Using support vector machines to enhance the performance of elastic graph matching for frontal face authentication
A novel method for enhancing the performance of elastic graph matching in frontal face authentication is proposed. The starting point is to weigh the local similarity values at the nodes of an elastic graph according to their discriminatory power. Powerful and well-established optimization technique...
Saved in:
Published in | IEEE transactions on pattern analysis and machine intelligence Vol. 23; no. 7; pp. 735 - 746 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2001
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A novel method for enhancing the performance of elastic graph matching in frontal face authentication is proposed. The starting point is to weigh the local similarity values at the nodes of an elastic graph according to their discriminatory power. Powerful and well-established optimization techniques are used to derive the weights of the linear combination. More specifically, we propose a novel approach that reformulates Fisher's discriminant ratio to a quadratic optimization problem subject to a set of inequality constraints by combining statistical pattern recognition and support vector machines (SVM). Both linear and nonlinear SVM are then constructed to yield the optimal separating hyperplanes and the optimal polynomial decision surfaces, respectively. The method has been applied to frontal face authentication on the M2VTS database. Experimental results indicate that the performance of morphological elastic graph matching is highly improved by using the proposed weighting technique. |
---|---|
AbstractList | A novel method for enhancing the performance of elastic graph matching in frontal face authentication is proposed. The starting point is to weigh the local similarity values at the nodes of an elastic graph according to their discriminatory power. Powerful and well-established optimization techniques are used to derive the weights of the linear combination. More specifically, we propose a novel approach that reformulates Fisher's discriminant ratio to a quadratic optimization problem subject to a set of inequality constraints by combining statistical pattern recognition and support vector machines (SVM). Both linear and nonlinear SVM are then constructed to yield the optimal separating hyperplanes and the optimal polynomial decision surfaces, respectively. The method has been applied to frontal face authentication on the M2VTS database. Experimental results indicate that the performance of morphological elastic graph matching is highly improved by using the proposed weighting technique. A novel method for enhancing the performance of elastic graph matching in frontal face authentication is proposed. The starting point is to weigh the local similarity values at the nodes of an elastic graph according to their discriminatory power. Powerful and well-established optimization techniques are used to derive the weights of the linear combination. More specifically, we propose a novel approach that reformulates Fisher's discriminant ratio to a quadratic optimization problem subject to a set of inequality constraints by combining statistical pattern recognition and support vector machines (SVM). Both linear and nonlinear SVM are then constructed to yield the optimal separating hyperplanes and the optimal polynomial decision surfaces, respectively. The method has been applied to frontal face authentication on the M2VTS database. Experimental results indicate that the performance of morphological elastic graph matching is highly improved by using the proposed weighting technique A novel method for enhancing the performance of elastic graph matching in frontal face authentication is proposed. The starting point is to weigh the local similarity values at the nodes of an elastic graph according to their discriminatory power. Powerful and well-established optimization techniques are used to derive the weights of the linear combination. More specifically, we propose a novel approach that reformulates Fisher's discriminant ratio to a quadratic optimization problem subject to a set of inequality constraints by combining statistical pattern recognition and Support Vector Machines. Both linear and nonlinear Support Vector Machines are then constructed to yield the optimal separating hyperplanes and the optimal polynomial decision surfaces, respectively. The method has been applied to frontal face authentication on the M2VTS database. Experimental results indicate that the performance of morphological elastic graph matching is highly improved by using the proposed weighting technique. |
Author | Tefas, A. Pitas, I. Kotropoulos, C. |
Author_xml | – sequence: 1 givenname: A. surname: Tefas fullname: Tefas, A. organization: Dept. of Inf., Aristotelian Univ. of Thessaloniki, Greece – sequence: 2 givenname: C. surname: Kotropoulos fullname: Kotropoulos, C. – sequence: 3 givenname: I. surname: Pitas fullname: Pitas, I. |
BookMark | eNqF0c1rHCEYBnApKXST9tBrT5JDSg-T6Og4egxLvyDQS3Me3nVedw2zOlUnkP--Zjf0EEJ6EvH3KK_PKTkJMSAhHzm75JyZKyEvjei07N-QFTfCNKIT5oSsGFdto3Wr35HTnO8Y47JjYkXSbfZhS_MyzzEVeo-2xET3YHc-YKYlUgw7CBZp2SGdMbmY9od9dBQnyMVbuk0w72qoPKa2tBLqUgwFJuqgUlhqOFQJxcfwnrx1MGX88LSekdtvX3-vfzQ3v77_XF_fNFaovjR2IwXvLTruFOhxZKodx42QqhMctMIRBNctQG8YMKP6USttzcbaHlG6thdn5PPx3jnFPwvmMux9tjhNEDAueTBcKmF0q6q8eFW2WjHdd-b_UBklNRMVnj-Dd3FJoY476FpOffqAro7IpphzQjdYXw5fVBL4aeBseOx0EHI4dloTX54l5uT3kB5etJ-O1iPiP_d0-BcssKyf |
CODEN | ITPIDJ |
CitedBy_id | crossref_primary_10_1016_j_cviu_2004_04_001 crossref_primary_10_1016_j_patcog_2016_02_002 crossref_primary_10_1016_S0167_8655_02_00383_5 crossref_primary_10_1049_iet_bmt_2014_0018 crossref_primary_10_1109_TPAMI_2008_143 crossref_primary_10_1007_s11042_013_1548_z crossref_primary_10_1016_j_patcog_2013_05_016 crossref_primary_10_1109_TIFS_2007_910238 crossref_primary_10_1007_s11634_015_0212_z crossref_primary_10_1016_j_patcog_2006_09_009 crossref_primary_10_1016_j_patcog_2008_12_028 crossref_primary_10_1142_S0129065707001196 crossref_primary_10_1016_j_sigpro_2010_01_005 crossref_primary_10_1007_s10044_004_0207_4 crossref_primary_10_1016_j_patcog_2014_04_004 crossref_primary_10_1016_j_neucom_2013_02_002 crossref_primary_10_1109_TCSVT_2005_848346 crossref_primary_10_1142_S0218001404003228 crossref_primary_10_1109_TNN_2008_2004376 crossref_primary_10_1109_LGRS_2016_2584660 crossref_primary_10_1109_TIFS_2006_890308 crossref_primary_10_1016_j_eswa_2008_08_001 crossref_primary_10_1016_j_engappai_2018_04_013 crossref_primary_10_1016_j_patrec_2009_03_007 crossref_primary_10_1109_TIP_2007_904408 crossref_primary_10_1007_s11760_007_0016_5 crossref_primary_10_1016_j_patcog_2007_01_026 crossref_primary_10_1109_MPRV_2003_1186724 crossref_primary_10_1016_j_asoc_2011_04_004 crossref_primary_10_1111_srt_12348 crossref_primary_10_1109_TNN_2006_873291 crossref_primary_10_1016_j_neucom_2009_01_001 crossref_primary_10_4028_www_scientific_net_AMR_542_543_1306 crossref_primary_10_1007_s12193_009_0020_x crossref_primary_10_1016_j_patcog_2005_10_006 crossref_primary_10_1007_s10916_010_9583_z crossref_primary_10_1080_01449290903353047 crossref_primary_10_1117_1_3610982 crossref_primary_10_4103_0256_4602_63849 crossref_primary_10_1016_j_patrec_2007_01_003 crossref_primary_10_1007_s40745_014_0018_4 crossref_primary_10_1109_TNNLS_2021_3053266 crossref_primary_10_1016_j_cviu_2010_12_008 crossref_primary_10_1049_iet_cvi_20070024 crossref_primary_10_1016_j_neunet_2011_05_015 crossref_primary_10_1007_s11042_014_2082_3 crossref_primary_10_1142_S0218001403002460 crossref_primary_10_1007_s12036_016_9374_0 crossref_primary_10_1109_TMM_2008_2007292 crossref_primary_10_1109_TNN_2006_885038 crossref_primary_10_1016_j_engappai_2010_07_006 crossref_primary_10_1016_j_patrec_2006_09_002 crossref_primary_10_1016_j_patrec_2007_05_021 crossref_primary_10_1109_TIFS_2007_902915 crossref_primary_10_1016_j_cviu_2006_11_013 crossref_primary_10_1007_s10044_005_0241_x crossref_primary_10_1109_TCYB_2018_2886012 crossref_primary_10_3724_SP_J_1087_2010_01597 crossref_primary_10_1007_s12036_017_9441_1 crossref_primary_10_1109_MCI_2007_353418 crossref_primary_10_1109_TMM_2007_898933 crossref_primary_10_1016_j_measurement_2016_05_030 crossref_primary_10_1109_TCSVT_2013_2269774 crossref_primary_10_1109_TIP_2006_884954 crossref_primary_10_1007_s00170_022_10549_w crossref_primary_10_1016_j_jvcir_2010_06_002 crossref_primary_10_1049_iet_bmt_2013_0039 crossref_primary_10_1007_s00521_011_0791_3 crossref_primary_10_1007_s10489_022_04237_1 crossref_primary_10_3846_20294913_2012_661205 crossref_primary_10_1002_ima_22308 crossref_primary_10_1016_j_patcog_2007_06_026 crossref_primary_10_5143_JESK_2012_31_2_271 crossref_primary_10_1109_TNET_2019_2891733 crossref_primary_10_1016_j_ijsolstr_2018_05_027 crossref_primary_10_1049_iet_spr_20080022 crossref_primary_10_1007_BF02344719 |
Cites_doi | 10.1109/83.704308 10.1162/jocn.1991.3.1.71 10.1109/34.598228 10.1016/S0031-3203(96)00132-X 10.1109/83.841933 10.1109/34.598234 10.1023/A:1018946025316 10.1109/83.753738 10.1109/34.598233 10.1109/34.41390 10.1016/0031-3203(94)90017-5 10.1023/A:1022627411411 10.1109/ICASSP.1997.595305 10.1007/978-1-4757-2440-0 10.1109/34.531802 10.1016/S0031-3203(99)00185-5 10.1007/BFb0015988 10.1109/34.598235 10.1109/CVPR.1992.223162 10.1109/12.210173 10.1109/5.381842 10.1016/S0165-1684(98)00087-5 10.1109/78.650102 10.1109/6046.825791 10.1109/5.628712 10.1007/BFb0016021 10.1002/9781118723203 10.1007/BF00332918 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001 |
DBID | RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1109/34.935847 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) - NZ url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1939-3539 |
EndPage | 746 |
ExternalDocumentID | 2432844791 10_1109_34_935847 935847 |
GroupedDBID | --- -DZ -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ADRHT AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P FA8 HZ~ H~9 IBMZZ ICLAB IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNI RNS RXW RZB TAE TN5 UHB VH1 XJT ~02 AAYOK AAYXX CITATION RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c367t-cb4317cef1f6a8dd062ddb346531a86eda3182aa790a0967d868c9bcc7ee4f273 |
IEDL.DBID | RIE |
ISSN | 0162-8828 |
IngestDate | Thu Jul 10 19:58:41 EDT 2025 Tue Aug 05 11:08:17 EDT 2025 Fri Jul 11 00:15:03 EDT 2025 Fri Jul 25 02:58:49 EDT 2025 Tue Jul 01 05:14:56 EDT 2025 Thu Apr 24 23:01:14 EDT 2025 Wed Aug 27 02:47:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-cb4317cef1f6a8dd062ddb346531a86eda3182aa790a0967d868c9bcc7ee4f273 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
PQID | 884791403 |
PQPubID | 23500 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1109_34_935847 crossref_primary_10_1109_34_935847 ieee_primary_935847 proquest_miscellaneous_26964803 proquest_journals_884791403 proquest_miscellaneous_914639826 proquest_miscellaneous_28608759 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2001-07-01 |
PublicationDateYYYYMMDD | 2001-07-01 |
PublicationDate_xml | – month: 07 year: 2001 text: 2001-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on pattern analysis and machine intelligence |
PublicationTitleAbbrev | TPAMI |
PublicationYear | 2001 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref14 ref31 ref30 ref11 ref10 Osuna (ref32) 1997 ref2 ref1 ref17 ref18 Vapnik (ref29) 1998 ref24 Cottrell (ref8); 1 ref23 ref26 ref25 ref20 ref22 Gunn (ref33) 1998 ref21 ref28 ref27 ref7 ref9 ref4 ref3 ref6 Devijver (ref15) 1982 ref5 Schalkoff (ref16) 1992 Burges (ref19) 1998 |
References_xml | – ident: ref2 doi: 10.1109/83.704308 – ident: ref7 doi: 10.1162/jocn.1991.3.1.71 – ident: ref22 doi: 10.1109/34.598228 – ident: ref4 doi: 10.1016/S0031-3203(96)00132-X – volume-title: Statistical Learning Theory year: 1998 ident: ref29 – volume-title: Technical Memo AIM-1602 year: 1997 ident: ref32 article-title: Support Vector Machines: Training and Applications – ident: ref13 doi: 10.1109/83.841933 – ident: ref12 doi: 10.1109/34.598234 – ident: ref30 doi: 10.1023/A:1018946025316 – ident: ref24 doi: 10.1109/83.753738 – ident: ref25 doi: 10.1109/34.598233 – ident: ref6 doi: 10.1109/34.41390 – ident: ref26 doi: 10.1016/0031-3203(94)90017-5 – ident: ref18 doi: 10.1023/A:1022627411411 – ident: ref27 doi: 10.1109/ICASSP.1997.595305 – ident: ref17 doi: 10.1007/978-1-4757-2440-0 – ident: ref21 doi: 10.1109/34.531802 – ident: ref14 doi: 10.1016/S0031-3203(99)00185-5 – start-page: 1 year: 1998 ident: ref19 article-title: A Tutorial on Support Vector Machines for Pattern Recognition publication-title: Data Mining and Knowledge Discovery – volume-title: Technical Report MP-TR-98-05, Image Speech and Intelligent Systems Group, Univ. of Southampton year: 1998 ident: ref33 article-title: Support Vector Machines for Classification and Regression – ident: ref23 doi: 10.1007/BFb0015988 – ident: ref11 doi: 10.1109/34.598235 – ident: ref10 doi: 10.1109/CVPR.1992.223162 – ident: ref3 doi: 10.1109/12.210173 – ident: ref1 doi: 10.1109/5.381842 – ident: ref35 doi: 10.1016/S0165-1684(98)00087-5 – ident: ref31 doi: 10.1109/78.650102 – ident: ref34 doi: 10.1109/6046.825791 – ident: ref5 doi: 10.1109/5.628712 – volume-title: Pattern Recognition: A Statistical Approach year: 1982 ident: ref15 – volume: 1 start-page: 322 volume-title: Proc. Int’l Neural Network Conf. ident: ref8 article-title: Face Recognition Using Unsupervised Feature Extraction – volume-title: Pattern Recognition: Statistical, Structural, and Neural Approaches year: 1992 ident: ref16 – ident: ref20 doi: 10.1007/BFb0016021 – ident: ref28 doi: 10.1002/9781118723203 – ident: ref9 doi: 10.1007/BF00332918 |
SSID | ssj0014503 |
Score | 2.1441727 |
Snippet | A novel method for enhancing the performance of elastic graph matching in frontal face authentication is proposed. The starting point is to weigh the local... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 735 |
SubjectTerms | Authentication Constraint optimization Face recognition Graph matching Humans Inequalities Neural networks Optimization Pattern recognition Performance enhancement Polynomials Similarity Support vector machines System testing |
Title | Using support vector machines to enhance the performance of elastic graph matching for frontal face authentication |
URI | https://ieeexplore.ieee.org/document/935847 https://www.proquest.com/docview/884791403 https://www.proquest.com/docview/26964803 https://www.proquest.com/docview/28608759 https://www.proquest.com/docview/914639826 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VTuVQ6FLULX1YFQcuWbIbx7GPqCpCldpTkbhFfkxUCUhWm4QDv74zTnZLKaDeomQsW_HrG_ubbwCOApP8nNNJlnqbSBnyxJrUJNabKuTWuzzmjPz-Q51fyG-X-eWosx1jYRAxks9wxo_xLj80vuejshO-s5PFFmyR3zaEam0uDGQekyATgKEJTl7EKCI0T81JJmdDwb-2nphL5Z8FOO4qZ7tDuHYbxQiZTHI16zs383cPpBr_s8F78GpEl-J0GA6v4QXWE9hdZ24Q40SewM49GcJ9WEXegGj7JYNxcRsP8sVNpFliK7pGYP2LR4cgtCiWf0INRFMJJPhNtYmofE2FukjOFGQiKhZHoOZUlkwtU-nrbjwifAMXZ19_fjlPxlwMic9U0SXeMdLwWM0rZXUIqVqE4DJWZ5tbrTBYWhwW1hYmteQVFUEr7Y3zvkCUFWGkA9iumxrfgkDaEjn4KzNWSZU6Q_so6pARMDNzr_wUjtfdVPpRqJzzZVyX0WFJTZnJcvizU_i8MV0O6hyPGU24ZzYG67eH664vx2nblpo-GFYwnMKnzVeab3yJYmts-rZcKKOkftZCK04TYKYgnrCgKggYkmP37tGmHcLLgenGpOD3sN2tevxA0KdzH-Og_w3JCgS7 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9RADLZKOQCHFhZQlxY6QiBxyTabTCaZQw8IqLb0cWql3sI8HCFBk1WTgMpf4a_w4_BMHrwKt0rcVomzGU0c-3NsfwZ4Zl2Rn9ZZEIdGBZzbJFAylIEysrCJMjrxMyOPjsXilL89S85W4OvYC4OIvvgMZ-6nz-XbyrTuU9mOy9nxtK-gPMDLzxSf1bv7r-lhPo-ivTcnrxZBP0IgMLFIm8Bo5yANFvNCqMzaUETW6tiRis1VJtAq0ulIqVSGisB8ajORGamNSRF5Qa6d_vcG3CSYkURdc9iYouCJH7tMkIlMCsUtPW3RPJQ7MZ91S_3F2fnpLX-YfO_H9tbh27ADXfnKh1nb6Jn58hs55H-6RXdhrcfP7GWn8PdgBcsJrA-zKVhvqiZw5yeixftw4SsjWN0uXbjBPvlUBTv3haRYs6ZiWL53-s8ID7Plj2YKVhUMKcCguzHP7U0XNb78lJEIKxz9Ay2nUCSqXLNA2fQfQR_A6bXsw0NYLasSN4AhOX3X3hZLJbgItSSkgJmNCXrKuRFmCi8GtchNT8XuJoJ8zH1IFso85nn3JKfwdBRddvwjVwlNnCaMAsPRzUHV8t4w1XlGJ6TjaJzC9niWLIpLE6kSq7bOIyEFz_4pkQk3CEFOgf1Fgm5B0JdC10dXLm0bbi1Ojg7zw_3jg0243dX1uRLoLVhtLlp8TECv0U_8C8fg3XWr73fqbWOx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+support+vector+machines+to+enhance+the+performance+of+elastic+graph+matching+for+frontal+face+authentication&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Tefas%2C+A.&rft.au=Kotropoulos%2C+C.&rft.au=Pitas%2C+I.&rft.date=2001-07-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=23&rft.issue=7&rft.spage=735&rft.epage=746&rft_id=info:doi/10.1109%2F34.935847&rft.externalDocID=935847 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon |