Multi-Feature Extension via Semi-Autoencoder for Personalized Recommendation

Over the past few years, personalized recommendation systems aim to address the problem of information overload to help users achieve useful information and make quick decisions. Recently, due to the benefits of effective representation learning and no labeled data requirements, autoencoder-based mo...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 12; no. 23; p. 12408
Main Authors Geng, Yishuai, Zhu, Yi, Li, Yun, Sun, Xiaobing, Li, Bin
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2022
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app122312408

Cover

Loading…
Abstract Over the past few years, personalized recommendation systems aim to address the problem of information overload to help users achieve useful information and make quick decisions. Recently, due to the benefits of effective representation learning and no labeled data requirements, autoencoder-based models have commonly been used in recommendation systems. Nonetheless, auxiliary information that can effectively enlarge the feature space is always scarce. Moreover, most existing methods ignore the hidden relations between extended features, which significantly affects the recommendation accuracy. To handle these problems, we propose a Multi-Feature extension method via a Semi-AutoEncoder for personalized recommendation (MFSAE). First, we extract auxiliary information from DBpedia as feature extensions of items. Second, we leverage the LSI model to learn hidden relations on top of item features and embed them into low-dimensional feature vectors. Finally, the resulting feature vectors, combined with the original rating matrix and side information, are fed into a semi-autoencoder for recommendation prediction. We ran comprehensive experiments on the MovieLens datasets. The results demonstrate the effectiveness of MFSAE compared to state-of-the-art methods.
AbstractList Over the past few years, personalized recommendation systems aim to address the problem of information overload to help users achieve useful information and make quick decisions. Recently, due to the benefits of effective representation learning and no labeled data requirements, autoencoder-based models have commonly been used in recommendation systems. Nonetheless, auxiliary information that can effectively enlarge the feature space is always scarce. Moreover, most existing methods ignore the hidden relations between extended features, which significantly affects the recommendation accuracy. To handle these problems, we propose a Multi-Feature extension method via a Semi-AutoEncoder for personalized recommendation (MFSAE). First, we extract auxiliary information from DBpedia as feature extensions of items. Second, we leverage the LSI model to learn hidden relations on top of item features and embed them into low-dimensional feature vectors. Finally, the resulting feature vectors, combined with the original rating matrix and side information, are fed into a semi-autoencoder for recommendation prediction. We ran comprehensive experiments on the MovieLens datasets. The results demonstrate the effectiveness of MFSAE compared to state-of-the-art methods.
Author Geng, Yishuai
Li, Yun
Li, Bin
Sun, Xiaobing
Zhu, Yi
Author_xml – sequence: 1
  givenname: Yishuai
  orcidid: 0000-0003-1034-8126
  surname: Geng
  fullname: Geng, Yishuai
– sequence: 2
  givenname: Yi
  surname: Zhu
  fullname: Zhu, Yi
– sequence: 3
  givenname: Yun
  surname: Li
  fullname: Li, Yun
– sequence: 4
  givenname: Xiaobing
  surname: Sun
  fullname: Sun, Xiaobing
– sequence: 5
  givenname: Bin
  surname: Li
  fullname: Li, Bin
BookMark eNptUNtKAzEQDVLBWvvmByz46moue0keS2m1UFG8PIdsMisp201NsqJ-vdtWpIgDwxmGc84w5xQNWtcCQucEXzEm8LXabAiljNAM8yM0pLgsUpaRcnAwn6BxCCvclyCMEzxEy7uuiTadg4qdh2T2EaEN1rXJu1XJE6xtOumig1Y7Az6pnU8ewAfXqsZ-gUkeQbv1GlqjYi86Q8e1agKMf3CEXuaz5-ltury_WUwny1SzooxpJVgNuamYMUxUhBFdEJWDMRXl3GhDhMKAgRRAM90jZ6bOa65wJUSJRclGaLH3NU6t5MbbtfKf0ikrdwvnX6Xy0eoGJGgsCgMq47rIasornYlCaKJzU-ICb70u9l4b7946CFGuXOf7_4KkZcZzyrK-R-hyz9LeheCh_r1KsNzGLw_j7-n0D13buIsoemWb_0XfxmeKTg
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3323353
crossref_primary_10_3390_computers13110275
crossref_primary_10_1007_s40747_024_01414_2
crossref_primary_10_1109_ACCESS_2024_3416962
crossref_primary_10_1007_s11704_023_2441_1
Cites_doi 10.3390/electronics11060878
10.1145/3397271.3401141
10.1016/j.caeai.2022.100047
10.1145/3298689.3346999
10.1002/int.22813
10.1007/s11277-021-09015-9
10.1145/3289600.3290977
10.1016/j.dss.2015.03.008
10.1088/1742-6596/1487/1/012016
10.1007/s00521-021-05933-8
10.1016/j.neucom.2020.07.053
10.1109/TSC.2020.2964552
10.1016/j.eswa.2021.115825
10.1016/j.eswa.2018.09.053
10.1109/ICIS.2017.7960088
10.1145/3437963.3441759
10.1016/j.eswa.2016.09.040
10.1007/s10489-021-02647-1
10.1109/ACCESS.2018.2789866
10.1145/2740908.2742726
10.1145/3336191.3371831
10.1088/1742-6596/1865/4/042052
10.1145/2959100.2959134
10.1109/ICICCS48265.2020.9120888
10.1145/1401890.1401944
10.1007/978-981-15-7869-4_6
10.1145/3409256.3409835
10.1016/j.knosys.2020.105798
10.1007/s11263-019-01247-4
10.1109/TCYB.2020.3029002
10.1109/TCBB.2020.2994780
10.1007/s11704-019-8123-3
10.3389/fgene.2022.891265
10.1007/s10462-019-09744-1
10.3390/electronics9010135
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app122312408
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_ec096dea48c64f28bc4969c1c5d70607
10_3390_app122312408
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c367t-b93fe5db3dd39b131c61a5eddb288dcd19a0e0e16e24c0e183df5f8a0b9970973
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:31:37 EDT 2025
Mon Jun 30 07:32:03 EDT 2025
Tue Jul 01 04:32:35 EDT 2025
Thu Apr 24 23:01:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-b93fe5db3dd39b131c61a5eddb288dcd19a0e0e16e24c0e183df5f8a0b9970973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1034-8126
OpenAccessLink https://doaj.org/article/ec096dea48c64f28bc4969c1c5d70607
PQID 2748523452
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_ec096dea48c64f28bc4969c1c5d70607
proquest_journals_2748523452
crossref_primary_10_3390_app122312408
crossref_citationtrail_10_3390_app122312408
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Lee (ref_45) 2014; 13
Zhong (ref_10) 2020; 52
Cui (ref_12) 2020; 13
Alam (ref_6) 2020; 417
ref_14
ref_35
Pujahari (ref_13) 2020; 196
ref_11
ref_32
Salim (ref_27) 2020; 53
Senthil (ref_41) 2022; 122
ref_30
Yu (ref_33) 2022; 34
Zhu (ref_25) 2021; 186
Tancik (ref_39) 2020; 33
ref_18
ref_16
ref_15
Pan (ref_31) 2020; 14
Rahayu (ref_3) 2022; 3
Zhou (ref_26) 2020; 18
Mimura (ref_43) 2020; 28
Wei (ref_24) 2017; 69
ref_22
Liu (ref_23) 2020; 128
ref_44
Lu (ref_17) 2015; 74
ref_21
ref_20
Guan (ref_37) 2021; 1865
ref_42
ref_1
Ullah (ref_40) 2022; 37
ref_2
ref_29
ref_28
(ref_38) 2011; 60
Zhang (ref_5) 2018; 6
ref_9
ref_8
Geng (ref_7) 2022; 13
Zou (ref_36) 2020; 1487
ref_4
Symeonidis (ref_19) 2019; 118
Yang (ref_34) 2022; 52
References_xml – ident: ref_2
  doi: 10.3390/electronics11060878
– volume: 28
  start-page: 493
  year: 2020
  ident: ref_43
  article-title: Using LSI to detect unknown malicious VBA macros
  publication-title: J. Inf. Process.
– ident: ref_21
  doi: 10.1145/3397271.3401141
– volume: 3
  start-page: 100047
  year: 2022
  ident: ref_3
  article-title: A systematic review of ontology use in E-Learning recommender system
  publication-title: Comput. Educ. Artif. Intell.
  doi: 10.1016/j.caeai.2022.100047
– ident: ref_20
  doi: 10.1145/3298689.3346999
– ident: ref_11
– volume: 37
  start-page: 5768
  year: 2022
  ident: ref_40
  article-title: CroLSSim: Cross-language software similarity detector using hybrid approach of LSA-based AST-MDrep features and CNN-LSTM model
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.22813
– volume: 122
  start-page: 2603
  year: 2022
  ident: ref_41
  article-title: Internet of Things Energy Efficient Cluster-Based Routing Using Hybrid Particle Swarm Optimization for Wireless Sensor Network
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-021-09015-9
– ident: ref_1
  doi: 10.1145/3289600.3290977
– volume: 74
  start-page: 12
  year: 2015
  ident: ref_17
  article-title: Recommender system application developments: A survey
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2015.03.008
– volume: 1487
  start-page: 012016
  year: 2020
  ident: ref_36
  article-title: A survey on application of knowledge graph
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1487/1/012016
– volume: 34
  start-page: 2503
  year: 2022
  ident: ref_33
  article-title: A model-based collaborate filtering algorithm based on stacked AutoEncoder
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-05933-8
– volume: 417
  start-page: 302
  year: 2020
  ident: ref_6
  article-title: Survey on Deep Neural Networks in Speech and Vision Systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.053
– volume: 13
  start-page: 685
  year: 2020
  ident: ref_12
  article-title: Personalized recommendation system based on collaborative filtering for IoT scenarios
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2020.2964552
– ident: ref_35
– ident: ref_44
– volume: 186
  start-page: 115825
  year: 2021
  ident: ref_25
  article-title: Representation learning with collaborative autoencoder for personalized recommendation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115825
– volume: 118
  start-page: 261
  year: 2019
  ident: ref_19
  article-title: Multi-modal matrix factorization with side information for recommending massive open online courses
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.09.053
– ident: ref_28
  doi: 10.1109/ICIS.2017.7960088
– volume: 33
  start-page: 7537
  year: 2020
  ident: ref_39
  article-title: Fourier features let networks learn high frequency functions in low dimensional domains
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_18
  doi: 10.1145/3437963.3441759
– volume: 60
  start-page: 46
  year: 2011
  ident: ref_38
  article-title: The information explosion: Trends in technology 2011 review
  publication-title: J. Gov. Financ. Manag.
– ident: ref_8
– volume: 69
  start-page: 29
  year: 2017
  ident: ref_24
  article-title: Collaborative filtering and deep learning based recommendation system for cold start items
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.09.040
– volume: 52
  start-page: 6196
  year: 2022
  ident: ref_34
  article-title: Personalized recommendation with knowledge graph via dual-autoencoder
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02647-1
– volume: 6
  start-page: 9454
  year: 2018
  ident: ref_5
  article-title: A recommendation model based on deep neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2789866
– ident: ref_30
  doi: 10.1145/2740908.2742726
– ident: ref_32
  doi: 10.1145/3336191.3371831
– volume: 1865
  start-page: 042052
  year: 2021
  ident: ref_37
  article-title: Diagnosis of Fruit Tree Diseases and Pests Based on Agricultural Knowledge Graph
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1865/4/042052
– ident: ref_16
  doi: 10.1145/2959100.2959134
– ident: ref_42
  doi: 10.1109/ICICCS48265.2020.9120888
– ident: ref_14
  doi: 10.1145/1401890.1401944
– ident: ref_15
– ident: ref_4
  doi: 10.1007/978-981-15-7869-4_6
– ident: ref_9
  doi: 10.1145/3409256.3409835
– volume: 196
  start-page: 105798
  year: 2020
  ident: ref_13
  article-title: Pair-wise preference relation based probabilistic matrix factorization for collaborative filtering in recommender system
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105798
– volume: 128
  start-page: 261
  year: 2020
  ident: ref_23
  article-title: Deep learning for generic object detection: A survey
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-019-01247-4
– ident: ref_22
– volume: 52
  start-page: 5229
  year: 2020
  ident: ref_10
  article-title: An autoencoder framework with attention mechanism for cross-domain recommendation
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.3029002
– volume: 18
  start-page: 912
  year: 2020
  ident: ref_26
  article-title: CNN-RNN based intelligent recommendation for online medical pre-diagnosis support
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2020.2994780
– volume: 14
  start-page: 143301
  year: 2020
  ident: ref_31
  article-title: A correlative denoising autoencoder to model social influence for top-N recommender system
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-019-8123-3
– volume: 13
  start-page: 891265
  year: 2022
  ident: ref_7
  article-title: Representation learning: Recommendation with knowledge graph via triple-autoencoder
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2022.891265
– volume: 53
  start-page: 2709
  year: 2020
  ident: ref_27
  article-title: Recommendation system based on deep learning methods: A systematic review and new directions
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-019-09744-1
– volume: 13
  start-page: 2699
  year: 2014
  ident: ref_45
  article-title: PREA: Personalized recommendation algorithms toolkit
  publication-title: J. Mach. Learn. Res.
– ident: ref_29
  doi: 10.3390/electronics9010135
SSID ssj0000913810
Score 2.2661664
Snippet Over the past few years, personalized recommendation systems aim to address the problem of information overload to help users achieve useful information and...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 12408
SubjectTerms autoencoder
Cold
Collaboration
collaborative filtering
Deep learning
knowledge graph
Methods
Mining
multi-feature extension
Neural networks
personalized recommendation
Recommender systems
Semantics
Sparsity
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfZ3dSxwxEMBDtS_1QfxoqXqVPFRQSujObrKbfRIrnkexRVDBt2WTTOTAu9X7KMW_3sxe7lREnxZ287BMZjIzyeQ3jH0nAovTSgkovBWyLkAYgDwEcr6whVLGSboo_Odv3ruSv6_VddxwG8eyyvma2C7UrrG0R_4zZE86JE1SpYd394K6RtHpamyhscQ-QvA0pOG6e7rYYyHmpYZkVu-eheyeToUhOEQgsNcLT9QC-1-tx62T6a6x1Rgd8qPZdK6zDzjcYCvPmIEbbD1a45jvR2T0wSY7a-_RCornpiPkJ__buvRmyP_1a36Bg744mk4aYlY6HPEQp_LzeRD-gI5TDjoYYOyv9JlddU8uj3si9kkQNsuLiTBl5lE5kzmXlQYysDnUCp0zqdbOOijrBBOEHFNpw1Nnziuv68SUZUG4ni9sedgM8SvjCsHUdTBstF6mhSH6nZHeg0ssSCy22I-5zCobIeLUy-K2CskESbh6LuEttrcYfTeDZ7wx7heJfzGGkNfti2Z0U0ULqtCGbMthLbXNpU-1sbLMSwtWOSIAhV_rzCevinY4rp60Zvv9zzvsU0oXG9pClQ5bnoym-C2EGxOz2-rUI3TW1ME
  priority: 102
  providerName: ProQuest
Title Multi-Feature Extension via Semi-Autoencoder for Personalized Recommendation
URI https://www.proquest.com/docview/2748523452
https://doaj.org/article/ec096dea48c64f28bc4969c1c5d70607
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LS8QwEMcHHxc9iE9cH0sOCooUN23SpkeVXUVUxAd4K00ygQV3V9ZdET-9mbQrKyJePBVKoGU6yfyHzvwGYI8ILFZJGfHMmUiUGY8056kXci4zmZTaCmoUvr5JLx7F5ZN8mhr1RTVhFR64MtwxGi-yLZZCmVS4WGkj8jQ33EhL4JfQR-5j3lQyFc7gnBO6qqp0T3xeT_-DuQ-FnJBe32JQQPX_OIlDeOksw1KtC9lJ9T4rMIP9VVicogWuwkq9D1_ZQQ2LPlyDq9BBG5GSGw-Rtd9DRfqgz966JbvHXjc6GY8GRKu0OGReobLbifz-QMso--z1sJ6stA6PnfbD2UVUT0iITJJmo0jniUNpdWJtkmuecJPyUqK1OlbKGsvzsoUt5CnGwvirSqyTTpUtnecZgXo2YK4_6OMmMIlcl6Xf0miciDNN3DstnOO2ZbjArAFHE5sVpsaH0xSL58KnEWThYtrCDdj_Wv1SYTN-WXdK5v9aQ7DrcMO7QFG7QPGXCzRgZ_LxinoHvhY-21Y-yRYy3vqPZ2zDQkyND6GQZQfmRsMx7no5MtJNmFWd8ybMn7Zvbu-awQ8_AfpI3_U
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gPqgPBlAjCLoPkmjMxm67224fDEHgPOQgJkLCW-3uzhoS7or3Icgfxd_ITq89IEbfeGrSnTTN7HzuzvwG4C0hsDitFBeZt1yWmeBGiDQEcj6zmVLGSWoU3j9Iu0fy67E6noOrtheGyipbm1gbaldZOiP_GLInHZImqeKNs1-cpkbR7Wo7QmMqFnv45zykbKNPu9thf9fjuLNzuNXlzVQBbpM0G3OTJx6VM4lzSW5EImwqSoXOmVhrZ53IywgjFCnG0oanTpxXXpeRyfOMwG3Cdx_AQ5kkOZUQ6s6X2ZkOYWxqEU3r68N6RLfQIjhgQUBidzxfPSDgL_tfO7XOAjxtolG2ORWfRZjDwRI8uYVRuASLjfaP2LsGovr9M-jVfbuc4sfJENnORV0HXw3Y75OSfcf-Cd-cjCvCyHQ4ZCEuZt_aoP8SHaOct9_HZp7Tczi6Fw6-gPlBNcCXwBQKU5bBkKD1Ms4Moe0Z6b1wkRUSs2X40PKssA1oOc3OOC1C8kIcLm5zeBnWZ9RnU7COf9B9JvbPaAhiu35RDX8WjcYWaEN257CU2qbSx9pYmae5FVY5QhwKv7babl7R6P2ouJHSlf8vv4FH3cP9XtHbPdh7BY9jaqqoi2RWYX48nOBaCHXG5nUtXwx-3LdAXwMnERL-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IFpAFAr4QCUQshrHduIcECq0S0tLVQkq9ZbG9hhVYjdlH7x-Gr8OT9ZZihDceoqUjKJoPJmZz575BuAJMbB4ozUXZXBcNaXgVogiJnKhdKXW1itqFH53WOweq7cn-mQJfva9MFRW2fvEzlH71tEe-WZETyaCJqXzzZDKIo62By_PP3OaIEUnrf04jbmJ7OP3rxG-TV7sbce13sjzwc6H17s8TRjgThbllNtKBtTeSu9lZYUUrhCNRu9tbox3XlRNhhmKAnPl4tVIH3QwTWarqiSim_jeK3C1lCaj6Qlm8Gaxv0N8m0Zk81p7KauMTqRFDMaCSMX-iILdsIC_YkEX4Aa34GbKTNnW3JRWYAlHq3DjAl_hKqwkTzBhTxNd9bPbcND18HLKJWdjZDvfupr4dsS-nDXsPQ7P-NZs2hJfpscxizkyO-oBwA_0jPDvcIhpttMdOL4UDd6F5VE7wnvANArbNNGpoAsqLy0x71kVgvCZEwrLNXje66x2icCc5mh8qiOQIQ3XFzW8BhsL6fM5ccc_5F6R-hcyRLfd3WjHH-v099boItLz2CjjChVyY52qisoJpz2xD8VPW-8Xr04-YFL_ttj7_3_8GK5FU64P9g73H8D1nPorunqZdViejmf4MGY9U_uoMy8Gp5dtz78Ahf8XKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Feature+Extension+via+Semi-Autoencoder+for+Personalized+Recommendation&rft.jtitle=Applied+sciences&rft.au=Yishuai+Geng&rft.au=Yi+Zhu&rft.au=Yun+Li&rft.au=Xiaobing+Sun&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=23&rft.spage=12408&rft_id=info:doi/10.3390%2Fapp122312408&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ec096dea48c64f28bc4969c1c5d70607
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon