Sealed-cavity resonant microbeam pressure sensor

A quasi-digital pressure sensor based on polysilicon resonant microbeams has been demonstrated. Pressure sensitivities of nearly 4000 counts per second per psi have been attained on a 10 psi device with a base frequency of 233 000 Hz. Short-term stability as low as 0.01 ppm of the base frequency is...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. A. Physical. Vol. 48; no. 3; pp. 179 - 186
Main Authors Burns, D.W., Zook, J.D., Horning, R.D., Herb, W.R., Guckel, H.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.1995
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A quasi-digital pressure sensor based on polysilicon resonant microbeams has been demonstrated. Pressure sensitivities of nearly 4000 counts per second per psi have been attained on a 10 psi device with a base frequency of 233 000 Hz. Short-term stability as low as 0.01 ppm of the base frequency is typical. The microbeams are fabricated with their own integral vacuum cavities, allowing high- Q operation in the differential pressure mode or in contact with liquids such as silicone oil. Design considerations include the effects of internal strain and lead to a push-pull layout configuration independent of microbeam strain or diaphragm thickness. Fabrication technology incorporates fine-grained polysilicon, surface micromachining, bulk micromachining, and reactive sealing. Packaging into precision avionics headers is being used for preliminary testing. Testing results indicate suitability for precision avionics, industrial, and commercial applications. Optical methods have been used to test resonant microbeam pressure sensors and verify the push-pull design methodology. Testing methods developed under this effort include electrostatic drive/piezoresistive sensing, optical drive/optical sensing, substrate piezoelectric drive/optical sensing, and electrostatic drive/laser vibrometer sensing. Wafer-level testing of 200 μm×46 μm×1.9 μm microbeams shows an average fundamental frequency of 553 150 and first overtone of 1 332 550 Hz. The standard deviations across the wafer are 0.15 and 0.10%, respectively. The internal strain and effective thickness can be determined with high resolution. Laser vibrometer measurements through the microbeam shell verify the fundamental frequency and reveal at least ten overtones up to 25 MHz.
AbstractList A quasi-digital pressure sensor based on polysilicon resonant microbeams has been demonstrated. Pressure sensitivities of nearly 4000 counts per second per psi have been attained on a 10 psi device with a base frequency of 233 000 Hz. Short-term stability as low as 0.01 ppm of the base frequency is typical. The microbeams are fabricated with their own integral vacuum cavities, allowing high-Q operation in the differential pressure mode or in contact with liquids such as silicone oil. Design considerations include the effects of internal strain and lead to a push-pull layout configuration independent of microbeam strain or diaphragm thickness. Fabrication technology incorporates fine-grained polysilicon, surface micromachining, bulk micromachining, and reactive sealing. Packaging into precision avionics headers is being used for preliminary testing. Testing results indicate suitability for precision avionics, industrial, and commercial applications. Optical methods have been used to test resonant microbeam pressure sensors and verify the push-pull design methodology. Testing methods developed under this effort include electrostatic drive/piezoresistive sensing, optical drive/optical sensing, substrate piezoelectric drive/optical sensing, and electrostatic drive/laser vibrometer sensing. Wafer-level testing of 200 mu mx46 mu mx1.9 mu m microbeams shows an average fundamental frequency of 553 150 and first overtone of 1 332 550 Hz. The standard deviations across the wafer are 0.15 and 0.10%, respectively. The internal strain and effective thickness can be determined with high resolution. Laser vibrometer measurements through the microbeam shell verify the fundamental frequency and reveal at least ten overtones up to 25 MHz.
A quasi-digital pressure sensor based on polysilicon resonant microbeams has been demonstrated. Pressure sensitivities of nearly 4000 counts per second per psi have been attained on a 10 psi device with a base frequency of 233 000 Hz. Short-term stability as low as 0.01 ppm of the base frequency is typical. The microbeams are fabricated with their own integral vacuum cavities, allowing high- Q operation in the differential pressure mode or in contact with liquids such as silicone oil. Design considerations include the effects of internal strain and lead to a push-pull layout configuration independent of microbeam strain or diaphragm thickness. Fabrication technology incorporates fine-grained polysilicon, surface micromachining, bulk micromachining, and reactive sealing. Packaging into precision avionics headers is being used for preliminary testing. Testing results indicate suitability for precision avionics, industrial, and commercial applications. Optical methods have been used to test resonant microbeam pressure sensors and verify the push-pull design methodology. Testing methods developed under this effort include electrostatic drive/piezoresistive sensing, optical drive/optical sensing, substrate piezoelectric drive/optical sensing, and electrostatic drive/laser vibrometer sensing. Wafer-level testing of 200 μm×46 μm×1.9 μm microbeams shows an average fundamental frequency of 553 150 and first overtone of 1 332 550 Hz. The standard deviations across the wafer are 0.15 and 0.10%, respectively. The internal strain and effective thickness can be determined with high resolution. Laser vibrometer measurements through the microbeam shell verify the fundamental frequency and reveal at least ten overtones up to 25 MHz.
Author Horning, R.D.
Guckel, H.
Herb, W.R.
Burns, D.W.
Zook, J.D.
Author_xml – sequence: 1
  givenname: D.W.
  surname: Burns
  fullname: Burns, D.W.
  organization: Honeywell Technology Center, 10701 Lyndale Ave S., Bloomington, MN 55420, USA
– sequence: 2
  givenname: J.D.
  surname: Zook
  fullname: Zook, J.D.
  organization: Honeywell Technology Center, 10701 Lyndale Ave S., Bloomington, MN 55420, USA
– sequence: 3
  givenname: R.D.
  surname: Horning
  fullname: Horning, R.D.
  organization: Honeywell Technology Center, 10701 Lyndale Ave S., Bloomington, MN 55420, USA
– sequence: 4
  givenname: W.R.
  surname: Herb
  fullname: Herb, W.R.
  organization: Honeywell Technology Center, 10701 Lyndale Ave S., Bloomington, MN 55420, USA
– sequence: 5
  givenname: H.
  surname: Guckel
  fullname: Guckel, H.
  organization: University of Wisconsin Center for Applied Microelectronics, Madison, WI 53706, USA
BookMark eNqFkE1LAzEQhoNUsK3-Aw978uOwOtkkm40HQYpfUPCgnkOSnUJku1uTtNB_764VDx7qaWB43peZZ0JGbdciIacUrijQ8hpUwXNecHmhxCWAUjJnB2RMK8lyBqUakfEvckQmMX4AAGNSjgm8ommwzp3Z-LTNAsauNW3Klt6FzqJZZqt-F9cBs4ht7MIxOVyYJuLJz5yS94f7t9lTPn95fJ7dzXPHSply6xSoCqxgFgU6agyAs0IqQGHB0orK2lomTMmq2jjhaqgcFBwVcFFzxqbkfNe7Ct3nGmPSSx8dNo1psVtHLXlJaf8C7cmzvWQhVFVwXvbgzQ7sX4sx4EI7n0zyXZuC8Y2moAedenClB1daCf2tUw_38D_hVfBLE7b_xW53MexdbTwGHZ3H1mHtA7qk687vL_gCEtmNlg
CitedBy_id crossref_primary_10_1007_s10409_015_0550_2
crossref_primary_10_1021_acsnano_3c02916
crossref_primary_10_1002_admt_202300913
crossref_primary_10_1109_JSEN_2016_2580158
crossref_primary_10_1088_0957_0233_26_6_065101
crossref_primary_10_1016_j_sna_2007_04_023
crossref_primary_10_1088_0960_1317_24_5_055005
crossref_primary_10_3390_mi14020441
crossref_primary_10_1109_TED_2023_3257766
crossref_primary_10_1088_0964_1726_6_5_004
crossref_primary_10_1299_jmmp_1_18
crossref_primary_10_1016_j_sna_2014_06_025
crossref_primary_10_1007_s00542_020_05176_y
crossref_primary_10_1016_j_sna_2021_113315
crossref_primary_10_1115_1_4000766
crossref_primary_10_1109_JSTQE_2007_894190
crossref_primary_10_1177_1081286503008003006
crossref_primary_10_1016_j_sna_2019_02_007
crossref_primary_10_1116_1_589989
crossref_primary_10_3390_s131217006
crossref_primary_10_1088_1742_6596_2740_1_012041
crossref_primary_10_1116_1_581762
crossref_primary_10_1109_JMEMS_2016_2632108
crossref_primary_10_1016_0924_4247_96_80131_2
crossref_primary_10_1109_84_967371
crossref_primary_10_1080_17455030_2021_1879407
crossref_primary_10_1103_PhysRevLett_109_147206
crossref_primary_10_1109_JSEN_2021_3099130
crossref_primary_10_1088_0960_1317_20_7_075007
crossref_primary_10_1016_S0924_4247_99_00379_9
crossref_primary_10_1038_s41378_023_00620_1
crossref_primary_10_1109_JSEN_2022_3164946
crossref_primary_10_3390_s16020158
crossref_primary_10_1109_TED_2022_3152475
crossref_primary_10_1088_0964_1726_16_6_R01
crossref_primary_10_1007_s00542_019_04543_8
crossref_primary_10_1109_JSEN_2021_3051286
crossref_primary_10_1016_j_ijmecsci_2017_05_044
crossref_primary_10_1016_S0924_4247_98_00222_2
crossref_primary_10_1016_j_paerosci_2014_06_002
crossref_primary_10_1016_j_ijsolstr_2005_08_011
crossref_primary_10_1016_j_measurement_2023_114080
crossref_primary_10_1007_s00542_019_04601_1
crossref_primary_10_3390_s8021048
crossref_primary_10_1116_1_1642649
crossref_primary_10_1063_1_2197263
Cites_doi 10.1016/0924-4247(90)85028-3
10.1109/SOLSEN.1990.109809
10.1109/SOLSEN.1992.228303
10.1149/1.2404251
10.1109/SOLSEN.1992.228302
10.1109/SENSOR.1991.148968
10.1016/0924-4247(92)87007-4
ContentType Journal Article
Copyright 1995
Copyright_xml – notice: 1995
DBID AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1016/0924-4247(95)00997-3
DatabaseName CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3069
EndPage 186
ExternalDocumentID 10_1016_0924_4247_95_00997_3
0924424795009973
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJQLL
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMU
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SCB
SCH
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SSK
SSQ
SST
SSZ
T5K
TN5
WUQ
XFK
YK3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
7U5
8FD
L7M
ID FETCH-LOGICAL-c367t-bc90980b53be5ec1aa00cb5790e5b0b1817dbb35a638dac5cd08c024e9045d433
IEDL.DBID .~1
ISSN 0924-4247
IngestDate Fri Jul 11 16:06:51 EDT 2025
Fri Jul 11 01:52:38 EDT 2025
Tue Jul 01 04:09:53 EDT 2025
Thu Apr 24 22:59:35 EDT 2025
Fri Feb 23 02:12:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Pressure sensors
Polysilicon
Resonant microbeams
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-bc90980b53be5ec1aa00cb5790e5b0b1817dbb35a638dac5cd08c024e9045d433
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 25982446
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_746113771
proquest_miscellaneous_25982446
crossref_citationtrail_10_1016_0924_4247_95_00997_3
crossref_primary_10_1016_0924_4247_95_00997_3
elsevier_sciencedirect_doi_10_1016_0924_4247_95_00997_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 19950101
PublicationDateYYYYMMDD 1995-01-01
PublicationDate_xml – month: 01
  year: 1995
  text: 19950101
  day: 01
PublicationDecade 1990
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 1995
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sniegowski (BIB1) 1991
Timoshenko (BIB8) 1959
J.J. Sniegowski, H. Guckel and T.R. Christensen, Performance characteristics of second-generation polysilicon resonating beam force transducers, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, June 1990, pp. 9–12
H. Guckel, C. Rypstat, M. Nesnidal, J.D. Zook, D.W. Burns and D.K. Arch, Polysilicon resonant microbeam technology for high-performance sensor applications, IEEE Solid-State Sensor and Actuator Worshop, Hilton Head Island, SC, USA, 24–25 June, 1992, pp. 153–156
Tilmans (BIB6) 1993
K. Petersen, F. Pourahmadi, J. Brown, P. Parsons, M. Skinner and J. Tudor, Resonant beam pressure sensor fabricated with silicon fusion bonding, Proc. 6th Int. Conf. Solid-State Sensors and Actuators (Transducers '91), San Francisco, CA, USA, 24–28 June 1991, pp. 664–667
Zook, Burns, Guckel, Sniegowski, Engelstad, Feng (BIB5) 1992; 35
H. Guckel, M. Nesnidal, J.D. Zook and D.W. Burns, Optical drive/sense for high-
Wen, Weller (BIB10) 1972; 119
resonant microbeams, Proc. 7th Int. Conf. Solid-State Sensors and Actuators (Transducers '93), Yokohama, Japan, 7–10 June, 1993, pp. 686–689
A.D. Nikolich and S.D. Senturia, A wafer-bonded silicon load cell operating in the tensioned-wire regime, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, 22–25 June, 1992, pp. 157–160
BIB12
Ikeda, Kumayama, Koboyashi, Wanabe, Nishikawa, Yoshida, Harada (BIB2) 1990; A21-A23
10.1016/0924-4247(95)00997-3_BIB9
Tilmans (10.1016/0924-4247(95)00997-3_BIB6) 1993
10.1016/0924-4247(95)00997-3_BIB11
Timoshenko (10.1016/0924-4247(95)00997-3_BIB8) 1959
Sniegowski (10.1016/0924-4247(95)00997-3_BIB1) 1991
Ikeda (10.1016/0924-4247(95)00997-3_BIB2) 1990; A21-A23
Wen (10.1016/0924-4247(95)00997-3_BIB10) 1972; 119
10.1016/0924-4247(95)00997-3_BIB7
Zook (10.1016/0924-4247(95)00997-3_BIB5) 1992; 35
10.1016/0924-4247(95)00997-3_BIB4
10.1016/0924-4247(95)00997-3_BIB3
References_xml – reference: J.J. Sniegowski, H. Guckel and T.R. Christensen, Performance characteristics of second-generation polysilicon resonating beam force transducers, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, June 1990, pp. 9–12
– reference: resonant microbeams, Proc. 7th Int. Conf. Solid-State Sensors and Actuators (Transducers '93), Yokohama, Japan, 7–10 June, 1993, pp. 686–689
– reference: H. Guckel, M. Nesnidal, J.D. Zook and D.W. Burns, Optical drive/sense for high-
– reference: K. Petersen, F. Pourahmadi, J. Brown, P. Parsons, M. Skinner and J. Tudor, Resonant beam pressure sensor fabricated with silicon fusion bonding, Proc. 6th Int. Conf. Solid-State Sensors and Actuators (Transducers '91), San Francisco, CA, USA, 24–28 June 1991, pp. 664–667
– year: 1991
  ident: BIB1
  article-title: Design and fabrication of the polysilicon resonating beam force transducer
  publication-title: Ph.D. Dissertation
– reference: A.D. Nikolich and S.D. Senturia, A wafer-bonded silicon load cell operating in the tensioned-wire regime, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, 22–25 June, 1992, pp. 157–160
– year: 1959
  ident: BIB8
  publication-title: Theory of Plates and Shells
– year: 1993
  ident: BIB6
  article-title: Micromechanical sensors using encapsulated built-in resonant strain gauges
  publication-title: Ph.D. Dissertation
– ident: BIB12
– volume: A21-A23
  start-page: 146
  year: 1990
  end-page: 150
  ident: BIB2
  article-title: Silicon pressure sensor integrates resonant strain gauge on diaphragm
  publication-title: Sensors and Actuators
– reference: H. Guckel, C. Rypstat, M. Nesnidal, J.D. Zook, D.W. Burns and D.K. Arch, Polysilicon resonant microbeam technology for high-performance sensor applications, IEEE Solid-State Sensor and Actuator Worshop, Hilton Head Island, SC, USA, 24–25 June, 1992, pp. 153–156
– volume: 35
  start-page: 51
  year: 1992
  end-page: 59
  ident: BIB5
  article-title: Characteristics of polysilicon resonant microbeams
  publication-title: Sensors and Actuators A
– volume: 119
  start-page: 547
  year: 1972
  ident: BIB10
  article-title: Preferential electrochemical etching of p
  publication-title: J. Electrochem. Soc.
– ident: 10.1016/0924-4247(95)00997-3_BIB11
– year: 1991
  ident: 10.1016/0924-4247(95)00997-3_BIB1
  article-title: Design and fabrication of the polysilicon resonating beam force transducer
– volume: A21-A23
  start-page: 146
  year: 1990
  ident: 10.1016/0924-4247(95)00997-3_BIB2
  article-title: Silicon pressure sensor integrates resonant strain gauge on diaphragm
  publication-title: Sensors and Actuators
  doi: 10.1016/0924-4247(90)85028-3
– ident: 10.1016/0924-4247(95)00997-3_BIB9
  doi: 10.1109/SOLSEN.1990.109809
– year: 1959
  ident: 10.1016/0924-4247(95)00997-3_BIB8
– ident: 10.1016/0924-4247(95)00997-3_BIB4
  doi: 10.1109/SOLSEN.1992.228303
– volume: 119
  start-page: 547
  year: 1972
  ident: 10.1016/0924-4247(95)00997-3_BIB10
  article-title: Preferential electrochemical etching of p+ silicon in an aqueous HF-H2SO4 electrolyte
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2404251
– year: 1993
  ident: 10.1016/0924-4247(95)00997-3_BIB6
  article-title: Micromechanical sensors using encapsulated built-in resonant strain gauges
– ident: 10.1016/0924-4247(95)00997-3_BIB7
  doi: 10.1109/SOLSEN.1992.228302
– ident: 10.1016/0924-4247(95)00997-3_BIB3
  doi: 10.1109/SENSOR.1991.148968
– volume: 35
  start-page: 51
  year: 1992
  ident: 10.1016/0924-4247(95)00997-3_BIB5
  article-title: Characteristics of polysilicon resonant microbeams
  publication-title: Sensors and Actuators A
  doi: 10.1016/0924-4247(92)87007-4
SSID ssj0003377
Score 1.6824582
Snippet A quasi-digital pressure sensor based on polysilicon resonant microbeams has been demonstrated. Pressure sensitivities of nearly 4000 counts per second per psi...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 179
SubjectTerms Fabrication
Micromachining
Polysilicon
Pressure gages
Pressure measurement
Pressure sensors
Resonant microbeams
Sealing (closing)
Silicon wafers
Silicones
Title Sealed-cavity resonant microbeam pressure sensor
URI https://dx.doi.org/10.1016/0924-4247(95)00997-3
https://www.proquest.com/docview/25982446
https://www.proquest.com/docview/746113771
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA5SL3oQV6xLnYMHPcRmJltzLKJUxV604C0kb1Io2IUuV3-7edOZuoAUvIaXmeFL8pbMe98j5DJzIACvl_opaCqyFKhpGaD9vgoydyHaPLwaeO6qTk88vsm3b7UwmFZZ6v6lTi-0dTnSLNFsTgaDJouRg8iENhK9HI2En0Jo3OQ3H19ZHpwXzRdRmKJ0VT2XquZq7MrI6-IZlP9lnX7p6cL43O-SndJrTNrLD9sjG2G0T7a_cQkeEPaCLl9OwWE3iCRG0WPMcUmGmHHngxsmRcrrYhqSWQxdx9ND0ru_e73t0LIdAgWu9Jx6MMy0mJfcBxkgdY4x8FIbFqRnPppqnXvPpYtHKncgIWctiCY4mOi25YLzI1IbjUfhmCQyBmWZUaAgB6F4lFZc58xBcLqVgqkTXsFgoeQKx5YV77ZKCkPwLIJnjbQFeJbXCV3Nmiy5MtbI6wph-2PNbVTna2ZeVAti43HAfxxuFMaLmc2QkDCGuHWS_CGhhUqRZjE9-ffrT8nWsrIdb2LOSG0-XYTz6JvMfaPYfQ2y2X546nQ_AXj03Yw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDLaqcigcKiggtlA6B5DgEDYzeW0OHCqg2j4vtFJvIfFkpUrtbrUPIS78KH4h9uxMeUhVpUq9Rokm-uL4sz2ODfCmiqiRw0ujEp3QVYnCDzyK0chmU8dMnMehgaNjOzzV-2fmbAV-dW9hOK2y1f1Lnd5o63ak36LZvzo_70vyHHSlnTds5biugfVB_vGd3LbZx73PdMZvq2r3y8mnoWg7CwhU1s1FQi_9QCajUjYZyxilxGScl9kkmYj1XJ2SMpGks45osJYDJDbLniygWnMQlNT-A03agrsmfPj5J61EqabbI-9O8Pa653ql7V-PvfPmfbNpoW6iw_-IoWG73cew3pqpxc4SiSewkscb8Oiv4oVPQX5lG7MWGLn9REFu-4STaopLTvFLOV4WTY7tYpqLGfnKk-kzOL0XlJ7D6ngyzi-gMOQFVt6ixRq1VTTbKlfLiDm6QYm-B6qDIWBbnJx7ZFyELguNwQsMXvAmNOAF1QNxvepqWZzjlvmuQzj8I2SB-OOWldvdgQS6f_xTJY7zZDELFVdAJJ-6B8UNM5y2Jdd1LDfv_PltWBueHB2Gw73jg5fwcPmsnsNAr2B1Pl3kLTKM5ul1I4kFfLtv0f8NWCUZgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sealed-cavity+resonant+microbeam+pressure+sensor&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Burns%2C+D+W&rft.au=Zook%2C+J+D&rft.au=Horning%2C+R+D&rft.au=Herb%2C+W+R&rft.date=1995-01-01&rft.issn=0924-4247&rft.volume=48&rft.issue=3&rft.spage=179&rft.epage=186&rft_id=info:doi/10.1016%2F0924-4247%2895%2900997-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon