Chaotic hybrid multi-objective optimization algorithm for scientific workflow scheduling in multisite clouds

A cloud is made up of many data centers, with its own set of data and resources. The reasons for employing several cloud sites to operate a workflow are that the data is already dispersed, the required resources surpass the constraints of a single site. This paper presents a hybrid multi-objective o...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of the Operational Research Society Vol. ahead-of-print; no. ahead-of-print; pp. 1 - 22
Main Authors Mohammadzadeh, Ali, Javaheri, Danial, Artin, Javad
Format Journal Article
LanguageEnglish
Published Taylor & Francis 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A cloud is made up of many data centers, with its own set of data and resources. The reasons for employing several cloud sites to operate a workflow are that the data is already dispersed, the required resources surpass the constraints of a single site. This paper presents a hybrid multi-objective optimization algorithm denoted as HSOS-SOA, achieved by combining the Symbiotic Organisms Search and Seagull Optimization Algorithm. The HSOS-SOA uses chaotic maps to generate random numbers and performs a good trade-off between exploration and exploitation, resulting in a higher convergence rate. HSOS-SOA is used to solve scientific workflow scheduling problems in multisite cloud computing by taking into consideration elements such as makespan, cost, and reliability. A solution is chosen from the Pareto front using the knee-point approach in this approach. Extensive analyses are performed out in Microsoft Azure multisite cloud and the results exhibited that the HSOS-SOA can outperform other algorithms in terms of metrics such as IGD, Coverage Ratio, and so on. Experimental results of experiments reveal that the results in makespan improvement in the range of 5.72-28.61%, cost in the range of 5.16-45.16%, and reliability in the range of 3.11-25% over well-known metaheuristic algorithms.
AbstractList A cloud is made up of many data centers, with its own set of data and resources. The reasons for employing several cloud sites to operate a workflow are that the data is already dispersed, the required resources surpass the constraints of a single site. This paper presents a hybrid multi-objective optimization algorithm denoted as HSOS-SOA, achieved by combining the Symbiotic Organisms Search and Seagull Optimization Algorithm. The HSOS-SOA uses chaotic maps to generate random numbers and performs a good trade-off between exploration and exploitation, resulting in a higher convergence rate. HSOS-SOA is used to solve scientific workflow scheduling problems in multisite cloud computing by taking into consideration elements such as makespan, cost, and reliability. A solution is chosen from the Pareto front using the knee-point approach in this approach. Extensive analyses are performed out in Microsoft Azure multisite cloud and the results exhibited that the HSOS-SOA can outperform other algorithms in terms of metrics such as IGD, Coverage Ratio, and so on. Experimental results of experiments reveal that the results in makespan improvement in the range of 5.72-28.61%, cost in the range of 5.16-45.16%, and reliability in the range of 3.11-25% over well-known metaheuristic algorithms.
Author Mohammadzadeh, Ali
Artin, Javad
Javaheri, Danial
Author_xml – sequence: 1
  givenname: Ali
  surname: Mohammadzadeh
  fullname: Mohammadzadeh, Ali
  organization: Department of Computer Engineering, Shahindezh Branch, Islamic Azad University
– sequence: 2
  givenname: Danial
  orcidid: 0000-0002-7275-2370
  surname: Javaheri
  fullname: Javaheri, Danial
  organization: Department of Computer Engineering, Chosun University
– sequence: 3
  givenname: Javad
  surname: Artin
  fullname: Artin, Javad
  organization: Department of Computer Engineering and Information Technology, Payame Noor University
BookMark eNqFkF1LwzAUhoMouE1_gtA_0Jk0bdrijTL8goE3el2SNFnPTJORZI75623dvPFCrw68vM8L55miU-usQuiK4DnBFb7GhOGCVdk8wxmdZ6Qu8oydoAnJS5bWlOFTNBk76Vg6R9MQ1hjjGpN6gsyi4y6CTLq98NAm_dZESJ1YKxnhQyVuE6GHTx7B2YSblfMQuz7RzidBgrIR9ADvnH_Xxu2GrFPt1oBdJWAPYwGiSqRx2zZcoDPNTVCXxztDbw_3r4undPny-Ly4W6aSsjKmiuiMFiUXXJRZIfKykpwKkWuNGeYt1oooxkih9RCpglHR8lZUnLaY6FpmdIaKw670LgSvdLPx0HO_bwhuRmXNj7JmVNYclQ3czS9OQvx-PXoO5l_69kCDHfT0fJBi2ibyvXFee24lhIb-PfEFgtWLXg
CitedBy_id crossref_primary_10_1007_s10586_024_04545_w
crossref_primary_10_1007_s10922_024_09887_9
crossref_primary_10_1007_s11227_023_05873_1
crossref_primary_10_1016_j_swevo_2024_101654
crossref_primary_10_1007_s10586_024_04833_5
crossref_primary_10_1007_s11831_025_10249_0
Cites_doi 10.1016/j.knosys.2018.11.024
10.1109/GRID.2007.4354110
10.1016/j.future.2021.03.012
10.1016/j.eswa.2021.114864
10.1016/j.jocs.2013.10.002
10.1007/s12652-021-03482-5
10.1007/978-1-4842-1043-7_1
10.1002/cpe.4044
10.1109/TCC.2014.2314655
10.1109/ACCESS.2020.2991394
10.1109/CCGrid.2012.114
10.1016/j.jal.2016.11.013
10.1016/j.future.2017.05.024
10.1016/j.sysarc.2020.101837
10.1007/s00521-015-1923-y
10.1016/j.asoc.2016.03.008
10.1016/j.engappai.2020.103905
10.31209/2019.100000115
10.1016/j.parco.2017.01.002
10.1016/j.chemolab.2015.08.020
10.1007/978-3-540-78640-5_54
10.1016/j.eswa.2018.10.045
10.1109/TKDE.2018.2867857
10.1016/j.knosys.2021.107779
10.1016/j.aej.2021.06.058
10.1016/j.future.2020.03.055
10.1016/j.chaos.2020.109869
10.1007/978-3-031-01872-5
10.1016/j.ins.2014.02.122
10.1007/s12293-016-0212-3
10.1016/j.ins.2016.09.026
10.1016/j.future.2018.01.005
10.1109/TCC.2014.2303077
10.1016/j.jpdc.2014.09.002
10.3390/app8040538
10.1109/ACCESS.2021.3098642
10.1007/s11227-014-1376-6
10.1016/j.jpdc.2015.10.001
10.1016/j.compstruc.2014.03.007
10.1016/j.future.2019.02.028
10.1007/s10479-020-03902-3
10.1016/j.jclepro.2020.122927
10.1016/j.swevo.2021.101008
10.1007/s10922-021-09599-4
10.1016/j.jnca.2015.01.001
10.1587/transinf.2018PAP0016
10.1007/978-1-0716-1534-8_6
10.1007/978-981-10-5221-7_11
10.1016/j.eswa.2021.115351
10.1109/CloudCom.2012.6427573
10.1145/2815624
10.1016/j.compeleceng.2017.12.004
10.1016/j.eswa.2020.113395
10.1016/j.egyr.2021.06.008
10.1016/j.energy.2021.120995
10.1016/j.advengsoft.2017.01.004
10.1016/j.swevo.2012.09.002
10.1016/j.future.2015.07.014
10.1016/j.future.2015.03.017
10.1016/j.future.2015.12.014
10.1109/ACCESS.2019.2909945
10.1016/j.jcde.2017.02.005
10.1016/j.cie.2020.106649
10.1007/s11227-019-02877-8
10.1016/j.jpdc.2013.12.004
10.1016/j.sysarc.2019.08.004
10.1016/j.simpat.2015.07.001
10.1016/j.procs.2016.09.032
10.3390/en15134571
10.1109/TEVC.2014.2378512
10.1109/CEC.2018.8477915
10.3139/120.111529
10.1016/j.advengsoft.2015.01.010
10.1016/j.comnet.2020.107438
10.1016/j.engappai.2020.103501
10.1007/s00521-014-1597-x
10.1002/cpe.1417
10.1007/978-981-13-1927-3_34
10.1016/j.neucom.2016.08.003
10.1016/j.ins.2016.08.003
10.1007/s00521-020-04878-8
10.1007/s42235-021-0050-y
10.1109/SIS.2005.1501604
10.1016/j.knosys.2017.07.018
10.1109/TPDS.2015.2446459
10.1007/978-3-662-55696-2_3
10.1016/j.future.2016.04.014
10.1016/j.future.2020.05.040
10.1016/j.asoc.2022.109440
ContentType Journal Article
Copyright Operational Research Society 2023 2023
Copyright_xml – notice: Operational Research Society 2023 2023
DBID AAYXX
CITATION
DOI 10.1080/01605682.2023.2195426
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Computer Science
Business
EISSN 1476-9360
EndPage 22
ExternalDocumentID 10_1080_01605682_2023_2195426
2195426
Genre Research Article
GroupedDBID -~X
.DC
0BK
0R~
29L
30N
3R3
4.4
5GY
7WY
8R4
8R5
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABJNI
ABKVW
ABLIJ
ABLJU
ABMNI
ABPAQ
ABPPZ
ABXUL
ABXYU
ABYYQ
ACGFO
ACHQT
ACIWK
ACNCT
ACREN
ACTIO
ADEPB
ADFRT
ADGTB
ADMHG
AEISY
AENEX
AEXYK
AEYOC
AFAIT
AFTQD
AGAYW
AGDLA
AHAJD
AHDZW
AJRNO
AKBVH
AKOOK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMTXH
AQRUH
ASPBG
AVWKF
AWYRJ
BLEHA
CCCUG
CS3
CSNOR
DGEBU
DU5
EBS
F5P
JST
KYCEM
LJTGL
M4Z
MS~
O9-
P2P
Q2X
RNANH
ROSJB
RPC
RSV
RTWRZ
SNX
SOJ
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TTHFI
TUROJ
U5U
VQA
WH7
XSW
ZGOLN
~02
1OL
3EH
7RQ
7X7
88E
8FE
8FG
8FI
8FJ
8FL
8G5
AAAZS
AAGDL
AAHIA
AAIAL
AARHV
AAXLS
AAYOK
AAYXX
AAYZH
ABAWQ
ABBHK
ABDPE
ABJCF
ABLWH
ABUWG
ABXSQ
ACHJO
ACTTO
ACXJH
ADBBV
ADGDI
ADMLS
ADNFJ
ADULT
ADUMR
ADXEU
ADYSH
AEBJH
AECXW
AEHZU
AEUPB
AEZBV
AFBWG
AFFNX
AFKRA
AFRVT
AGKTX
AGVKY
AGWUF
AHSBF
AI.
AIYEW
AKHJE
AKMBP
ALRRR
AMKLP
AMPGV
APTMU
ARAPS
ASMEE
AXYYD
AZQEC
BENPR
BEZIV
BGLVJ
BGSSV
BKKNO
BPHCQ
BVXVI
CAG
CBXGM
CCKSF
CCPQU
CITATION
COF
CYRSC
CYVLN
DAOYK
DWQXO
EJD
FEFRA
FRNLG
FYUFA
GENNL
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUPYA
GUQSH
HCIFZ
HGD
HMCUK
HVGLF
H~9
IFELN
IPSME
JAAYA
JAV
JBC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPL
JPPEU
K60
K6V
K6~
K7-
L6V
M0C
M1P
M2O
M7S
N8N
NHB
NUSFT
P62
PHGZM
PHGZT
PLIJB
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PTHSS
RNS
SA0
TAJZE
UKHRP
VH1
ZCG
ID FETCH-LOGICAL-c367t-e1f2357abab725b478ca3bb4ff060ad0fe1e6615ff4ffe563bdadb8a3d01f9c23
ISSN 0160-5682
IngestDate Tue Jul 01 04:24:32 EDT 2025
Thu Apr 24 23:00:27 EDT 2025
Wed Dec 25 09:04:39 EST 2024
IsPeerReviewed true
IsScholarly true
Issue ahead-of-print
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-e1f2357abab725b478ca3bb4ff060ad0fe1e6615ff4ffe563bdadb8a3d01f9c23
ORCID 0000-0002-7275-2370
0000-0003-4390-5064
PageCount 22
ParticipantIDs crossref_primary_10_1080_01605682_2023_2195426
crossref_citationtrail_10_1080_01605682_2023_2195426
informaworld_taylorfrancis_310_1080_01605682_2023_2195426
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationTitle The Journal of the Operational Research Society
PublicationYear 2024
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References e_1_3_2_28_1
Gharehpasha S. (e_1_3_2_25_1) 2020
e_1_3_2_20_1
e_1_3_2_66_1
e_1_3_2_43_1
e_1_3_2_24_1
e_1_3_2_89_1
e_1_3_2_100_1
e_1_3_2_81_1
e_1_3_2_16_1
e_1_3_2_39_1
e_1_3_2_7_1
e_1_3_2_31_1
e_1_3_2_54_1
e_1_3_2_77_1
Sunyaev A. (e_1_3_2_85_1) 2020
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_58_1
e_1_3_2_96_1
e_1_3_2_3_1
e_1_3_2_92_1
e_1_3_2_73_1
Liu J. (e_1_3_2_50_1) 2016
e_1_3_2_29_1
Jyoti A. (e_1_3_2_34_1) 2020
Ocaña K. A. (e_1_3_2_70_1) 2012
e_1_3_2_21_1
e_1_3_2_86_1
e_1_3_2_48_1
e_1_3_2_67_1
e_1_3_2_40_1
e_1_3_2_103_1
e_1_3_2_17_1
Mohammadzadeh A. (e_1_3_2_63_1) 2020
e_1_3_2_2_1
e_1_3_2_32_1
e_1_3_2_74_1
e_1_3_2_6_1
e_1_3_2_13_1
e_1_3_2_59_1
e_1_3_2_97_1
e_1_3_2_36_1
e_1_3_2_78_1
e_1_3_2_93_1
e_1_3_2_51_1
e_1_3_2_49_1
e_1_3_2_41_1
e_1_3_2_87_1
e_1_3_2_22_1
e_1_3_2_64_1
e_1_3_2_26_1
e_1_3_2_68_1
e_1_3_2_83_1
Marouf I. (e_1_3_2_55_1) 2019
e_1_3_2_60_1
e_1_3_2_102_1
Schwiegelshohn U. (e_1_3_2_82_1) 2010
e_1_3_2_9_1
e_1_3_2_18_1
Mohammadzadeh A. (e_1_3_2_62_1) 2020
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_52_1
e_1_3_2_75_1
e_1_3_2_5_1
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_56_1
e_1_3_2_79_1
e_1_3_2_98_1
e_1_3_2_94_1
e_1_3_2_90_1
Liu J. (e_1_3_2_47_1) 2017
e_1_3_2_27_1
e_1_3_2_42_1
e_1_3_2_65_1
e_1_3_2_88_1
Liu L. (e_1_3_2_45_1) 2019; 13
e_1_3_2_46_1
e_1_3_2_69_1
e_1_3_2_80_1
e_1_3_2_101_1
e_1_3_2_61_1
e_1_3_2_84_1
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_19_1
e_1_3_2_30_1
e_1_3_2_76_1
e_1_3_2_11_1
e_1_3_2_53_1
e_1_3_2_4_1
e_1_3_2_15_1
Liu J. (e_1_3_2_44_1) 2016
e_1_3_2_57_1
e_1_3_2_99_1
e_1_3_2_95_1
e_1_3_2_72_1
e_1_3_2_91_1
Okabe T. (e_1_3_2_71_1) 2003
References_xml – ident: e_1_3_2_13_1
  doi: 10.1016/j.knosys.2018.11.024
– ident: e_1_3_2_95_1
  doi: 10.1109/GRID.2007.4354110
– ident: e_1_3_2_31_1
  doi: 10.1016/j.future.2021.03.012
– ident: e_1_3_2_93_1
  doi: 10.1016/j.eswa.2021.114864
– ident: e_1_3_2_24_1
  doi: 10.1016/j.jocs.2013.10.002
– volume-title: BDA: Gestion de Données—Principes, Technologies et Applications
  year: 2016
  ident: e_1_3_2_50_1
– ident: e_1_3_2_60_1
  doi: 10.1007/s12652-021-03482-5
– ident: e_1_3_2_11_1
  doi: 10.1007/978-1-4842-1043-7_1
– ident: e_1_3_2_36_1
  doi: 10.1002/cpe.4044
– ident: e_1_3_2_77_1
  doi: 10.1109/TCC.2014.2314655
– ident: e_1_3_2_79_1
  doi: 10.1109/ACCESS.2020.2991394
– volume-title: Task scheduling optimization in cloud computing using multi-objective evolutionary algorithms with user-in-the-loop
  year: 2019
  ident: e_1_3_2_55_1
– ident: e_1_3_2_21_1
  doi: 10.1109/CCGrid.2012.114
– ident: e_1_3_2_68_1
  doi: 10.1016/j.jal.2016.11.013
– ident: e_1_3_2_18_1
  doi: 10.1016/j.future.2017.05.024
– ident: e_1_3_2_28_1
  doi: 10.1016/j.sysarc.2020.101837
– ident: e_1_3_2_91_1
  doi: 10.1007/s00521-015-1923-y
– ident: e_1_3_2_66_1
  doi: 10.1016/j.asoc.2016.03.008
– ident: e_1_3_2_99_1
  doi: 10.1016/j.engappai.2020.103905
– ident: e_1_3_2_51_1
  doi: 10.31209/2019.100000115
– ident: e_1_3_2_89_1
  doi: 10.1016/j.parco.2017.01.002
– ident: e_1_3_2_54_1
  doi: 10.1016/j.chemolab.2015.08.020
– ident: e_1_3_2_64_1
  doi: 10.1007/978-3-540-78640-5_54
– start-page: 195
  volume-title: Cloud computing (Internet computing
  year: 2020
  ident: e_1_3_2_85_1
– start-page: 1
  year: 2020
  ident: e_1_3_2_62_1
  article-title: A hybrid multi-objective metaheuristic optimization algorithm for scientific workflow scheduling
  publication-title: Cluster Computing,
– ident: e_1_3_2_19_1
  doi: 10.1016/j.eswa.2018.10.045
– ident: e_1_3_2_48_1
  doi: 10.1109/TKDE.2018.2867857
– ident: e_1_3_2_6_1
  doi: 10.1016/j.knosys.2021.107779
– ident: e_1_3_2_69_1
  doi: 10.1016/j.aej.2021.06.058
– ident: e_1_3_2_42_1
  doi: 10.1016/j.future.2020.03.055
– volume-title: Multisite management of scientific workflows in the cloud
  year: 2016
  ident: e_1_3_2_44_1
– ident: e_1_3_2_7_1
  doi: 10.1016/j.chaos.2020.109869
– ident: e_1_3_2_12_1
  doi: 10.1007/978-3-031-01872-5
– ident: e_1_3_2_92_1
  doi: 10.1016/j.ins.2014.02.122
– ident: e_1_3_2_90_1
  doi: 10.1007/s12293-016-0212-3
– ident: e_1_3_2_22_1
  doi: 10.1016/j.ins.2016.09.026
– ident: e_1_3_2_10_1
  doi: 10.1016/j.future.2018.01.005
– ident: e_1_3_2_14_1
  doi: 10.1109/TCC.2014.2303077
– ident: e_1_3_2_96_1
  doi: 10.1016/j.jpdc.2014.09.002
– ident: e_1_3_2_3_1
  doi: 10.3390/app8040538
– ident: e_1_3_2_40_1
  doi: 10.1109/ACCESS.2021.3098642
– ident: e_1_3_2_73_1
  doi: 10.1007/s11227-014-1376-6
– ident: e_1_3_2_2_1
  doi: 10.1016/j.jpdc.2015.10.001
– ident: e_1_3_2_8_1
  doi: 10.1016/j.compstruc.2014.03.007
– ident: e_1_3_2_30_1
  doi: 10.1016/j.future.2019.02.028
– ident: e_1_3_2_94_1
  doi: 10.1007/s10479-020-03902-3
– ident: e_1_3_2_87_1
  doi: 10.1016/j.jclepro.2020.122927
– ident: e_1_3_2_76_1
  doi: 10.1016/j.swevo.2021.101008
– start-page: 1
  year: 2020
  ident: e_1_3_2_34_1
  article-title: Cloud computing using load balancing and service broker policy for IT service: A taxonomy and survey
  publication-title: Journal of Ambient Intelligence and Humanized Computing,
– volume-title: Job scheduling strategies for parallel processing
  year: 2010
  ident: e_1_3_2_82_1
– ident: e_1_3_2_61_1
  doi: 10.1007/s10922-021-09599-4
– ident: e_1_3_2_97_1
  doi: 10.1016/j.jnca.2015.01.001
– ident: e_1_3_2_65_1
  doi: 10.1587/transinf.2018PAP0016
– ident: e_1_3_2_67_1
  doi: 10.1007/978-1-0716-1534-8_6
– ident: e_1_3_2_53_1
  doi: 10.1007/978-981-10-5221-7_11
– ident: e_1_3_2_26_1
  doi: 10.1016/j.eswa.2021.115351
– ident: e_1_3_2_16_1
  doi: 10.1109/CloudCom.2012.6427573
– ident: e_1_3_2_75_1
  doi: 10.1145/2815624
– ident: e_1_3_2_84_1
  doi: 10.1016/j.compeleceng.2017.12.004
– ident: e_1_3_2_27_1
  doi: 10.1016/j.eswa.2020.113395
– start-page: 1
  year: 2020
  ident: e_1_3_2_63_1
  article-title: Improved chaotic binary grey wolf optimization algorithm for workflow scheduling in green cloud computing
  publication-title: Evolutionary Intelligence,
– ident: e_1_3_2_17_1
  doi: 10.1016/j.egyr.2021.06.008
– ident: e_1_3_2_103_1
  doi: 10.1016/j.energy.2021.120995
– ident: e_1_3_2_81_1
  doi: 10.1016/j.advengsoft.2017.01.004
– volume-title: Brazilian Symposium on Bioinformatics
  year: 2012
  ident: e_1_3_2_70_1
– ident: e_1_3_2_57_1
  doi: 10.1016/j.swevo.2012.09.002
– ident: e_1_3_2_37_1
  doi: 10.1016/j.future.2015.07.014
– ident: e_1_3_2_52_1
  doi: 10.1016/j.future.2015.03.017
– ident: e_1_3_2_43_1
  doi: 10.1016/j.future.2015.12.014
– ident: e_1_3_2_33_1
  doi: 10.1109/ACCESS.2019.2909945
– volume-title: The 2003 Congress on Evolutionary Computation, 2003. CEC'03
  year: 2003
  ident: e_1_3_2_71_1
– ident: e_1_3_2_39_1
  doi: 10.1016/j.jcde.2017.02.005
– ident: e_1_3_2_78_1
  doi: 10.1016/j.cie.2020.106649
– ident: e_1_3_2_59_1
  doi: 10.1007/s11227-019-02877-8
– ident: e_1_3_2_20_1
  doi: 10.1016/j.jpdc.2013.12.004
– ident: e_1_3_2_101_1
  doi: 10.1016/j.sysarc.2019.08.004
– ident: e_1_3_2_15_1
  doi: 10.1016/j.simpat.2015.07.001
– ident: e_1_3_2_35_1
  doi: 10.1016/j.procs.2016.09.032
– ident: e_1_3_2_9_1
  doi: 10.3390/en15134571
– ident: e_1_3_2_100_1
  doi: 10.1109/TEVC.2014.2378512
– ident: e_1_3_2_49_1
  doi: 10.1109/CEC.2018.8477915
– start-page: 1
  year: 2020
  ident: e_1_3_2_25_1
  article-title: A discrete chaotic multi-objective SCA-ALO optimization algorithm for an optimal virtual machine placement in cloud data center
  publication-title: Journal of Ambient Intelligence and Humanized Computing,
– ident: e_1_3_2_72_1
  doi: 10.3139/120.111529
– ident: e_1_3_2_56_1
  doi: 10.1016/j.advengsoft.2015.01.010
– ident: e_1_3_2_74_1
  doi: 10.1016/j.comnet.2020.107438
– ident: e_1_3_2_83_1
  doi: 10.1016/j.engappai.2020.103501
– ident: e_1_3_2_80_1
  doi: 10.1007/s00521-014-1597-x
– ident: e_1_3_2_86_1
  doi: 10.1002/cpe.1417
– ident: e_1_3_2_5_1
  doi: 10.1007/978-981-13-1927-3_34
– ident: e_1_3_2_38_1
  doi: 10.1016/j.neucom.2016.08.003
– ident: e_1_3_2_98_1
  doi: 10.1016/j.ins.2016.08.003
– ident: e_1_3_2_4_1
  doi: 10.1007/s00521-020-04878-8
– ident: e_1_3_2_88_1
  doi: 10.1007/s42235-021-0050-y
– ident: e_1_3_2_41_1
  doi: 10.1109/SIS.2005.1501604
– ident: e_1_3_2_58_1
  doi: 10.1016/j.knosys.2017.07.018
– ident: e_1_3_2_102_1
  doi: 10.1109/TPDS.2015.2446459
– start-page: 80
  volume-title: Transactions on large-scale data-and knowledge-centered systems XXXIII
  year: 2017
  ident: e_1_3_2_47_1
  doi: 10.1007/978-3-662-55696-2_3
– ident: e_1_3_2_46_1
  doi: 10.1016/j.future.2016.04.014
– ident: e_1_3_2_29_1
  doi: 10.1016/j.future.2020.05.040
– ident: e_1_3_2_32_1
  doi: 10.1016/j.asoc.2022.109440
– volume: 13
  issue: 9
  year: 2019
  ident: e_1_3_2_45_1
  article-title: A constrained multi-objective computation offloading algorithm in the mobile cloud computing environment
  publication-title: KSII Transactions on Internet & Information Systems,
SSID ssj0009019
Score 2.4465725
Snippet A cloud is made up of many data centers, with its own set of data and resources. The reasons for employing several cloud sites to operate a workflow are that...
SourceID crossref
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms hybrid algorithm
Metaheuristic
multisite
scheduling
workflow
Title Chaotic hybrid multi-objective optimization algorithm for scientific workflow scheduling in multisite clouds
URI https://www.tandfonline.com/doi/abs/10.1080/01605682.2023.2195426
Volume ahead-of-print
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLVKJyF4AFZAjC_5gQdQ5chJnKR5nAaoQgJeOjHxEtmOTYrSZurSIfaj-I3YsZ14W8XnS1Q5der0nPq6zj3nAvBC8FyQlJYoxnyGSBzFiGUziaJIKzHTTEUgrUZ-_yGdH5N3J8nJaPTDy1ratizgFzt1Jf-CqmpTuGqV7F8g219UNajXCl91VAir4x9hfFTRRhuuVt-17sokB6KGfTWT2LRR08HK6iyntP7SbJZtteoSC40OUqcJdcViZN18U22Viju1Fbl0F9OPlqe8brZGDuxWsYOerHY5Bh9PxcbtK7psPpcS2oPaVHS1ouUFLUVl1DXLPoOHntPKk73TeqCi9TnQbyn9XYqIuMRmy6vFtYIh_p5milGSmhpEgTDzMMlSlMem1ICbqNUwFKkaifSWZ-uRc8cJMx2HXlw38udrEcOmWKox6CEEupp8EGkbvOiKQ3cX8-2ZG2AvUn9LojHYO5y__vxpsHnGXSmZ_pacZky7ue_6iEuroUteud4qZ3EP3LGgwkPDtX0wEusJuOnUERNw11UBgTYoTMBtz9JyAvZt-xl8aR3NX90HtSUqNESFV4gKfaLCnqhQDRMORIWOqHAgKlyuYU9UaIj6ABy_fbM4miNb5gPxOM1aJEKpPZcooyyLEkayGacxY0RKnGJaYilCoVaRiZSqSSRpzEpashmNSxzKnEfxQzBeN2vxCEAqQ4y5zJOMYBKKkDLJU4lLrvXbvMwOAHFfd8GtB74uxVIXobPKtSgVGqXConQAgr7bqTGB-V2H3MeyaDv6S8P8Iv5l38f_0fcJuDX8-J6CcbvZimdq0dyy55apPwEbtsPa
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1RkNpyKLClKv3CBw7twVsndpzkWKGibQt7AolbZDt2Fxo2FWRV0V9fT-y0C1LhwNXRjJKJPeM4770B2LOmtEKqmnJmCip4yqnOC0fTFJmYMvcVCNnIR1M5ORFfT7PTJS4MwirxG9oFoYg-V-PixsPoARL3EVXRMlkgjyrl4xRFy1L5CNayUubYxYCz6T_hXdY390ATijYDi-d_bm7UpxvqpUt152ADzHDHAW7yY7zo9Nj8viXm-LBH2oRncVtKPoV5tAUrdj6CxwMqfgQbQ_cHEpPBCNaXpAxHsBXHr8j7qGT94Tk0-zPVeo9kdo3EMNKjF2mrz0OWJa3PVxeRCEpU8729POtmF8QHgwSiJuKYCELHXNP-8mMzXxiRP0_O5sEZ_vsmpmkX9dU2nBx8Pt6f0NjegRou847axKHWjtJK52mmRV4YxbUWzjHJVM2cTazfPWTO-SGbSa5rVetC8ZolrjQpfwGr83ZuXwJRLmHMuDLLBROJTZR2RjpWG-TtmjrfATG81MpE7XNswdFUySCRGuNfYfyrGP8dGP81-xnEP-4zKJdnTNX1py4utEip-J22rx5guwtPJsdHh9Xhl-m31_DUXxIBWf4GVrvLhX3rN06dftevjD_LGguf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkSp6oHQBUZ4-cICDFyd2nOwRtV2V14oDlbhFfnYL6abqZlW1vx5P7MAWCTj06mhGycSeceLv-wbglTMTJ6SylDNTUcFzTnVZeZrnyMSUZahAyEb-PJOHR-LDt2JAEy4TrBK_oX0UiuhzNS7uM-sHRNxbFEUrZIU0qpyPc9Qsy-VtuCNRPBxZHGz2W3eX9b090ISizUDi-Zuba-XpmnjpWtmZboMebjiiTX6MV50em6s_tBxv9ET34V7alJJ3cRbtwC23GMHmgIkfwfbQ-4GkVDCCrTUhwxHspPEleZ10rN88gGZvrtrgkcwvkRZGeuwibfX3mGNJG7LVaaKBEtUct-cn3fyUhFiQSNNEFBNB4Jhv2oswNg9lEdnz5GQRneHJNzFNu7LLh3A0Pfi6d0hTcwdquCw76jKPSjtKK13mhRZlZRTXWnjPJFOWeZe5sHcovA9DrpBcW2V1pbhlmZ-YnD-CjUW7cI-BKJ8xZvykKAUTmcuU9kZ6Zg2ydo0td0EM77Q2SfkcG3A0dTYIpKb41xj_OsV_F8a_zM6i9Mf_DCbrE6bu-n8uPjZIqfk_bZ_cwPYlbH7Zn9af3s8-PoW74YqIsPJnsNGdr9zzsGvq9It-XfwEcVMKQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chaotic+hybrid+multi-objective+optimization+algorithm+for+scientific+workflow+scheduling+in+multisite+clouds&rft.jtitle=The+Journal+of+the+Operational+Research+Society&rft.au=Mohammadzadeh%2C+Ali&rft.au=Javaheri%2C+Danial&rft.au=Artin%2C+Javad&rft.date=2024-02-01&rft.pub=Taylor+%26+Francis&rft.issn=0160-5682&rft.eissn=1476-9360&rft.volume=ahead-of-print&rft.issue=ahead-of-print&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1080%2F01605682.2023.2195426&rft.externalDocID=2195426
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-5682&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-5682&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-5682&client=summon