A Novel Zeroing Neural Network for Solving Time-Varying Quadratic Matrix Equations against Linear Noises
The solving of quadratic matrix equations is a fundamental issue which essentially exists in the optimal control domain. However, noises exerted on the coefficients of quadratic matrix equations may affect the accuracy of the solutions. In order to solve the time-varying quadratic matrix equation pr...
Saved in:
Published in | Mathematics (Basel) Vol. 11; no. 2; p. 475 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The solving of quadratic matrix equations is a fundamental issue which essentially exists in the optimal control domain. However, noises exerted on the coefficients of quadratic matrix equations may affect the accuracy of the solutions. In order to solve the time-varying quadratic matrix equation problem under linear noise, a new error-processing design formula is proposed, and a resultant novel zeroing neural network model is developed. The new design formula incorporates a second-order error-processing manner, and the double-integration-enhanced zeroing neural network (DIEZNN) model is further proposed for solving time-varying quadratic matrix equations subject to linear noises. Compared with the original zeroing neural network (OZNN) model, finite-time zeroing neural network (FTZNN) model and integration-enhanced zeroing neural network (IEZNN) model, the DIEZNN model shows the superiority of its solution under linear noise; that is, when solving the problem of a time-varying quadratic matrix equation in the environment of linear noise, the residual error of the existing model will maintain a large level due to the influence of linear noise, which will eventually lead to the solution’s failure. The newly proposed DIEZNN model can guarantee a normal solution to the time-varying quadratic matrix equation task no matter how much linear noise there is. In addition, the theoretical analysis proves that the neural state of the DIEZNN model can converge to the theoretical solution even under linear noise. The computer simulation results further substantiate the superiority of the DIEZNN model in solving time-varying quadratic matrix equations under linear noise. |
---|---|
AbstractList | The solving of quadratic matrix equations is a fundamental issue which essentially exists in the optimal control domain. However, noises exerted on the coefficients of quadratic matrix equations may affect the accuracy of the solutions. In order to solve the time-varying quadratic matrix equation problem under linear noise, a new error-processing design formula is proposed, and a resultant novel zeroing neural network model is developed. The new design formula incorporates a second-order error-processing manner, and the double-integration-enhanced zeroing neural network (DIEZNN) model is further proposed for solving time-varying quadratic matrix equations subject to linear noises. Compared with the original zeroing neural network (OZNN) model, finite-time zeroing neural network (FTZNN) model and integration-enhanced zeroing neural network (IEZNN) model, the DIEZNN model shows the superiority of its solution under linear noise; that is, when solving the problem of a time-varying quadratic matrix equation in the environment of linear noise, the residual error of the existing model will maintain a large level due to the influence of linear noise, which will eventually lead to the solution’s failure. The newly proposed DIEZNN model can guarantee a normal solution to the time-varying quadratic matrix equation task no matter how much linear noise there is. In addition, the theoretical analysis proves that the neural state of the DIEZNN model can converge to the theoretical solution even under linear noise. The computer simulation results further substantiate the superiority of the DIEZNN model in solving time-varying quadratic matrix equations under linear noise. |
Author | Liu, Zhijie Li, Jianfeng Qu, Linxi Lin, Kunhuang Li, Zhan Li, Shuai Rong, Yang Liao, Bolin Liu, Zheyu |
Author_xml | – sequence: 1 givenname: Jianfeng surname: Li fullname: Li, Jianfeng – sequence: 2 givenname: Linxi surname: Qu fullname: Qu, Linxi – sequence: 3 givenname: Zhan orcidid: 0000-0002-3928-1642 surname: Li fullname: Li, Zhan – sequence: 4 givenname: Bolin surname: Liao fullname: Liao, Bolin – sequence: 5 givenname: Shuai orcidid: 0000-0001-8316-5289 surname: Li fullname: Li, Shuai – sequence: 6 givenname: Yang orcidid: 0000-0002-2335-2805 surname: Rong fullname: Rong, Yang – sequence: 7 givenname: Zheyu surname: Liu fullname: Liu, Zheyu – sequence: 8 givenname: Zhijie surname: Liu fullname: Liu, Zhijie – sequence: 9 givenname: Kunhuang surname: Lin fullname: Lin, Kunhuang |
BookMark | eNptkU1PGzEQhq0KpPJ16w-w1Gu3-DOOjwgBRQqpEKGHXqxZ2xucbtZge9Py73FIK6EKX8bjeefRO55DtDfEwSP0iZKvnGtyuobyQClhRCj5AR0wxlSjamHvzf0jOsl5RerRlE-FPkAPZ3geN77HP32KYVjiuR8T9DWU3zH9wl1M-C72m21pEda--QHpeZvcjuASlGDxDZQU_uCLp7GmccgYlhCGXPAsDB5S5Yfs8zHa76DP_uRvPEL3lxeL82_N7PvV9fnZrLF8okrTCkZ8p7RquZSO02mrtaViKrjTnWgldYpMrNCOCEE751ohOakjg2y5IFbxI3S947oIK_OYwroaNhGCeX2IaWkgVdu9N0y4CrAaiKg0aUFyrYjUxErPrfOV9XnHekzxafS5mFUc01DtG6YmilXHUlQV26lsijkn3xkbyutXlAShN5SY7YLM2wXVpi__Nf2z-q78BebGkzI |
CitedBy_id | crossref_primary_10_3390_math12172715 crossref_primary_10_1109_ACCESS_2023_3290046 |
Cites_doi | 10.1016/j.amc.2013.03.117 10.1007/s00500-019-04493-3 10.1109/IITA.2008.73 10.1109/TCSI.2012.2188944 10.1137/S0895479800374017 10.1109/9.654908 10.1109/TAC.2009.2023779 10.1162/NECO_a_00771 10.1080/00207721.2021.1918282 10.1137/S0895479800381872 10.1090/S0025-5718-05-01748-5 10.1137/S0895479803426656 10.1016/j.asoc.2014.06.045 10.1145/357456.357463 10.1007/s11063-013-9306-9 10.1137/S1064827502406403 10.1006/jsvi.1996.0621 10.1109/TIE.2016.2590379 10.1007/s11063-012-9241-1 10.1016/j.eswa.2013.01.045 10.1016/0025-5564(74)90073-X 10.1109/TNNLS.2015.2497715 10.1016/j.laa.2003.12.010 10.1137/S0895479800371955 10.1016/j.cam.2007.12.018 10.1007/978-3-642-58223-3_7 10.1002/nme.1620381805 10.1137/S0895479899350976 10.1093/oso/9780198537953.001.0001 10.1109/TNNLS.2012.2225845 10.1137/0902014 10.1093/imanum/20.4.499 10.1016/j.neucom.2011.02.007 10.1016/j.jfranklin.2017.06.012 10.1016/j.neucom.2012.05.012 10.1007/978-3-642-01507-6_2 |
ContentType | Journal Article |
Copyright | 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math11020475 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_24dddbc9a040445ca53970590c5e3cde 10_3390_math11020475 |
GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c367t-b420ef797b355d318b99c14843d9f4b51d706c49d0441fddb4530047a5b340c73 |
IEDL.DBID | BENPR |
ISSN | 2227-7390 |
IngestDate | Wed Aug 27 01:28:33 EDT 2025 Fri Jul 25 11:50:11 EDT 2025 Tue Jul 01 01:53:03 EDT 2025 Thu Apr 24 23:09:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-b420ef797b355d318b99c14843d9f4b51d706c49d0441fddb4530047a5b340c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2335-2805 0000-0002-3928-1642 0000-0001-8316-5289 |
OpenAccessLink | https://www.proquest.com/docview/2767236754?pq-origsite=%requestingapplication% |
PQID | 2767236754 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_24dddbc9a040445ca53970590c5e3cde proquest_journals_2767236754 crossref_citationtrail_10_3390_math11020475 crossref_primary_10_3390_math11020475 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Smith (ref_5) 1995; 38 Xiao (ref_36) 2017; 354 Guo (ref_28) 2012; 97 Zhang (ref_25) 2009; 54 Benner (ref_16) 1998; 43 Xiao (ref_27) 2014; 39 Xiao (ref_30) 2012; 59 ref_34 Davis (ref_15) 1983; 9 Wei (ref_22) 2015; 27 Zhang (ref_24) 2008; Volume 2 Beavers (ref_20) 1974; 20 Guo (ref_13) 2002; 23 Meini (ref_19) 2004; 26 Zhang (ref_35) 2013; 40 Higham (ref_11) 2000; 20 Zheng (ref_6) 1997; 199 Jin (ref_31) 2016; 63 ref_37 Guo (ref_7) 2005; 74 Guo (ref_32) 2014; 24 Na (ref_21) 2013; 24 Jin (ref_33) 2015; 27 Long (ref_17) 2008; 222 Benner (ref_1) 1999; 58 Chen (ref_23) 2013; 219 He (ref_10) 2002; 23 Guo (ref_8) 2004; 385 Hochstenbach (ref_9) 2003; 25 Li (ref_29) 2013; 37 Sabzalian (ref_38) 2020; 24 ref_3 Davis (ref_14) 1981; 2 Higham (ref_18) 2001; 23 ref_2 Guo (ref_12) 2001; 23 Zhang (ref_26) 2011; 74 ref_4 |
References_xml | – volume: 219 start-page: 10218 year: 2013 ident: ref_23 article-title: Recurrent implicit dynamics for online matrix inversion publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2013.03.117 – volume: 24 start-page: 9809 year: 2020 ident: ref_38 article-title: A robust control of a class of induction motors using rough type-2 fuzzy neural networks publication-title: Soft Comput. doi: 10.1007/s00500-019-04493-3 – volume: Volume 2 start-page: 966 year: 2008 ident: ref_24 article-title: Simulation and comparison of Zhang neural network and gradient neural network solving for time-varying matrix square roots publication-title: Proceedings of the 2008 Second International Symposium on Intelligent Information Technology Application doi: 10.1109/IITA.2008.73 – volume: 59 start-page: 2363 year: 2012 ident: ref_30 article-title: Two new types of Zhang neural networks solving systems of time-varying nonlinear inequalities publication-title: IEEE Trans. Circuits Syst. I Regul. Pap. doi: 10.1109/TCSI.2012.2188944 – volume: 23 start-page: 295 year: 2001 ident: ref_12 article-title: Convergence rate of an iterative method for a nonlinear matrix equation publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479800374017 – volume: 43 start-page: 101 year: 1998 ident: ref_16 article-title: An exact line search method for solving generalized continuous-time algebraic Riccati equations publication-title: IEEE Trans. Autom. Control doi: 10.1109/9.654908 – volume: 54 start-page: 1940 year: 2009 ident: ref_25 article-title: Performance analysis of gradient neural network exploited for online time-varying matrix inversion publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2009.2023779 – volume: 27 start-page: 2107 year: 2015 ident: ref_22 article-title: Recurrent neural network approach based on the integral representation of the Drazin inverse publication-title: Neural Comput. doi: 10.1162/NECO_a_00771 – ident: ref_37 doi: 10.1080/00207721.2021.1918282 – volume: 23 start-page: 744 year: 2002 ident: ref_13 article-title: Convergence Analysis of the Latouche–Ramaswami Algorithm for Null Recurrent Quasi-Birth-Death Processes publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479800381872 – volume: 74 start-page: 1777 year: 2005 ident: ref_7 article-title: Algorithms for hyperbolic quadratic eigenvalue problems publication-title: Math. Comput. doi: 10.1090/S0025-5718-05-01748-5 – volume: 26 start-page: 362 year: 2004 ident: ref_19 article-title: The matrix square root from a new functional perspective: Theoretical results and computational issues publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479803426656 – volume: 24 start-page: 158 year: 2014 ident: ref_32 article-title: Li-function activated ZNN with finite-time convergence applied to redundant-manipulator kinematic control via time-varying Jacobian matrix pseudoinversion publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.06.045 – volume: 9 start-page: 246 year: 1983 ident: ref_15 article-title: Algorithm 598: An algorithm to compute solvent of the matrix equation AX 2+ BX+ C= 0 publication-title: ACM Trans. Math. Softw. (TOMS) doi: 10.1145/357456.357463 – volume: 39 start-page: 309 year: 2014 ident: ref_27 article-title: From different Zhang functions to various ZNN models accelerated to finite-time convergence for time-varying linear matrix equation publication-title: Neural Process. Lett. doi: 10.1007/s11063-013-9306-9 – volume: 25 start-page: 591 year: 2003 ident: ref_9 article-title: Alternatives to the Rayleigh quotient for the quadratic eigenvalue problem publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827502406403 – volume: 199 start-page: 253 year: 1997 ident: ref_6 article-title: A reduction method for large scale unsymmetric eigenvalue problems in structural dynamics publication-title: J. Sound Vib. doi: 10.1006/jsvi.1996.0621 – volume: 63 start-page: 6978 year: 2016 ident: ref_31 article-title: Modified ZNN for time-varying quadratic programming with inherent tolerance to noises and its application to kinematic redundancy resolution of robot manipulators publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2016.2590379 – volume: 37 start-page: 189 year: 2013 ident: ref_29 article-title: Accelerating a recurrent neural network to finite-time convergence for solving time-varying Sylvester equation by using a sign-bi-power activation function publication-title: Neural Process. Lett. doi: 10.1007/s11063-012-9241-1 – volume: 40 start-page: 4393 year: 2013 ident: ref_35 article-title: Different Zhang functions leading to different ZNN models illustrated via time-varying matrix square roots finding publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.01.045 – volume: 20 start-page: 135 year: 1974 ident: ref_20 article-title: A new solution method for quadratic matrix equations publication-title: Math. Biosci. doi: 10.1016/0025-5564(74)90073-X – volume: 27 start-page: 2615 year: 2015 ident: ref_33 article-title: Integration-enhanced Zhang neural network for real-time-varying matrix inversion in the presence of various kinds of noises publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2497715 – volume: 58 start-page: 21 year: 1999 ident: ref_1 article-title: Computational methods for linear-quadratic optimization publication-title: Rend. Del Circ. Mat. Palermo Suppl. – ident: ref_4 – volume: 385 start-page: 391 year: 2004 ident: ref_8 article-title: Numerical solution of a quadratic eigenvalue problem publication-title: Linear Algebra Its Appl. doi: 10.1016/j.laa.2003.12.010 – volume: 23 start-page: 673 year: 2002 ident: ref_10 article-title: A shifted cyclic reduction algorithm for quasi-birth-death problems publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479800371955 – volume: 222 start-page: 645 year: 2008 ident: ref_17 article-title: Improved Newton’s method with exact line searches to solve quadratic matrix equation publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2007.12.018 – ident: ref_2 doi: 10.1007/978-3-642-58223-3_7 – volume: 38 start-page: 3071 year: 1995 ident: ref_5 article-title: Formulation and solution of the non-linear, damped eigenvalue problem for skeletal systems publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1620381805 – volume: 23 start-page: 303 year: 2001 ident: ref_18 article-title: Solving a quadratic matrix equation by Newton’s method with exact line searches publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479899350976 – ident: ref_3 doi: 10.1093/oso/9780198537953.001.0001 – volume: 24 start-page: 370 year: 2013 ident: ref_21 article-title: Adaptive control for nonlinear pure-feedback systems with high-order sliding mode observer publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2012.2225845 – volume: 2 start-page: 164 year: 1981 ident: ref_14 article-title: Numerical solution of a quadratic matrix equation publication-title: SIAM J. Sci. Stat. Comput. doi: 10.1137/0902014 – volume: 20 start-page: 499 year: 2000 ident: ref_11 article-title: Numerical analysis of a quadratic matrix equation publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/20.4.499 – volume: 74 start-page: 1710 year: 2011 ident: ref_26 article-title: Performance analysis of gradient neural network exploited for online time-varying quadratic minimization and equality-constrained quadratic programming publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.02.007 – volume: 354 start-page: 5667 year: 2017 ident: ref_36 article-title: Accelerating a recurrent neural network to finite-time convergence using a new design formula and its application to time-varying matrix square root publication-title: J. Frankl. Inst. doi: 10.1016/j.jfranklin.2017.06.012 – volume: 97 start-page: 22 year: 2012 ident: ref_28 article-title: Zhang neural network, Getz–Marsden dynamic system, and discrete-time algorithms for time-varying matrix inversion with application to robots’ kinematic control publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.05.012 – ident: ref_34 doi: 10.1007/978-3-642-01507-6_2 |
SSID | ssj0000913849 |
Score | 2.2347167 |
Snippet | The solving of quadratic matrix equations is a fundamental issue which essentially exists in the optimal control domain. However, noises exerted on the... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 475 |
SubjectTerms | double-integration-enhanced zeroing neural network Errors Formulas (mathematics) Inventory control linear noise Mathematical models Neural networks Noise Optimal control Quadratic equations time-varying quadratic matrix equation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJz2IT6xW2YOeJJjuzibdY5UWEVoQH4iXsK9oobTatOLPdyaJpSDixWvYbMI3s_NYZr5h7FQo4dH0isj6kETgYh1ZYfJIWcg70rVDKIdNDIbJ9QPcPKmnlVFfVBNW0QNXwF0I8N5bpw1qG4ByRqEHpY5Jp4J0PpD1RZ-3kkyVNli3ZQd0VekuMa-_wPjvFV2diIFKCld8UEnV_8MSl-6lv8U267iQd6v_2WZrYbLDNgZLUtVil712-XD6Ecb8Ocym6HE4EWvgO8Oqkptj-MnvpmO6IeDU2RE9mhk1MfHbhfEkaMcHRMj_yXvvFcF3wc2LGWGAyDElRZXH_UdFKPbYQ793f3Ud1YMSIieTdB5ZEHHIU51ajB48nlKrtcM8B6TXOVjV9mmcONAeEWznCCcoItpKjbISYpfKfdaYTCfhgHFwygqQsdPKQ0jijlWJD3nHJEbm2sZNdv4NXeZqFnEaZjHOMJsgoLNVoJvsbLn6rWLP-GXdJUlhuYY4r8sHqAlZrQnZX5rQZK1vGWb1QSwykSYpkdQpOPyPbxyxdZo3X93BtFhjPluEY4xK5vakVMAvxXrg9g priority: 102 providerName: Directory of Open Access Journals |
Title | A Novel Zeroing Neural Network for Solving Time-Varying Quadratic Matrix Equations against Linear Noises |
URI | https://www.proquest.com/docview/2767236754 https://doaj.org/article/24dddbc9a040445ca53970590c5e3cde |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDBbW9LIdhu6FpesCHbbTIFSVKds6DW2RrBiQYK8OxS6GXm4LBHEbp0N_fklbyQoM7dWWDYOkyI809ZGxD0qrgK5XCRdiLsBLI5yytdAO6jLzBzF2wyams_zkFL6e6bNUcGtTW-XaJ3aOOjSeauT7qsgLYhvT8PnqWtDUKPq7mkZobLFtdMFlOWDbR-PZtx-bKguxXpZg-o73DPP7fcSBFxjylARqLbwXizrK_v88chdmJjvsecKH_LBX6Av2JC5esmfTDblq-4pdHPJZ8zfO-Z-4bDDycCLYwGdmfUc3RxjKfzZzqhRwOuEhftslHWbi329sIIV7PiVi_ls-vu6Jvltuz-0lAkWOqSmaPr7_so3ta3Y6Gf86PhFpYILwKJmVcKBkrAtTOEQRAXerM8ZjvgNZMDU4fRAKmXswQSIIqkNwoIlwq7DaZSB9kb1hg0WziG8ZB6-dgkx6owPEXJZO5yHWpc1tVhsnh-zTWnSVT2ziNNRiXmFWQYKu7gt6yD5uVl_1LBoPrDsiLWzWEPd1d6FZnldpK1UKAn66Nxb9D4D2ViOmojO0XsfMhzhke2sdVmlDttU_89l9_PY79pQmyvdVlj02WC1v4nvEHSs3Ylvl5Msomdioy97vANJx22E |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdYKMUHekJWXcdO1geE-lq2tLsSokUVl-BX2kqrTbvZ8vhT_Y2dyWMBIbj1GttRNDOeh-P5PoDXUsuArldyF2LKlReGO2kLrp0q-onfiLEmmxiN0-GR-nCsj5fgquuFoWuVnU-sHXUoPZ2Rr8sszQhtTKt35xecWKPo72pHodGYxX78-R1Lturt3g7qd03Kwe7h9pC3rALc4_I5d0qKWGQmcxhqA5q0M8ZjUaCSYArl9EbIROqVCQIzhSIEpzShUmVWu0QJnyX43ltwWyUYyakzffB-caZDGJt9ZZr79Tgu1jHrPMUAK3G9_iPy1QQBf_n_OqgNHsD9Nhtlm435PISlOH0E90YLKNfqMZxusnH5LU7YlzgrMc4xgvPANePm_jjDpJd9Kid0LsGon4R_tjNqnWIfL20g8_JsRDQAP9juRQMrXjF7Ys8wLWVYCKNE8f1nVayewNGNCPIpLE_LaXwGTHntpEqENzqomIq-02mIRd-mNimMEz1404ku9y12OVFoTHKsYUjQ-e-C7sHaYvZ5g9nxj3lbpIXFHELarh-Us5O83bi5VAE_3RuL3k4p7a1GvVPHrtcx8SH2YKXTYd5u_yr_ZazP_z_8Cu4MD0cH-cHeeP8F3CUu--Z8ZwWW57PL-BIznrlbrc2Mwdebtutrp7oTWw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVELwUHGKQIF9oE_IiruHnX2oUEsTtZRY5SiqeHH3clspits45fhr_DpmfAQQgre-2uuRNft5jvXMNwAvuOIeTS-PrA9JJF2sI8tNESkri6FwmyHUwyYmWbJ3JN8cq-MV-NH1wlBZZWcTa0PtS0dn5AOeJimxjSk5KNqyiMPd8auLy4gmSNGf1m6cRgORg_D9K6Zv1db-Lu71Bufj0cfXe1E7YSByKGoRWcnjUKQ6teh2PcLbau0wQZDC60JatenTOHFS-xijhsJ7KxUxVKVGWSFjlwqUewNWU8qKerC6M8oO3y9PeIhxcyh1U20vhI4HGIOeobvlKEH94QfrcQF_eYPaxY3vwFobm7LtBkx3YSXM7sHtyZLYtboPZ9ssK7-EKfsc5iV6PUbkHvhM1lSTMwyB2YdySqcUjLpLok9mTo1U7N2V8QQ2xyY0FOAbG102JOMVM6fmHINUhmkx6hTln1ehegBH16LKh9CblbPwCJh0ynIpYqeVlyGJh1YlPhRDkxhRaBv34WWnuty1TOY0UGOaY0ZDis5_V3QfNparLxoGj3-s26FdWK4h3u36Qjk_zdvPOOfS46s7bdD2SamcURjPUf-uU0E4H_qw3u1h3hqDKv8F3cf_v_0cbiKm87f72cETuEWD7ZvDnnXoLeZX4SmGPwv7rMUZg5PrhvZP90cY7Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Zeroing+Neural+Network+for+Solving+Time-Varying+Quadratic+Matrix+Equations+against+Linear+Noises&rft.jtitle=Mathematics+%28Basel%29&rft.au=Li%2C+Jianfeng&rft.au=Qu%2C+Linxi&rft.au=Li%2C+Zhan&rft.au=Liao%2C+Bolin&rft.date=2023-01-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=11&rft.issue=2&rft.spage=475&rft_id=info:doi/10.3390%2Fmath11020475&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |