Parameters Optimization of Taguchi Method Integrated Hybrid Harmony Search Algorithm for Engineering Design Problems
Performance of convergence to the optimum value is not completely a known process due to characteristics of the considered design problem and floating values of optimization algorithm control parameters. However, increasing robustness and effectiveness of an optimization algorithm may be possible st...
Saved in:
Published in | Mathematics (Basel) Vol. 10; no. 3; p. 327 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.02.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2227-7390 2227-7390 |
DOI | 10.3390/math10030327 |
Cover
Abstract | Performance of convergence to the optimum value is not completely a known process due to characteristics of the considered design problem and floating values of optimization algorithm control parameters. However, increasing robustness and effectiveness of an optimization algorithm may be possible statistically by estimating proper algorithm parameters values. Not only the algorithm which utilizes these estimated-proper algorithm parameter values may enable to find the best fitness in a shorter time, but also it may supply the optimum searching process with a pragmatical manner. This study focuses on the statistical investigation of the optimum values for the control parameters of the harmony search algorithm and their effects on the best solution. For this purpose, the Taguchi method integrated hybrid harmony search algorithm has been presented as an alternative method for optimization analyses instead of sensitivity analyses which are generally used for the investigation of the proper algorithm parameters. The harmony memory size, the harmony memory considering rate, the pitch adjustment rate, the maximum iteration number, and the independent run number of entire iterations have been debated as the algorithm control parameters of the harmony search algorithm. To observe the effects of design problem characteristics on control parameters, the new hybrid method has been applied to different engineering optimization problems including several engineering-optimization examples and a real-size engineering optimization design. End of extensive optimization and statistical analyses to achieve optimum values of control parameters providing rapid convergence to optimum fitness value and handling constraints have been estimated with reasonable relative errors. Employing the Taguchi method integrated hybrid harmony search algorithm in parameter optimization has been demonstrated as it is a reliable and efficient manner to obtain the optimum results with fewer numbers of run and iteration. |
---|---|
AbstractList | Performance of convergence to the optimum value is not completely a known process due to characteristics of the considered design problem and floating values of optimization algorithm control parameters. However, increasing robustness and effectiveness of an optimization algorithm may be possible statistically by estimating proper algorithm parameters values. Not only the algorithm which utilizes these estimated-proper algorithm parameter values may enable to find the best fitness in a shorter time, but also it may supply the optimum searching process with a pragmatical manner. This study focuses on the statistical investigation of the optimum values for the control parameters of the harmony search algorithm and their effects on the best solution. For this purpose, the Taguchi method integrated hybrid harmony search algorithm has been presented as an alternative method for optimization analyses instead of sensitivity analyses which are generally used for the investigation of the proper algorithm parameters. The harmony memory size, the harmony memory considering rate, the pitch adjustment rate, the maximum iteration number, and the independent run number of entire iterations have been debated as the algorithm control parameters of the harmony search algorithm. To observe the effects of design problem characteristics on control parameters, the new hybrid method has been applied to different engineering optimization problems including several engineering-optimization examples and a real-size engineering optimization design. End of extensive optimization and statistical analyses to achieve optimum values of control parameters providing rapid convergence to optimum fitness value and handling constraints have been estimated with reasonable relative errors. Employing the Taguchi method integrated hybrid harmony search algorithm in parameter optimization has been demonstrated as it is a reliable and efficient manner to obtain the optimum results with fewer numbers of run and iteration. |
Author | Geem, Zong Woo Carbas, Serdar Kim, Sanghun Uray, Esra |
Author_xml | – sequence: 1 givenname: Esra orcidid: 0000-0002-1121-2880 surname: Uray fullname: Uray, Esra – sequence: 2 givenname: Serdar orcidid: 0000-0002-3612-0640 surname: Carbas fullname: Carbas, Serdar – sequence: 3 givenname: Zong Woo orcidid: 0000-0002-0370-5562 surname: Geem fullname: Geem, Zong Woo – sequence: 4 givenname: Sanghun orcidid: 0000-0002-1423-6116 surname: Kim fullname: Kim, Sanghun |
BookMark | eNptUU1v1DAQtVCRKKU3foAlriz4I7HjY1UKXamolShny3YmiVeJvYy9h-XXE7oIVYi5vNHMmzejea_JWcoJCHnL2QcpDfu4uDpxxiSTQr8g50IIvdFr4-xZ_opclrJjaxguu8ack_rg0C1QAQu939e4xJ-uxpxoHuijGw9hivQr1Cn3dJsqjOgq9PT26DGu4HDJ6Ui_gcMw0at5zBjrtNAhI71JY0wAGNNIP0GJY6IPmP0MS3lDXg5uLnD5By_I9883j9e3m7v7L9vrq7tNkErXTd_32mvvtRJBMBm88tJ4KXrNdCuC6oXzwhkvAm-UDkwA50GGMJgWWpBcXpDtSbfPbmf3GBeHR5tdtE-FjKN1WGOYwQZhlGmFAQ2mkRo66bumk62SjZDd0K1a705ae8w_DlCq3eUDpvV8K5TQuuXcqJX1_sQKmEtBGP5u5cz-tsk-t2mli3_oIdan_1d0cf7_0C9S8Zg5 |
CitedBy_id | crossref_primary_10_1016_j_heliyon_2024_e38884 crossref_primary_10_1002_app_55530 crossref_primary_10_1108_EC_08_2022_0536 crossref_primary_10_3390_su152115347 crossref_primary_10_3390_app12157595 crossref_primary_10_3390_en16052409 crossref_primary_10_2478_mspe_2025_0010 crossref_primary_10_1007_s00521_022_07196_3 crossref_primary_10_29137_umagd_1349431 crossref_primary_10_1109_ACCESS_2024_3432639 crossref_primary_10_3390_a17120589 crossref_primary_10_3390_electronics11223711 crossref_primary_10_1155_2022_4760175 crossref_primary_10_1177_09544089231197858 crossref_primary_10_3390_act13120469 crossref_primary_10_1016_j_jfca_2024_106670 crossref_primary_10_1016_j_eswa_2023_120242 crossref_primary_10_3390_fib12030029 crossref_primary_10_3390_math12223464 crossref_primary_10_3390_a18030160 |
Cites_doi | 10.1007/978-3-642-12538-6_6 10.1016/j.advengsoft.2016.01.008 10.1016/j.asoc.2011.05.008 10.1007/s12205-015-1163-9 10.1115/1.3438995 10.1080/02664768900000002 10.1016/j.csda.2010.02.018 10.1007/978-3-030-70542-8_21 10.1016/j.cma.2004.09.007 10.1061/(ASCE)0887-3801(1987)1:2(128) 10.1108/EC-02-2020-0126 10.1109/LAWP.2019.2924247 10.1115/1.3258992 10.3390/app10061910 10.1007/s00158-016-1521-3 10.1016/j.istruc.2019.09.013 10.1016/j.advengsoft.2005.04.005 10.1109/TEVC.2004.826895 10.1177/003754970107600201 10.1023/A:1008202821328 10.1126/science.220.4598.671 10.1115/1.3258721 10.20528/cjcrl.2020.02.003 10.1007/s00366-011-0241-y 10.1109/ACCESS.2021.3057807 10.1007/s10043-014-0024-y 10.1016/j.jclepro.2020.120623 10.1115/1.2919393 10.1080/03052159308940980 10.1080/03052159808941235 10.1155/2021/5594267 10.1016/j.cie.2019.06.060 10.1016/0022-2569(70)90064-9 10.1007/11539902_71 10.1002/9780470258354 10.20528/cjsmec.2019.03.004 10.1016/S0166-3615(99)00046-9 10.18400/tekderg.561956 10.1016/S0045-7825(99)00389-8 10.2514/3.10834 10.1109/ICNN.1995.488968 10.1007/978-3-662-03423-1_27 10.1061/(ASCE)ST.1943-541X.0000461 10.1115/1.2912596 10.1016/j.engstruct.2015.08.034 10.1016/j.cma.2008.02.006 10.1109/TEVC.2008.919004 10.1007/978-981-33-6773-9 10.1016/j.eswa.2005.12.002 10.1016/S0303-2647(97)01708-5 10.1016/j.ins.2009.03.004 10.1007/978-3-642-04317-8_8 10.1016/j.ins.2010.07.015 10.1007/s40430-017-0927-1 10.2514/2.1984 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math10030327 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_c2969529e7e9437e83b84835634238f8 10_3390_math10030327 |
GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c367t-ddd7b7bb762c203cb6b39b32d70752c6d2ab2a9b2c1467c02e11c3ccf95e5e313 |
IEDL.DBID | 8FG |
ISSN | 2227-7390 |
IngestDate | Wed Aug 27 01:13:11 EDT 2025 Fri Jul 25 12:01:59 EDT 2025 Tue Jul 01 02:58:08 EDT 2025 Thu Apr 24 22:58:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-ddd7b7bb762c203cb6b39b32d70752c6d2ab2a9b2c1467c02e11c3ccf95e5e313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3612-0640 0000-0002-0370-5562 0000-0002-1423-6116 0000-0002-1121-2880 |
OpenAccessLink | https://www.proquest.com/docview/2627751196?pq-origsite=%requestingapplication% |
PQID | 2627751196 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c2969529e7e9437e83b84835634238f8 proquest_journals_2627751196 crossref_primary_10_3390_math10030327 crossref_citationtrail_10_3390_math10030327 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Carbas (ref_55) 2013; 3 Yildiz (ref_54) 2008; 15 Houssein (ref_1) 2021; 967 Rashedi (ref_7) 2009; 179 Sandgren (ref_35) 1990; 112 Afzal (ref_37) 2020; 260 ref_58 Rajabioun (ref_9) 2011; 11 ref_57 Lee (ref_47) 2005; 194 Zhang (ref_59) 2007; 21 Kennedy (ref_4) 1995; Volume 4 Chao (ref_28) 2014; 21 Erol (ref_8) 2006; 37 Azarm (ref_67) 1989; 111 Ragsdell (ref_50) 1976; 98 Kuang (ref_66) 1998; 30 (ref_52) 2000; 41 Li (ref_65) 1985; 107 Gandomi (ref_62) 2013; 29 Dorigo (ref_3) 1997; 43 Mirjalili (ref_6) 2016; 95 Camp (ref_44) 2012; 138 Kannan (ref_56) 1994; 116 ref_25 ref_68 ref_23 Pelta (ref_11) 2010; Volume 284 ref_22 Kirkpatrick (ref_15) 1983; 220 Fesanghary (ref_20) 2008; 197 Gandomi (ref_46) 2015; 103 Storn (ref_12) 1997; 11 Huang (ref_53) 2007; 186 Uray (ref_33) 2021; 32 Liu (ref_19) 2013; 53 Deb (ref_49) 2000; 186 Yildiz (ref_32) 2010; 270 Akin (ref_39) 2010; 93 Mahdavi (ref_18) 2007; 188 ref_27 ref_26 Gandomi (ref_40) 2016; 55 Kalemci (ref_41) 2020; 23 Tsai (ref_29) 2004; 8 Goldberg (ref_14) 1987; 1 Uray (ref_42) 2019; 5 Akay (ref_24) 2012; 192 Ray (ref_69) 2012; 41 ref_70 ref_36 ref_34 ref_73 ref_38 Cheng (ref_30) 2007; 32 Watanabe (ref_10) 2009; Volume 5792 Deb (ref_51) 1991; 29 Rankovic (ref_48) 2021; 9 ref_45 Deb (ref_60) 1996; 26 Dubey (ref_2) 2021; 2021 Parsopoulos (ref_61) 2005; 3612 Bissell (ref_71) 2006; 16 Chen (ref_72) 2010; 54 Geem (ref_16) 2001; 76 Jia (ref_31) 2019; 18 Simon (ref_13) 2008; 12 Arora (ref_63) 2018; 40 Uray (ref_43) 2020; 11 Ustun (ref_64) 2020; 37 Hakli (ref_17) 2019; 135 ref_5 Sheikholeslami (ref_21) 2016; 20 |
References_xml | – volume: Volume 284 start-page: 65 year: 2010 ident: ref_11 article-title: A New Metaheuristic Bat-Inspired Algorithm publication-title: Nature Inspired Cooperative Strategies for Optimization doi: 10.1007/978-3-642-12538-6_6 – volume: 95 start-page: 51 year: 2016 ident: ref_6 article-title: The Whale Optimization Algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 11 start-page: 5508 year: 2011 ident: ref_9 article-title: Cuckoo Optimization Algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.05.008 – volume: 20 start-page: 2428 year: 2016 ident: ref_21 article-title: Optimization of Reinforced Concrete Retaining Walls via Hybrid Firefly Algorithm with Upper Bound Strategy publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-015-1163-9 – volume: 98 start-page: 1021 year: 1976 ident: ref_50 article-title: Optimal Design of a Class of Welded Structures Using Geometric Programming publication-title: J. Manuf. Sci. Eng. Trans. ASME doi: 10.1115/1.3438995 – ident: ref_5 – ident: ref_26 – ident: ref_68 – volume: 15 start-page: 286 year: 2008 ident: ref_54 article-title: Hybrid Taguchi-Harmony Search Algorithm for Solving Engineering Optimization Problems publication-title: Int. J. Ind. Eng. Theory Appl. Pract. – volume: 16 start-page: 7 year: 2006 ident: ref_71 article-title: Interpreting Mean Squares in Saturated Fractional Designs publication-title: J. Appl. Stat. doi: 10.1080/02664768900000002 – volume: 54 start-page: 1952 year: 2010 ident: ref_72 article-title: An Analysis of Three-Level Orthogonal Saturated Designs publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2010.02.018 – volume: 967 start-page: 515 year: 2021 ident: ref_1 article-title: A Survey of Metaheuristic Algorithms for Solving Optimization Problems publication-title: Stud. Comput. Intell. doi: 10.1007/978-3-030-70542-8_21 – volume: 194 start-page: 3902 year: 2005 ident: ref_47 article-title: A New Meta-Heuristic Algorithm for Continuous Engineering Optimization: Harmony Search Theory and Practice publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2004.09.007 – volume: 188 start-page: 1567 year: 2007 ident: ref_18 article-title: An Improved Harmony Search Algorithm for Solving Optimization Problems publication-title: Appl. Math. Comput. – volume: 1 start-page: 128 year: 1987 ident: ref_14 article-title: Genetic Algorithms in Pipeline Optimization publication-title: J. Comput. Civ. Eng. doi: 10.1061/(ASCE)0887-3801(1987)1:2(128) – ident: ref_23 – volume: 37 start-page: 3543 year: 2020 ident: ref_64 article-title: An Enhanced Adaptive Butterfly Optimization Algorithm Rigorously Verified on Engineering Problems and Implemented to ISAR Image Motion Compensation publication-title: Eng. Comput. doi: 10.1108/EC-02-2020-0126 – ident: ref_58 – volume: 18 start-page: 1581 year: 2019 ident: ref_31 article-title: A Hybrid Taguchi Binary Particle Swarm Optimization for Antenna Designs publication-title: IEEE Antennas Wirel. Propag. Lett. doi: 10.1109/LAWP.2019.2924247 – volume: 111 start-page: 259 year: 1989 ident: ref_67 article-title: Multi-Level Design Optimization Using Global Monotonicity publication-title: J. Mech. Transm. Autom. doi: 10.1115/1.3258992 – ident: ref_73 doi: 10.3390/app10061910 – volume: 55 start-page: 809 year: 2016 ident: ref_40 article-title: Optimization of Retaining Wall Design Using Evolutionary Algorithms publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-016-1521-3 – volume: 23 start-page: 245 year: 2020 ident: ref_41 article-title: Design of Reinforced Concrete Cantilever Retaining Wall Using Grey Wolf Optimization Algorithm publication-title: Structures doi: 10.1016/j.istruc.2019.09.013 – volume: 37 start-page: 106 year: 2006 ident: ref_8 article-title: A New Optimization Method: Big Bang–Big Crunch publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2005.04.005 – volume: 8 start-page: 365 year: 2004 ident: ref_29 article-title: Hybrid Taguchi-Genetic Algorithm for Global Numerical Optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826895 – volume: 53 start-page: 242 year: 2013 ident: ref_19 article-title: Hybrid Particle Swarm Optimizer for Constrained Optimization Problems publication-title: Qinghua Daxue Xuebao/J. Tsinghua Univ. – volume: 26 start-page: 30 year: 1996 ident: ref_60 article-title: A Combined Genetic Adaptive Search (GeneAS) for Engineering Design publication-title: Comput. Sci. Inform. – volume: 76 start-page: 60 year: 2001 ident: ref_16 article-title: A New Heuristic Optimization Algorithm: Harmony Search publication-title: Simulation doi: 10.1177/003754970107600201 – volume: 11 start-page: 341 year: 1997 ident: ref_12 article-title: Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 220 start-page: 671 year: 1983 ident: ref_15 article-title: Optimization by Simulated Annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 93 start-page: 1 year: 2010 ident: ref_39 article-title: Optimum Design of Concrete Cantilever Retaining Walls Using the Harmony Search Algorithm publication-title: Civ. -Comp Proc. – volume: 107 start-page: 277 year: 1985 ident: ref_65 article-title: A Production System for Use of Global Optimization Knowledge publication-title: J. Mech. Transm. Autom. Des. doi: 10.1115/1.3258721 – volume: Volume 5792 start-page: 169 year: 2009 ident: ref_10 article-title: Firefly Algorithms for Multimodal Optimization publication-title: International Symposium on Stochastic Algorithms. SAGA 2009: Stochastic Algorithms: Foundations and Applications – volume: 11 start-page: 39 year: 2020 ident: ref_43 article-title: Investigation of Optimal Designs for Concrete Cantilever Retaining Walls in Different Soils publication-title: Chall. J. Concr. Res. Lett. doi: 10.20528/cjcrl.2020.02.003 – ident: ref_38 – ident: ref_45 – volume: 29 start-page: 17 year: 2013 ident: ref_62 article-title: Cuckoo Search Algorithm: A Metaheuristic Approach to Solve Structural Optimization Problems publication-title: Eng. Comput. doi: 10.1007/s00366-011-0241-y – volume: 9 start-page: 26926 year: 2021 ident: ref_48 article-title: A New Approach to Software Effort Estimation Using Different Artificial Neural Network Architectures and Taguchi Orthogonal Arrays publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3057807 – volume: 21 start-page: 153 year: 2014 ident: ref_28 article-title: Optimization of a Total Internal Reflection Lens by Using a Hybrid Taguchi-Simulated Annealing Algorithm publication-title: Opt. Rev. doi: 10.1007/s10043-014-0024-y – volume: 260 start-page: 120623 year: 2020 ident: ref_37 article-title: Reinforced Concrete Structural Design Optimization: A Critical Review publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120623 – volume: 116 start-page: 405 year: 1994 ident: ref_56 article-title: An Augmented Lagrange Multiplier Based Method for Mixed Integer Discrete Continuous Optimization and Its Applications to Mechanical Design publication-title: J. Mech. Des. doi: 10.1115/1.2919393 – volume: 21 start-page: 277 year: 2007 ident: ref_59 article-title: Mixed-Discrete Nonlinear Optimization with Simulated Annealing publication-title: Eng. Optim. doi: 10.1080/03052159308940980 – volume: 30 start-page: 1 year: 1998 ident: ref_66 article-title: Taguchi-Aided Search Method for Design Optimization of Engineering Systems publication-title: Eng. Optim. doi: 10.1080/03052159808941235 – volume: 2021 start-page: 5594267 year: 2021 ident: ref_2 article-title: A Systematic Review on Harmony Search Algorithm: Theory, Literature, and Applications publication-title: Math. Probl. Eng. doi: 10.1155/2021/5594267 – volume: 135 start-page: 855 year: 2019 ident: ref_17 article-title: An Improved Scatter Search Algorithm for the Uncapacitated Facility Location Problem publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2019.06.060 – ident: ref_36 doi: 10.1016/0022-2569(70)90064-9 – ident: ref_34 – volume: 3612 start-page: 582 year: 2005 ident: ref_61 article-title: Unified Particle Swarm Optimization for Solving Constrained Engineering Optimization Problems publication-title: Lect. Notes Comput. Sci. doi: 10.1007/11539902_71 – ident: ref_27 doi: 10.1002/9780470258354 – volume: 5 start-page: 108 year: 2019 ident: ref_42 article-title: Parametric Investigation for Discrete Optimal Design of a Cantilever Retaining Wall publication-title: Chall. J. Struct. Mech. doi: 10.20528/cjsmec.2019.03.004 – volume: 41 start-page: 113 year: 2000 ident: ref_52 article-title: Use of a Self-Adaptive Penalty Approach for Engineering Optimization Problems publication-title: Comput. Ind. doi: 10.1016/S0166-3615(99)00046-9 – volume: 32 start-page: 10967 year: 2021 ident: ref_33 article-title: Metaheuristics-Based Pre-Design Guide for Cantilever Retaining Walls publication-title: Tek. Dergi doi: 10.18400/tekderg.561956 – volume: 186 start-page: 311 year: 2000 ident: ref_49 article-title: An Efficient Constraint Handling Method for Genetic Algorithms publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(99)00389-8 – volume: 29 start-page: 2013 year: 1991 ident: ref_51 article-title: Optimal Design of a Welded Beam via Genetic Algorithms publication-title: AIAA J. doi: 10.2514/3.10834 – volume: Volume 4 start-page: 1942 year: 1995 ident: ref_4 article-title: Particle Swarm Optimization publication-title: Proceedings of the ICNN’95—International Conference on Neural Networks doi: 10.1109/ICNN.1995.488968 – volume: 3 start-page: 99 year: 2013 ident: ref_55 article-title: Efficiency of Improved Harmony Search Algorithm for Solving Engineering Optimization Problems publication-title: Iran Univ. Sci. Technol. – ident: ref_57 doi: 10.1007/978-3-662-03423-1_27 – volume: 138 start-page: 438 year: 2012 ident: ref_44 article-title: Design of Retaining Walls Using Big Bang–Big Crunch Optimization publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)ST.1943-541X.0000461 – volume: 112 start-page: 223 year: 1990 ident: ref_35 article-title: Nonlinear Integer and Discrete Programming in Mechanical Design Optimization publication-title: J. Mech. Des. doi: 10.1115/1.2912596 – volume: 103 start-page: 72 year: 2015 ident: ref_46 article-title: Optimization of Retaining Wall Design Using Recent Swarm Intelligence Techniques publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2015.08.034 – volume: 186 start-page: 340 year: 2007 ident: ref_53 article-title: An Effective Co-Evolutionary Differential Evolution for Constrained Optimization publication-title: Appl. Math. Comput. – volume: 197 start-page: 3080 year: 2008 ident: ref_20 article-title: Hybridizing Harmony Search Algorithm with Sequential Quadratic Programming for Engineering Optimization Problems publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2008.02.006 – volume: 12 start-page: 702 year: 2008 ident: ref_13 article-title: Biogeography-Based Optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.919004 – ident: ref_25 doi: 10.1007/978-981-33-6773-9 – volume: 32 start-page: 415 year: 2007 ident: ref_30 article-title: A Study on Flowshop Scheduling Problem Combining Taguchi Experimental Design and Genetic Algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2005.12.002 – ident: ref_70 – volume: 43 start-page: 73 year: 1997 ident: ref_3 article-title: Ant Colonies for the Travelling Salesman Problem publication-title: BioSystems doi: 10.1016/S0303-2647(97)01708-5 – volume: 179 start-page: 2232 year: 2009 ident: ref_7 article-title: GSA: A Gravitational Search Algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – ident: ref_22 – volume: 270 start-page: 89 year: 2010 ident: ref_32 article-title: Hybrid Taguchi-Harmony Search Approach for Shape Optimization publication-title: Stud. Comput. Intell. doi: 10.1007/978-3-642-04317-8_8 – volume: 192 start-page: 120 year: 2012 ident: ref_24 article-title: A Modified Artificial Bee Colony Algorithm for Real-Parameter Optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2010.07.015 – volume: 40 start-page: 21 year: 2018 ident: ref_63 article-title: A Modified Butterfly Optimization Algorithm for Mechanical Design Optimization Problems publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-017-0927-1 – volume: 41 start-page: 556 year: 2012 ident: ref_69 article-title: Golinski’s Speed Reducer Problem Revisited publication-title: AIAA J. doi: 10.2514/2.1984 |
SSID | ssj0000913849 |
Score | 2.302197 |
Snippet | Performance of convergence to the optimum value is not completely a known process due to characteristics of the considered design problem and floating values... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 327 |
SubjectTerms | algorithm control parameter optimization Convergence Design engineering Design optimization engineering design problems Fitness Food science Genetic algorithms hybrid harmony search algorithm Hybridization Literature reviews Optimization algorithms Parameter robustness reinforced cantilever retaining wall design Robust control Search algorithms Statistical analysis Taguchi method Taguchi methods Variables |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6xW2YOeJJjsJrvZY32UKlR7aMFb2GcraCttPPTfu7NJS0DEi9dlIGH229mZZOb7ELqULMuMUSYyghNfoDgdCUlE5BIu_W3lcu3g08DgmfXH6dNr9tqQ-oKesIoeuHLcjSaCiYwIy61IKbc5VXnq0wYG1HW5C2O-sYgbxVSIwSKheSqqTnfq6_obn_9NE4A0BQGZxh0UqPp_ROJwvfT20G6dF-Ju9T77aMvODtDOYEOqujxE5VBCJxXQYeIXf9I_6hFKPHd4JCegaoIHQRAaP65JIAzur2AmC_flwgNuhav2Ytx9n8wXb-X0A_ukFTdICfF9aOnAw0poZnmExr2H0V0_qkUTIk0ZLyNjDFdcKR_kNImpVkxRoSgx3CcHRDNDpCJSKKIhRuqY2CTRVGsnMptZmtBj1JrNZ_YEYRMTSWWmfEwUqRRGxqnmRlpnYudXZRtdr91Y6JpRHIQt3gtfWYDTi6bT2-hqY_1ZMWn8YncLO7KxAf7rsOBRUdSoKP5CRRt11vtZ1IdyWRBGOIf_puz0P55xhrYJzEKEFu4OapWLL3vuM5RSXQQwfgOmR-P6 priority: 102 providerName: Directory of Open Access Journals |
Title | Parameters Optimization of Taguchi Method Integrated Hybrid Harmony Search Algorithm for Engineering Design Problems |
URI | https://www.proquest.com/docview/2627751196 https://doaj.org/article/c2969529e7e9437e83b84835634238f8 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxELYoXOih4qmmpJEP5VSt2LV37fUJASVNkZJGKEjcVn6GQ14ky4F_j8frhEiovdq-2B7PyzPfh9APyYrCGGUSIzjxAYrTiZBEJC7j0lsrV2oHqYH-gPUe8rvH4jEm3FaxrHKtE4OiNnMNOfILwgjn8OnFLhfPCbBGwe9qpND4hPYyb2lAzsvu702OBTAvy1w09e7UR_cX3gt8ykCwKdDIbFmiANj_QR8HI9M9QF-id4ivmus8RDt2doQ-9zfQqqtjVA8l1FMBKCb-69_7NDZS4rnDIzkGbhPcD7TQ-M8aCsLg3it0ZuGeXPp9vOKmyBhfTcZ-i_XTFHvXFW9BE-JfobADDxu6mdUJeujejm56SaROSDRlvE6MMVxxpbyq0ySlWjFFhaLEcO8iEM0MkYpIoYgGTalTYrNMU62dKGxhaUZP0e5sPrNfETYpkVQWymtGkUthZJprbqR1JnV-VLbQz_UxVjriigO9xaTy8QUcerV96C10vlm9aPA0_rHuGm5kswZQsMPAfDmu4qOqNBFMFERYbkVOuS2pKnPvUjKANSxd2ULt9X1W8WmuqndB-vb_6TO0T6DXIZRot9FuvXyx370HUqtOELMO2ru-HQzvOyGOfwOFQd_j |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9AAcEE81tIAP9IRW3bV37fUBoZa22tAmRCiVelv8TA9t0iaLUP4UvxHPPkIkBLdevdYexuNvxvbM9wG8VzzLrNU2slLQcEDxJpKKysgnQoVo5XPj8WpgOOLFRfrlMrvcgl9dLwyWVXaYWAO1nRu8Iz-gnAqBj1780-1dhKpR-LraSWg0bnHmVj_DkW35cXAc1nef0tOTyecialUFIsO4qCJrrdBC64AChsbMaK6Z1IxaEaInNdxSpamSmhoEERNTlySGGeNl5jLHEhb--wC2U-xo7cH20clo_G19q4Msm3kqmwp7xmR8EPLOqwS3EkPhmo3YV0sE_BUB6rB2-hSetPkoOWwc6BlsudlzeDxck7kuX0A1VljBhTSc5GtAmJu2dZPMPZmoKaqpkGEtRE0GHfmEJcUKe8FIoRbBcivSlDWTw-tpMGp1dUNCskw2yBDJcV1KQsaNwM3yJVzci1lfQW82n7kdIDamiqlMByyWqZJWxakRVjlvYx9GVR8-dGYsTctkjoIa12U40aDRy02j92F_Pfu2YfD4x7wjXJH1HOTdrgfmi2nZbuPSUMllRqUTTqZMuJzpPA1JLEcixdznfdjr1rNswWBZ_nHd1____A4eFpPheXk-GJ3twiOKnRZ1gfge9KrFD_cm5D-Vfts6HYHv9-3nvwFmFRxm |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVEJwQDxFoIAP9IRW2bV31-sDQi1plFASItRKvS1-poc2KUkQyl_j1zGzjxAJwa1Xr7WH8fibsT3zfQBvdZ5lzhkXOSU5HlCCjZTmKgqJ1BitQmEDXQ2MJ_nwPP10kV3swa-2F4bKKltMrIDaLSzdkfd4zqWkR6-8F5qyiGl_8OHme0QKUvTS2spp1C5y6jc_8fi2ej_q41ofcj44Ofs4jBqFgciKXK4j55w00hhEBMtjYU1uhDKCO4mRlNvccW24VoZbAhQbc58kVlgbVOYzLxKB_70D-xKjYtqB_eOTyfTr9oaHGDeLVNXV9kKouIc56GVC20qQiM1OHKzkAv6KBlWIGzyEB01uyo5qZ3oEe37-GO6Pt8Suqyewnmqq5iJKTvYF0ea6aeNki8DO9IyUVdi4EqVmo5aIwrHhhvrC2FAv0XIbVpc4s6OrGRp1fXnNMHFmO8SIrF-VlbBpLXazegrnt2LWZ9CZL-b-OTAXcy10ZhCXVaqV03FqpdM-uDjgqO7Cu9aMpW1YzUlc46rE0w0Zvdw1ehcOt7NvajaPf8w7phXZziEO7mpgsZyVzZYuLVe5yrjy0qtUSF8IU6SY0OZEqliEogsH7XqWDTCsyj9u_OL_n9_AXfTv8vNocvoS7nFquqhqxQ-gs17-8K8wFVqb143PMfh2227-GyoFIJI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameters+Optimization+of+Taguchi+Method+Integrated+Hybrid+Harmony+Search+Algorithm+for+Engineering+Design+Problems&rft.jtitle=Mathematics+%28Basel%29&rft.au=Uray%2C+Esra&rft.au=Carbas%2C+Serdar&rft.au=Zong+Woo+Geem&rft.au=Kim%2C+Sanghun&rft.date=2022-02-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=10&rft.issue=3&rft.spage=327&rft_id=info:doi/10.3390%2Fmath10030327&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |