: 1079
  year: 2008
  ident: ref_11
  article-title: Stimulator selection in SSVEP-based BCI
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2008.01.004
– volume: 21
  start-page: 887
  year: 2013
  ident: ref_30
  article-title: L1-Regularized Multiway Canonical Correlation Analysis for SSVEP-Based BCI
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2279680
– volume: 28
  start-page: 1128
  year: 2020
  ident: ref_45
  article-title: Decision-Making Selector (DMS) for Integrating CCA-Based Methods to Improve Performance of SSVEP-Based BCIs
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.2983275
– volume: 15
  start-page: 046024
  year: 2017
  ident: ref_29
  article-title: Tensor-driven extraction of developmental features from varying paediatric EEG datasets
  publication-title: J. Neural Eng.
– volume: 15
  start-page: 805
  year: 2021
  ident: ref_15
  article-title: A novel approach for designing authentication system using a picture based P300 speller
  publication-title: Cogn. Neurodynamics
  doi: 10.1007/s11571-021-09664-3
– ident: ref_22
  doi: 10.1109/BSN.2017.7936032
– volume: 51
  start-page: 3080
  year: 2019
  ident: ref_21
  article-title: On the Utility of Power Spectral Techniques with Feature Selection Techniques for Effective Mental Task Classification in Noninvasive BCI
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2019.2917599
– volume: 225
  start-page: 103
  year: 2016
  ident: ref_42
  article-title: Sparse Bayesian multiway canonical correlation analysis for EEG pattern recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.11.008
– volume: 28
  start-page: 1198
  year: 2020
  ident: ref_10
  article-title: Enhancing Communication for People in Late-Stage ALS Using an fNIRS-Based BCI System
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.2980772
– volume: 49
  start-page: 3322
  year: 2018
  ident: ref_17
  article-title: Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2841847
– volume: 55
  start-page: 101644.1
  year: 2020
  ident: ref_13
  article-title: Enhanced use practices in SSVEP-based BCIs using an analytical approach of canonical correlation analysis
  publication-title: Biomed. Signal Process. Control
– ident: ref_35
  doi: 10.1109/NER.2017.8008423
– volume: 14
  start-page: 046028
  year: 2017
  ident: ref_44
  article-title: A new multivariate empirical mode decomposition method for improving the performance of SSVEP-based brain computer interface
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa6a23
– volume: 54
  start-page: 78
  year: 2009
  ident: ref_1
  article-title: EEG-based asynchronous BCI control of a car in 3D virtual reality environments
  publication-title: Chin. Sci. Bull.
  doi: 10.1007/s11434-008-0547-3
– volume: 22
  start-page: 119
  year: 2018
  ident: ref_8
  article-title: EEG-based BCI and video games: A progress report
  publication-title: Virtual Real.
  doi: 10.1007/s10055-017-0328-x
– volume: 102
  start-page: 87
  year: 2018
  ident: ref_16
  article-title: Towards correlation-based time window selection method for motor imagery BCIs
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.02.011
– volume: 15
  start-page: 051001.1
  year: 2018
  ident: ref_12
  article-title: To train or not to train? A survey on training of feature extraction methods for SSVEP-based BCIs
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aaca6e
– volume: 28
  start-page: 1750039
  year: 2017
  ident: ref_27
  article-title: A Novel Multilayer Correlation Maximization Model for Improving CCA-Based Frequency Recognition in SSVEP Brain–Computer Interface
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065717500393
– volume: 191
  start-page: 255
  year: 2016
  ident: ref_31
  article-title: l1-Regularization of High-Dimensional Time-Series Models with Flexible Innovations
  publication-title: SSRN Electron. J.
– volume: 12
  start-page: 198
  year: 2018
  ident: ref_9
  article-title: Emotion-Related Consciousness Detection in Patients With Disorders of Consciousness Through an EEG-Based BCI System
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2018.00198
– ident: ref_19
  doi: 10.3390/s21165309
– ident: ref_34
  doi: 10.1109/NER.2013.6696181
– volume: 29
  start-page: 4744
  year: 2017
  ident: ref_33
  article-title: Rank-One Matrix Completion with Automatic Rank Estimation via L1-Norm Regularization
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2766160
– volume: 11
  start-page: 1
  year: 2020
  ident: ref_38
  article-title: Channel and Feature Selection for a Motor Imagery-Based BCI System Using Multilevel Particle Swarm Optimization
  publication-title: Comput. Intell. Neurosci.
– volume: 38
  start-page: 10499
  year: 2011
  ident: ref_20
  article-title: Classification of electroencephalogram signals with combined time and frequency features
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.02.110
– volume: 18
  start-page: 51
  year: 2021
  ident: ref_23
  article-title: A multi-modal modified feedback self-paced BCI to control the gait of an avatar
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abee51
– ident: ref_6
  doi: 10.3390/s19081867
– volume: 7
  start-page: 16
  year: 2016
  ident: ref_32
  article-title: A fast algorithm for Earth Mover’s Distance based on optimal transport and L1 type Regularization
  publication-title: UCLA Comput. Appl. Math. Rep.
SSID ssj0000913810
Score 2.217166
Snippet Canonical correlation analysis (CCA) has been used for the steady-state visual evoked potential (SSVEP) based brain-computer interface (BCI) for a long time....
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 11453
SubjectTerms Accuracy
Brain research
brain-computer interface (BCI)
Classification
Correlation analysis
Electrodes
Electroencephalography
Experiments
l1-regularized multiway canonical correlation analysis (L1-MCCA)
Optimization
particle swarm optimization (PSO)
Signal to noise ratio
steady-state visual evoked potential (SSVEP)
support vector machine (SVM)
SummonAdditionalLinks – databaseName: DOAJ - Directory of Open Access Journals (Some content may be blocked by TCTC IT security protocols)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOSgoEmyTNG2Pu4si4orgA28lTxBlV_Yh7L_wJzuTdmVFxIvXJpA2mcx8M_34hpDDTPkAY4GFIuOQoATJtNcJs7nmVtvC2yiZ37tRlw_y6il7mmv1hZywWh643rgzG4rglIIP1on03JUyFIAKTKalFMpHnU-IeXPJVPTBZYrSVTXTXUBej_-DAVoIgP-Z-BaDolT_D08cw8vFKllpcCFt1--zRhZ8f50sz6kFrpO15h6O6HEjFn2yQT7qqkAs8tFBoIDnaGx0iRSguOu0be1kqO0Uh5G-66YsQkz6-DyawJrn74MX7-jtYIzMIf3KOhDZHO1g8wg26_pAY-kwIIGLmimFxya2lqDXKet1u22KBV1699jbJA8X5_fdS9Z0WWBWqHzMvMitLI0D1-cldzr3BaDCAIEt5JnWPPjCJDrNlRGlEz7xpcucdAqgAzcpd2KLLPYHfb9NqE6cURD9gg4WfIM2VqROIbkKs0YbWuR0tu-VbSTIsRPGawWpCJ5SNX9KLXL0Nfutlt74ZV4Hj_BrDgpmxwdgRlVjRtVfZtQiezMDqJpbPKog1yuSQnKZ7_zHGrtkiSMjJpJh9sjieDjx-wBpxuYgWu8nZjf2bQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Improvement of the Classification Accuracy of Steady-State Visual Evoked Potential-Based Brain-Computer Interfaces by Combining L1-MCCA with SVM
URI https://www.proquest.com/docview/2608084247
https://doaj.org/article/cf8fd66eada04e2d94f8951b5a4436e3
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3faxQxEA62fdEHsVWxth55UFAkuJtks7knuTvuWsQrRW3p25KfRSy37f0Q7r_on9yZXO6sSH1Nwi5kkplvJh_zEfK2UiHCXGRRVxwSlCiZCaZgrjbcGaeDSy3zxyfq-Ex-uagucsFtlmmVa5-YHLVvHdbIPwHu1oWWXNafr28Yqkbh62qW0NgiO-CCNSRfO_3hyem3TZUFu17qslgx3gXk9_guDBBDQBpQib9iUWrZ_49HTmFm9Iw8zfiQ9lYG3SWPwmSPPLnXNXCP7Ob7OKPvc9PoD8_J7ao6kIp9tI0UcB1NgpdIBUq7T3vOLabGLXEaabx-yRLUpOc_Zwv45_B3-yt4etrOkUFkrlgfIpynfRSRYGv1B5pKiBGJXNQuKQzbJDFBv5ZsPBj0KBZ26ffz8QtyNhr-GByzrLbAnFD1nAVRO9m1HlxgkNybOmhAhxECXKwrY3gM2hamrJUVXS9CEbq-8tIrgBDcltyLl2R70k7CK0JN4a2CKBhNdOAjjHWi9ApJVpg9urhPPq73vXG5FTkqYlw1kJKglZr7Vton7zarr1ctOB5Y10cTbtZg4-w00E4vm3wPGxd19ErBHptCBu67MmoAmbYyUgoV4COH6wPQ5Ns8a_6cvdf_nz4gjzlyXhLd5ZBsz6eL8AZAy9x2yJYeHXXy-eyk1P8OuF_wPw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLVKWQALRAuIlgJeUAmELBLbcTILhGaGDlM6UyHRVt2lfiLUalLmAZq_4Ev4Ru51kqEIwa7b2Eok3_f1yT2EPM-UD7AWWCgyDgVKkEx7nTCba261LbyNI_PHh2p4LD-cZqdr5Gf7LwzCKlufGB21qyz2yF9D3l0kheQyf3v5lSFrFN6uthQatVoc-OV3KNlmb_bfgXx3OR_sHfWHrGEVYFaofM68yK3sGAem7iV3OvcFZEEBHHnIM6158IVJdJorIzpO-MR3XOakUxAquUm5E_DeG-SmFKKDFlUM3q96Ojhjs0iTGl8P6wneQkNCI6DoyMQfkS8SBPzl_2NQG9wjd5tslHZr9dkga36ySe5cmVG4STYa65_RF82I6pf3yY-6FxFbi7QKFLJIGuk1EXgUZU271i6m2i5xGUHDbsliYktPvswW8M29b9W5d_RjNUe8kr5gPYinjvaQsoK1XBM0NiwDwsaoWVJ4bCKhBR2lbNzvdym2kemnk_EDcnwtUnhI1ifVxD8iVCfOKIi5QQcLHkkbK1KnENKFtaoNW-RVe-6lbQafI__GRQkFEEqpvCqlLbK72n1ZD_z4x74einC1B8d0xwfV9HPZWH1pQxGcUnDGOpGeu44MBaS0JtNSCuXhJTutApSN75iVvzV9-__Lz8it4dF4VI72Dw8ek9sc0TYRaLND1ufThX8C6dLcPI06SsnZdRvFLxMhKhs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJyF4QGyAGAzwA5NAyFpiO07ygFDbtdrYWlXApr0FxxeEmJrRC6j_gt_Dr-McJylDCN72aluO5HN8bv5yPkKeJ8p5mPPMZwmHBMVLpp2OmEk1N9pkzoSW-aOxOjyVb8-T8w3ys_0XBmGVrU0MhtpWBmvk-xB3Z1EmuUz3fQOLmBwM31x-ZcgghS-tLZ1GrSLHbvUd0rf566MDkPUe58PBh_4haxgGmBEqXTAnUiPz0sK1d5JbnboMIiIPRt2nidbcu6yMdJyqUuRWuMjlNrHSKnCbvIy5FbDvDbKZQlYUdchmbzCevFtXeLDjZhZHNdpeiDzCN2kIbwSkIIn4ww8GuoC_vEFwccO75E4Tm9JurUxbZMNNt8ntKx0Lt8lWYwvm9EXTsPrlPfKjrkyEQiOtPIWYkgayTYQhBcnTrjHLmTYrnEYIsV2xEObSs8_zJXxz8K364iydVAtEL-kL1gPvamkPCSxYyzxBQ_nSI4iMlisKw2Wgt6AnMRv1-12KRWX6_mx0n5xeixwekM60mrqHhOrIlgo8sNfegH3SpRGxVQjwwszV-B3yqj33wjRt0JGN46KAdAilVFyV0g7ZW6--rNt__GNdD0W4XoNNu8NANftUNDagMD7zVik4Yx1Jx20ufQYBbploKYVysMluqwBFY0nmxW-9f_T_6WfkJlyI4uRofPyY3OIIvQmom13SWcyW7gnETovyaaOklHy87nvxC762L60
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvement+of+the+Classification+Accuracy+of+Steady-State+Visual+Evoked+Potential-Based+Brain-Computer+Interfaces+by+Combining+L1-MCCA+with+SVM&rft.jtitle=Applied+sciences&rft.au=Gao%2C+Yuhang&rft.au=Si%2C+Juanning&rft.au=Wu%2C+Sijin&rft.au=Li%2C+Weixian&rft.date=2021-12-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=23&rft.spage=11453&rft_id=info:doi/10.3390%2Fapp112311453&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon