Multi-Feature Extension via Semi-Autoencoder for Personalized Recommendation
Over the past few years, personalized recommendation systems aim to address the problem of information overload to help users achieve useful information and make quick decisions. Recently, due to the benefits of effective representation learning and no labeled data requirements, autoencoder-based mo...
Saved in:
Published in | Applied sciences Vol. 12; no. 23; p. 12408 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-3417 2076-3417 |
DOI | 10.3390/app122312408 |
Cover
Loading…
Abstract | Over the past few years, personalized recommendation systems aim to address the problem of information overload to help users achieve useful information and make quick decisions. Recently, due to the benefits of effective representation learning and no labeled data requirements, autoencoder-based models have commonly been used in recommendation systems. Nonetheless, auxiliary information that can effectively enlarge the feature space is always scarce. Moreover, most existing methods ignore the hidden relations between extended features, which significantly affects the recommendation accuracy. To handle these problems, we propose a Multi-Feature extension method via a Semi-AutoEncoder for personalized recommendation (MFSAE). First, we extract auxiliary information from DBpedia as feature extensions of items. Second, we leverage the LSI model to learn hidden relations on top of item features and embed them into low-dimensional feature vectors. Finally, the resulting feature vectors, combined with the original rating matrix and side information, are fed into a semi-autoencoder for recommendation prediction. We ran comprehensive experiments on the MovieLens datasets. The results demonstrate the effectiveness of MFSAE compared to state-of-the-art methods. |
---|---|
AbstractList | Over the past few years, personalized recommendation systems aim to address the problem of information overload to help users achieve useful information and make quick decisions. Recently, due to the benefits of effective representation learning and no labeled data requirements, autoencoder-based models have commonly been used in recommendation systems. Nonetheless, auxiliary information that can effectively enlarge the feature space is always scarce. Moreover, most existing methods ignore the hidden relations between extended features, which significantly affects the recommendation accuracy. To handle these problems, we propose a Multi-Feature extension method via a Semi-AutoEncoder for personalized recommendation (MFSAE). First, we extract auxiliary information from DBpedia as feature extensions of items. Second, we leverage the LSI model to learn hidden relations on top of item features and embed them into low-dimensional feature vectors. Finally, the resulting feature vectors, combined with the original rating matrix and side information, are fed into a semi-autoencoder for recommendation prediction. We ran comprehensive experiments on the MovieLens datasets. The results demonstrate the effectiveness of MFSAE compared to state-of-the-art methods. |
Author | Geng, Yishuai Li, Yun Li, Bin Sun, Xiaobing Zhu, Yi |
Author_xml | – sequence: 1 givenname: Yishuai orcidid: 0000-0003-1034-8126 surname: Geng fullname: Geng, Yishuai – sequence: 2 givenname: Yi surname: Zhu fullname: Zhu, Yi – sequence: 3 givenname: Yun surname: Li fullname: Li, Yun – sequence: 4 givenname: Xiaobing surname: Sun fullname: Sun, Xiaobing – sequence: 5 givenname: Bin surname: Li fullname: Li, Bin |
BookMark | eNptUNtKAzEQDVLBWvvmByz46moue0keS2m1UFG8PIdsMisp201NsqJ-vdtWpIgDwxmGc84w5xQNWtcCQucEXzEm8LXabAiljNAM8yM0pLgsUpaRcnAwn6BxCCvclyCMEzxEy7uuiTadg4qdh2T2EaEN1rXJu1XJE6xtOumig1Y7Az6pnU8ewAfXqsZ-gUkeQbv1GlqjYi86Q8e1agKMf3CEXuaz5-ltury_WUwny1SzooxpJVgNuamYMUxUhBFdEJWDMRXl3GhDhMKAgRRAM90jZ6bOa65wJUSJRclGaLH3NU6t5MbbtfKf0ikrdwvnX6Xy0eoGJGgsCgMq47rIasornYlCaKJzU-ICb70u9l4b7946CFGuXOf7_4KkZcZzyrK-R-hyz9LeheCh_r1KsNzGLw_j7-n0D13buIsoemWb_0XfxmeKTg |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3323353 crossref_primary_10_3390_computers13110275 crossref_primary_10_1007_s40747_024_01414_2 crossref_primary_10_1109_ACCESS_2024_3416962 crossref_primary_10_1007_s11704_023_2441_1 |
Cites_doi | 10.3390/electronics11060878 10.1145/3397271.3401141 10.1016/j.caeai.2022.100047 10.1145/3298689.3346999 10.1002/int.22813 10.1007/s11277-021-09015-9 10.1145/3289600.3290977 10.1016/j.dss.2015.03.008 10.1088/1742-6596/1487/1/012016 10.1007/s00521-021-05933-8 10.1016/j.neucom.2020.07.053 10.1109/TSC.2020.2964552 10.1016/j.eswa.2021.115825 10.1016/j.eswa.2018.09.053 10.1109/ICIS.2017.7960088 10.1145/3437963.3441759 10.1016/j.eswa.2016.09.040 10.1007/s10489-021-02647-1 10.1109/ACCESS.2018.2789866 10.1145/2740908.2742726 10.1145/3336191.3371831 10.1088/1742-6596/1865/4/042052 10.1145/2959100.2959134 10.1109/ICICCS48265.2020.9120888 10.1145/1401890.1401944 10.1007/978-981-15-7869-4_6 10.1145/3409256.3409835 10.1016/j.knosys.2020.105798 10.1007/s11263-019-01247-4 10.1109/TCYB.2020.3029002 10.1109/TCBB.2020.2994780 10.1007/s11704-019-8123-3 10.3389/fgene.2022.891265 10.1007/s10462-019-09744-1 10.3390/electronics9010135 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/app122312408 |
DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2076-3417 |
ExternalDocumentID | oai_doaj_org_article_ec096dea48c64f28bc4969c1c5d70607 10_3390_app122312408 |
GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c367t-b93fe5db3dd39b131c61a5eddb288dcd19a0e0e16e24c0e183df5f8a0b9970973 |
IEDL.DBID | DOA |
ISSN | 2076-3417 |
IngestDate | Wed Aug 27 01:31:37 EDT 2025 Mon Jun 30 07:32:03 EDT 2025 Tue Jul 01 04:32:35 EDT 2025 Thu Apr 24 23:01:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-b93fe5db3dd39b131c61a5eddb288dcd19a0e0e16e24c0e183df5f8a0b9970973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1034-8126 |
OpenAccessLink | https://doaj.org/article/ec096dea48c64f28bc4969c1c5d70607 |
PQID | 2748523452 |
PQPubID | 2032433 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ec096dea48c64f28bc4969c1c5d70607 proquest_journals_2748523452 crossref_primary_10_3390_app122312408 crossref_citationtrail_10_3390_app122312408 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Applied sciences |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Lee (ref_45) 2014; 13 Zhong (ref_10) 2020; 52 Cui (ref_12) 2020; 13 Alam (ref_6) 2020; 417 ref_14 ref_35 Pujahari (ref_13) 2020; 196 ref_11 ref_32 Salim (ref_27) 2020; 53 Senthil (ref_41) 2022; 122 ref_30 Yu (ref_33) 2022; 34 Zhu (ref_25) 2021; 186 Tancik (ref_39) 2020; 33 ref_18 ref_16 ref_15 Pan (ref_31) 2020; 14 Rahayu (ref_3) 2022; 3 Zhou (ref_26) 2020; 18 Mimura (ref_43) 2020; 28 Wei (ref_24) 2017; 69 ref_22 Liu (ref_23) 2020; 128 ref_44 Lu (ref_17) 2015; 74 ref_21 ref_20 Guan (ref_37) 2021; 1865 ref_42 ref_1 Ullah (ref_40) 2022; 37 ref_2 ref_29 ref_28 (ref_38) 2011; 60 Zhang (ref_5) 2018; 6 ref_9 ref_8 Geng (ref_7) 2022; 13 Zou (ref_36) 2020; 1487 ref_4 Symeonidis (ref_19) 2019; 118 Yang (ref_34) 2022; 52 |
References_xml | – ident: ref_2 doi: 10.3390/electronics11060878 – volume: 28 start-page: 493 year: 2020 ident: ref_43 article-title: Using LSI to detect unknown malicious VBA macros publication-title: J. Inf. Process. – ident: ref_21 doi: 10.1145/3397271.3401141 – volume: 3 start-page: 100047 year: 2022 ident: ref_3 article-title: A systematic review of ontology use in E-Learning recommender system publication-title: Comput. Educ. Artif. Intell. doi: 10.1016/j.caeai.2022.100047 – ident: ref_20 doi: 10.1145/3298689.3346999 – ident: ref_11 – volume: 37 start-page: 5768 year: 2022 ident: ref_40 article-title: CroLSSim: Cross-language software similarity detector using hybrid approach of LSA-based AST-MDrep features and CNN-LSTM model publication-title: Int. J. Intell. Syst. doi: 10.1002/int.22813 – volume: 122 start-page: 2603 year: 2022 ident: ref_41 article-title: Internet of Things Energy Efficient Cluster-Based Routing Using Hybrid Particle Swarm Optimization for Wireless Sensor Network publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-021-09015-9 – ident: ref_1 doi: 10.1145/3289600.3290977 – volume: 74 start-page: 12 year: 2015 ident: ref_17 article-title: Recommender system application developments: A survey publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2015.03.008 – volume: 1487 start-page: 012016 year: 2020 ident: ref_36 article-title: A survey on application of knowledge graph publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1487/1/012016 – volume: 34 start-page: 2503 year: 2022 ident: ref_33 article-title: A model-based collaborate filtering algorithm based on stacked AutoEncoder publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-05933-8 – volume: 417 start-page: 302 year: 2020 ident: ref_6 article-title: Survey on Deep Neural Networks in Speech and Vision Systems publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.053 – volume: 13 start-page: 685 year: 2020 ident: ref_12 article-title: Personalized recommendation system based on collaborative filtering for IoT scenarios publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2020.2964552 – ident: ref_35 – ident: ref_44 – volume: 186 start-page: 115825 year: 2021 ident: ref_25 article-title: Representation learning with collaborative autoencoder for personalized recommendation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115825 – volume: 118 start-page: 261 year: 2019 ident: ref_19 article-title: Multi-modal matrix factorization with side information for recommending massive open online courses publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.09.053 – ident: ref_28 doi: 10.1109/ICIS.2017.7960088 – volume: 33 start-page: 7537 year: 2020 ident: ref_39 article-title: Fourier features let networks learn high frequency functions in low dimensional domains publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_18 doi: 10.1145/3437963.3441759 – volume: 60 start-page: 46 year: 2011 ident: ref_38 article-title: The information explosion: Trends in technology 2011 review publication-title: J. Gov. Financ. Manag. – ident: ref_8 – volume: 69 start-page: 29 year: 2017 ident: ref_24 article-title: Collaborative filtering and deep learning based recommendation system for cold start items publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.09.040 – volume: 52 start-page: 6196 year: 2022 ident: ref_34 article-title: Personalized recommendation with knowledge graph via dual-autoencoder publication-title: Appl. Intell. doi: 10.1007/s10489-021-02647-1 – volume: 6 start-page: 9454 year: 2018 ident: ref_5 article-title: A recommendation model based on deep neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2789866 – ident: ref_30 doi: 10.1145/2740908.2742726 – ident: ref_32 doi: 10.1145/3336191.3371831 – volume: 1865 start-page: 042052 year: 2021 ident: ref_37 article-title: Diagnosis of Fruit Tree Diseases and Pests Based on Agricultural Knowledge Graph publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1865/4/042052 – ident: ref_16 doi: 10.1145/2959100.2959134 – ident: ref_42 doi: 10.1109/ICICCS48265.2020.9120888 – ident: ref_14 doi: 10.1145/1401890.1401944 – ident: ref_15 – ident: ref_4 doi: 10.1007/978-981-15-7869-4_6 – ident: ref_9 doi: 10.1145/3409256.3409835 – volume: 196 start-page: 105798 year: 2020 ident: ref_13 article-title: Pair-wise preference relation based probabilistic matrix factorization for collaborative filtering in recommender system publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.105798 – volume: 128 start-page: 261 year: 2020 ident: ref_23 article-title: Deep learning for generic object detection: A survey publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-019-01247-4 – ident: ref_22 – volume: 52 start-page: 5229 year: 2020 ident: ref_10 article-title: An autoencoder framework with attention mechanism for cross-domain recommendation publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.3029002 – volume: 18 start-page: 912 year: 2020 ident: ref_26 article-title: CNN-RNN based intelligent recommendation for online medical pre-diagnosis support publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2020.2994780 – volume: 14 start-page: 143301 year: 2020 ident: ref_31 article-title: A correlative denoising autoencoder to model social influence for top-N recommender system publication-title: Front. Comput. Sci. doi: 10.1007/s11704-019-8123-3 – volume: 13 start-page: 891265 year: 2022 ident: ref_7 article-title: Representation learning: Recommendation with knowledge graph via triple-autoencoder publication-title: Front. Genet. doi: 10.3389/fgene.2022.891265 – volume: 53 start-page: 2709 year: 2020 ident: ref_27 article-title: Recommendation system based on deep learning methods: A systematic review and new directions publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-019-09744-1 – volume: 13 start-page: 2699 year: 2014 ident: ref_45 article-title: PREA: Personalized recommendation algorithms toolkit publication-title: J. Mach. Learn. Res. – ident: ref_29 doi: 10.3390/electronics9010135 |
SSID | ssj0000913810 |
Score | 2.2661664 |
Snippet | Over the past few years, personalized recommendation systems aim to address the problem of information overload to help users achieve useful information and... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 12408 |
SubjectTerms | autoencoder Cold Collaboration collaborative filtering Deep learning knowledge graph Methods Mining multi-feature extension Neural networks personalized recommendation Recommender systems Semantics Sparsity |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3dSxwxEMBDtS_1QfxoqXqVPFRQSujObrKbfRIrnkexRVDBt2WTTOTAu9X7KMW_3sxe7lREnxZ287BMZjIzyeQ3jH0nAovTSgkovBWyLkAYgDwEcr6whVLGSboo_Odv3ruSv6_VddxwG8eyyvma2C7UrrG0R_4zZE86JE1SpYd394K6RtHpamyhscQ-QvA0pOG6e7rYYyHmpYZkVu-eheyeToUhOEQgsNcLT9QC-1-tx62T6a6x1Rgd8qPZdK6zDzjcYCvPmIEbbD1a45jvR2T0wSY7a-_RCornpiPkJ__buvRmyP_1a36Bg744mk4aYlY6HPEQp_LzeRD-gI5TDjoYYOyv9JlddU8uj3si9kkQNsuLiTBl5lE5kzmXlQYysDnUCp0zqdbOOijrBBOEHFNpw1Nnziuv68SUZUG4ni9sedgM8SvjCsHUdTBstF6mhSH6nZHeg0ssSCy22I-5zCobIeLUy-K2CskESbh6LuEttrcYfTeDZ7wx7heJfzGGkNfti2Z0U0ULqtCGbMthLbXNpU-1sbLMSwtWOSIAhV_rzCevinY4rp60Zvv9zzvsU0oXG9pClQ5bnoym-C2EGxOz2-rUI3TW1ME priority: 102 providerName: ProQuest |
Title | Multi-Feature Extension via Semi-Autoencoder for Personalized Recommendation |
URI | https://www.proquest.com/docview/2748523452 https://doaj.org/article/ec096dea48c64f28bc4969c1c5d70607 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8QwEMcHHxc9iE9cH0sOCooUN23SpkeVXUVUxAd4K00ygQV3V9ZdET-9mbQrKyJePBVKoGU6yfyHzvwGYI8ILFZJGfHMmUiUGY8056kXci4zmZTaCmoUvr5JLx7F5ZN8mhr1RTVhFR64MtwxGi-yLZZCmVS4WGkj8jQ33EhL4JfQR-5j3lQyFc7gnBO6qqp0T3xeT_-DuQ-FnJBe32JQQPX_OIlDeOksw1KtC9lJ9T4rMIP9VVicogWuwkq9D1_ZQQ2LPlyDq9BBG5GSGw-Rtd9DRfqgz966JbvHXjc6GY8GRKu0OGReobLbifz-QMso--z1sJ6stA6PnfbD2UVUT0iITJJmo0jniUNpdWJtkmuecJPyUqK1OlbKGsvzsoUt5CnGwvirSqyTTpUtnecZgXo2YK4_6OMmMIlcl6Xf0miciDNN3DstnOO2ZbjArAFHE5sVpsaH0xSL58KnEWThYtrCDdj_Wv1SYTN-WXdK5v9aQ7DrcMO7QFG7QPGXCzRgZ_LxinoHvhY-21Y-yRYy3vqPZ2zDQkyND6GQZQfmRsMx7no5MtJNmFWd8ybMn7Zvbu-awQ8_AfpI3_U |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gPqgPBlAjCLoPkmjMxm67224fDEHgPOQgJkLCW-3uzhoS7or3Icgfxd_ITq89IEbfeGrSnTTN7HzuzvwG4C0hsDitFBeZt1yWmeBGiDQEcj6zmVLGSWoU3j9Iu0fy67E6noOrtheGyipbm1gbaldZOiP_GLInHZImqeKNs1-cpkbR7Wo7QmMqFnv45zykbKNPu9thf9fjuLNzuNXlzVQBbpM0G3OTJx6VM4lzSW5EImwqSoXOmVhrZ53IywgjFCnG0oanTpxXXpeRyfOMwG3Cdx_AQ5kkOZUQ6s6X2ZkOYWxqEU3r68N6RLfQIjhgQUBidzxfPSDgL_tfO7XOAjxtolG2ORWfRZjDwRI8uYVRuASLjfaP2LsGovr9M-jVfbuc4sfJENnORV0HXw3Y75OSfcf-Cd-cjCvCyHQ4ZCEuZt_aoP8SHaOct9_HZp7Tczi6Fw6-gPlBNcCXwBQKU5bBkKD1Ms4Moe0Z6b1wkRUSs2X40PKssA1oOc3OOC1C8kIcLm5zeBnWZ9RnU7COf9B9JvbPaAhiu35RDX8WjcYWaEN257CU2qbSx9pYmae5FVY5QhwKv7babl7R6P2ouJHSlf8vv4FH3cP9XtHbPdh7BY9jaqqoi2RWYX48nOBaCHXG5nUtXwx-3LdAXwMnERL- |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IFpAFAr4QCUQshrHduIcECq0S0tLVQkq9ZbG9hhVYjdlH7x-Gr8OT9ZZihDceoqUjKJoPJmZz575BuAJMbB4ozUXZXBcNaXgVogiJnKhdKXW1itqFH53WOweq7cn-mQJfva9MFRW2fvEzlH71tEe-WZETyaCJqXzzZDKIo62By_PP3OaIEUnrf04jbmJ7OP3rxG-TV7sbce13sjzwc6H17s8TRjgThbllNtKBtTeSu9lZYUUrhCNRu9tbox3XlRNhhmKAnPl4tVIH3QwTWarqiSim_jeK3C1lCaj6Qlm8Gaxv0N8m0Zk81p7KauMTqRFDMaCSMX-iILdsIC_YkEX4Aa34GbKTNnW3JRWYAlHq3DjAl_hKqwkTzBhTxNd9bPbcND18HLKJWdjZDvfupr4dsS-nDXsPQ7P-NZs2hJfpscxizkyO-oBwA_0jPDvcIhpttMdOL4UDd6F5VE7wnvANArbNNGpoAsqLy0x71kVgvCZEwrLNXje66x2icCc5mh8qiOQIQ3XFzW8BhsL6fM5ccc_5F6R-hcyRLfd3WjHH-v099boItLz2CjjChVyY52qisoJpz2xD8VPW-8Xr04-YFL_ttj7_3_8GK5FU64P9g73H8D1nPorunqZdViejmf4MGY9U_uoMy8Gp5dtz78Ahf8XKw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Feature+Extension+via+Semi-Autoencoder+for+Personalized+Recommendation&rft.jtitle=Applied+sciences&rft.au=Yishuai+Geng&rft.au=Yi+Zhu&rft.au=Yun+Li&rft.au=Xiaobing+Sun&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=23&rft.spage=12408&rft_id=info:doi/10.3390%2Fapp122312408&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ec096dea48c64f28bc4969c1c5d70607 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |