Wet chemical etching of cadmium telluride photovoltaics for enhanced open-circuit voltage, fill factor, and power conversion efficiency
Cadmium telluride (CdTe) is one of the leading photovoltaic technologies with a market share of around 5%. However, there still exist challenges to fabricate a rear contact for efficient transport of photogenerated holes. Here, etching effects of various iodine compounds including elemental iodine (...
Saved in:
Published in | Journal of materials research Vol. 34; no. 24; pp. 3988 - 3997 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
30.12.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cadmium telluride (CdTe) is one of the leading photovoltaic technologies with a market share of around 5%. However, there still exist challenges to fabricate a rear contact for efficient transport of photogenerated holes. Here, etching effects of various iodine compounds including elemental iodine (I
2
), ammonium iodide (NH
4
I), mixture of elemental iodine and NH
4
I (I
−
/I
3
−
etching), and formamidinium iodide were investigated. The treated CdTe surfaces were investigated using Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The CdTe devices were completed with or without treatments and tested under simulated AM1.5G solar spectrum to find photoconversion efficiency (PCE). Based on Raman spectra, XRD patterns, and surface morphology, it was shown that treatment with iodine compounds produced Te-rich surface on CdTe films, and temperature-dependent current–voltage characteristics showed reduced back barrier heights, which are essential for the formation of ohmic contact and reduce contact resistance. Based on current–voltage characteristics, the treatment enhanced open-circuit voltage (
V
OC
) up to 841 mV, fill factor (FF) up to 78.2%, and PCE up to 14.0% compared with standard untreated CdTe devices (
V
OC
∼ 814 mV, FF ∼ 74%, and PCE ∼ 12.7%) with copper/gold back contact. |
---|---|
AbstractList | Cadmium telluride (CdTe) is one of the leading photovoltaic technologies with a market share of around 5%. However, there still exist challenges to fabricate a rear contact for efficient transport of photogenerated holes. Here, etching effects of various iodine compounds including elemental iodine (I
2
), ammonium iodide (NH
4
I), mixture of elemental iodine and NH
4
I (I
−
/I
3
−
etching), and formamidinium iodide were investigated. The treated CdTe surfaces were investigated using Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The CdTe devices were completed with or without treatments and tested under simulated AM1.5G solar spectrum to find photoconversion efficiency (PCE). Based on Raman spectra, XRD patterns, and surface morphology, it was shown that treatment with iodine compounds produced Te-rich surface on CdTe films, and temperature-dependent current–voltage characteristics showed reduced back barrier heights, which are essential for the formation of ohmic contact and reduce contact resistance. Based on current–voltage characteristics, the treatment enhanced open-circuit voltage (
V
OC
) up to 841 mV, fill factor (FF) up to 78.2%, and PCE up to 14.0% compared with standard untreated CdTe devices (
V
OC
∼ 814 mV, FF ∼ 74%, and PCE ∼ 12.7%) with copper/gold back contact. Cadmium telluride (CdTe) is one of the leading photovoltaic technologies with a market share of around 5%. However, there still exist challenges to fabricate a rear contact for efficient transport of photogenerated holes. Here, etching effects of various iodine compounds including elemental iodine (I2), ammonium iodide (NH4I), mixture of elemental iodine and NH4I (I−/I3− etching), and formamidinium iodide were investigated. The treated CdTe surfaces were investigated using Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The CdTe devices were completed with or without treatments and tested under simulated AM1.5G solar spectrum to find photoconversion efficiency (PCE). Based on Raman spectra, XRD patterns, and surface morphology, it was shown that treatment with iodine compounds produced Te-rich surface on CdTe films, and temperature-dependent current–voltage characteristics showed reduced back barrier heights, which are essential for the formation of ohmic contact and reduce contact resistance. Based on current–voltage characteristics, the treatment enhanced open-circuit voltage (VOC) up to 841 mV, fill factor (FF) up to 78.2%, and PCE up to 14.0% compared with standard untreated CdTe devices (VOC ∼ 814 mV, FF ∼ 74%, and PCE ∼ 12.7%) with copper/gold back contact. |
Author | Bastola, Ebin Ellingson, Randy J. Phillips, Adam B. Alfadhili, Fadhil K. Heben, Michael J. |
Author_xml | – sequence: 1 givenname: Ebin orcidid: 0000-0002-4194-3385 surname: Bastola fullname: Bastola, Ebin organization: University of Toledo – sequence: 2 givenname: Fadhil K. surname: Alfadhili fullname: Alfadhili, Fadhil K. organization: University of Toledo – sequence: 3 givenname: Adam B. surname: Phillips fullname: Phillips, Adam B. organization: University of Toledo – sequence: 4 givenname: Michael J. surname: Heben fullname: Heben, Michael J. organization: University of Toledo – sequence: 5 givenname: Randy J. surname: Ellingson fullname: Ellingson, Randy J. email: Randy.Ellingson@utoledo.edu organization: University of Toledo |
BookMark | eNp1kM1KLDEQhYMoOI7ufICA2-kxP_0zvRTx3isIbhSXTbq6MpOhO2mTtBefwNc24wiC6KYKqr5TdTgn5NA6i4Scc7bkRVFdbge_FIzXS1nKAzITLM-zQorykMzYapVnoub5MTkJYcsYL1iVz8jbE0YKGxwMqJ5ihI2xa-o0BdUNZhpoxL6fvOmQjhsX3YvrozIQqHaeot0oC9hRN6LNwHiYTKQfyBoXVJu-p1pBdH5Ble3o6P6jp-DsC_pgnKWotQGDFl5PyZFWfcCzzz4nj39uHq7_ZXf3f2-vr-4ykGUVMxS5LEStawm8KlvVdgLrAro06oBLLKHVNatbkG0qQherWqQFL2TbVcCknJOL_d3Ru-cJQ2y2bvI2vWyElHyXnhCJEnsKvAvBo27ARBWT5eiV6RvOml3gTQq82UmaFHgSLb6JRm8G5V9_w7M9HhJm1-i_nPzIvwPpI5bd |
CitedBy_id | crossref_primary_10_1016_j_mssp_2022_107267 crossref_primary_10_3390_app13042051 crossref_primary_10_1515_psr_2021_0110 crossref_primary_10_3390_en14113022 crossref_primary_10_1002_ente_202000429 crossref_primary_10_1109_JPHOTOV_2024_3507079 crossref_primary_10_1016_j_solmat_2020_110764 crossref_primary_10_1016_j_mssp_2021_106234 crossref_primary_10_1039_D0MA00394H crossref_primary_10_1088_1402_4896_ad1858 |
Cites_doi | 10.1063/1.359444 10.1016/j.jcrysgro.2010.03.045 10.1007/s11664-011-1649-2 10.1007/s11664-012-2001-1 10.1088/0022-3727/16/12/011 10.1039/C7TC00948H 10.1016/j.solmat.2018.06.025 10.1016/j.solmat.2012.07.025 10.1016/j.solmat.2015.03.032 10.1002/pip.2660 10.1557/mrc.2018.117 10.1016/j.solmat.2014.10.045 10.1021/acsenergylett.6b00587 10.1063/1.4870838 10.1002/solr.201800304 10.1007/s11664-009-0787-2 10.1063/1.92863 10.1063/1.4901532 10.1063/1.363946 10.1016/j.solmat.2017.01.044 10.1016/j.solener.2008.07.005 10.1116/1.572547 10.1109/JPHOTOV.2017.2775139 10.1109/JPHOTOV.2017.2768965 10.1016/S0022-0728(02)00730-1 10.1039/C3EE41981A 10.1016/j.solmat.2011.01.038 10.1063/1.4962940 10.1016/0927-0248(96)00053-0 10.1021/acsaem.9b00367 10.1117/1.JPE.5.050999 10.1021/nl402659c 10.1109/JPHOTOV.2018.2830302 10.1007/s11664-007-0166-9 |
ContentType | Journal Article |
Copyright | The Materials Research Society 2019 Copyright © Materials Research Society 2019 |
Copyright_xml | – notice: The Materials Research Society 2019 – notice: Copyright © Materials Research Society 2019 |
DBID | AAYXX CITATION 3V. 7SR 7WY 7WZ 7XB 87Z 8BQ 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA BENPR BEZIV BGLVJ CCPQU D1I DWQXO FRNLG F~G HCIFZ JG9 K60 K6~ KB. L.- L.0 M0C PDBOC PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U S0W |
DOI | 10.1557/jmr.2019.363 |
DatabaseName | CrossRef ProQuest Central (Corporate) Engineered Materials Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection (ProQuest) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) SciTech Premium Collection Materials Research Database ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Materials Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ABI/INFORM Global Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Materials Research Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences Engineered Materials Abstracts ABI/INFORM Professional Standard ProQuest Central Korea Materials Science Database ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) ProQuest Materials Science Collection Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection METADEX ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2044-5326 |
EndPage | 3997 |
ExternalDocumentID | 10_1557_jmr_2019_363 |
GroupedDBID | -2P -2V -E. -~X .DC .FH 0E1 0R~ 2JN 3V. 4.4 406 5GY 5VS 74X 74Y 7WY 7~V 8FE 8FG 8FL 8UJ 8WZ A6W AAAZR AABES AABWE AACDK AACJH AAEWM AAGFV AAHNG AAIKC AAJBT AAKTX AAMNW AARAB AASML AASVR AATID AATMM AATNV AAUKB ABAKF ABBXD ABDPE ABECU ABEFU ABGDZ ABJCF ABJNI ABKKG ABMQK ABMWE ABQTM ABROB ABTEG ABTKH ABTMW ABUWG ABZCX ABZUI ACAOD ACBEA ACBEK ACBMC ACDTI ACETC ACGFO ACGFS ACHSB ACIHN ACIMK ACIWK ACPIV ACQPF ACRPL ACUIJ ACXSD ACZBM ACZOJ ACZUX ADCGK ADFEC ADNMO ADOVH ADOVT AEAQA AEBAK AEFQL AEHGV AEMFK AEMSY AEMTW AENEX AENGE AESKC AEYYC AFBBN AFFUJ AFKQG AFKRA AFLOS AFLVW AFUTZ AGLWM AGMZJ AGQEE AHQXX AI. AIGIU AIGNW AIHIV AIOIP AISIE AJCYY AJPFC AJQAS AKZCZ ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AMTXH AMXSW AMYLF ARABE ARZZG ATUCA AUXHV AYIQA BBLKV BCGOX BENPR BESQT BEZIV BGHMG BGLVJ BJBOZ BMAJL BPHCQ BQFHP C0O CBIIA CCPQU CCUQV CFAFE CFBFF CGQII CS3 CZ9 D1I DC4 DOHLZ DPUIP DU5 DWQXO EBLON EBS EJD F5P FIGPU FRNLG GROUPED_ABI_INFORM_COMPLETE HCIFZ HG- HST HZ~ I.6 I.7 I.9 IH6 IKXTQ IOEEP IOO IS6 IWAJR I~P J36 J38 J3A JHPGK JKPOH JQKCU JZLTJ K60 K6~ KAFGG KB. KC. KCGVB KFECR L98 LHUNA LLZTM M-V M0C M7~ M8. NIKVX NPVJJ NQJWS O9- P2P PDBOC PKN PQBIZ PQBZA PQQKQ PROAC PYCCK RAMDC RCA RNS ROL RR0 RSV S0W S6- S6U SAAAG SCG SCLPG SJN SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW T9M TAE TN5 TWZ UPT UT1 VH1 VOH WH7 WQ3 WXU WXY YQT ZDLDU ZE2 ZJOSE ZMEZD ZYDXJ ~02 ~V1 AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SR 7XB 8BQ 8FD 8FK ABRTQ JG9 L.- L.0 PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c367t-e243529f93c176babd2e95cd29fdc13e6cbf909bc3b9bc2f5892dc1153bd7c033 |
IEDL.DBID | BENPR |
ISSN | 0884-2914 |
IngestDate | Wed Aug 13 08:52:57 EDT 2025 Tue Jul 01 03:46:04 EDT 2025 Thu Apr 24 23:02:38 EDT 2025 Fri Feb 21 02:48:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Language | English |
License | https://www.cambridge.org/core/terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-e243529f93c176babd2e95cd29fdc13e6cbf909bc3b9bc2f5892dc1153bd7c033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4194-3385 |
PQID | 2331201922 |
PQPubID | 626330 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2331201922 crossref_citationtrail_10_1557_jmr_2019_363 crossref_primary_10_1557_jmr_2019_363 springer_journals_10_1557_jmr_2019_363 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-30 |
PublicationDateYYYYMMDD | 2019-12-30 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Warrendale |
PublicationTitle | Journal of materials research |
PublicationTitleAbbrev | Journal of Materials Research |
PublicationYear | 2019 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Janik, Triboulet (CR8) 1983; 16 Freeouf, Woodall (CR4) 1981; 39 Bastola, Bhandari, Ellingson (CR14) 2017 Sarlund, Ritala, Leskelä, Siponmaa, Zilliacus (CR24) 1996; 44 Awni, Li, Grice, Song, Razooqi, Phillips, Bista, Roland, Alfadhili, Ellingson (CR31) 2019; 3 Ochoa-Landín, Vigil-Galan, Vorobiev, Ramírez-Bon (CR20) 2009; 83 Kurley, Panthani, Crisp, Nanayakkara, Pach, Reese, Hudson, Dolzhnikov, Tanygin, Luther, Talapin (CR19) 2017; 2 Simonds, Palekis, Van Devener, Ferekides, Scarpulla (CR5) 2014; 104 Duffy, Peter, Wang (CR1) 2002; 532 Bastola, Bhandari, Ellingson (CR15) 2017; 5 Munshi, Kephart, Abbas, Raguse, Beaudry, Barth, Sites, Walls, Sampath (CR2) 2018; 8 Ricco, White, Wrighton (CR28) 1984; 2 Phillips, Khanal, Song, Zartman, DeWitt, Stone, Roland, Plotnikov, Carter, Stayancho (CR11) 2013; 13 Moravec, Ivanits’ka, Franc, Tomashik, Tomashik, Mašek, Feychuk, Shcherbak, Höschl, Grill (CR26) 2009; 38 Liyanage, Phillips, Alfadhili, Ellingson, Heben (CR6) 2019; 2 Kumar, Rao (CR7) 2014; 7 Bensouici, Carcelen, Plaza, De Dios, Vijayan, Crocco, Bensalah, Dieguez, Elaatmani (CR29) 2010; 312 Simonds, Meadows, Misra, Ferekides, Dale, Scarpulla (CR32) 2015; 5 Koll, Taha, Giolando (CR33) 2011; 95 Corwine, Pudov, Gloeckler, Demtsu, Sites (CR9) 2004; 82 Phillips, Song, DeWitt, Stone, Krantz, Royston, Zeller, Mapes, Roland, Dorogi, Zafar, Faykosh, Ellingson, Heben (CR36) 2016; 87 Paudel, Yan (CR3) 2014; 105 Watthage, Phillips, Liyanage, Song, Gibbs, Alfadhili, Alkhayat, Ahangharnejhad, Almutawah, Bhandari (CR23) 2018; 8 Niemegeers, Burgelman (CR35) 1997; 81 Ivanits’ka, Moravec, Franc, Tomashik, Tomashik, Mašek, Chukhnenko, Höschl, Ulrych (CR30) 2011; 40 Ivanits’Ka, Moravec, Franc, Tomashik, Feychuk, Tomashik, Shcherbak, Mašek, Höschl (CR25) 2007; 36 Song, Moore, Sites (CR21) 2018; 8 Bastola, Bhandari, Subedi, Podraza, Ellingson (CR16) 2018; 8 Moravec, Tomashik, Ivanits’Ka, Tomashik, Franc, Mašek, Höschl (CR27) 2012; 41 Tessema, Giolando (CR34) 2012; 107 Bhandari, Koirala, Paudel, Khanal, Phillips, Yan, Collins, Heben, Ellingson (CR13) 2015; 140 Li, Diercks, Ohno, Warren, Lonergan, Beach, Wolden (CR18) 2015; 133 Niles, Li, Sheldon, Höchst (CR22) 1995; 77 Bhandari, Tan, Zereshki, Alfadhili, Phillips, Koirala, Heben, Collins, Ellingson (CR10) 2017; 163 Paudel, Yan (CR12) 2016; 24 Subedi, Bastola, Subedi, Song, Bhandari, Phillips, Podraza, Heben, Ellingson (CR17) 2018; 186 S0884291419003637_ref11 S0884291419003637_ref33 S0884291419003637_ref12 S0884291419003637_ref34 S0884291419003637_ref13 S0884291419003637_ref35 S0884291419003637_ref36 S0884291419003637_ref30 Corwine (S0884291419003637_ref9) 2004; 82 S0884291419003637_ref31 S0884291419003637_ref32 S0884291419003637_ref10 S0884291419003637_ref19 S0884291419003637_ref15 S0884291419003637_ref16 S0884291419003637_ref17 S0884291419003637_ref18 Bastola (S0884291419003637_ref14) 2017 S0884291419003637_ref8 S0884291419003637_ref6 S0884291419003637_ref7 S0884291419003637_ref4 S0884291419003637_ref5 S0884291419003637_ref2 S0884291419003637_ref22 S0884291419003637_ref3 S0884291419003637_ref23 S0884291419003637_ref24 S0884291419003637_ref25 S0884291419003637_ref1 S0884291419003637_ref20 S0884291419003637_ref21 S0884291419003637_ref26 S0884291419003637_ref27 S0884291419003637_ref28 S0884291419003637_ref29 |
References_xml | – volume: 77 start-page: 4489 year: 1995 ident: CR22 article-title: A photoemission determination of the band diagram of the Te/CdTe interface publication-title: J. Appl. Phys. doi: 10.1063/1.359444 – volume: 312 start-page: 2098 year: 2010 ident: CR29 article-title: Study of effects of polishing and etching processes on Cd Zn Te surface quality publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2010.03.045 – volume: 40 start-page: 1802 year: 2011 ident: CR30 article-title: Chemical polishing of CdTe and CdZnTe in iodine–methanol etching solutions publication-title: J. Electron. Mater. doi: 10.1007/s11664-011-1649-2 – volume: 41 start-page: 2838 year: 2012 ident: CR27 article-title: Slow-polishing iodine-based etchant for CdTe and CdZnTe single crystals publication-title: J. Electron. Mater. doi: 10.1007/s11664-012-2001-1 – volume: 16 start-page: 2333 year: 1983 ident: CR8 article-title: Ohmic contacts to p-type cadmium telluride and cadmium mercury telluride publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/16/12/011 – volume: 5 start-page: 4996 year: 2017 ident: CR15 article-title: Application of composition controlled nickel-alloyed iron sulfide pyrite nanocrystal thin films as the hole transport layer in cadmium telluride solar cells publication-title: J. Mater. Chem. C doi: 10.1039/C7TC00948H – volume: 186 start-page: 227 year: 2018 ident: CR17 article-title: Nanocomposite (CuS) (ZnS) thin film back contact for CdTe solar cells: Toward a bifacial device publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2018.06.025 – volume: 107 start-page: 9 issue: Suppl.C year: 2012 ident: CR34 article-title: Pinhole treatment of a CdTe photovoltaic device by electrochemical polymerization technique publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2012.07.025 – volume: 140 start-page: 108 year: 2015 ident: CR13 article-title: Iron pyrite nanocrystal film serves as a copper-free back contact for polycrystalline CdTe thin film solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2015.03.032 – volume: 24 start-page: 94 year: 2016 ident: CR12 article-title: Application of copper thiocyanate for high open-circuit voltages of CdTe solar cells publication-title: Prog. Photovoltaics doi: 10.1002/pip.2660 – volume: 8 start-page: 970 year: 2018 ident: CR16 article-title: Structural, optical, and hole transport properties of earth-abundant chalcopyrite (CuFeS ) nanocrystals publication-title: MRS Commun. doi: 10.1557/mrc.2018.117 – volume: 133 start-page: 208 year: 2015 ident: CR18 article-title: Controlled activation of ZnTe:Cu contacted CdTe solar cells using rapid thermal processing publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2014.10.045 – volume: 2 start-page: 270 year: 2017 ident: CR19 article-title: Transparent ohmic contacts for solution-processed, ultrathin CdTe solar cells publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00587 – volume: 104 start-page: 141604 year: 2014 ident: CR5 article-title: Pulsed laser induced ohmic back contact in CdTe solar cells publication-title: Appl. Phys. Lett. doi: 10.1063/1.4870838 – volume: 3 start-page: 1800304 year: 2019 ident: CR31 article-title: The effects of hydrogen iodide back surface treatment on CdTe solar cells publication-title: Sol. RRL doi: 10.1002/solr.201800304 – volume: 38 start-page: 1645 year: 2009 ident: CR26 article-title: Chemical interaction of CdTe and CdZnTe with aqueous solutions of H O -HI-tartaric acid publication-title: J. Electron. Mater. doi: 10.1007/s11664-009-0787-2 – volume: 39 start-page: 727 year: 1981 ident: CR4 article-title: Schottky barriers: An effective work function model publication-title: Appl. Phys. Lett. doi: 10.1063/1.92863 – volume: 105 start-page: 183510 year: 2014 ident: CR3 article-title: Enhancing the photo-currents of CdTe thin-film solar cells in both short and long wavelength regions publication-title: Appl. Phys. Lett. doi: 10.1063/1.4901532 – volume: 81 start-page: 2881 year: 1997 ident: CR35 article-title: Effects of the Au/CdTe back contact on IV and CV characteristics of Au/CdTe/CdS/TCO solar cells publication-title: J. Appl. Phys. doi: 10.1063/1.363946 – volume: 163 start-page: 277 year: 2017 ident: CR10 article-title: Thin film iron pyrite deposited by hybrid sputtering/co-evaporation as a hole transport layer for sputtered CdS/CdTe solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.01.044 – start-page: 738 year: 2017 end-page: 741 ident: CR14 article-title: Solution-processed nickel-alloyed iron pyrite thin film as hole transport layer in cadmium telluride solar cells publication-title: IEEE 44th Photovoltaic Spec. Conf. (PVSC) – volume: 83 start-page: 134 year: 2009 ident: CR20 article-title: Chemically-deposited Te layers improving the parameters of back contacts for CdTe solar cells publication-title: Sol. Energy doi: 10.1016/j.solener.2008.07.005 – volume: 2 start-page: 910 year: 1984 ident: CR28 article-title: X-ray photoelectron and Auger electron spectroscopic study of the CdTe surface resulting from various surface pretreatments: Correlation of photoelectrochemical and capacitance-potential behavior with surface chemical composition publication-title: J. Vac. Sci. Technol., A doi: 10.1116/1.572547 – volume: 8 start-page: 310 year: 2018 ident: CR2 article-title: Polycrystalline CdSeTe/CdTe absorber cells with 28 mA/cm short-circuit current publication-title: IEEE J. Photovolt. doi: 10.1109/JPHOTOV.2017.2775139 – volume: 8 start-page: 293 year: 2018 ident: CR21 article-title: Te layer to reduce the CdTe back-contact barrier publication-title: IEEE J. Photovolt. doi: 10.1109/JPHOTOV.2017.2768965 – volume: 532 start-page: 207 year: 2002 ident: CR1 article-title: haracterisation of CdS|CdTe heterojunctions by photocurrent spectroscopy and electrolyte electroreflectance/absorbance spectroscopy (EEA/EER) publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(02)00730-1 – volume: 7 start-page: 45 year: 2014 ident: CR7 article-title: Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: Fundamental and critical aspects publication-title: Energy Environ. Sci. doi: 10.1039/C3EE41981A – volume: 95 start-page: 1716 year: 2011 ident: CR33 article-title: Photochemical “Self-healing” pyrrole based treatment of CdS/CdTe photovoltaics publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2011.01.038 – volume: 87 start-page: 093708 year: 2016 ident: CR36 article-title: High speed, intermediate resolution, large area laser beam induced current imaging and laser scribing system for photovoltaic devices and modules publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4962940 – volume: 44 start-page: 177 year: 1996 ident: CR24 article-title: Characterization of etching procedure in preparation of CdTe solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/0927-0248(96)00053-0 – volume: 2 start-page: 5419 year: 2019 ident: CR6 article-title: The role of back buffer layers and absorber properties for >25% efficient CdTe solar cells publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b00367 – volume: 82 start-page: 481 year: 2004 ident: CR9 article-title: Copper inclusion and migration from the back contact in CdTe solar cells publication-title: Sol. Energy Mater. Sol. Cells – volume: 5 start-page: 050999 year: 2015 ident: CR32 article-title: Laser processing for thin film chalcogenide photovoltaics: A review and prospectus publication-title: J. Photonics Energy doi: 10.1117/1.JPE.5.050999 – volume: 13 start-page: 5224 year: 2013 ident: CR11 article-title: Wiring-up carbon single wall nanotubes to polycrystalline inorganic semiconductor thin films: Low-barrier, copper-free back contact to CdTe solar cells publication-title: Nano Lett. doi: 10.1021/nl402659c – volume: 8 start-page: 1125 year: 2018 ident: CR23 article-title: Selective Cd removal from CdTe for high-efficiency Te back-contact formation publication-title: IEEE J. Photovolt. doi: 10.1109/JPHOTOV.2018.2830302 – volume: 36 start-page: 1021 year: 2007 ident: CR25 article-title: Chemical etching of CdTe in aqueous solutions of H O –HI-citric acid publication-title: J. Electron. Mater. doi: 10.1007/s11664-007-0166-9 – ident: S0884291419003637_ref5 doi: 10.1063/1.4870838 – ident: S0884291419003637_ref8 doi: 10.1088/0022-3727/16/12/011 – ident: S0884291419003637_ref6 doi: 10.1021/acsaem.9b00367 – ident: S0884291419003637_ref36 doi: 10.1063/1.4962940 – ident: S0884291419003637_ref12 doi: 10.1002/pip.2660 – ident: S0884291419003637_ref34 doi: 10.1016/j.solmat.2012.07.025 – ident: S0884291419003637_ref33 doi: 10.1016/j.solmat.2011.01.038 – ident: S0884291419003637_ref15 doi: 10.1039/C7TC00948H – ident: S0884291419003637_ref32 doi: 10.1117/1.JPE.5.050999 – ident: S0884291419003637_ref35 doi: 10.1063/1.363946 – ident: S0884291419003637_ref3 doi: 10.1063/1.4901532 – ident: S0884291419003637_ref23 doi: 10.1109/JPHOTOV.2018.2830302 – ident: S0884291419003637_ref10 doi: 10.1016/j.solmat.2017.01.044 – ident: S0884291419003637_ref27 doi: 10.1007/s11664-012-2001-1 – ident: S0884291419003637_ref31 doi: 10.1002/solr.201800304 – ident: S0884291419003637_ref30 doi: 10.1007/s11664-011-1649-2 – ident: S0884291419003637_ref28 doi: 10.1116/1.572547 – ident: S0884291419003637_ref17 doi: 10.1016/j.solmat.2018.06.025 – ident: S0884291419003637_ref24 doi: 10.1016/0927-0248(96)00053-0 – ident: S0884291419003637_ref21 doi: 10.1109/JPHOTOV.2017.2768965 – ident: S0884291419003637_ref18 doi: 10.1016/j.solmat.2014.10.045 – ident: S0884291419003637_ref22 doi: 10.1063/1.359444 – ident: S0884291419003637_ref2 doi: 10.1109/JPHOTOV.2017.2775139 – ident: S0884291419003637_ref1 doi: 10.1016/S0022-0728(02)00730-1 – ident: S0884291419003637_ref13 doi: 10.1016/j.solmat.2015.03.032 – ident: S0884291419003637_ref11 doi: 10.1021/nl402659c – ident: S0884291419003637_ref29 doi: 10.1016/j.jcrysgro.2010.03.045 – ident: S0884291419003637_ref16 doi: 10.1557/mrc.2018.117 – ident: S0884291419003637_ref25 doi: 10.1007/s11664-007-0166-9 – ident: S0884291419003637_ref7 doi: 10.1039/C3EE41981A – ident: S0884291419003637_ref20 doi: 10.1016/j.solener.2008.07.005 – ident: S0884291419003637_ref4 doi: 10.1063/1.92863 – ident: S0884291419003637_ref19 doi: 10.1021/acsenergylett.6b00587 – ident: S0884291419003637_ref26 doi: 10.1007/s11664-009-0787-2 – volume: 82 start-page: 481 year: 2004 ident: S0884291419003637_ref9 article-title: Copper inclusion and migration from the back contact in CdTe solar cells publication-title: Sol. Energy Mater. Sol. Cells – start-page: 738 volume-title: IEEE 44th Photovoltaic Spec. Conf. (PVSC) year: 2017 ident: S0884291419003637_ref14 |
SSID | ssj0015074 |
Score | 2.3708076 |
SecondaryResourceType | review_article |
Snippet | Cadmium telluride (CdTe) is one of the leading photovoltaic technologies with a market share of around 5%. However, there still exist challenges to fabricate a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3988 |
SubjectTerms | Applied and Technical Physics Atoms & subatomic particles Biomaterials Cadmium Cadmium telluride Cadmium tellurides Chemical etching Circuits Contact resistance Current voltage characteristics Efficiency Energy Conversion and Storage Materials Energy conversion efficiency Etching Inorganic Chemistry Interfaces Intermetallic compounds Iodine Iodine compounds Materials Engineering Materials research Materials Science Morphology Nanotechnology Open circuit voltage Organic chemistry Photovoltaic cells Quantum efficiency Raman spectra Raman spectroscopy Scanning electron microscopy Spectrum analysis Temperature dependence Thin films Topography X-ray diffraction X-ray spectroscopy Zinc telluride |
Title | Wet chemical etching of cadmium telluride photovoltaics for enhanced open-circuit voltage, fill factor, and power conversion efficiency |
URI | https://link.springer.com/article/10.1557/jmr.2019.363 https://www.proquest.com/docview/2331201922 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nj9MwEB2xrZDggGABUVgqH4ALa9ax82Gf0BZtWSFRIcSKvUXxR3aD2qS06W_gbzN23S0g4BJF8cSHPGf8bM_MA3gh_ZximaU6MxlF78eolELTWnPmDBKknPlE4Y-z_Pwi_XCZXcYNt3UMq9z5xOCobWf8HvkJFyLhno_wt8vv1KtG-dPVKKFxAEN0wVIOYDg5m336fHOOgGwn3fLIlHKVpDH0PcuKk28LXw40UW9ELn6flPZM84_D0TDnTO_DvUgWyekW3Qdwy7WHcPeXEoKHcDuEcJr1Q_jx1fXExPx_4tFAA9LVxFR20WwWxOeLbFaNdWR53fUd-qW-wjcJ0lbi2usQCkC8mhY1zcpsmp4Ekyt3TOpmPidbaZ5jUrWWLL24Ggkh62G_jbhQisLncT6Ci-nZl3fnNMosUCPyoqeOI2XiqlbCJEWuK225U5mx-MiaRLjc6FoxpY3QeOF1JhXHBnSV2haGCfEYBm3XuidAOKsqqwstjZJp5oSqWGYlLkGr3FrD0xG83n3n0sQa5F4KY176tQiiUiIqpUelRFRG8PLGermtvfEPu6MdZGX8A9flfryM4NUOxn3z3_p5-v9-nsEdfxOqPLIjGPSrjXuOjKTXYziQ0_djGJ5OJ5PZOA7CnydC5R8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQcEBRQlxaYA-VCTRM7ycYHhBCwbOnj1IreQvwIDdpNtrtZIX4B_4bfyIyTdAEBt15ycCY--JvMfLbnwdjTlHyKDSzXsYk5Wr-Ap6nUvNAicAYJUhJQovDRcTI-jT6cxWdr7EefC0Nhlb1N9Iba1obOyPeElKEgPiJezS44dY2i29W-hUarFgfu21fcsi1e7r9FfHeEGL07eTPmXVcBbmQybLgTyBCEKpQ04TDRubbCqdhYHLImlC4xulCB0kZqfIgiTpXAF2gZtB2agA5A0eRfiyR6cspMH72_vLVAbhW1rDXiQoVRF2gfx8O9L1MqPhqqFzKRv7vAFa_94yrWe7jRHXa7o6bwutWlu2zNVRvs1i8FCzfYdR8wahb32PePrgHTVRsAwh4FoC7A5HZaLqdA2SnLeWkdzM7rpkYr2OT4JSBJBled-8ADoN5d3JRzsywb8CKf3S4U5WQCbSOgXcgrCzNq5QY-QN6f7oHzhS8oa_Q-O72S5X_A1qu6cpsMRJDnVg91alQaxU6qPIhtihvePLHWiGjAnvfrnJmu4jk13phktPNBVDJEJSNUMkRlwHYupWdtpY9_yG33kGXd_77IVto5YM96GFev_zbPw__P84TdGJ8cHWaH-8cHW-wmDfr6ksE2W2_mS_cIuVCjH3sFBPbpqjX-JzR_H5w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW4HggKCAWCjgA-VCzSZ2Xj4gBLSrlsKqQlT0FuJHaNBusuxmhfgF_Cd-HTN5dAEBt15ysCc-5JuMv7HnAfAooT3Fepbr0IQcrZ_Hk0RqnmvhOYMEKfIoUfjtJDo4CV6fhqcb8KPPhaGwyt4mNobaVobOyEdCSl8QHxGjvAuLON4bP59_4dRBim5a-3YarYocuW9f0X1bPjvcQ6x3hBjvv391wLsOA9zIKK65E8gWhMqVNH4c6Uxb4VRoLA5Z40sXGZ0rT2kjNT5EHiZK4ARaCW1j49FhKJr_zZi8ogFsvtyfHL87v8NAphW0HDbgQvlBF3YfhvHo84xKkfrqqYzk7xvimuX-cTHb7Hfj63CtI6rsRatZN2DDlVtw9ZfyhVtwqQkfNcub8P2Dq5npag8w0gQUYFXOTGZnxWrGKFdltSisY_Ozqq7QJtYZvsmQMjNXnjVhCIw6eXFTLMyqqFkj8sntsryYTlnbFmiXZaVlc2rsxppw-easj7mmDAblkN6CkwsB4DYMyqp0d4AJL8usjnViVBKETqrMC22C7m8WWWtEMIQn_XdOTVf_nNpwTFPygxCVFFFJCZUUURnCzrn0vK378Q-57R6ytPv7l-laV4fwuIdxPf23de7-f52HcBm1PX1zODm6B1dorCk26W3DoF6s3H0kRrV-0Gkgg48XrfQ_AQrgJS4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wet+chemical+etching+of+cadmium+telluride+photovoltaics+for+enhanced+open-circuit+voltage%2C+fill+factor%2C+and+power+conversion+efficiency&rft.jtitle=Journal+of+materials+research&rft.au=Bastola%2C+Ebin&rft.au=Alfadhili%2C+Fadhil+K.&rft.au=Phillips%2C+Adam+B.&rft.au=Heben%2C+Michael+J.&rft.date=2019-12-30&rft.issn=0884-2914&rft.eissn=2044-5326&rft.volume=34&rft.issue=24&rft.spage=3988&rft.epage=3997&rft_id=info:doi/10.1557%2Fjmr.2019.363&rft.externalDBID=n%2Fa&rft.externalDocID=10_1557_jmr_2019_363 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-2914&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-2914&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-2914&client=summon |