Using support vector machines to enhance the performance of elastic graph matching for frontal face authentication

A novel method for enhancing the performance of elastic graph matching in frontal face authentication is proposed. The starting point is to weigh the local similarity values at the nodes of an elastic graph according to their discriminatory power. Powerful and well-established optimization technique...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 23; no. 7; pp. 735 - 746
Main Authors Tefas, A., Kotropoulos, C., Pitas, I.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2001
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A novel method for enhancing the performance of elastic graph matching in frontal face authentication is proposed. The starting point is to weigh the local similarity values at the nodes of an elastic graph according to their discriminatory power. Powerful and well-established optimization techniques are used to derive the weights of the linear combination. More specifically, we propose a novel approach that reformulates Fisher's discriminant ratio to a quadratic optimization problem subject to a set of inequality constraints by combining statistical pattern recognition and support vector machines (SVM). Both linear and nonlinear SVM are then constructed to yield the optimal separating hyperplanes and the optimal polynomial decision surfaces, respectively. The method has been applied to frontal face authentication on the M2VTS database. Experimental results indicate that the performance of morphological elastic graph matching is highly improved by using the proposed weighting technique.
AbstractList A novel method for enhancing the performance of elastic graph matching in frontal face authentication is proposed. The starting point is to weigh the local similarity values at the nodes of an elastic graph according to their discriminatory power. Powerful and well-established optimization techniques are used to derive the weights of the linear combination. More specifically, we propose a novel approach that reformulates Fisher's discriminant ratio to a quadratic optimization problem subject to a set of inequality constraints by combining statistical pattern recognition and support vector machines (SVM). Both linear and nonlinear SVM are then constructed to yield the optimal separating hyperplanes and the optimal polynomial decision surfaces, respectively. The method has been applied to frontal face authentication on the M2VTS database. Experimental results indicate that the performance of morphological elastic graph matching is highly improved by using the proposed weighting technique.
A novel method for enhancing the performance of elastic graph matching in frontal face authentication is proposed. The starting point is to weigh the local similarity values at the nodes of an elastic graph according to their discriminatory power. Powerful and well-established optimization techniques are used to derive the weights of the linear combination. More specifically, we propose a novel approach that reformulates Fisher's discriminant ratio to a quadratic optimization problem subject to a set of inequality constraints by combining statistical pattern recognition and support vector machines (SVM). Both linear and nonlinear SVM are then constructed to yield the optimal separating hyperplanes and the optimal polynomial decision surfaces, respectively. The method has been applied to frontal face authentication on the M2VTS database. Experimental results indicate that the performance of morphological elastic graph matching is highly improved by using the proposed weighting technique
A novel method for enhancing the performance of elastic graph matching in frontal face authentication is proposed. The starting point is to weigh the local similarity values at the nodes of an elastic graph according to their discriminatory power. Powerful and well-established optimization techniques are used to derive the weights of the linear combination. More specifically, we propose a novel approach that reformulates Fisher's discriminant ratio to a quadratic optimization problem subject to a set of inequality constraints by combining statistical pattern recognition and Support Vector Machines. Both linear and nonlinear Support Vector Machines are then constructed to yield the optimal separating hyperplanes and the optimal polynomial decision surfaces, respectively. The method has been applied to frontal face authentication on the M2VTS database. Experimental results indicate that the performance of morphological elastic graph matching is highly improved by using the proposed weighting technique.
Author Tefas, A.
Pitas, I.
Kotropoulos, C.
Author_xml – sequence: 1
  givenname: A.
  surname: Tefas
  fullname: Tefas, A.
  organization: Dept. of Inf., Aristotelian Univ. of Thessaloniki, Greece
– sequence: 2
  givenname: C.
  surname: Kotropoulos
  fullname: Kotropoulos, C.
– sequence: 3
  givenname: I.
  surname: Pitas
  fullname: Pitas, I.
BookMark eNqF0c1rHCEYBnApKXST9tBrT5JDSg-T6Og4egxLvyDQS3Me3nVedw2zOlUnkP--Zjf0EEJ6EvH3KK_PKTkJMSAhHzm75JyZKyEvjei07N-QFTfCNKIT5oSsGFdto3Wr35HTnO8Y47JjYkXSbfZhS_MyzzEVeo-2xET3YHc-YKYlUgw7CBZp2SGdMbmY9od9dBQnyMVbuk0w72qoPKa2tBLqUgwFJuqgUlhqOFQJxcfwnrx1MGX88LSekdtvX3-vfzQ3v77_XF_fNFaovjR2IwXvLTruFOhxZKodx42QqhMctMIRBNctQG8YMKP6USttzcbaHlG6thdn5PPx3jnFPwvmMux9tjhNEDAueTBcKmF0q6q8eFW2WjHdd-b_UBklNRMVnj-Dd3FJoY476FpOffqAro7IpphzQjdYXw5fVBL4aeBseOx0EHI4dloTX54l5uT3kB5etJ-O1iPiP_d0-BcssKyf
CODEN ITPIDJ
CitedBy_id crossref_primary_10_1016_j_cviu_2004_04_001
crossref_primary_10_1016_j_patcog_2016_02_002
crossref_primary_10_1016_S0167_8655_02_00383_5
crossref_primary_10_1049_iet_bmt_2014_0018
crossref_primary_10_1109_TPAMI_2008_143
crossref_primary_10_1007_s11042_013_1548_z
crossref_primary_10_1016_j_patcog_2013_05_016
crossref_primary_10_1109_TIFS_2007_910238
crossref_primary_10_1007_s11634_015_0212_z
crossref_primary_10_1016_j_patcog_2006_09_009
crossref_primary_10_1016_j_patcog_2008_12_028
crossref_primary_10_1142_S0129065707001196
crossref_primary_10_1016_j_sigpro_2010_01_005
crossref_primary_10_1007_s10044_004_0207_4
crossref_primary_10_1016_j_patcog_2014_04_004
crossref_primary_10_1016_j_neucom_2013_02_002
crossref_primary_10_1109_TCSVT_2005_848346
crossref_primary_10_1142_S0218001404003228
crossref_primary_10_1109_TNN_2008_2004376
crossref_primary_10_1109_LGRS_2016_2584660
crossref_primary_10_1109_TIFS_2006_890308
crossref_primary_10_1016_j_eswa_2008_08_001
crossref_primary_10_1016_j_engappai_2018_04_013
crossref_primary_10_1016_j_patrec_2009_03_007
crossref_primary_10_1109_TIP_2007_904408
crossref_primary_10_1007_s11760_007_0016_5
crossref_primary_10_1016_j_patcog_2007_01_026
crossref_primary_10_1109_MPRV_2003_1186724
crossref_primary_10_1016_j_asoc_2011_04_004
crossref_primary_10_1111_srt_12348
crossref_primary_10_1109_TNN_2006_873291
crossref_primary_10_1016_j_neucom_2009_01_001
crossref_primary_10_4028_www_scientific_net_AMR_542_543_1306
crossref_primary_10_1007_s12193_009_0020_x
crossref_primary_10_1016_j_patcog_2005_10_006
crossref_primary_10_1007_s10916_010_9583_z
crossref_primary_10_1080_01449290903353047
crossref_primary_10_1117_1_3610982
crossref_primary_10_4103_0256_4602_63849
crossref_primary_10_1016_j_patrec_2007_01_003
crossref_primary_10_1007_s40745_014_0018_4
crossref_primary_10_1109_TNNLS_2021_3053266
crossref_primary_10_1016_j_cviu_2010_12_008
crossref_primary_10_1049_iet_cvi_20070024
crossref_primary_10_1016_j_neunet_2011_05_015
crossref_primary_10_1007_s11042_014_2082_3
crossref_primary_10_1142_S0218001403002460
crossref_primary_10_1007_s12036_016_9374_0
crossref_primary_10_1109_TMM_2008_2007292
crossref_primary_10_1109_TNN_2006_885038
crossref_primary_10_1016_j_engappai_2010_07_006
crossref_primary_10_1016_j_patrec_2006_09_002
crossref_primary_10_1016_j_patrec_2007_05_021
crossref_primary_10_1109_TIFS_2007_902915
crossref_primary_10_1016_j_cviu_2006_11_013
crossref_primary_10_1007_s10044_005_0241_x
crossref_primary_10_1109_TCYB_2018_2886012
crossref_primary_10_3724_SP_J_1087_2010_01597
crossref_primary_10_1007_s12036_017_9441_1
crossref_primary_10_1109_MCI_2007_353418
crossref_primary_10_1109_TMM_2007_898933
crossref_primary_10_1016_j_measurement_2016_05_030
crossref_primary_10_1109_TCSVT_2013_2269774
crossref_primary_10_1109_TIP_2006_884954
crossref_primary_10_1007_s00170_022_10549_w
crossref_primary_10_1016_j_jvcir_2010_06_002
crossref_primary_10_1049_iet_bmt_2013_0039
crossref_primary_10_1007_s00521_011_0791_3
crossref_primary_10_1007_s10489_022_04237_1
crossref_primary_10_3846_20294913_2012_661205
crossref_primary_10_1002_ima_22308
crossref_primary_10_1016_j_patcog_2007_06_026
crossref_primary_10_5143_JESK_2012_31_2_271
crossref_primary_10_1109_TNET_2019_2891733
crossref_primary_10_1016_j_ijsolstr_2018_05_027
crossref_primary_10_1049_iet_spr_20080022
crossref_primary_10_1007_BF02344719
Cites_doi 10.1109/83.704308
10.1162/jocn.1991.3.1.71
10.1109/34.598228
10.1016/S0031-3203(96)00132-X
10.1109/83.841933
10.1109/34.598234
10.1023/A:1018946025316
10.1109/83.753738
10.1109/34.598233
10.1109/34.41390
10.1016/0031-3203(94)90017-5
10.1023/A:1022627411411
10.1109/ICASSP.1997.595305
10.1007/978-1-4757-2440-0
10.1109/34.531802
10.1016/S0031-3203(99)00185-5
10.1007/BFb0015988
10.1109/34.598235
10.1109/CVPR.1992.223162
10.1109/12.210173
10.1109/5.381842
10.1016/S0165-1684(98)00087-5
10.1109/78.650102
10.1109/6046.825791
10.1109/5.628712
10.1007/BFb0016021
10.1002/9781118723203
10.1007/BF00332918
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001
DBID RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/34.935847
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL) - NZ
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1939-3539
EndPage 746
ExternalDocumentID 2432844791
10_1109_34_935847
935847
GroupedDBID ---
-DZ
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
FA8
HZ~
H~9
IBMZZ
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RXW
RZB
TAE
TN5
UHB
VH1
XJT
~02
AAYOK
AAYXX
CITATION
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c367t-cb4317cef1f6a8dd062ddb346531a86eda3182aa790a0967d868c9bcc7ee4f273
IEDL.DBID RIE
ISSN 0162-8828
IngestDate Thu Jul 10 19:58:41 EDT 2025
Tue Aug 05 11:08:17 EDT 2025
Fri Jul 11 00:15:03 EDT 2025
Fri Jul 25 02:58:49 EDT 2025
Tue Jul 01 05:14:56 EDT 2025
Thu Apr 24 23:01:14 EDT 2025
Wed Aug 27 02:47:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-cb4317cef1f6a8dd062ddb346531a86eda3182aa790a0967d868c9bcc7ee4f273
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
PQID 884791403
PQPubID 23500
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_34_935847
crossref_primary_10_1109_34_935847
ieee_primary_935847
proquest_miscellaneous_26964803
proquest_journals_884791403
proquest_miscellaneous_914639826
proquest_miscellaneous_28608759
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2001-07-01
PublicationDateYYYYMMDD 2001-07-01
PublicationDate_xml – month: 07
  year: 2001
  text: 2001-07-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on pattern analysis and machine intelligence
PublicationTitleAbbrev TPAMI
PublicationYear 2001
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref14
ref31
ref30
ref11
ref10
Osuna (ref32) 1997
ref2
ref1
ref17
ref18
Vapnik (ref29) 1998
ref24
Cottrell (ref8); 1
ref23
ref26
ref25
ref20
ref22
Gunn (ref33) 1998
ref21
ref28
ref27
ref7
ref9
ref4
ref3
ref6
Devijver (ref15) 1982
ref5
Schalkoff (ref16) 1992
Burges (ref19) 1998
References_xml – ident: ref2
  doi: 10.1109/83.704308
– ident: ref7
  doi: 10.1162/jocn.1991.3.1.71
– ident: ref22
  doi: 10.1109/34.598228
– ident: ref4
  doi: 10.1016/S0031-3203(96)00132-X
– volume-title: Statistical Learning Theory
  year: 1998
  ident: ref29
– volume-title: Technical Memo AIM-1602
  year: 1997
  ident: ref32
  article-title: Support Vector Machines: Training and Applications
– ident: ref13
  doi: 10.1109/83.841933
– ident: ref12
  doi: 10.1109/34.598234
– ident: ref30
  doi: 10.1023/A:1018946025316
– ident: ref24
  doi: 10.1109/83.753738
– ident: ref25
  doi: 10.1109/34.598233
– ident: ref6
  doi: 10.1109/34.41390
– ident: ref26
  doi: 10.1016/0031-3203(94)90017-5
– ident: ref18
  doi: 10.1023/A:1022627411411
– ident: ref27
  doi: 10.1109/ICASSP.1997.595305
– ident: ref17
  doi: 10.1007/978-1-4757-2440-0
– ident: ref21
  doi: 10.1109/34.531802
– ident: ref14
  doi: 10.1016/S0031-3203(99)00185-5
– start-page: 1
  year: 1998
  ident: ref19
  article-title: A Tutorial on Support Vector Machines for Pattern Recognition
  publication-title: Data Mining and Knowledge Discovery
– volume-title: Technical Report MP-TR-98-05, Image Speech and Intelligent Systems Group, Univ. of Southampton
  year: 1998
  ident: ref33
  article-title: Support Vector Machines for Classification and Regression
– ident: ref23
  doi: 10.1007/BFb0015988
– ident: ref11
  doi: 10.1109/34.598235
– ident: ref10
  doi: 10.1109/CVPR.1992.223162
– ident: ref3
  doi: 10.1109/12.210173
– ident: ref1
  doi: 10.1109/5.381842
– ident: ref35
  doi: 10.1016/S0165-1684(98)00087-5
– ident: ref31
  doi: 10.1109/78.650102
– ident: ref34
  doi: 10.1109/6046.825791
– ident: ref5
  doi: 10.1109/5.628712
– volume-title: Pattern Recognition: A Statistical Approach
  year: 1982
  ident: ref15
– volume: 1
  start-page: 322
  volume-title: Proc. Int’l Neural Network Conf.
  ident: ref8
  article-title: Face Recognition Using Unsupervised Feature Extraction
– volume-title: Pattern Recognition: Statistical, Structural, and Neural Approaches
  year: 1992
  ident: ref16
– ident: ref20
  doi: 10.1007/BFb0016021
– ident: ref28
  doi: 10.1002/9781118723203
– ident: ref9
  doi: 10.1007/BF00332918
SSID ssj0014503
Score 2.1441727
Snippet A novel method for enhancing the performance of elastic graph matching in frontal face authentication is proposed. The starting point is to weigh the local...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 735
SubjectTerms Authentication
Constraint optimization
Face recognition
Graph matching
Humans
Inequalities
Neural networks
Optimization
Pattern recognition
Performance enhancement
Polynomials
Similarity
Support vector machines
System testing
Title Using support vector machines to enhance the performance of elastic graph matching for frontal face authentication
URI https://ieeexplore.ieee.org/document/935847
https://www.proquest.com/docview/884791403
https://www.proquest.com/docview/26964803
https://www.proquest.com/docview/28608759
https://www.proquest.com/docview/914639826
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4VTuVQ6FLULX1YFQcuWbIbx7GPqCpCldpTkbhFfkxUCUhWm4QDv74zTnZLKaDeomQsW_HrG_ubbwCOApP8nNNJlnqbSBnyxJrUJNabKuTWuzzmjPz-Q51fyG-X-eWosx1jYRAxks9wxo_xLj80vuejshO-s5PFFmyR3zaEam0uDGQekyATgKEJTl7EKCI0T81JJmdDwb-2nphL5Z8FOO4qZ7tDuHYbxQiZTHI16zs383cPpBr_s8F78GpEl-J0GA6v4QXWE9hdZ24Q40SewM49GcJ9WEXegGj7JYNxcRsP8sVNpFliK7pGYP2LR4cgtCiWf0INRFMJJPhNtYmofE2FukjOFGQiKhZHoOZUlkwtU-nrbjwifAMXZ19_fjlPxlwMic9U0SXeMdLwWM0rZXUIqVqE4DJWZ5tbrTBYWhwW1hYmteQVFUEr7Y3zvkCUFWGkA9iumxrfgkDaEjn4KzNWSZU6Q_so6pARMDNzr_wUjtfdVPpRqJzzZVyX0WFJTZnJcvizU_i8MV0O6hyPGU24ZzYG67eH664vx2nblpo-GFYwnMKnzVeab3yJYmts-rZcKKOkftZCK04TYKYgnrCgKggYkmP37tGmHcLLgenGpOD3sN2tevxA0KdzH-Og_w3JCgS7
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9RADLZKOQCHFhZQlxY6QiBxyTabTCaZQw8IqLb0cWql3sI8HCFBk1WTgMpf4a_w4_BMHrwKt0rcVomzGU0c-3NsfwZ4Zl2Rn9ZZEIdGBZzbJFAylIEysrCJMjrxMyOPjsXilL89S85W4OvYC4OIvvgMZ-6nz-XbyrTuU9mOy9nxtK-gPMDLzxSf1bv7r-lhPo-ivTcnrxZBP0IgMLFIm8Bo5yANFvNCqMzaUETW6tiRis1VJtAq0ulIqVSGisB8ajORGamNSRF5Qa6d_vcG3CSYkURdc9iYouCJH7tMkIlMCsUtPW3RPJQ7MZ91S_3F2fnpLX-YfO_H9tbh27ADXfnKh1nb6Jn58hs55H-6RXdhrcfP7GWn8PdgBcsJrA-zKVhvqiZw5yeixftw4SsjWN0uXbjBPvlUBTv3haRYs6ZiWL53-s8ID7Plj2YKVhUMKcCguzHP7U0XNb78lJEIKxz9Ay2nUCSqXLNA2fQfQR_A6bXsw0NYLasSN4AhOX3X3hZLJbgItSSkgJmNCXrKuRFmCi8GtchNT8XuJoJ8zH1IFso85nn3JKfwdBRddvwjVwlNnCaMAsPRzUHV8t4w1XlGJ6TjaJzC9niWLIpLE6kSq7bOIyEFz_4pkQk3CEFOgf1Fgm5B0JdC10dXLm0bbi1Ojg7zw_3jg0243dX1uRLoLVhtLlp8TECv0U_8C8fg3XWr73fqbWOx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+support+vector+machines+to+enhance+the+performance+of+elastic+graph+matching+for+frontal+face+authentication&rft.jtitle=IEEE+transactions+on+pattern+analysis+and+machine+intelligence&rft.au=Tefas%2C+A.&rft.au=Kotropoulos%2C+C.&rft.au=Pitas%2C+I.&rft.date=2001-07-01&rft.pub=IEEE&rft.issn=0162-8828&rft.volume=23&rft.issue=7&rft.spage=735&rft.epage=746&rft_id=info:doi/10.1109%2F34.935847&rft.externalDocID=935847
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0162-8828&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0162-8828&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0162-8828&client=summon