Sealed-cavity resonant microbeam pressure sensor
A quasi-digital pressure sensor based on polysilicon resonant microbeams has been demonstrated. Pressure sensitivities of nearly 4000 counts per second per psi have been attained on a 10 psi device with a base frequency of 233 000 Hz. Short-term stability as low as 0.01 ppm of the base frequency is...
Saved in:
Published in | Sensors and actuators. A. Physical. Vol. 48; no. 3; pp. 179 - 186 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.1995
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A quasi-digital pressure sensor based on polysilicon resonant microbeams has been demonstrated. Pressure sensitivities of nearly 4000 counts per second per psi have been attained on a 10 psi device with a base frequency of 233 000 Hz. Short-term stability as low as 0.01 ppm of the base frequency is typical. The microbeams are fabricated with their own integral vacuum cavities, allowing high-
Q operation in the differential pressure mode or in contact with liquids such as silicone oil. Design considerations include the effects of internal strain and lead to a push-pull layout configuration independent of microbeam strain or diaphragm thickness. Fabrication technology incorporates fine-grained polysilicon, surface micromachining, bulk micromachining, and reactive sealing. Packaging into precision avionics headers is being used for preliminary testing. Testing results indicate suitability for precision avionics, industrial, and commercial applications. Optical methods have been used to test resonant microbeam pressure sensors and verify the push-pull design methodology. Testing methods developed under this effort include electrostatic drive/piezoresistive sensing, optical drive/optical sensing, substrate piezoelectric drive/optical sensing, and electrostatic drive/laser vibrometer sensing. Wafer-level testing of 200 μm×46 μm×1.9 μm microbeams shows an average fundamental frequency of 553 150 and first overtone of 1 332 550 Hz. The standard deviations across the wafer are 0.15 and 0.10%, respectively. The internal strain and effective thickness can be determined with high resolution. Laser vibrometer measurements through the microbeam shell verify the fundamental frequency and reveal at least ten overtones up to 25 MHz. |
---|---|
AbstractList | A quasi-digital pressure sensor based on polysilicon resonant microbeams has been demonstrated. Pressure sensitivities of nearly 4000 counts per second per psi have been attained on a 10 psi device with a base frequency of 233 000 Hz. Short-term stability as low as 0.01 ppm of the base frequency is typical. The microbeams are fabricated with their own integral vacuum cavities, allowing high-Q operation in the differential pressure mode or in contact with liquids such as silicone oil. Design considerations include the effects of internal strain and lead to a push-pull layout configuration independent of microbeam strain or diaphragm thickness. Fabrication technology incorporates fine-grained polysilicon, surface micromachining, bulk micromachining, and reactive sealing. Packaging into precision avionics headers is being used for preliminary testing. Testing results indicate suitability for precision avionics, industrial, and commercial applications. Optical methods have been used to test resonant microbeam pressure sensors and verify the push-pull design methodology. Testing methods developed under this effort include electrostatic drive/piezoresistive sensing, optical drive/optical sensing, substrate piezoelectric drive/optical sensing, and electrostatic drive/laser vibrometer sensing. Wafer-level testing of 200 mu mx46 mu mx1.9 mu m microbeams shows an average fundamental frequency of 553 150 and first overtone of 1 332 550 Hz. The standard deviations across the wafer are 0.15 and 0.10%, respectively. The internal strain and effective thickness can be determined with high resolution. Laser vibrometer measurements through the microbeam shell verify the fundamental frequency and reveal at least ten overtones up to 25 MHz. A quasi-digital pressure sensor based on polysilicon resonant microbeams has been demonstrated. Pressure sensitivities of nearly 4000 counts per second per psi have been attained on a 10 psi device with a base frequency of 233 000 Hz. Short-term stability as low as 0.01 ppm of the base frequency is typical. The microbeams are fabricated with their own integral vacuum cavities, allowing high- Q operation in the differential pressure mode or in contact with liquids such as silicone oil. Design considerations include the effects of internal strain and lead to a push-pull layout configuration independent of microbeam strain or diaphragm thickness. Fabrication technology incorporates fine-grained polysilicon, surface micromachining, bulk micromachining, and reactive sealing. Packaging into precision avionics headers is being used for preliminary testing. Testing results indicate suitability for precision avionics, industrial, and commercial applications. Optical methods have been used to test resonant microbeam pressure sensors and verify the push-pull design methodology. Testing methods developed under this effort include electrostatic drive/piezoresistive sensing, optical drive/optical sensing, substrate piezoelectric drive/optical sensing, and electrostatic drive/laser vibrometer sensing. Wafer-level testing of 200 μm×46 μm×1.9 μm microbeams shows an average fundamental frequency of 553 150 and first overtone of 1 332 550 Hz. The standard deviations across the wafer are 0.15 and 0.10%, respectively. The internal strain and effective thickness can be determined with high resolution. Laser vibrometer measurements through the microbeam shell verify the fundamental frequency and reveal at least ten overtones up to 25 MHz. |
Author | Horning, R.D. Guckel, H. Herb, W.R. Burns, D.W. Zook, J.D. |
Author_xml | – sequence: 1 givenname: D.W. surname: Burns fullname: Burns, D.W. organization: Honeywell Technology Center, 10701 Lyndale Ave S., Bloomington, MN 55420, USA – sequence: 2 givenname: J.D. surname: Zook fullname: Zook, J.D. organization: Honeywell Technology Center, 10701 Lyndale Ave S., Bloomington, MN 55420, USA – sequence: 3 givenname: R.D. surname: Horning fullname: Horning, R.D. organization: Honeywell Technology Center, 10701 Lyndale Ave S., Bloomington, MN 55420, USA – sequence: 4 givenname: W.R. surname: Herb fullname: Herb, W.R. organization: Honeywell Technology Center, 10701 Lyndale Ave S., Bloomington, MN 55420, USA – sequence: 5 givenname: H. surname: Guckel fullname: Guckel, H. organization: University of Wisconsin Center for Applied Microelectronics, Madison, WI 53706, USA |
BookMark | eNqFkE1LAzEQhoNUsK3-Aw978uOwOtkkm40HQYpfUPCgnkOSnUJku1uTtNB_764VDx7qaWB43peZZ0JGbdciIacUrijQ8hpUwXNecHmhxCWAUjJnB2RMK8lyBqUakfEvckQmMX4AAGNSjgm8ommwzp3Z-LTNAsauNW3Klt6FzqJZZqt-F9cBs4ht7MIxOVyYJuLJz5yS94f7t9lTPn95fJ7dzXPHSply6xSoCqxgFgU6agyAs0IqQGHB0orK2lomTMmq2jjhaqgcFBwVcFFzxqbkfNe7Ct3nGmPSSx8dNo1psVtHLXlJaf8C7cmzvWQhVFVwXvbgzQ7sX4sx4EI7n0zyXZuC8Y2moAedenClB1daCf2tUw_38D_hVfBLE7b_xW53MexdbTwGHZ3H1mHtA7qk687vL_gCEtmNlg |
CitedBy_id | crossref_primary_10_1007_s10409_015_0550_2 crossref_primary_10_1021_acsnano_3c02916 crossref_primary_10_1002_admt_202300913 crossref_primary_10_1109_JSEN_2016_2580158 crossref_primary_10_1088_0957_0233_26_6_065101 crossref_primary_10_1016_j_sna_2007_04_023 crossref_primary_10_1088_0960_1317_24_5_055005 crossref_primary_10_3390_mi14020441 crossref_primary_10_1109_TED_2023_3257766 crossref_primary_10_1088_0964_1726_6_5_004 crossref_primary_10_1299_jmmp_1_18 crossref_primary_10_1016_j_sna_2014_06_025 crossref_primary_10_1007_s00542_020_05176_y crossref_primary_10_1016_j_sna_2021_113315 crossref_primary_10_1115_1_4000766 crossref_primary_10_1109_JSTQE_2007_894190 crossref_primary_10_1177_1081286503008003006 crossref_primary_10_1016_j_sna_2019_02_007 crossref_primary_10_1116_1_589989 crossref_primary_10_3390_s131217006 crossref_primary_10_1088_1742_6596_2740_1_012041 crossref_primary_10_1116_1_581762 crossref_primary_10_1109_JMEMS_2016_2632108 crossref_primary_10_1016_0924_4247_96_80131_2 crossref_primary_10_1109_84_967371 crossref_primary_10_1080_17455030_2021_1879407 crossref_primary_10_1103_PhysRevLett_109_147206 crossref_primary_10_1109_JSEN_2021_3099130 crossref_primary_10_1088_0960_1317_20_7_075007 crossref_primary_10_1016_S0924_4247_99_00379_9 crossref_primary_10_1038_s41378_023_00620_1 crossref_primary_10_1109_JSEN_2022_3164946 crossref_primary_10_3390_s16020158 crossref_primary_10_1109_TED_2022_3152475 crossref_primary_10_1088_0964_1726_16_6_R01 crossref_primary_10_1007_s00542_019_04543_8 crossref_primary_10_1109_JSEN_2021_3051286 crossref_primary_10_1016_j_ijmecsci_2017_05_044 crossref_primary_10_1016_S0924_4247_98_00222_2 crossref_primary_10_1016_j_paerosci_2014_06_002 crossref_primary_10_1016_j_ijsolstr_2005_08_011 crossref_primary_10_1016_j_measurement_2023_114080 crossref_primary_10_1007_s00542_019_04601_1 crossref_primary_10_3390_s8021048 crossref_primary_10_1116_1_1642649 crossref_primary_10_1063_1_2197263 |
Cites_doi | 10.1016/0924-4247(90)85028-3 10.1109/SOLSEN.1990.109809 10.1109/SOLSEN.1992.228303 10.1149/1.2404251 10.1109/SOLSEN.1992.228302 10.1109/SENSOR.1991.148968 10.1016/0924-4247(92)87007-4 |
ContentType | Journal Article |
Copyright | 1995 |
Copyright_xml | – notice: 1995 |
DBID | AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1016/0924-4247(95)00997-3 |
DatabaseName | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3069 |
EndPage | 186 |
ExternalDocumentID | 10_1016_0924_4247_95_00997_3 0924424795009973 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEZE ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJQLL AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HMU HVGLF HZ~ IHE J1W JJJVA KOM LY7 M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SCB SCH SDF SDG SDP SES SET SEW SPC SPCBC SPD SSK SSQ SST SSZ T5K TN5 WUQ XFK YK3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 7U5 8FD L7M |
ID | FETCH-LOGICAL-c367t-bc90980b53be5ec1aa00cb5790e5b0b1817dbb35a638dac5cd08c024e9045d433 |
IEDL.DBID | .~1 |
ISSN | 0924-4247 |
IngestDate | Fri Jul 11 16:06:51 EDT 2025 Fri Jul 11 01:52:38 EDT 2025 Tue Jul 01 04:09:53 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 Fri Feb 23 02:12:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Pressure sensors Polysilicon Resonant microbeams |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-bc90980b53be5ec1aa00cb5790e5b0b1817dbb35a638dac5cd08c024e9045d433 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 25982446 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_746113771 proquest_miscellaneous_25982446 crossref_citationtrail_10_1016_0924_4247_95_00997_3 crossref_primary_10_1016_0924_4247_95_00997_3 elsevier_sciencedirect_doi_10_1016_0924_4247_95_00997_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 19950101 |
PublicationDateYYYYMMDD | 1995-01-01 |
PublicationDate_xml | – month: 01 year: 1995 text: 19950101 day: 01 |
PublicationDecade | 1990 |
PublicationTitle | Sensors and actuators. A. Physical. |
PublicationYear | 1995 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Sniegowski (BIB1) 1991 Timoshenko (BIB8) 1959 J.J. Sniegowski, H. Guckel and T.R. Christensen, Performance characteristics of second-generation polysilicon resonating beam force transducers, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, June 1990, pp. 9–12 H. Guckel, C. Rypstat, M. Nesnidal, J.D. Zook, D.W. Burns and D.K. Arch, Polysilicon resonant microbeam technology for high-performance sensor applications, IEEE Solid-State Sensor and Actuator Worshop, Hilton Head Island, SC, USA, 24–25 June, 1992, pp. 153–156 Tilmans (BIB6) 1993 K. Petersen, F. Pourahmadi, J. Brown, P. Parsons, M. Skinner and J. Tudor, Resonant beam pressure sensor fabricated with silicon fusion bonding, Proc. 6th Int. Conf. Solid-State Sensors and Actuators (Transducers '91), San Francisco, CA, USA, 24–28 June 1991, pp. 664–667 Zook, Burns, Guckel, Sniegowski, Engelstad, Feng (BIB5) 1992; 35 H. Guckel, M. Nesnidal, J.D. Zook and D.W. Burns, Optical drive/sense for high- Wen, Weller (BIB10) 1972; 119 resonant microbeams, Proc. 7th Int. Conf. Solid-State Sensors and Actuators (Transducers '93), Yokohama, Japan, 7–10 June, 1993, pp. 686–689 A.D. Nikolich and S.D. Senturia, A wafer-bonded silicon load cell operating in the tensioned-wire regime, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, 22–25 June, 1992, pp. 157–160 BIB12 Ikeda, Kumayama, Koboyashi, Wanabe, Nishikawa, Yoshida, Harada (BIB2) 1990; A21-A23 10.1016/0924-4247(95)00997-3_BIB9 Tilmans (10.1016/0924-4247(95)00997-3_BIB6) 1993 10.1016/0924-4247(95)00997-3_BIB11 Timoshenko (10.1016/0924-4247(95)00997-3_BIB8) 1959 Sniegowski (10.1016/0924-4247(95)00997-3_BIB1) 1991 Ikeda (10.1016/0924-4247(95)00997-3_BIB2) 1990; A21-A23 Wen (10.1016/0924-4247(95)00997-3_BIB10) 1972; 119 10.1016/0924-4247(95)00997-3_BIB7 Zook (10.1016/0924-4247(95)00997-3_BIB5) 1992; 35 10.1016/0924-4247(95)00997-3_BIB4 10.1016/0924-4247(95)00997-3_BIB3 |
References_xml | – reference: J.J. Sniegowski, H. Guckel and T.R. Christensen, Performance characteristics of second-generation polysilicon resonating beam force transducers, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, June 1990, pp. 9–12 – reference: resonant microbeams, Proc. 7th Int. Conf. Solid-State Sensors and Actuators (Transducers '93), Yokohama, Japan, 7–10 June, 1993, pp. 686–689 – reference: H. Guckel, M. Nesnidal, J.D. Zook and D.W. Burns, Optical drive/sense for high- – reference: K. Petersen, F. Pourahmadi, J. Brown, P. Parsons, M. Skinner and J. Tudor, Resonant beam pressure sensor fabricated with silicon fusion bonding, Proc. 6th Int. Conf. Solid-State Sensors and Actuators (Transducers '91), San Francisco, CA, USA, 24–28 June 1991, pp. 664–667 – year: 1991 ident: BIB1 article-title: Design and fabrication of the polysilicon resonating beam force transducer publication-title: Ph.D. Dissertation – reference: A.D. Nikolich and S.D. Senturia, A wafer-bonded silicon load cell operating in the tensioned-wire regime, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, 22–25 June, 1992, pp. 157–160 – year: 1959 ident: BIB8 publication-title: Theory of Plates and Shells – year: 1993 ident: BIB6 article-title: Micromechanical sensors using encapsulated built-in resonant strain gauges publication-title: Ph.D. Dissertation – ident: BIB12 – volume: A21-A23 start-page: 146 year: 1990 end-page: 150 ident: BIB2 article-title: Silicon pressure sensor integrates resonant strain gauge on diaphragm publication-title: Sensors and Actuators – reference: H. Guckel, C. Rypstat, M. Nesnidal, J.D. Zook, D.W. Burns and D.K. Arch, Polysilicon resonant microbeam technology for high-performance sensor applications, IEEE Solid-State Sensor and Actuator Worshop, Hilton Head Island, SC, USA, 24–25 June, 1992, pp. 153–156 – volume: 35 start-page: 51 year: 1992 end-page: 59 ident: BIB5 article-title: Characteristics of polysilicon resonant microbeams publication-title: Sensors and Actuators A – volume: 119 start-page: 547 year: 1972 ident: BIB10 article-title: Preferential electrochemical etching of p publication-title: J. Electrochem. Soc. – ident: 10.1016/0924-4247(95)00997-3_BIB11 – year: 1991 ident: 10.1016/0924-4247(95)00997-3_BIB1 article-title: Design and fabrication of the polysilicon resonating beam force transducer – volume: A21-A23 start-page: 146 year: 1990 ident: 10.1016/0924-4247(95)00997-3_BIB2 article-title: Silicon pressure sensor integrates resonant strain gauge on diaphragm publication-title: Sensors and Actuators doi: 10.1016/0924-4247(90)85028-3 – ident: 10.1016/0924-4247(95)00997-3_BIB9 doi: 10.1109/SOLSEN.1990.109809 – year: 1959 ident: 10.1016/0924-4247(95)00997-3_BIB8 – ident: 10.1016/0924-4247(95)00997-3_BIB4 doi: 10.1109/SOLSEN.1992.228303 – volume: 119 start-page: 547 year: 1972 ident: 10.1016/0924-4247(95)00997-3_BIB10 article-title: Preferential electrochemical etching of p+ silicon in an aqueous HF-H2SO4 electrolyte publication-title: J. Electrochem. Soc. doi: 10.1149/1.2404251 – year: 1993 ident: 10.1016/0924-4247(95)00997-3_BIB6 article-title: Micromechanical sensors using encapsulated built-in resonant strain gauges – ident: 10.1016/0924-4247(95)00997-3_BIB7 doi: 10.1109/SOLSEN.1992.228302 – ident: 10.1016/0924-4247(95)00997-3_BIB3 doi: 10.1109/SENSOR.1991.148968 – volume: 35 start-page: 51 year: 1992 ident: 10.1016/0924-4247(95)00997-3_BIB5 article-title: Characteristics of polysilicon resonant microbeams publication-title: Sensors and Actuators A doi: 10.1016/0924-4247(92)87007-4 |
SSID | ssj0003377 |
Score | 1.6824582 |
Snippet | A quasi-digital pressure sensor based on polysilicon resonant microbeams has been demonstrated. Pressure sensitivities of nearly 4000 counts per second per psi... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 179 |
SubjectTerms | Fabrication Micromachining Polysilicon Pressure gages Pressure measurement Pressure sensors Resonant microbeams Sealing (closing) Silicon wafers Silicones |
Title | Sealed-cavity resonant microbeam pressure sensor |
URI | https://dx.doi.org/10.1016/0924-4247(95)00997-3 https://www.proquest.com/docview/25982446 https://www.proquest.com/docview/746113771 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JSwMxFA5SL3oQV6xLnYMHPcRmJltzLKJUxV604C0kb1Io2IUuV3-7edOZuoAUvIaXmeFL8pbMe98j5DJzIACvl_opaCqyFKhpGaD9vgoydyHaPLwaeO6qTk88vsm3b7UwmFZZ6v6lTi-0dTnSLNFsTgaDJouRg8iENhK9HI2En0Jo3OQ3H19ZHpwXzRdRmKJ0VT2XquZq7MrI6-IZlP9lnX7p6cL43O-SndJrTNrLD9sjG2G0T7a_cQkeEPaCLl9OwWE3iCRG0WPMcUmGmHHngxsmRcrrYhqSWQxdx9ND0ru_e73t0LIdAgWu9Jx6MMy0mJfcBxkgdY4x8FIbFqRnPppqnXvPpYtHKncgIWctiCY4mOi25YLzI1IbjUfhmCQyBmWZUaAgB6F4lFZc58xBcLqVgqkTXsFgoeQKx5YV77ZKCkPwLIJnjbQFeJbXCV3Nmiy5MtbI6wph-2PNbVTna2ZeVAti43HAfxxuFMaLmc2QkDCGuHWS_CGhhUqRZjE9-ffrT8nWsrIdb2LOSG0-XYTz6JvMfaPYfQ2y2X546nQ_AXj03Yw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxQxDLaqcigcKiggtlA6B5DgEDYzeW0OHCqg2j4vtFJvIfFkpUrtbrUPIS78KH4h9uxMeUhVpUq9Rokm-uL4sz2ODfCmiqiRw0ujEp3QVYnCDzyK0chmU8dMnMehgaNjOzzV-2fmbAV-dW9hOK2y1f1Lnd5o63ak36LZvzo_70vyHHSlnTds5biugfVB_vGd3LbZx73PdMZvq2r3y8mnoWg7CwhU1s1FQi_9QCajUjYZyxilxGScl9kkmYj1XJ2SMpGks45osJYDJDbLniygWnMQlNT-A03agrsmfPj5J61EqabbI-9O8Pa653ql7V-PvfPmfbNpoW6iw_-IoWG73cew3pqpxc4SiSewkscb8Oiv4oVPQX5lG7MWGLn9REFu-4STaopLTvFLOV4WTY7tYpqLGfnKk-kzOL0XlJ7D6ngyzi-gMOQFVt6ixRq1VTTbKlfLiDm6QYm-B6qDIWBbnJx7ZFyELguNwQsMXvAmNOAF1QNxvepqWZzjlvmuQzj8I2SB-OOWldvdgQS6f_xTJY7zZDELFVdAJJ-6B8UNM5y2Jdd1LDfv_PltWBueHB2Gw73jg5fwcPmsnsNAr2B1Pl3kLTKM5ul1I4kFfLtv0f8NWCUZgw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sealed-cavity+resonant+microbeam+pressure+sensor&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Burns%2C+D+W&rft.au=Zook%2C+J+D&rft.au=Horning%2C+R+D&rft.au=Herb%2C+W+R&rft.date=1995-01-01&rft.issn=0924-4247&rft.volume=48&rft.issue=3&rft.spage=179&rft.epage=186&rft_id=info:doi/10.1016%2F0924-4247%2895%2900997-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon |