Neural Network-Based Kinetic Model for Antisolvent Crystallization of Benzophenone: Construction, Validation, and Mechanistic Interpretation

The emergence of artificial neural networks and the widespread application of process analytical technology (PAT) have founded a robust foundation for neural network applications in crystallization research. This study investigated benzophenone antisolvent crystallization kinetics through online mon...

Full description

Saved in:
Bibliographic Details
Published inCrystals (Basel) Vol. 15; no. 5; p. 464
Main Authors Dong, Yafei, Xuanyuan, Shutian, Xie, Chuang, Sun, Ying, Zhou, Xiaomeng, Wang, Yuanhang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The emergence of artificial neural networks and the widespread application of process analytical technology (PAT) have founded a robust foundation for neural network applications in crystallization research. This study investigated benzophenone antisolvent crystallization kinetics through online monitoring of the crystallization process via PAT tools and kinetics fitting via neural networks. The antisolvent crystallization process was simulated by integrating network-based kinetics with population balance. The findings suggest that benzophenone exhibits size-independent growth in water–methanol systems. The neural network-based model demonstrates improved performance (a consistent 50 ± 5% enhancement in prediction accuracy (R2) over empirical kinetic models) in predicting crystallization kinetics. Furthermore, the network-based process model achieved remarkable agreement with the experimental crystal size distribution, showing smaller deviation (1.1%), less than that of traditional empirical models (5.29%). This work proposed a robust crystallization process model combining PAT tools and artificial neural networks, enabling rapid crystallization kinetics determination and accurate process simulations.
AbstractList The emergence of artificial neural networks and the widespread application of process analytical technology (PAT) have founded a robust foundation for neural network applications in crystallization research. This study investigated benzophenone antisolvent crystallization kinetics through online monitoring of the crystallization process via PAT tools and kinetics fitting via neural networks. The antisolvent crystallization process was simulated by integrating network-based kinetics with population balance. The findings suggest that benzophenone exhibits size-independent growth in water–methanol systems. The neural network-based model demonstrates improved performance (a consistent 50 ± 5% enhancement in prediction accuracy (R2) over empirical kinetic models) in predicting crystallization kinetics. Furthermore, the network-based process model achieved remarkable agreement with the experimental crystal size distribution, showing smaller deviation (1.1%), less than that of traditional empirical models (5.29%). This work proposed a robust crystallization process model combining PAT tools and artificial neural networks, enabling rapid crystallization kinetics determination and accurate process simulations.
The emergence of artificial neural networks and the widespread application of process analytical technology (PAT) have founded a robust foundation for neural network applications in crystallization research. This study investigated benzophenone antisolvent crystallization kinetics through online monitoring of the crystallization process via PAT tools and kinetics fitting via neural networks. The antisolvent crystallization process was simulated by integrating network-based kinetics with population balance. The findings suggest that benzophenone exhibits size-independent growth in water–methanol systems. The neural network-based model demonstrates improved performance (a consistent 50 ± 5% enhancement in prediction accuracy (R[sup.2]) over empirical kinetic models) in predicting crystallization kinetics. Furthermore, the network-based process model achieved remarkable agreement with the experimental crystal size distribution, showing smaller deviation (1.1%), less than that of traditional empirical models (5.29%). This work proposed a robust crystallization process model combining PAT tools and artificial neural networks, enabling rapid crystallization kinetics determination and accurate process simulations.
Audience Academic
Author Sun, Ying
Zhou, Xiaomeng
Dong, Yafei
Wang, Yuanhang
Xuanyuan, Shutian
Xie, Chuang
Author_xml – sequence: 1
  givenname: Yafei
  surname: Dong
  fullname: Dong, Yafei
– sequence: 2
  givenname: Shutian
  surname: Xuanyuan
  fullname: Xuanyuan, Shutian
– sequence: 3
  givenname: Chuang
  surname: Xie
  fullname: Xie, Chuang
– sequence: 4
  givenname: Ying
  surname: Sun
  fullname: Sun, Ying
– sequence: 5
  givenname: Xiaomeng
  surname: Zhou
  fullname: Zhou, Xiaomeng
– sequence: 6
  givenname: Yuanhang
  surname: Wang
  fullname: Wang, Yuanhang
BookMark eNpVkcFu1DAQhi1UJMrSI3dLXEmxYyeOuW1Xha5oywW4RhNn3HpJ7cX2gtpn6EPjNAiBLzOaGf__p5mX5MgHj4S85uxUCM3emXifMm9Yw2Qrn5HjmilRSdHUR__kL8hJSjtWnmqZUvyYPF7jIcJErzH_CvF7dQYJR_rJeczO0Ksw4kRtiHTts0th-ok-081sBdPkHiC74Gmw9Az9Q9jf4gz1nm6CTzkezNx9S7_B5EZYcvAjvUJzC96l2WDrM8Z9xPzUf0WeW5gSnvyJK_L1w_mXzUV1-fnjdrO-rIxoVa6Q25pZ2Qmtu8ZqqS0fmbBSGlRgWCuZ4Fqg7rq27qRWpjVSCGW4AWMtCrEi20V3DLDr99HdQbzvA7j-qRDiTQ-x4E3YD7JVjW0Q7SCLoxlUN0rgbMC2GzSHovVm0drH8OOAKfe7cIi-4Pei5oVD1IqXqdNl6gaKqPM25AgFB0a8c6YszbpSX3eFU9RNCStSLR9MDClFtH8xOevng_f_HVz8Bi_Xok4
Cites_doi 10.1016/0923-0467(93)85003-E
10.1002/aic.690490517
10.1021/acs.cgd.8b00499
10.1002/9783527631209.ch68
10.1016/j.powtec.2020.03.027
10.1016/j.partic.2022.05.001
10.1016/j.cherd.2021.04.007
10.1021/acs.iecr.3c03870
10.1021/cg0504049
10.1016/j.compchemeng.2022.107704
10.1016/j.cherd.2023.11.032
10.23919/CCC63176.2024.10661767
10.1016/S1011-1344(98)00062-1
10.1007/s13346-022-01219-1
10.1021/bi00185a001
10.1097/DER.0000000000000025
10.1021/acs.cgd.7b00645
10.1016/j.engappai.2017.01.013
10.1016/0009-2509(64)85047-8
10.1016/j.cherd.2023.02.048
10.1016/j.chempr.2016.08.010
10.1021/acs.iecr.2c00026
10.20944/preprints202401.1759.v1
10.1021/ie102393y
10.1016/j.apt.2020.06.008
10.1016/j.dche.2024.100208
10.1080/00986449008940576
10.1039/D2CE00059H
10.1021/acs.jced.8b00196
10.1021/je0340497
10.1080/02786829708965471
10.1002/aic.11868
10.1021/ie402203k
10.1039/C8MD00300A
10.1016/j.ces.2008.08.003
10.3390/math11030682
10.1002/aic.690130104
10.1021/acs.oprd.9b00348
10.1016/j.cej.2021.131220
10.1021/ie071125g
10.1016/j.molliq.2022.119438
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/cryst15050464
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2073-4352
ExternalDocumentID oai_doaj_org_article_b4675f5eefb4483cb78d4a10be68b91a
A843332584
10_3390_cryst15050464
GeographicLocations China
Tianjin China
GeographicLocations_xml – name: China
– name: Tianjin China
GroupedDBID .4S
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
D1I
EDO
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
KB.
KQ8
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PROAC
TUS
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c367t-e1f20f4839985f949f1d03f44ce7ac06403193e988628497c6c4337c1cacffe33
IEDL.DBID BENPR
ISSN 2073-4352
IngestDate Wed Aug 27 01:32:14 EDT 2025
Fri Jul 25 09:46:55 EDT 2025
Tue Jun 17 03:40:31 EDT 2025
Tue Jul 01 04:50:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-e1f20f4839985f949f1d03f44ce7ac06403193e988628497c6c4337c1cacffe33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3211933271?pq-origsite=%requestingapplication%
PQID 3211933271
PQPubID 2032412
ParticipantIDs doaj_primary_oai_doaj_org_article_b4675f5eefb4483cb78d4a10be68b91a
proquest_journals_3211933271
gale_infotracacademiconefile_A843332584
crossref_primary_10_3390_cryst15050464
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Crystals (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Muthancheri (ref_2) 2020; 31
Heurung (ref_24) 2014; 25
Lima (ref_18) 2025; 14
Pawar (ref_4) 2018; 18
Likozar (ref_12) 2020; 366
Abbas (ref_1) 2008; 63
Jia (ref_6) 2022; 24
Azizian (ref_30) 2003; 48
Rosenbaum (ref_8) 2019; 23
Hulburt (ref_32) 1964; 19
Surana (ref_23) 2018; 9
Ouyang (ref_28) 2018; 63
Omar (ref_3) 2017; 17
ref_19
Bransom (ref_39) 1960; 5
Ouyang (ref_29) 2018; 63
ref_16
Ashraf (ref_36) 2022; 160
Zhao (ref_43) 2023; 73
Miranda (ref_25) 1998; 43
Ojha (ref_20) 2017; 60
Lima (ref_13) 2023; 200
McGraw (ref_34) 1997; 27
Mydlarz (ref_41) 1990; 90
ref_21
Mydlarz (ref_42) 1993; 53
Kumar (ref_9) 2023; 13
Trifkovic (ref_35) 2008; 47
Zhou (ref_11) 2006; 6
Dorman (ref_22) 1994; 33
Liu (ref_38) 2024; 63
Trifkovic (ref_44) 2009; 55
Ramisetty (ref_5) 2013; 52
Ouyang (ref_31) 2022; 360
Canning (ref_40) 1967; 13
Orehek (ref_10) 2021; 170
Zheng (ref_17) 2022; 61
Wu (ref_15) 2023; 192
Zhao (ref_26) 2016; 1
Zhang (ref_27) 2022; 7
Marchisio (ref_33) 2003; 49
Chen (ref_14) 2021; 426
Widenski (ref_37) 2011; 50
ref_7
References_xml – volume: 53
  start-page: 125
  year: 1993
  ident: ref_42
  article-title: On the Estimation of Size-Dependent Crystal Growth Rate Functions in MSMPR Crystallizers
  publication-title: Chem. Eng. J. Biochem. Eng. J.
  doi: 10.1016/0923-0467(93)85003-E
– volume: 49
  start-page: 1266
  year: 2003
  ident: ref_33
  article-title: Quadrature Method of Moments for Population-Balance Equations
  publication-title: AIChE J.
  doi: 10.1002/aic.690490517
– volume: 18
  start-page: 4511
  year: 2018
  ident: ref_4
  article-title: Modeling, Simulation, and Influence of Operational Parameters on Crystal Size and Morphology in Semibatch Antisolvent Crystallization of α-Lactose Monohydrate
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.8b00499
– ident: ref_7
  doi: 10.1002/9783527631209.ch68
– volume: 366
  start-page: 873
  year: 2020
  ident: ref_12
  article-title: Process Analytical Technology-Based (PAT) Model Simulations of a Combined Cooling, Seeded and Antisolvent Crystallization of an Active Pharmaceutical Ingredient (API)
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2020.03.027
– volume: 73
  start-page: 103
  year: 2023
  ident: ref_43
  article-title: Kinetic Study of Complicated Anti-Solvent and Cooling Crystallization of Disodium 5′-Ribonucleotide
  publication-title: Particuology
  doi: 10.1016/j.partic.2022.05.001
– volume: 170
  start-page: 256
  year: 2021
  ident: ref_10
  article-title: Mechanistic Crystal Size Distribution (CSD)-Based Modelling of Continuous Antisolvent Crystallization of Benzoic Acid
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2021.04.007
– volume: 63
  start-page: 2831
  year: 2024
  ident: ref_38
  article-title: Continuous Antisolvent Crystallization of L-Histidine: Impact of Process Parameters and Kinetic Estimation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.3c03870
– volume: 6
  start-page: 892
  year: 2006
  ident: ref_11
  article-title: Direct Design of Pharmaceutical Antisolvent Crystallization through Concentration Control
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg0504049
– volume: 7
  start-page: e202203948
  year: 2022
  ident: ref_27
  article-title: Study on Synthesis, Optical Properties and Application of Benzophenone Derivatives
  publication-title: Chem. Sel.
– volume: 160
  start-page: 107704
  year: 2022
  ident: ref_36
  article-title: Multiobjective Temperature Trajectory Optimization for Unseeded Batch Cooling Crystallization of Aspirin
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107704
– volume: 5
  start-page: 838
  year: 1960
  ident: ref_39
  article-title: Factors in the Design of Continuous Crystallizer
  publication-title: Br. Chem. Eng.
– volume: 200
  start-page: 538
  year: 2023
  ident: ref_13
  article-title: Improved Modeling of Crystallization Processes by Universal Differential Equations
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2023.11.032
– ident: ref_16
  doi: 10.23919/CCC63176.2024.10661767
– volume: 43
  start-page: 1
  year: 1998
  ident: ref_25
  article-title: New Trends in Photobiology (Invited Review) Photosensitizing Drugs Containing the Benzophenone Chromophore
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/S1011-1344(98)00062-1
– volume: 13
  start-page: 400
  year: 2023
  ident: ref_9
  article-title: Liquid Antisolvent Crystallization of Pharmaceutical Compounds: Current Status and Future Perspectives
  publication-title: Drug Deliv. Transl. Res.
  doi: 10.1007/s13346-022-01219-1
– volume: 33
  start-page: 5661
  year: 1994
  ident: ref_22
  article-title: Benzophenone Photophores in Biochemistry
  publication-title: Biochemistry
  doi: 10.1021/bi00185a001
– volume: 25
  start-page: 3
  year: 2014
  ident: ref_24
  article-title: Benzophenones
  publication-title: Dermatitis
  doi: 10.1097/DER.0000000000000025
– volume: 17
  start-page: 4028
  year: 2017
  ident: ref_3
  article-title: Crystal Population Balance Formulation and Solution Methods: A Review
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.7b00645
– volume: 60
  start-page: 97
  year: 2017
  ident: ref_20
  article-title: Metaheuristic Design of Feedforward Neural Networks: A Review of Two Decades of Research
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.01.013
– volume: 19
  start-page: 555
  year: 1964
  ident: ref_32
  article-title: Some Problems in Particle Technology: A Statistical Mechanical Formulation
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(64)85047-8
– volume: 192
  start-page: 556
  year: 2023
  ident: ref_15
  article-title: Physics-Informed Machine Learning for MPC: Application to a Batch Crystallization Process
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2023.02.048
– volume: 1
  start-page: 592
  year: 2016
  ident: ref_26
  article-title: Rational Molecular Design for Achieving Persistent and Efficient Pure Organic Room-Temperature Phosphorescence
  publication-title: Chem
  doi: 10.1016/j.chempr.2016.08.010
– volume: 61
  start-page: 5578
  year: 2022
  ident: ref_17
  article-title: Machine Learning Modeling and Predictive Control of the Batch Crystallization Process
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.2c00026
– ident: ref_21
  doi: 10.20944/preprints202401.1759.v1
– volume: 50
  start-page: 8304
  year: 2011
  ident: ref_37
  article-title: Use of Predictive Solubility Models for Isothermal Antisolvent Crystallization Modeling and Optimization
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie102393y
– volume: 31
  start-page: 3191
  year: 2020
  ident: ref_2
  article-title: Development and Validation of a Two-Dimensional Population Balance Model for a Supercritical CO2 Antisolvent Batch Crystallization Process
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2020.06.008
– volume: 14
  start-page: 100208
  year: 2025
  ident: ref_18
  article-title: Applications of Machine Learning for Modeling and Advanced Control of Crystallization Processes: Developments and Perspectives
  publication-title: Digit. Chem. Eng.
  doi: 10.1016/j.dche.2024.100208
– volume: 90
  start-page: 47
  year: 1990
  ident: ref_41
  article-title: On Modelling the Size-Dependent Growth Rate of Potassium Sulphate in an Msmpr Crystallizer
  publication-title: Chem. Eng. Commun.
  doi: 10.1080/00986449008940576
– volume: 24
  start-page: 3122
  year: 2022
  ident: ref_6
  article-title: Recent Progress in Antisolvent Crystallization
  publication-title: Cryst. Eng. Commun.
  doi: 10.1039/D2CE00059H
– volume: 63
  start-page: 4809
  year: 2018
  ident: ref_28
  article-title: Corrigendum to “Determination of Solubility and Thermodynamic Properties of Benzophenone in Different Pure Solvents
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/acs.jced.8b00196
– volume: 48
  start-page: 1476
  year: 2003
  ident: ref_30
  article-title: Solubility of Benzophenone in Binary Alkane + Carbon Tetrachloride Solvent Mixtures
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je0340497
– volume: 27
  start-page: 255
  year: 1997
  ident: ref_34
  article-title: Description of Aerosol Dynamics by the Quadrature Method of Moments
  publication-title: Aerosol Sci. Technol.
  doi: 10.1080/02786829708965471
– volume: 55
  start-page: 2591
  year: 2009
  ident: ref_44
  article-title: Multivariable Real-Time Optimal Control of a Cooling and Antisolvent Semibatch Crystallization Process
  publication-title: AIChE J.
  doi: 10.1002/aic.11868
– volume: 52
  start-page: 17573
  year: 2013
  ident: ref_5
  article-title: Ultrasound-Assisted Antisolvent Crystallization of Benzoic Acid: Effect of Process Variables Supported by Theoretical Simulations
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie402203k
– volume: 9
  start-page: 1803
  year: 2018
  ident: ref_23
  article-title: Benzophenone: A Ubiquitous Scaffold in Medicinal Chemistry
  publication-title: Med. Chem. Commun.
  doi: 10.1039/C8MD00300A
– volume: 63
  start-page: 5457
  year: 2008
  ident: ref_1
  article-title: Antisolvent Crystallization: Model Identification, Experimental Validation and Dynamic Simulation
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2008.08.003
– ident: ref_19
  doi: 10.3390/math11030682
– volume: 63
  start-page: 1833
  year: 2018
  ident: ref_29
  article-title: Determination of Solubility and Thermodynamic Properties of Benzophenone in Different Pure Solvents
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/acs.jced.8b00196
– volume: 13
  start-page: 5
  year: 1967
  ident: ref_40
  article-title: Some Aspects of Crystallization Theory: Systems That Violate McCabe’s Delta L Law
  publication-title: AIChE J.
  doi: 10.1002/aic.690130104
– volume: 23
  start-page: 2666
  year: 2019
  ident: ref_8
  article-title: Population Balance Modeling To Predict Particle Size Distribution upon Scale-Up of a Combined Antisolvent and Cooling Crystallization of an Active Pharmaceutical Ingredient
  publication-title: Org. Process Res. Dev.
  doi: 10.1021/acs.oprd.9b00348
– volume: 426
  start-page: 131220
  year: 2021
  ident: ref_14
  article-title: Physics-Informed Deep Learning for Modelling Particle Aggregation and Breakage Processes
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131220
– volume: 47
  start-page: 1586
  year: 2008
  ident: ref_35
  article-title: Kinetics Estimation and Single and Multi-Objective Optimization of a Seeded, Anti-Solvent, Isothermal Batch Crystallizer
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie071125g
– volume: 360
  start-page: 119438
  year: 2022
  ident: ref_31
  article-title: Solubility, Dissolution Thermodynamics, Hansen Solubility Parameter and Molecular Simulation of 4-Chlorobenzophenone with Different Solvents
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2022.119438
SSID ssj0000760771
Score 2.3214931
Snippet The emergence of artificial neural networks and the widespread application of process analytical technology (PAT) have founded a robust foundation for neural...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 464
SubjectTerms antisolvent crystallization kinetics
Artificial neural networks
Crystallization
Crystals
Datasets
Kinetics
Morphology
neural network
Neural networks
Particle size
population balance equation
Predictions
process analytical technology
Robustness
Size distribution
Solvents
Spectrum analysis
Temperature effects
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQnyJQkAcES6MmsR07bG1FVYHoRFE3y3ZsCakqqGThP_CjuUtS1A6IhTWxo4vvzndPPr8j5NoyVnKAx3FueIYARcTKJaCQvHR5khXYHQerLab5ZMYf5mK-0eoLa8IaeuBm4foWPFkE4X2wgCSYs1KV3KSJ9bmyRVqnRhDzNsBUvQfLPJEybUg1GeD6vlt9YvPbROBZ3lYQqrn6f9uR6zAzPiD7bX5IB41ch2THL4_I3gZr4DH5QkINGDNtKrjjIQSikj7CAJhDsbnZgkIqSgfL6hUsCwsa6QjlMotFe-uSvgU69EustvOA__0dxcadayrZHn2B7LxpttSjZlnSJ48XhGtOZ7pdpnhCZuP759EkbpsqxI7lsop9GrIkwEoCzhKh4EVIy4QFzp2XxuG5Hjgl84UCqKN4IV3uOGPSpc64EDxjp6SDgp0RqqQzgIdKD58DmChsKqwyghVMQeAPNiI361XW7w13hgbMgerQW-qIyBB18DMIKa_rB2AIujUE_ZchROQWNajRMauVAXGb-wUgK1Jc6YGC_2AZJFwR6a6VrFuP_dAMqe7gvUzP_0OaC7KboeHXpZFd0gEN-ktIXyp7VVvqN01Y7-Q
  priority: 102
  providerName: Directory of Open Access Journals
Title Neural Network-Based Kinetic Model for Antisolvent Crystallization of Benzophenone: Construction, Validation, and Mechanistic Interpretation
URI https://www.proquest.com/docview/3211933271
https://doaj.org/article/b4675f5eefb4483cb78d4a10be68b91a
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB213QscEC0gFsrKh6pcGjWJ7djhgnbbbqtCVwgo6s2yHbtCWmXLdi_8B340M4m3sAe4Jk7kZD48zzN-A3DgOG8EwuOssqIkgCIz7XMUSNX4Ki9r6o5D1Raz6uJaXN7Im7Thdp_KKtc-sXPUzcLTHvkxJyoyzktVvL_7kVHXKMquphYa2zBAF6wRfA0mZ7NPnx92WSjvpFTRk2tyxPfHfvmTmuDmknJ6G4tRx9n_L8_cLTfTp_AkxYls3At2F7ZCuweP_2IPfAa_iFgDx8z6Su5sggtSwz7gAHyGUZOzOcOQlI3b1XfUMCpsZCc0Lzufp9OXbBHZJLRUdRfaRRveMWrguaaUPWLfMErvmy4dMds27CrQQeGO25ltlis-h-vp2deTiyw1V8g8r9QqC0Us8ygwPqq1jLWoY9HkPArhg7Ke8ntonDzUGiGPFrXylRecK19462MMnL-AHZrYS2BaeYu4qAn4OoSL0hXSaSt5zTUGANEN4XD9l81dz6FhEHuQOMyGOIYwIRk8DCLq6-7CYnlrkiUZh65dRhlCdAgtuXdKN8IWuQuVdnVhh_CWJGjIQFdLi9PtzxngXInqyow1fgcvMfAawv5ayCZZ7r35o2ev_n_7NTwqSbW74sd92EHZhDcYoKzcCLb19HwEg_Hp1ccvo6STow7u_wYjkOtA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEE-xUIoPPC6NmsRObCNV1W5h2bLtnlrUm7Edu0JaZct2JdT_wG_hN3Ymj8Ie4NZr7ESOZzwPe_x9AG8c55XA9DgprcgpQSkS5VMUSFn5Ms01seNQtcWsnJyKL2fF2Qb87u_CUFllbxMbQ10tPO2R73KCIuM8l9n-xY-EWKPodLWn0GjVYhqufmLKdrl3-BHl-zbPx59ODiZJxyqQeF7KVRKymKdRYGCgVRG10DGrUh6F8EFaTwdbqJU8aIWxvhJa-tILzqXPvPUxBtoARZN_B59pWlFq_PlmT4dOuaTMWihPbE93_fKKKHfTgk4Q11xfwxDwLz_QOLfxQ3jQRaVs2KrRI9gI9WO4_xdW4RP4RTAe2GfW1o0nI3R_FZtiB3yHEaXanGEAzIb16jvqM5VRsgMal53Pu7uebBHZKNRU4xfqRR0-MKIL7QFsd9hXzAlaiqcdZuuKHQe6ltwgSbP14sincHork_4MNmlgz4Ep6S1mYVXAz2FyWriscMoWXHOF4UZ0A3jXz7K5aBE7DGY6JA6zJo4BjEgGN50IaLt5sFiem27dGoeOpIhFCNFhIsu9k6oSNktdKJXTmR3Ae5KgIXOwWlocbnurAcdKwFpmqPA_eI5h3gC2eiGbzk5cmj9a_eL_za_h7uTk-MgcHc6mL-FeTouqKbvcgk2UU3iFodHKbTf6yODbbS-AaxHzIk4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5VqYTggHiKQAEfeFy6yu7au7aREEraRi2BqEIU9ebaXhshRZuSRkL9D_wifh0z-yjkALdeE2_k7Ixn5rPH3wfwwnFeCYTHSWlFTgClSJRP0SBl5cs016SOQ90W8_LwRLw_LU634Fd_F4baKvuY2ATqaulpj3zEiYqM81xmo9i1RRzvT9-df09IQYpOWns5jdZFZuHyB8K3i7dH-2jrl3k-Pfi8d5h0CgOJ56VcJyGLeRoFFglaFVELHbMq5VEIH6T1dMiFHsqDVlj3K6GlL73gXPrMWx9joM1QDP_bElFROoDtycH8-NPVDg-deUmZtcSenOt05FeXJMCbFnSeuJEIG72Af2WFJtVN78DtrkZl49ap7sJWqO_Brb-YC-_DTyL1wDHztos8mWAyrNgMB-AzjATWFgzLYTau19_Qu6mpku3RvOxi0d38ZMvIJqGmjr9QL-vwhpF4aE9nu8u-IEJoBZ92ma0r9jHQJeWGV5pttko-gJNree0PYUATewRMSW8Rk1UBfw6hauGywilbcM0VFh_RDeFV_5bNecvfYRD3kDnMhjmGMCEbXA0i2u3mg-Xqq-lWsXGYVopYhBAdwlrunVSVsFnqQqmczuwQXpMFDQWH9cridNs7DjhXotkyY4X_g-dY9A1hpzey6aLGhfnj44____VzuIHObz4czWdP4GZOK6zpwdyBAZopPMU6ae2edQ7J4Oy618BvLCAn4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Network-Based+Kinetic+Model+for+Antisolvent+Crystallization+of+Benzophenone%3A+Construction%2C+Validation%2C+and+Mechanistic+Interpretation&rft.jtitle=Crystals+%28Basel%29&rft.au=Dong%2C+Yafei&rft.au=Xuanyuan%2C+Shutian&rft.au=Xie%2C+Chuang&rft.au=Sun%2C+Ying&rft.date=2025-05-01&rft.pub=MDPI+AG&rft.issn=2073-4352&rft.eissn=2073-4352&rft.volume=15&rft.issue=5&rft_id=info:doi/10.3390%2Fcryst15050464&rft.externalDocID=A843332584
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4352&client=summon