Chaotic hybrid multi-objective optimization algorithm for scientific workflow scheduling in multisite clouds
A cloud is made up of many data centers, with its own set of data and resources. The reasons for employing several cloud sites to operate a workflow are that the data is already dispersed, the required resources surpass the constraints of a single site. This paper presents a hybrid multi-objective o...
Saved in:
Published in | The Journal of the Operational Research Society Vol. ahead-of-print; no. ahead-of-print; pp. 1 - 22 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Taylor & Francis
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A cloud is made up of many data centers, with its own set of data and resources. The reasons for employing several cloud sites to operate a workflow are that the data is already dispersed, the required resources surpass the constraints of a single site. This paper presents a hybrid multi-objective optimization algorithm denoted as HSOS-SOA, achieved by combining the Symbiotic Organisms Search and Seagull Optimization Algorithm. The HSOS-SOA uses chaotic maps to generate random numbers and performs a good trade-off between exploration and exploitation, resulting in a higher convergence rate. HSOS-SOA is used to solve scientific workflow scheduling problems in multisite cloud computing by taking into consideration elements such as makespan, cost, and reliability. A solution is chosen from the Pareto front using the knee-point approach in this approach. Extensive analyses are performed out in Microsoft Azure multisite cloud and the results exhibited that the HSOS-SOA can outperform other algorithms in terms of metrics such as IGD, Coverage Ratio, and so on. Experimental results of experiments reveal that the results in makespan improvement in the range of 5.72-28.61%, cost in the range of 5.16-45.16%, and reliability in the range of 3.11-25% over well-known metaheuristic algorithms. |
---|---|
AbstractList | A cloud is made up of many data centers, with its own set of data and resources. The reasons for employing several cloud sites to operate a workflow are that the data is already dispersed, the required resources surpass the constraints of a single site. This paper presents a hybrid multi-objective optimization algorithm denoted as HSOS-SOA, achieved by combining the Symbiotic Organisms Search and Seagull Optimization Algorithm. The HSOS-SOA uses chaotic maps to generate random numbers and performs a good trade-off between exploration and exploitation, resulting in a higher convergence rate. HSOS-SOA is used to solve scientific workflow scheduling problems in multisite cloud computing by taking into consideration elements such as makespan, cost, and reliability. A solution is chosen from the Pareto front using the knee-point approach in this approach. Extensive analyses are performed out in Microsoft Azure multisite cloud and the results exhibited that the HSOS-SOA can outperform other algorithms in terms of metrics such as IGD, Coverage Ratio, and so on. Experimental results of experiments reveal that the results in makespan improvement in the range of 5.72-28.61%, cost in the range of 5.16-45.16%, and reliability in the range of 3.11-25% over well-known metaheuristic algorithms. |
Author | Mohammadzadeh, Ali Artin, Javad Javaheri, Danial |
Author_xml | – sequence: 1 givenname: Ali surname: Mohammadzadeh fullname: Mohammadzadeh, Ali organization: Department of Computer Engineering, Shahindezh Branch, Islamic Azad University – sequence: 2 givenname: Danial orcidid: 0000-0002-7275-2370 surname: Javaheri fullname: Javaheri, Danial organization: Department of Computer Engineering, Chosun University – sequence: 3 givenname: Javad surname: Artin fullname: Artin, Javad organization: Department of Computer Engineering and Information Technology, Payame Noor University |
BookMark | eNqFkF1LwzAUhoMouE1_gtA_0Jk0bdrijTL8goE3el2SNFnPTJORZI75623dvPFCrw68vM8L55miU-usQuiK4DnBFb7GhOGCVdk8wxmdZ6Qu8oydoAnJS5bWlOFTNBk76Vg6R9MQ1hjjGpN6gsyi4y6CTLq98NAm_dZESJ1YKxnhQyVuE6GHTx7B2YSblfMQuz7RzidBgrIR9ADvnH_Xxu2GrFPt1oBdJWAPYwGiSqRx2zZcoDPNTVCXxztDbw_3r4undPny-Ly4W6aSsjKmiuiMFiUXXJRZIfKykpwKkWuNGeYt1oooxkih9RCpglHR8lZUnLaY6FpmdIaKw670LgSvdLPx0HO_bwhuRmXNj7JmVNYclQ3czS9OQvx-PXoO5l_69kCDHfT0fJBi2ibyvXFee24lhIb-PfEFgtWLXg |
CitedBy_id | crossref_primary_10_1007_s10586_024_04545_w crossref_primary_10_1007_s10922_024_09887_9 crossref_primary_10_1007_s11227_023_05873_1 crossref_primary_10_1016_j_swevo_2024_101654 crossref_primary_10_1007_s10586_024_04833_5 crossref_primary_10_1007_s11831_025_10249_0 |
Cites_doi | 10.1016/j.knosys.2018.11.024 10.1109/GRID.2007.4354110 10.1016/j.future.2021.03.012 10.1016/j.eswa.2021.114864 10.1016/j.jocs.2013.10.002 10.1007/s12652-021-03482-5 10.1007/978-1-4842-1043-7_1 10.1002/cpe.4044 10.1109/TCC.2014.2314655 10.1109/ACCESS.2020.2991394 10.1109/CCGrid.2012.114 10.1016/j.jal.2016.11.013 10.1016/j.future.2017.05.024 10.1016/j.sysarc.2020.101837 10.1007/s00521-015-1923-y 10.1016/j.asoc.2016.03.008 10.1016/j.engappai.2020.103905 10.31209/2019.100000115 10.1016/j.parco.2017.01.002 10.1016/j.chemolab.2015.08.020 10.1007/978-3-540-78640-5_54 10.1016/j.eswa.2018.10.045 10.1109/TKDE.2018.2867857 10.1016/j.knosys.2021.107779 10.1016/j.aej.2021.06.058 10.1016/j.future.2020.03.055 10.1016/j.chaos.2020.109869 10.1007/978-3-031-01872-5 10.1016/j.ins.2014.02.122 10.1007/s12293-016-0212-3 10.1016/j.ins.2016.09.026 10.1016/j.future.2018.01.005 10.1109/TCC.2014.2303077 10.1016/j.jpdc.2014.09.002 10.3390/app8040538 10.1109/ACCESS.2021.3098642 10.1007/s11227-014-1376-6 10.1016/j.jpdc.2015.10.001 10.1016/j.compstruc.2014.03.007 10.1016/j.future.2019.02.028 10.1007/s10479-020-03902-3 10.1016/j.jclepro.2020.122927 10.1016/j.swevo.2021.101008 10.1007/s10922-021-09599-4 10.1016/j.jnca.2015.01.001 10.1587/transinf.2018PAP0016 10.1007/978-1-0716-1534-8_6 10.1007/978-981-10-5221-7_11 10.1016/j.eswa.2021.115351 10.1109/CloudCom.2012.6427573 10.1145/2815624 10.1016/j.compeleceng.2017.12.004 10.1016/j.eswa.2020.113395 10.1016/j.egyr.2021.06.008 10.1016/j.energy.2021.120995 10.1016/j.advengsoft.2017.01.004 10.1016/j.swevo.2012.09.002 10.1016/j.future.2015.07.014 10.1016/j.future.2015.03.017 10.1016/j.future.2015.12.014 10.1109/ACCESS.2019.2909945 10.1016/j.jcde.2017.02.005 10.1016/j.cie.2020.106649 10.1007/s11227-019-02877-8 10.1016/j.jpdc.2013.12.004 10.1016/j.sysarc.2019.08.004 10.1016/j.simpat.2015.07.001 10.1016/j.procs.2016.09.032 10.3390/en15134571 10.1109/TEVC.2014.2378512 10.1109/CEC.2018.8477915 10.3139/120.111529 10.1016/j.advengsoft.2015.01.010 10.1016/j.comnet.2020.107438 10.1016/j.engappai.2020.103501 10.1007/s00521-014-1597-x 10.1002/cpe.1417 10.1007/978-981-13-1927-3_34 10.1016/j.neucom.2016.08.003 10.1016/j.ins.2016.08.003 10.1007/s00521-020-04878-8 10.1007/s42235-021-0050-y 10.1109/SIS.2005.1501604 10.1016/j.knosys.2017.07.018 10.1109/TPDS.2015.2446459 10.1007/978-3-662-55696-2_3 10.1016/j.future.2016.04.014 10.1016/j.future.2020.05.040 10.1016/j.asoc.2022.109440 |
ContentType | Journal Article |
Copyright | Operational Research Society 2023 2023 |
Copyright_xml | – notice: Operational Research Society 2023 2023 |
DBID | AAYXX CITATION |
DOI | 10.1080/01605682.2023.2195426 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) Computer Science Business |
EISSN | 1476-9360 |
EndPage | 22 |
ExternalDocumentID | 10_1080_01605682_2023_2195426 2195426 |
Genre | Research Article |
GroupedDBID | -~X .DC 0BK 0R~ 29L 30N 3R3 4.4 5GY 7WY 8R4 8R5 AAJMT AALDU AAMIU AAPUL AAQRR ABJNI ABKVW ABLIJ ABLJU ABMNI ABPAQ ABPPZ ABXUL ABXYU ABYYQ ACGFO ACHQT ACIWK ACNCT ACREN ACTIO ADEPB ADFRT ADGTB ADMHG AEISY AENEX AEXYK AEYOC AFAIT AFTQD AGAYW AGDLA AHAJD AHDZW AJRNO AKBVH AKOOK ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU AMTXH AQRUH ASPBG AVWKF AWYRJ BLEHA CCCUG CS3 CSNOR DGEBU DU5 EBS F5P JST KYCEM LJTGL M4Z MS~ O9- P2P Q2X RNANH ROSJB RPC RSV RTWRZ SNX SOJ TBQAZ TDBHL TEN TFL TFT TFW TN5 TTHFI TUROJ U5U VQA WH7 XSW ZGOLN ~02 1OL 3EH 7RQ 7X7 88E 8FE 8FG 8FI 8FJ 8FL 8G5 AAAZS AAGDL AAHIA AAIAL AARHV AAXLS AAYOK AAYXX AAYZH ABAWQ ABBHK ABDPE ABJCF ABLWH ABUWG ABXSQ ACHJO ACTTO ACXJH ADBBV ADGDI ADMLS ADNFJ ADULT ADUMR ADXEU ADYSH AEBJH AECXW AEHZU AEUPB AEZBV AFBWG AFFNX AFKRA AFRVT AGKTX AGVKY AGWUF AHSBF AI. AIYEW AKHJE AKMBP ALRRR AMKLP AMPGV APTMU ARAPS ASMEE AXYYD AZQEC BENPR BEZIV BGLVJ BGSSV BKKNO BPHCQ BVXVI CAG CBXGM CCKSF CCPQU CITATION COF CYRSC CYVLN DAOYK DWQXO EJD FEFRA FRNLG FYUFA GENNL GNUQQ GROUPED_ABI_INFORM_RESEARCH GUPYA GUQSH HCIFZ HGD HMCUK HVGLF H~9 IFELN IPSME JAAYA JAV JBC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JPL JPPEU K60 K6V K6~ K7- L6V M0C M1P M2O M7S N8N NHB NUSFT P62 PHGZM PHGZT PLIJB PQBIZ PQBZA PQQKQ PROAC PSQYO PTHSS RNS SA0 TAJZE UKHRP VH1 ZCG |
ID | FETCH-LOGICAL-c367t-e1f2357abab725b478ca3bb4ff060ad0fe1e6615ff4ffe563bdadb8a3d01f9c23 |
ISSN | 0160-5682 |
IngestDate | Tue Jul 01 04:24:32 EDT 2025 Thu Apr 24 23:00:27 EDT 2025 Wed Dec 25 09:04:39 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | ahead-of-print |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c367t-e1f2357abab725b478ca3bb4ff060ad0fe1e6615ff4ffe563bdadb8a3d01f9c23 |
ORCID | 0000-0002-7275-2370 0000-0003-4390-5064 |
PageCount | 22 |
ParticipantIDs | crossref_primary_10_1080_01605682_2023_2195426 crossref_citationtrail_10_1080_01605682_2023_2195426 informaworld_taylorfrancis_310_1080_01605682_2023_2195426 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | The Journal of the Operational Research Society |
PublicationYear | 2024 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | e_1_3_2_28_1 Gharehpasha S. (e_1_3_2_25_1) 2020 e_1_3_2_20_1 e_1_3_2_66_1 e_1_3_2_43_1 e_1_3_2_24_1 e_1_3_2_89_1 e_1_3_2_100_1 e_1_3_2_81_1 e_1_3_2_16_1 e_1_3_2_39_1 e_1_3_2_7_1 e_1_3_2_31_1 e_1_3_2_54_1 e_1_3_2_77_1 Sunyaev A. (e_1_3_2_85_1) 2020 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_58_1 e_1_3_2_96_1 e_1_3_2_3_1 e_1_3_2_92_1 e_1_3_2_73_1 Liu J. (e_1_3_2_50_1) 2016 e_1_3_2_29_1 Jyoti A. (e_1_3_2_34_1) 2020 Ocaña K. A. (e_1_3_2_70_1) 2012 e_1_3_2_21_1 e_1_3_2_86_1 e_1_3_2_48_1 e_1_3_2_67_1 e_1_3_2_40_1 e_1_3_2_103_1 e_1_3_2_17_1 Mohammadzadeh A. (e_1_3_2_63_1) 2020 e_1_3_2_2_1 e_1_3_2_32_1 e_1_3_2_74_1 e_1_3_2_6_1 e_1_3_2_13_1 e_1_3_2_59_1 e_1_3_2_97_1 e_1_3_2_36_1 e_1_3_2_78_1 e_1_3_2_93_1 e_1_3_2_51_1 e_1_3_2_49_1 e_1_3_2_41_1 e_1_3_2_87_1 e_1_3_2_22_1 e_1_3_2_64_1 e_1_3_2_26_1 e_1_3_2_68_1 e_1_3_2_83_1 Marouf I. (e_1_3_2_55_1) 2019 e_1_3_2_60_1 e_1_3_2_102_1 Schwiegelshohn U. (e_1_3_2_82_1) 2010 e_1_3_2_9_1 e_1_3_2_18_1 Mohammadzadeh A. (e_1_3_2_62_1) 2020 e_1_3_2_10_1 e_1_3_2_33_1 e_1_3_2_52_1 e_1_3_2_75_1 e_1_3_2_5_1 e_1_3_2_14_1 e_1_3_2_37_1 e_1_3_2_56_1 e_1_3_2_79_1 e_1_3_2_98_1 e_1_3_2_94_1 e_1_3_2_90_1 Liu J. (e_1_3_2_47_1) 2017 e_1_3_2_27_1 e_1_3_2_42_1 e_1_3_2_65_1 e_1_3_2_88_1 Liu L. (e_1_3_2_45_1) 2019; 13 e_1_3_2_46_1 e_1_3_2_69_1 e_1_3_2_80_1 e_1_3_2_101_1 e_1_3_2_61_1 e_1_3_2_84_1 e_1_3_2_38_1 e_1_3_2_8_1 e_1_3_2_19_1 e_1_3_2_30_1 e_1_3_2_76_1 e_1_3_2_11_1 e_1_3_2_53_1 e_1_3_2_4_1 e_1_3_2_15_1 Liu J. (e_1_3_2_44_1) 2016 e_1_3_2_57_1 e_1_3_2_99_1 e_1_3_2_95_1 e_1_3_2_72_1 e_1_3_2_91_1 Okabe T. (e_1_3_2_71_1) 2003 |
References_xml | – ident: e_1_3_2_13_1 doi: 10.1016/j.knosys.2018.11.024 – ident: e_1_3_2_95_1 doi: 10.1109/GRID.2007.4354110 – ident: e_1_3_2_31_1 doi: 10.1016/j.future.2021.03.012 – ident: e_1_3_2_93_1 doi: 10.1016/j.eswa.2021.114864 – ident: e_1_3_2_24_1 doi: 10.1016/j.jocs.2013.10.002 – volume-title: BDA: Gestion de Données—Principes, Technologies et Applications year: 2016 ident: e_1_3_2_50_1 – ident: e_1_3_2_60_1 doi: 10.1007/s12652-021-03482-5 – ident: e_1_3_2_11_1 doi: 10.1007/978-1-4842-1043-7_1 – ident: e_1_3_2_36_1 doi: 10.1002/cpe.4044 – ident: e_1_3_2_77_1 doi: 10.1109/TCC.2014.2314655 – ident: e_1_3_2_79_1 doi: 10.1109/ACCESS.2020.2991394 – volume-title: Task scheduling optimization in cloud computing using multi-objective evolutionary algorithms with user-in-the-loop year: 2019 ident: e_1_3_2_55_1 – ident: e_1_3_2_21_1 doi: 10.1109/CCGrid.2012.114 – ident: e_1_3_2_68_1 doi: 10.1016/j.jal.2016.11.013 – ident: e_1_3_2_18_1 doi: 10.1016/j.future.2017.05.024 – ident: e_1_3_2_28_1 doi: 10.1016/j.sysarc.2020.101837 – ident: e_1_3_2_91_1 doi: 10.1007/s00521-015-1923-y – ident: e_1_3_2_66_1 doi: 10.1016/j.asoc.2016.03.008 – ident: e_1_3_2_99_1 doi: 10.1016/j.engappai.2020.103905 – ident: e_1_3_2_51_1 doi: 10.31209/2019.100000115 – ident: e_1_3_2_89_1 doi: 10.1016/j.parco.2017.01.002 – ident: e_1_3_2_54_1 doi: 10.1016/j.chemolab.2015.08.020 – ident: e_1_3_2_64_1 doi: 10.1007/978-3-540-78640-5_54 – start-page: 195 volume-title: Cloud computing (Internet computing year: 2020 ident: e_1_3_2_85_1 – start-page: 1 year: 2020 ident: e_1_3_2_62_1 article-title: A hybrid multi-objective metaheuristic optimization algorithm for scientific workflow scheduling publication-title: Cluster Computing, – ident: e_1_3_2_19_1 doi: 10.1016/j.eswa.2018.10.045 – ident: e_1_3_2_48_1 doi: 10.1109/TKDE.2018.2867857 – ident: e_1_3_2_6_1 doi: 10.1016/j.knosys.2021.107779 – ident: e_1_3_2_69_1 doi: 10.1016/j.aej.2021.06.058 – ident: e_1_3_2_42_1 doi: 10.1016/j.future.2020.03.055 – volume-title: Multisite management of scientific workflows in the cloud year: 2016 ident: e_1_3_2_44_1 – ident: e_1_3_2_7_1 doi: 10.1016/j.chaos.2020.109869 – ident: e_1_3_2_12_1 doi: 10.1007/978-3-031-01872-5 – ident: e_1_3_2_92_1 doi: 10.1016/j.ins.2014.02.122 – ident: e_1_3_2_90_1 doi: 10.1007/s12293-016-0212-3 – ident: e_1_3_2_22_1 doi: 10.1016/j.ins.2016.09.026 – ident: e_1_3_2_10_1 doi: 10.1016/j.future.2018.01.005 – ident: e_1_3_2_14_1 doi: 10.1109/TCC.2014.2303077 – ident: e_1_3_2_96_1 doi: 10.1016/j.jpdc.2014.09.002 – ident: e_1_3_2_3_1 doi: 10.3390/app8040538 – ident: e_1_3_2_40_1 doi: 10.1109/ACCESS.2021.3098642 – ident: e_1_3_2_73_1 doi: 10.1007/s11227-014-1376-6 – ident: e_1_3_2_2_1 doi: 10.1016/j.jpdc.2015.10.001 – ident: e_1_3_2_8_1 doi: 10.1016/j.compstruc.2014.03.007 – ident: e_1_3_2_30_1 doi: 10.1016/j.future.2019.02.028 – ident: e_1_3_2_94_1 doi: 10.1007/s10479-020-03902-3 – ident: e_1_3_2_87_1 doi: 10.1016/j.jclepro.2020.122927 – ident: e_1_3_2_76_1 doi: 10.1016/j.swevo.2021.101008 – start-page: 1 year: 2020 ident: e_1_3_2_34_1 article-title: Cloud computing using load balancing and service broker policy for IT service: A taxonomy and survey publication-title: Journal of Ambient Intelligence and Humanized Computing, – volume-title: Job scheduling strategies for parallel processing year: 2010 ident: e_1_3_2_82_1 – ident: e_1_3_2_61_1 doi: 10.1007/s10922-021-09599-4 – ident: e_1_3_2_97_1 doi: 10.1016/j.jnca.2015.01.001 – ident: e_1_3_2_65_1 doi: 10.1587/transinf.2018PAP0016 – ident: e_1_3_2_67_1 doi: 10.1007/978-1-0716-1534-8_6 – ident: e_1_3_2_53_1 doi: 10.1007/978-981-10-5221-7_11 – ident: e_1_3_2_26_1 doi: 10.1016/j.eswa.2021.115351 – ident: e_1_3_2_16_1 doi: 10.1109/CloudCom.2012.6427573 – ident: e_1_3_2_75_1 doi: 10.1145/2815624 – ident: e_1_3_2_84_1 doi: 10.1016/j.compeleceng.2017.12.004 – ident: e_1_3_2_27_1 doi: 10.1016/j.eswa.2020.113395 – start-page: 1 year: 2020 ident: e_1_3_2_63_1 article-title: Improved chaotic binary grey wolf optimization algorithm for workflow scheduling in green cloud computing publication-title: Evolutionary Intelligence, – ident: e_1_3_2_17_1 doi: 10.1016/j.egyr.2021.06.008 – ident: e_1_3_2_103_1 doi: 10.1016/j.energy.2021.120995 – ident: e_1_3_2_81_1 doi: 10.1016/j.advengsoft.2017.01.004 – volume-title: Brazilian Symposium on Bioinformatics year: 2012 ident: e_1_3_2_70_1 – ident: e_1_3_2_57_1 doi: 10.1016/j.swevo.2012.09.002 – ident: e_1_3_2_37_1 doi: 10.1016/j.future.2015.07.014 – ident: e_1_3_2_52_1 doi: 10.1016/j.future.2015.03.017 – ident: e_1_3_2_43_1 doi: 10.1016/j.future.2015.12.014 – ident: e_1_3_2_33_1 doi: 10.1109/ACCESS.2019.2909945 – volume-title: The 2003 Congress on Evolutionary Computation, 2003. CEC'03 year: 2003 ident: e_1_3_2_71_1 – ident: e_1_3_2_39_1 doi: 10.1016/j.jcde.2017.02.005 – ident: e_1_3_2_78_1 doi: 10.1016/j.cie.2020.106649 – ident: e_1_3_2_59_1 doi: 10.1007/s11227-019-02877-8 – ident: e_1_3_2_20_1 doi: 10.1016/j.jpdc.2013.12.004 – ident: e_1_3_2_101_1 doi: 10.1016/j.sysarc.2019.08.004 – ident: e_1_3_2_15_1 doi: 10.1016/j.simpat.2015.07.001 – ident: e_1_3_2_35_1 doi: 10.1016/j.procs.2016.09.032 – ident: e_1_3_2_9_1 doi: 10.3390/en15134571 – ident: e_1_3_2_100_1 doi: 10.1109/TEVC.2014.2378512 – ident: e_1_3_2_49_1 doi: 10.1109/CEC.2018.8477915 – start-page: 1 year: 2020 ident: e_1_3_2_25_1 article-title: A discrete chaotic multi-objective SCA-ALO optimization algorithm for an optimal virtual machine placement in cloud data center publication-title: Journal of Ambient Intelligence and Humanized Computing, – ident: e_1_3_2_72_1 doi: 10.3139/120.111529 – ident: e_1_3_2_56_1 doi: 10.1016/j.advengsoft.2015.01.010 – ident: e_1_3_2_74_1 doi: 10.1016/j.comnet.2020.107438 – ident: e_1_3_2_83_1 doi: 10.1016/j.engappai.2020.103501 – ident: e_1_3_2_80_1 doi: 10.1007/s00521-014-1597-x – ident: e_1_3_2_86_1 doi: 10.1002/cpe.1417 – ident: e_1_3_2_5_1 doi: 10.1007/978-981-13-1927-3_34 – ident: e_1_3_2_38_1 doi: 10.1016/j.neucom.2016.08.003 – ident: e_1_3_2_98_1 doi: 10.1016/j.ins.2016.08.003 – ident: e_1_3_2_4_1 doi: 10.1007/s00521-020-04878-8 – ident: e_1_3_2_88_1 doi: 10.1007/s42235-021-0050-y – ident: e_1_3_2_41_1 doi: 10.1109/SIS.2005.1501604 – ident: e_1_3_2_58_1 doi: 10.1016/j.knosys.2017.07.018 – ident: e_1_3_2_102_1 doi: 10.1109/TPDS.2015.2446459 – start-page: 80 volume-title: Transactions on large-scale data-and knowledge-centered systems XXXIII year: 2017 ident: e_1_3_2_47_1 doi: 10.1007/978-3-662-55696-2_3 – ident: e_1_3_2_46_1 doi: 10.1016/j.future.2016.04.014 – ident: e_1_3_2_29_1 doi: 10.1016/j.future.2020.05.040 – ident: e_1_3_2_32_1 doi: 10.1016/j.asoc.2022.109440 – volume: 13 issue: 9 year: 2019 ident: e_1_3_2_45_1 article-title: A constrained multi-objective computation offloading algorithm in the mobile cloud computing environment publication-title: KSII Transactions on Internet & Information Systems, |
SSID | ssj0009019 |
Score | 2.4465725 |
Snippet | A cloud is made up of many data centers, with its own set of data and resources. The reasons for employing several cloud sites to operate a workflow are that... |
SourceID | crossref informaworld |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | hybrid algorithm Metaheuristic multisite scheduling workflow |
Title | Chaotic hybrid multi-objective optimization algorithm for scientific workflow scheduling in multisite clouds |
URI | https://www.tandfonline.com/doi/abs/10.1080/01605682.2023.2195426 |
Volume | ahead-of-print |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLVKJyF4AFZAjC_5gQdQ5chJnKR5nAaoQgJeOjHxEtmOTYrSZurSIfaj-I3YsZ14W8XnS1Q5der0nPq6zj3nAvBC8FyQlJYoxnyGSBzFiGUziaJIKzHTTEUgrUZ-_yGdH5N3J8nJaPTDy1ratizgFzt1Jf-CqmpTuGqV7F8g219UNajXCl91VAir4x9hfFTRRhuuVt-17sokB6KGfTWT2LRR08HK6iyntP7SbJZtteoSC40OUqcJdcViZN18U22Viju1Fbl0F9OPlqe8brZGDuxWsYOerHY5Bh9PxcbtK7psPpcS2oPaVHS1ouUFLUVl1DXLPoOHntPKk73TeqCi9TnQbyn9XYqIuMRmy6vFtYIh_p5milGSmhpEgTDzMMlSlMem1ICbqNUwFKkaifSWZ-uRc8cJMx2HXlw38udrEcOmWKox6CEEupp8EGkbvOiKQ3cX8-2ZG2AvUn9LojHYO5y__vxpsHnGXSmZ_pacZky7ue_6iEuroUteud4qZ3EP3LGgwkPDtX0wEusJuOnUERNw11UBgTYoTMBtz9JyAvZt-xl8aR3NX90HtSUqNESFV4gKfaLCnqhQDRMORIWOqHAgKlyuYU9UaIj6ABy_fbM4miNb5gPxOM1aJEKpPZcooyyLEkayGacxY0RKnGJaYilCoVaRiZSqSSRpzEpashmNSxzKnEfxQzBeN2vxCEAqQ4y5zJOMYBKKkDLJU4lLrvXbvMwOAHFfd8GtB74uxVIXobPKtSgVGqXConQAgr7bqTGB-V2H3MeyaDv6S8P8Iv5l38f_0fcJuDX8-J6CcbvZimdq0dyy55apPwEbtsPa |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1RkNpyKLClKv3CBw7twVsndpzkWKGibQt7AolbZDt2Fxo2FWRV0V9fT-y0C1LhwNXRjJKJPeM4770B2LOmtEKqmnJmCip4yqnOC0fTFJmYMvcVCNnIR1M5ORFfT7PTJS4MwirxG9oFoYg-V-PixsPoARL3EVXRMlkgjyrl4xRFy1L5CNayUubYxYCz6T_hXdY390ATijYDi-d_bm7UpxvqpUt152ADzHDHAW7yY7zo9Nj8viXm-LBH2oRncVtKPoV5tAUrdj6CxwMqfgQbQ_cHEpPBCNaXpAxHsBXHr8j7qGT94Tk0-zPVeo9kdo3EMNKjF2mrz0OWJa3PVxeRCEpU8729POtmF8QHgwSiJuKYCELHXNP-8mMzXxiRP0_O5sEZ_vsmpmkX9dU2nBx8Pt6f0NjegRou847axKHWjtJK52mmRV4YxbUWzjHJVM2cTazfPWTO-SGbSa5rVetC8ZolrjQpfwGr83ZuXwJRLmHMuDLLBROJTZR2RjpWG-TtmjrfATG81MpE7XNswdFUySCRGuNfYfyrGP8dGP81-xnEP-4zKJdnTNX1py4utEip-J22rx5guwtPJsdHh9Xhl-m31_DUXxIBWf4GVrvLhX3rN06dftevjD_LGguf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkSp6oHQBUZ4-cICDFyd2nOwRtV2V14oDlbhFfnYL6abqZlW1vx5P7MAWCTj06mhGycSeceLv-wbglTMTJ6SylDNTUcFzTnVZeZrnyMSUZahAyEb-PJOHR-LDt2JAEy4TrBK_oX0UiuhzNS7uM-sHRNxbFEUrZIU0qpyPc9Qsy-VtuCNRPBxZHGz2W3eX9b090ISizUDi-Zuba-XpmnjpWtmZboMebjiiTX6MV50em6s_tBxv9ET34V7alJJ3cRbtwC23GMHmgIkfwfbQ-4GkVDCCrTUhwxHspPEleZ10rN88gGZvrtrgkcwvkRZGeuwibfX3mGNJG7LVaaKBEtUct-cn3fyUhFiQSNNEFBNB4Jhv2oswNg9lEdnz5GQRneHJNzFNu7LLh3A0Pfi6d0hTcwdquCw76jKPSjtKK13mhRZlZRTXWnjPJFOWeZe5sHcovA9DrpBcW2V1pbhlmZ-YnD-CjUW7cI-BKJ8xZvykKAUTmcuU9kZ6Zg2ydo0td0EM77Q2SfkcG3A0dTYIpKb41xj_OsV_F8a_zM6i9Mf_DCbrE6bu-n8uPjZIqfk_bZ_cwPYlbH7Zn9af3s8-PoW74YqIsPJnsNGdr9zzsGvq9It-XfwEcVMKQw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chaotic+hybrid+multi-objective+optimization+algorithm+for+scientific+workflow+scheduling+in+multisite+clouds&rft.jtitle=The+Journal+of+the+Operational+Research+Society&rft.au=Mohammadzadeh%2C+Ali&rft.au=Javaheri%2C+Danial&rft.au=Artin%2C+Javad&rft.date=2024-02-01&rft.pub=Taylor+%26+Francis&rft.issn=0160-5682&rft.eissn=1476-9360&rft.volume=ahead-of-print&rft.issue=ahead-of-print&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1080%2F01605682.2023.2195426&rft.externalDocID=2195426 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-5682&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-5682&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-5682&client=summon |