Neural Network-Based Kinetic Model for Antisolvent Crystallization of Benzophenone: Construction, Validation, and Mechanistic Interpretation
The emergence of artificial neural networks and the widespread application of process analytical technology (PAT) have founded a robust foundation for neural network applications in crystallization research. This study investigated benzophenone antisolvent crystallization kinetics through online mon...
Saved in:
Published in | Crystals (Basel) Vol. 15; no. 5; p. 464 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The emergence of artificial neural networks and the widespread application of process analytical technology (PAT) have founded a robust foundation for neural network applications in crystallization research. This study investigated benzophenone antisolvent crystallization kinetics through online monitoring of the crystallization process via PAT tools and kinetics fitting via neural networks. The antisolvent crystallization process was simulated by integrating network-based kinetics with population balance. The findings suggest that benzophenone exhibits size-independent growth in water–methanol systems. The neural network-based model demonstrates improved performance (a consistent 50 ± 5% enhancement in prediction accuracy (R2) over empirical kinetic models) in predicting crystallization kinetics. Furthermore, the network-based process model achieved remarkable agreement with the experimental crystal size distribution, showing smaller deviation (1.1%), less than that of traditional empirical models (5.29%). This work proposed a robust crystallization process model combining PAT tools and artificial neural networks, enabling rapid crystallization kinetics determination and accurate process simulations. |
---|---|
AbstractList | The emergence of artificial neural networks and the widespread application of process analytical technology (PAT) have founded a robust foundation for neural network applications in crystallization research. This study investigated benzophenone antisolvent crystallization kinetics through online monitoring of the crystallization process via PAT tools and kinetics fitting via neural networks. The antisolvent crystallization process was simulated by integrating network-based kinetics with population balance. The findings suggest that benzophenone exhibits size-independent growth in water–methanol systems. The neural network-based model demonstrates improved performance (a consistent 50 ± 5% enhancement in prediction accuracy (R2) over empirical kinetic models) in predicting crystallization kinetics. Furthermore, the network-based process model achieved remarkable agreement with the experimental crystal size distribution, showing smaller deviation (1.1%), less than that of traditional empirical models (5.29%). This work proposed a robust crystallization process model combining PAT tools and artificial neural networks, enabling rapid crystallization kinetics determination and accurate process simulations. The emergence of artificial neural networks and the widespread application of process analytical technology (PAT) have founded a robust foundation for neural network applications in crystallization research. This study investigated benzophenone antisolvent crystallization kinetics through online monitoring of the crystallization process via PAT tools and kinetics fitting via neural networks. The antisolvent crystallization process was simulated by integrating network-based kinetics with population balance. The findings suggest that benzophenone exhibits size-independent growth in water–methanol systems. The neural network-based model demonstrates improved performance (a consistent 50 ± 5% enhancement in prediction accuracy (R[sup.2]) over empirical kinetic models) in predicting crystallization kinetics. Furthermore, the network-based process model achieved remarkable agreement with the experimental crystal size distribution, showing smaller deviation (1.1%), less than that of traditional empirical models (5.29%). This work proposed a robust crystallization process model combining PAT tools and artificial neural networks, enabling rapid crystallization kinetics determination and accurate process simulations. |
Audience | Academic |
Author | Sun, Ying Zhou, Xiaomeng Dong, Yafei Wang, Yuanhang Xuanyuan, Shutian Xie, Chuang |
Author_xml | – sequence: 1 givenname: Yafei surname: Dong fullname: Dong, Yafei – sequence: 2 givenname: Shutian surname: Xuanyuan fullname: Xuanyuan, Shutian – sequence: 3 givenname: Chuang surname: Xie fullname: Xie, Chuang – sequence: 4 givenname: Ying surname: Sun fullname: Sun, Ying – sequence: 5 givenname: Xiaomeng surname: Zhou fullname: Zhou, Xiaomeng – sequence: 6 givenname: Yuanhang surname: Wang fullname: Wang, Yuanhang |
BookMark | eNpVkcFu1DAQhi1UJMrSI3dLXEmxYyeOuW1Xha5oywW4RhNn3HpJ7cX2gtpn6EPjNAiBLzOaGf__p5mX5MgHj4S85uxUCM3emXifMm9Yw2Qrn5HjmilRSdHUR__kL8hJSjtWnmqZUvyYPF7jIcJErzH_CvF7dQYJR_rJeczO0Ksw4kRtiHTts0th-ok-081sBdPkHiC74Gmw9Az9Q9jf4gz1nm6CTzkezNx9S7_B5EZYcvAjvUJzC96l2WDrM8Z9xPzUf0WeW5gSnvyJK_L1w_mXzUV1-fnjdrO-rIxoVa6Q25pZ2Qmtu8ZqqS0fmbBSGlRgWCuZ4Fqg7rq27qRWpjVSCGW4AWMtCrEi20V3DLDr99HdQbzvA7j-qRDiTQ-x4E3YD7JVjW0Q7SCLoxlUN0rgbMC2GzSHovVm0drH8OOAKfe7cIi-4Pei5oVD1IqXqdNl6gaKqPM25AgFB0a8c6YszbpSX3eFU9RNCStSLR9MDClFtH8xOevng_f_HVz8Bi_Xok4 |
Cites_doi | 10.1016/0923-0467(93)85003-E 10.1002/aic.690490517 10.1021/acs.cgd.8b00499 10.1002/9783527631209.ch68 10.1016/j.powtec.2020.03.027 10.1016/j.partic.2022.05.001 10.1016/j.cherd.2021.04.007 10.1021/acs.iecr.3c03870 10.1021/cg0504049 10.1016/j.compchemeng.2022.107704 10.1016/j.cherd.2023.11.032 10.23919/CCC63176.2024.10661767 10.1016/S1011-1344(98)00062-1 10.1007/s13346-022-01219-1 10.1021/bi00185a001 10.1097/DER.0000000000000025 10.1021/acs.cgd.7b00645 10.1016/j.engappai.2017.01.013 10.1016/0009-2509(64)85047-8 10.1016/j.cherd.2023.02.048 10.1016/j.chempr.2016.08.010 10.1021/acs.iecr.2c00026 10.20944/preprints202401.1759.v1 10.1021/ie102393y 10.1016/j.apt.2020.06.008 10.1016/j.dche.2024.100208 10.1080/00986449008940576 10.1039/D2CE00059H 10.1021/acs.jced.8b00196 10.1021/je0340497 10.1080/02786829708965471 10.1002/aic.11868 10.1021/ie402203k 10.1039/C8MD00300A 10.1016/j.ces.2008.08.003 10.3390/math11030682 10.1002/aic.690130104 10.1021/acs.oprd.9b00348 10.1016/j.cej.2021.131220 10.1021/ie071125g 10.1016/j.molliq.2022.119438 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SR 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/cryst15050464 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2073-4352 |
ExternalDocumentID | oai_doaj_org_article_b4675f5eefb4483cb78d4a10be68b91a A843332584 10_3390_cryst15050464 |
GeographicLocations | China Tianjin China |
GeographicLocations_xml | – name: China – name: Tianjin China |
GroupedDBID | .4S 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION D1I EDO GROUPED_DOAJ HCIFZ IAO IGS ITC KB. KQ8 MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PROAC TUS 7SR 8BQ 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c367t-e1f20f4839985f949f1d03f44ce7ac06403193e988628497c6c4337c1cacffe33 |
IEDL.DBID | BENPR |
ISSN | 2073-4352 |
IngestDate | Wed Aug 27 01:32:14 EDT 2025 Fri Jul 25 09:46:55 EDT 2025 Tue Jun 17 03:40:31 EDT 2025 Tue Jul 01 04:50:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-e1f20f4839985f949f1d03f44ce7ac06403193e988628497c6c4337c1cacffe33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3211933271?pq-origsite=%requestingapplication% |
PQID | 3211933271 |
PQPubID | 2032412 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b4675f5eefb4483cb78d4a10be68b91a proquest_journals_3211933271 gale_infotracacademiconefile_A843332584 crossref_primary_10_3390_cryst15050464 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Crystals (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Muthancheri (ref_2) 2020; 31 Heurung (ref_24) 2014; 25 Lima (ref_18) 2025; 14 Pawar (ref_4) 2018; 18 Likozar (ref_12) 2020; 366 Abbas (ref_1) 2008; 63 Jia (ref_6) 2022; 24 Azizian (ref_30) 2003; 48 Rosenbaum (ref_8) 2019; 23 Hulburt (ref_32) 1964; 19 Surana (ref_23) 2018; 9 Ouyang (ref_28) 2018; 63 Omar (ref_3) 2017; 17 ref_19 Bransom (ref_39) 1960; 5 Ouyang (ref_29) 2018; 63 ref_16 Ashraf (ref_36) 2022; 160 Zhao (ref_43) 2023; 73 Miranda (ref_25) 1998; 43 Ojha (ref_20) 2017; 60 Lima (ref_13) 2023; 200 McGraw (ref_34) 1997; 27 Mydlarz (ref_41) 1990; 90 ref_21 Mydlarz (ref_42) 1993; 53 Kumar (ref_9) 2023; 13 Trifkovic (ref_35) 2008; 47 Zhou (ref_11) 2006; 6 Dorman (ref_22) 1994; 33 Liu (ref_38) 2024; 63 Trifkovic (ref_44) 2009; 55 Ramisetty (ref_5) 2013; 52 Ouyang (ref_31) 2022; 360 Canning (ref_40) 1967; 13 Orehek (ref_10) 2021; 170 Zheng (ref_17) 2022; 61 Wu (ref_15) 2023; 192 Zhao (ref_26) 2016; 1 Zhang (ref_27) 2022; 7 Marchisio (ref_33) 2003; 49 Chen (ref_14) 2021; 426 Widenski (ref_37) 2011; 50 ref_7 |
References_xml | – volume: 53 start-page: 125 year: 1993 ident: ref_42 article-title: On the Estimation of Size-Dependent Crystal Growth Rate Functions in MSMPR Crystallizers publication-title: Chem. Eng. J. Biochem. Eng. J. doi: 10.1016/0923-0467(93)85003-E – volume: 49 start-page: 1266 year: 2003 ident: ref_33 article-title: Quadrature Method of Moments for Population-Balance Equations publication-title: AIChE J. doi: 10.1002/aic.690490517 – volume: 18 start-page: 4511 year: 2018 ident: ref_4 article-title: Modeling, Simulation, and Influence of Operational Parameters on Crystal Size and Morphology in Semibatch Antisolvent Crystallization of α-Lactose Monohydrate publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.8b00499 – ident: ref_7 doi: 10.1002/9783527631209.ch68 – volume: 366 start-page: 873 year: 2020 ident: ref_12 article-title: Process Analytical Technology-Based (PAT) Model Simulations of a Combined Cooling, Seeded and Antisolvent Crystallization of an Active Pharmaceutical Ingredient (API) publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.03.027 – volume: 73 start-page: 103 year: 2023 ident: ref_43 article-title: Kinetic Study of Complicated Anti-Solvent and Cooling Crystallization of Disodium 5′-Ribonucleotide publication-title: Particuology doi: 10.1016/j.partic.2022.05.001 – volume: 170 start-page: 256 year: 2021 ident: ref_10 article-title: Mechanistic Crystal Size Distribution (CSD)-Based Modelling of Continuous Antisolvent Crystallization of Benzoic Acid publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2021.04.007 – volume: 63 start-page: 2831 year: 2024 ident: ref_38 article-title: Continuous Antisolvent Crystallization of L-Histidine: Impact of Process Parameters and Kinetic Estimation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.3c03870 – volume: 6 start-page: 892 year: 2006 ident: ref_11 article-title: Direct Design of Pharmaceutical Antisolvent Crystallization through Concentration Control publication-title: Cryst. Growth Des. doi: 10.1021/cg0504049 – volume: 7 start-page: e202203948 year: 2022 ident: ref_27 article-title: Study on Synthesis, Optical Properties and Application of Benzophenone Derivatives publication-title: Chem. Sel. – volume: 160 start-page: 107704 year: 2022 ident: ref_36 article-title: Multiobjective Temperature Trajectory Optimization for Unseeded Batch Cooling Crystallization of Aspirin publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2022.107704 – volume: 5 start-page: 838 year: 1960 ident: ref_39 article-title: Factors in the Design of Continuous Crystallizer publication-title: Br. Chem. Eng. – volume: 200 start-page: 538 year: 2023 ident: ref_13 article-title: Improved Modeling of Crystallization Processes by Universal Differential Equations publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2023.11.032 – ident: ref_16 doi: 10.23919/CCC63176.2024.10661767 – volume: 43 start-page: 1 year: 1998 ident: ref_25 article-title: New Trends in Photobiology (Invited Review) Photosensitizing Drugs Containing the Benzophenone Chromophore publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/S1011-1344(98)00062-1 – volume: 13 start-page: 400 year: 2023 ident: ref_9 article-title: Liquid Antisolvent Crystallization of Pharmaceutical Compounds: Current Status and Future Perspectives publication-title: Drug Deliv. Transl. Res. doi: 10.1007/s13346-022-01219-1 – volume: 33 start-page: 5661 year: 1994 ident: ref_22 article-title: Benzophenone Photophores in Biochemistry publication-title: Biochemistry doi: 10.1021/bi00185a001 – volume: 25 start-page: 3 year: 2014 ident: ref_24 article-title: Benzophenones publication-title: Dermatitis doi: 10.1097/DER.0000000000000025 – volume: 17 start-page: 4028 year: 2017 ident: ref_3 article-title: Crystal Population Balance Formulation and Solution Methods: A Review publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.7b00645 – volume: 60 start-page: 97 year: 2017 ident: ref_20 article-title: Metaheuristic Design of Feedforward Neural Networks: A Review of Two Decades of Research publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2017.01.013 – volume: 19 start-page: 555 year: 1964 ident: ref_32 article-title: Some Problems in Particle Technology: A Statistical Mechanical Formulation publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(64)85047-8 – volume: 192 start-page: 556 year: 2023 ident: ref_15 article-title: Physics-Informed Machine Learning for MPC: Application to a Batch Crystallization Process publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2023.02.048 – volume: 1 start-page: 592 year: 2016 ident: ref_26 article-title: Rational Molecular Design for Achieving Persistent and Efficient Pure Organic Room-Temperature Phosphorescence publication-title: Chem doi: 10.1016/j.chempr.2016.08.010 – volume: 61 start-page: 5578 year: 2022 ident: ref_17 article-title: Machine Learning Modeling and Predictive Control of the Batch Crystallization Process publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.2c00026 – ident: ref_21 doi: 10.20944/preprints202401.1759.v1 – volume: 50 start-page: 8304 year: 2011 ident: ref_37 article-title: Use of Predictive Solubility Models for Isothermal Antisolvent Crystallization Modeling and Optimization publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie102393y – volume: 31 start-page: 3191 year: 2020 ident: ref_2 article-title: Development and Validation of a Two-Dimensional Population Balance Model for a Supercritical CO2 Antisolvent Batch Crystallization Process publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2020.06.008 – volume: 14 start-page: 100208 year: 2025 ident: ref_18 article-title: Applications of Machine Learning for Modeling and Advanced Control of Crystallization Processes: Developments and Perspectives publication-title: Digit. Chem. Eng. doi: 10.1016/j.dche.2024.100208 – volume: 90 start-page: 47 year: 1990 ident: ref_41 article-title: On Modelling the Size-Dependent Growth Rate of Potassium Sulphate in an Msmpr Crystallizer publication-title: Chem. Eng. Commun. doi: 10.1080/00986449008940576 – volume: 24 start-page: 3122 year: 2022 ident: ref_6 article-title: Recent Progress in Antisolvent Crystallization publication-title: Cryst. Eng. Commun. doi: 10.1039/D2CE00059H – volume: 63 start-page: 4809 year: 2018 ident: ref_28 article-title: Corrigendum to “Determination of Solubility and Thermodynamic Properties of Benzophenone in Different Pure Solvents publication-title: J. Chem. Eng. Data doi: 10.1021/acs.jced.8b00196 – volume: 48 start-page: 1476 year: 2003 ident: ref_30 article-title: Solubility of Benzophenone in Binary Alkane + Carbon Tetrachloride Solvent Mixtures publication-title: J. Chem. Eng. Data doi: 10.1021/je0340497 – volume: 27 start-page: 255 year: 1997 ident: ref_34 article-title: Description of Aerosol Dynamics by the Quadrature Method of Moments publication-title: Aerosol Sci. Technol. doi: 10.1080/02786829708965471 – volume: 55 start-page: 2591 year: 2009 ident: ref_44 article-title: Multivariable Real-Time Optimal Control of a Cooling and Antisolvent Semibatch Crystallization Process publication-title: AIChE J. doi: 10.1002/aic.11868 – volume: 52 start-page: 17573 year: 2013 ident: ref_5 article-title: Ultrasound-Assisted Antisolvent Crystallization of Benzoic Acid: Effect of Process Variables Supported by Theoretical Simulations publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie402203k – volume: 9 start-page: 1803 year: 2018 ident: ref_23 article-title: Benzophenone: A Ubiquitous Scaffold in Medicinal Chemistry publication-title: Med. Chem. Commun. doi: 10.1039/C8MD00300A – volume: 63 start-page: 5457 year: 2008 ident: ref_1 article-title: Antisolvent Crystallization: Model Identification, Experimental Validation and Dynamic Simulation publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2008.08.003 – ident: ref_19 doi: 10.3390/math11030682 – volume: 63 start-page: 1833 year: 2018 ident: ref_29 article-title: Determination of Solubility and Thermodynamic Properties of Benzophenone in Different Pure Solvents publication-title: J. Chem. Eng. Data doi: 10.1021/acs.jced.8b00196 – volume: 13 start-page: 5 year: 1967 ident: ref_40 article-title: Some Aspects of Crystallization Theory: Systems That Violate McCabe’s Delta L Law publication-title: AIChE J. doi: 10.1002/aic.690130104 – volume: 23 start-page: 2666 year: 2019 ident: ref_8 article-title: Population Balance Modeling To Predict Particle Size Distribution upon Scale-Up of a Combined Antisolvent and Cooling Crystallization of an Active Pharmaceutical Ingredient publication-title: Org. Process Res. Dev. doi: 10.1021/acs.oprd.9b00348 – volume: 426 start-page: 131220 year: 2021 ident: ref_14 article-title: Physics-Informed Deep Learning for Modelling Particle Aggregation and Breakage Processes publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131220 – volume: 47 start-page: 1586 year: 2008 ident: ref_35 article-title: Kinetics Estimation and Single and Multi-Objective Optimization of a Seeded, Anti-Solvent, Isothermal Batch Crystallizer publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie071125g – volume: 360 start-page: 119438 year: 2022 ident: ref_31 article-title: Solubility, Dissolution Thermodynamics, Hansen Solubility Parameter and Molecular Simulation of 4-Chlorobenzophenone with Different Solvents publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2022.119438 |
SSID | ssj0000760771 |
Score | 2.3214931 |
Snippet | The emergence of artificial neural networks and the widespread application of process analytical technology (PAT) have founded a robust foundation for neural... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 464 |
SubjectTerms | antisolvent crystallization kinetics Artificial neural networks Crystallization Crystals Datasets Kinetics Morphology neural network Neural networks Particle size population balance equation Predictions process analytical technology Robustness Size distribution Solvents Spectrum analysis Temperature effects |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQnyJQkAcES6MmsR07bG1FVYHoRFE3y3ZsCakqqGThP_CjuUtS1A6IhTWxo4vvzndPPr8j5NoyVnKAx3FueIYARcTKJaCQvHR5khXYHQerLab5ZMYf5mK-0eoLa8IaeuBm4foWPFkE4X2wgCSYs1KV3KSJ9bmyRVqnRhDzNsBUvQfLPJEybUg1GeD6vlt9YvPbROBZ3lYQqrn6f9uR6zAzPiD7bX5IB41ch2THL4_I3gZr4DH5QkINGDNtKrjjIQSikj7CAJhDsbnZgkIqSgfL6hUsCwsa6QjlMotFe-uSvgU69EustvOA__0dxcadayrZHn2B7LxpttSjZlnSJ48XhGtOZ7pdpnhCZuP759EkbpsqxI7lsop9GrIkwEoCzhKh4EVIy4QFzp2XxuG5Hjgl84UCqKN4IV3uOGPSpc64EDxjp6SDgp0RqqQzgIdKD58DmChsKqwyghVMQeAPNiI361XW7w13hgbMgerQW-qIyBB18DMIKa_rB2AIujUE_ZchROQWNajRMauVAXGb-wUgK1Jc6YGC_2AZJFwR6a6VrFuP_dAMqe7gvUzP_0OaC7KboeHXpZFd0gEN-ktIXyp7VVvqN01Y7-Q priority: 102 providerName: Directory of Open Access Journals |
Title | Neural Network-Based Kinetic Model for Antisolvent Crystallization of Benzophenone: Construction, Validation, and Mechanistic Interpretation |
URI | https://www.proquest.com/docview/3211933271 https://doaj.org/article/b4675f5eefb4483cb78d4a10be68b91a |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB213QscEC0gFsrKh6pcGjWJ7djhgnbbbqtCVwgo6s2yHbtCWmXLdi_8B340M4m3sAe4Jk7kZD48zzN-A3DgOG8EwuOssqIkgCIz7XMUSNX4Ki9r6o5D1Raz6uJaXN7Im7Thdp_KKtc-sXPUzcLTHvkxJyoyzktVvL_7kVHXKMquphYa2zBAF6wRfA0mZ7NPnx92WSjvpFTRk2tyxPfHfvmTmuDmknJ6G4tRx9n_L8_cLTfTp_AkxYls3At2F7ZCuweP_2IPfAa_iFgDx8z6Su5sggtSwz7gAHyGUZOzOcOQlI3b1XfUMCpsZCc0Lzufp9OXbBHZJLRUdRfaRRveMWrguaaUPWLfMErvmy4dMds27CrQQeGO25ltlis-h-vp2deTiyw1V8g8r9QqC0Us8ygwPqq1jLWoY9HkPArhg7Ke8ntonDzUGiGPFrXylRecK19462MMnL-AHZrYS2BaeYu4qAn4OoSL0hXSaSt5zTUGANEN4XD9l81dz6FhEHuQOMyGOIYwIRk8DCLq6-7CYnlrkiUZh65dRhlCdAgtuXdKN8IWuQuVdnVhh_CWJGjIQFdLi9PtzxngXInqyow1fgcvMfAawv5ayCZZ7r35o2ev_n_7NTwqSbW74sd92EHZhDcYoKzcCLb19HwEg_Hp1ccvo6STow7u_wYjkOtA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEE-xUIoPPC6NmsRObCNV1W5h2bLtnlrUm7Edu0JaZct2JdT_wG_hN3Ymj8Ie4NZr7ESOZzwPe_x9AG8c55XA9DgprcgpQSkS5VMUSFn5Ms01seNQtcWsnJyKL2fF2Qb87u_CUFllbxMbQ10tPO2R73KCIuM8l9n-xY-EWKPodLWn0GjVYhqufmLKdrl3-BHl-zbPx59ODiZJxyqQeF7KVRKymKdRYGCgVRG10DGrUh6F8EFaTwdbqJU8aIWxvhJa-tILzqXPvPUxBtoARZN_B59pWlFq_PlmT4dOuaTMWihPbE93_fKKKHfTgk4Q11xfwxDwLz_QOLfxQ3jQRaVs2KrRI9gI9WO4_xdW4RP4RTAe2GfW1o0nI3R_FZtiB3yHEaXanGEAzIb16jvqM5VRsgMal53Pu7uebBHZKNRU4xfqRR0-MKIL7QFsd9hXzAlaiqcdZuuKHQe6ltwgSbP14sincHork_4MNmlgz4Ep6S1mYVXAz2FyWriscMoWXHOF4UZ0A3jXz7K5aBE7DGY6JA6zJo4BjEgGN50IaLt5sFiem27dGoeOpIhFCNFhIsu9k6oSNktdKJXTmR3Ae5KgIXOwWlocbnurAcdKwFpmqPA_eI5h3gC2eiGbzk5cmj9a_eL_za_h7uTk-MgcHc6mL-FeTouqKbvcgk2UU3iFodHKbTf6yODbbS-AaxHzIk4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VqYTggHiKQAEfeFy6yu7au7aREEraRi2BqEIU9ebaXhshRZuSRkL9D_wifh0z-yjkALdeE2_k7Ixn5rPH3wfwwnFeCYTHSWlFTgClSJRP0SBl5cs016SOQ90W8_LwRLw_LU634Fd_F4baKvuY2ATqaulpj3zEiYqM81xmo9i1RRzvT9-df09IQYpOWns5jdZFZuHyB8K3i7dH-2jrl3k-Pfi8d5h0CgOJ56VcJyGLeRoFFglaFVELHbMq5VEIH6T1dMiFHsqDVlj3K6GlL73gXPrMWx9joM1QDP_bElFROoDtycH8-NPVDg-deUmZtcSenOt05FeXJMCbFnSeuJEIG72Af2WFJtVN78DtrkZl49ap7sJWqO_Brb-YC-_DTyL1wDHztos8mWAyrNgMB-AzjATWFgzLYTau19_Qu6mpku3RvOxi0d38ZMvIJqGmjr9QL-vwhpF4aE9nu8u-IEJoBZ92ma0r9jHQJeWGV5pttko-gJNree0PYUATewRMSW8Rk1UBfw6hauGywilbcM0VFh_RDeFV_5bNecvfYRD3kDnMhjmGMCEbXA0i2u3mg-Xqq-lWsXGYVopYhBAdwlrunVSVsFnqQqmczuwQXpMFDQWH9cridNs7DjhXotkyY4X_g-dY9A1hpzey6aLGhfnj44____VzuIHObz4czWdP4GZOK6zpwdyBAZopPMU6ae2edQ7J4Oy618BvLCAn4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Network-Based+Kinetic+Model+for+Antisolvent+Crystallization+of+Benzophenone%3A+Construction%2C+Validation%2C+and+Mechanistic+Interpretation&rft.jtitle=Crystals+%28Basel%29&rft.au=Dong%2C+Yafei&rft.au=Xuanyuan%2C+Shutian&rft.au=Xie%2C+Chuang&rft.au=Sun%2C+Ying&rft.date=2025-05-01&rft.pub=MDPI+AG&rft.issn=2073-4352&rft.eissn=2073-4352&rft.volume=15&rft.issue=5&rft_id=info:doi/10.3390%2Fcryst15050464&rft.externalDocID=A843332584 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4352&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4352&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4352&client=summon |