A transfer convolutional neural network for fault diagnosis based on ResNet-50

With the rapid development of smart manufacturing, data-driven fault diagnosis has attracted increasing attentions. As one of the most popular methods applied in fault diagnosis, deep learning (DL) has achieved remarkable results. However, due to the fact that the volume of labeled samples is small...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 32; no. 10; pp. 6111 - 6124
Main Authors Wen, Long, Li, Xinyu, Gao, Liang
Format Journal Article
LanguageEnglish
Published London Springer London 01.05.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the rapid development of smart manufacturing, data-driven fault diagnosis has attracted increasing attentions. As one of the most popular methods applied in fault diagnosis, deep learning (DL) has achieved remarkable results. However, due to the fact that the volume of labeled samples is small in fault diagnosis, the depths of DL models for fault diagnosis are shallow compared with convolutional neural network in other areas (including ImageNet), which limits their final prediction accuracies. In this research, a new TCNN(ResNet-50) with the depth of 51 convolutional layers is proposed for fault diagnosis. By combining with transfer learning, TCNN(ResNet-50) applies ResNet-50 trained on ImageNet as feature extractor for fault diagnosis. Firstly, a signal-to-image method is developed to convert time-domain fault signals to RGB images format as the input datatype of ResNet-50. Then, a new structure of TCNN(ResNet-50) is proposed. Finally, the proposed TCNN(ResNet-50) has been tested on three datasets, including bearing damage dataset provided by KAT datacenter, motor bearing dataset provided by Case Western Reserve University (CWRU) and self-priming centrifugal pump dataset. It achieved state-of-the-art results. The prediction accuracies of TCNN(ResNet-50) are as high as 98.95% ± 0.0074, 99.99% ± 0 and 99.20% ± 0, which demonstrates that TCNN(ResNet-50) outperforms other DL models and traditional methods.
AbstractList With the rapid development of smart manufacturing, data-driven fault diagnosis has attracted increasing attentions. As one of the most popular methods applied in fault diagnosis, deep learning (DL) has achieved remarkable results. However, due to the fact that the volume of labeled samples is small in fault diagnosis, the depths of DL models for fault diagnosis are shallow compared with convolutional neural network in other areas (including ImageNet), which limits their final prediction accuracies. In this research, a new TCNN(ResNet-50) with the depth of 51 convolutional layers is proposed for fault diagnosis. By combining with transfer learning, TCNN(ResNet-50) applies ResNet-50 trained on ImageNet as feature extractor for fault diagnosis. Firstly, a signal-to-image method is developed to convert time-domain fault signals to RGB images format as the input datatype of ResNet-50. Then, a new structure of TCNN(ResNet-50) is proposed. Finally, the proposed TCNN(ResNet-50) has been tested on three datasets, including bearing damage dataset provided by KAT datacenter, motor bearing dataset provided by Case Western Reserve University (CWRU) and self-priming centrifugal pump dataset. It achieved state-of-the-art results. The prediction accuracies of TCNN(ResNet-50) are as high as 98.95% ± 0.0074, 99.99% ± 0 and 99.20% ± 0, which demonstrates that TCNN(ResNet-50) outperforms other DL models and traditional methods.
Author Gao, Liang
Wen, Long
Li, Xinyu
Author_xml – sequence: 1
  givenname: Long
  orcidid: 0000-0002-8355-9947
  surname: Wen
  fullname: Wen, Long
  organization: The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology
– sequence: 2
  givenname: Xinyu
  surname: Li
  fullname: Li, Xinyu
  organization: The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology
– sequence: 3
  givenname: Liang
  orcidid: 0000-0002-1485-0722
  surname: Gao
  fullname: Gao, Liang
  email: gaoliang@mail.hust.edu.cn
  organization: The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology
BookMark eNp9kMtKAzEUhoMo2FZfwFXAdfRkkkkzy1K8Qakgug6ZTKZMHZOaZCy-vWkrCC66Oovzf-fyjdGp884idEXhhgJMbyNAWVACtCLAoZqS7QkaUc4YYVDKUzSCiue24OwcjWNcAwAXshyh5QynoF1sbcDGuy_fD6nzTvfY2SHsS9r68I5bH3Crhz7hptMr52MXca2jbbB3-MXGpU2khAt01uo-2svfOkFv93ev80eyeH54ms8WxDAxTaQGUUvJrSwbbXghhGG8lAYEtAUVhgtTa5kTdWOFbZmWTVVaRhm3xrK65myCrg9zN8F_DjYmtfZDyGdHVbBKlJLz_PwEFYeUCT7GYFu1Cd2HDt-Kgtp5UwdvKntTe29qmyH5DzJd0jspWVTXH0fZAY15j1vZ8HfVEeoHB0-FFg
CitedBy_id crossref_primary_10_1016_j_jtice_2021_04_062
crossref_primary_10_1016_j_measurement_2022_110786
crossref_primary_10_1177_0020294020962130
crossref_primary_10_1088_2057_1976_ad9eb7
crossref_primary_10_3390_electronics10232996
crossref_primary_10_1007_s00521_023_09108_5
crossref_primary_10_3390_app13020970
crossref_primary_10_1016_j_measurement_2020_107929
crossref_primary_10_1515_jisys_2023_0119
crossref_primary_10_33166_AETiC_2021_04_004
crossref_primary_10_1109_ACCESS_2021_3089698
crossref_primary_10_1109_TR_2023_3332223
crossref_primary_10_1177_10775463241266277
crossref_primary_10_1109_TIE_2020_2972458
crossref_primary_10_1155_2021_5714240
crossref_primary_10_59400_sv2242
crossref_primary_10_32604_csse_2023_035869
crossref_primary_10_1088_2631_8695_ad55a6
crossref_primary_10_3390_s23041927
crossref_primary_10_1088_1361_6501_ad3fd4
crossref_primary_10_3390_machines10070550
crossref_primary_10_1155_2022_1828782
crossref_primary_10_1109_TIM_2022_3163156
crossref_primary_10_3389_fmech_2024_1341466
crossref_primary_10_1007_s42417_022_00841_0
crossref_primary_10_1088_1361_6501_acf2b1
crossref_primary_10_1109_ACCESS_2020_3028465
crossref_primary_10_1109_TR_2024_3381014
crossref_primary_10_1155_2022_8959185
crossref_primary_10_1093_comjnl_bxae106
crossref_primary_10_1177_0020294020960187
crossref_primary_10_1177_1748006X231207169
crossref_primary_10_2478_cait_2022_0007
crossref_primary_10_1016_j_infrared_2025_105740
crossref_primary_10_1016_j_ress_2021_107938
crossref_primary_10_3390_app122211375
crossref_primary_10_1155_2022_5767642
crossref_primary_10_1007_s11227_024_06793_4
crossref_primary_10_3390_e24121822
crossref_primary_10_3390_s21217073
crossref_primary_10_35378_gujs_710730
crossref_primary_10_1007_s13369_024_09359_x
crossref_primary_10_3390_pr11051507
crossref_primary_10_1016_j_measurement_2021_110383
crossref_primary_10_1016_j_neucom_2024_129260
crossref_primary_10_1109_OJIES_2024_3350443
crossref_primary_10_1016_j_mex_2022_101936
crossref_primary_10_1177_14613484221119897
crossref_primary_10_3390_math10244683
crossref_primary_10_1088_1361_6501_ad28ee
crossref_primary_10_3390_jimaging8050149
crossref_primary_10_1109_ACCESS_2020_2990528
crossref_primary_10_1007_s00202_025_02987_y
crossref_primary_10_1109_TITS_2023_3251341
crossref_primary_10_3390_machines12120905
crossref_primary_10_1109_TII_2023_3258966
crossref_primary_10_1016_j_engappai_2025_110023
crossref_primary_10_1117_1_JEI_33_1_013038
crossref_primary_10_1155_2022_7592258
crossref_primary_10_3233_AIS_220017
crossref_primary_10_3390_land14030559
crossref_primary_10_1016_j_ress_2024_109966
crossref_primary_10_3390_knowledge4040032
crossref_primary_10_1063_5_0087060
crossref_primary_10_3389_fevo_2023_1208643
crossref_primary_10_3389_fnbot_2021_664135
crossref_primary_10_1109_TIM_2022_3199252
crossref_primary_10_5213_inj_2346070_035
crossref_primary_10_1109_TIM_2023_3277936
crossref_primary_10_1007_s00521_022_08104_5
crossref_primary_10_1007_s10489_023_05054_w
crossref_primary_10_1109_TR_2021_3075234
crossref_primary_10_1016_j_energy_2021_122298
crossref_primary_10_1016_j_oceaneng_2025_120972
crossref_primary_10_1007_s13721_024_00459_0
crossref_primary_10_1007_s11831_022_09807_7
crossref_primary_10_1109_JSEN_2024_3457878
crossref_primary_10_1016_j_measurement_2020_108827
crossref_primary_10_1007_s00521_023_09185_6
crossref_primary_10_3390_rs14174131
crossref_primary_10_1016_j_cogr_2023_03_001
crossref_primary_10_1080_10589759_2025_2465409
crossref_primary_10_3390_agriculture14081286
crossref_primary_10_3390_electronics13163112
crossref_primary_10_1088_1361_665X_ad06e0
crossref_primary_10_1016_j_eswa_2022_118049
crossref_primary_10_3390_e24081055
crossref_primary_10_3390_s23094289
crossref_primary_10_5213_inj_2244202_101
crossref_primary_10_1016_j_engappai_2023_106670
crossref_primary_10_1016_j_knosys_2022_109437
crossref_primary_10_1016_j_ymssp_2024_111194
crossref_primary_10_3390_s24186053
crossref_primary_10_1016_j_sigpro_2024_109806
crossref_primary_10_1109_ACCESS_2023_3257041
crossref_primary_10_1016_j_aei_2025_103126
crossref_primary_10_1177_00202940241230488
crossref_primary_10_1007_s00170_021_07385_9
crossref_primary_10_1002_ima_22706
crossref_primary_10_1007_s00521_024_09550_z
crossref_primary_10_1007_s10845_024_02458_4
crossref_primary_10_1109_TII_2022_3224979
crossref_primary_10_1016_j_bspc_2021_103185
crossref_primary_10_1111_exsy_13139
crossref_primary_10_1016_j_enbuild_2025_115659
crossref_primary_10_1177_14759217241227600
crossref_primary_10_1038_s41598_024_60526_4
crossref_primary_10_1016_j_fcr_2022_108797
crossref_primary_10_1016_j_isatra_2022_01_011
crossref_primary_10_1007_s00521_023_08910_5
crossref_primary_10_1016_j_eswa_2023_120225
crossref_primary_10_7717_peerj_cs_1672
crossref_primary_10_1109_TIM_2023_3272040
crossref_primary_10_7717_peerj_11825
crossref_primary_10_1007_s41315_024_00417_z
crossref_primary_10_1177_1748006X211020305
crossref_primary_10_1080_17499518_2024_2422490
crossref_primary_10_1016_j_aej_2024_11_003
crossref_primary_10_3390_computers12080151
crossref_primary_10_1016_j_atech_2024_100746
crossref_primary_10_1088_1361_6501_ad099b
crossref_primary_10_3934_mbe_2023754
crossref_primary_10_1080_15567036_2021_1905753
crossref_primary_10_1109_ACCESS_2022_3233220
crossref_primary_10_1016_j_autcon_2022_104734
crossref_primary_10_1016_j_knosys_2023_110891
crossref_primary_10_1088_1361_6501_adaa91
crossref_primary_10_1109_JSEN_2023_3251654
crossref_primary_10_3390_s22051705
crossref_primary_10_1016_j_egyr_2025_01_037
crossref_primary_10_1088_1361_6501_ace642
crossref_primary_10_3390_s23177431
crossref_primary_10_3390_s23177432
crossref_primary_10_1061_JCEMD4_COENG_15120
crossref_primary_10_1109_ACCESS_2019_2939876
crossref_primary_10_1016_j_enbuild_2025_115437
crossref_primary_10_1109_TIE_2023_3317847
crossref_primary_10_1016_j_engappai_2025_110241
crossref_primary_10_1109_TTE_2022_3209166
crossref_primary_10_1088_1742_6596_2076_1_012011
crossref_primary_10_1016_j_anucene_2021_108803
crossref_primary_10_1016_j_neunet_2024_106482
crossref_primary_10_1088_1361_6501_ad282f
crossref_primary_10_1016_j_jmapro_2023_07_064
crossref_primary_10_1016_j_ymssp_2022_109789
crossref_primary_10_1016_j_measurement_2020_108288
crossref_primary_10_1109_TII_2021_3102017
crossref_primary_10_3390_agronomy13071770
crossref_primary_10_3390_app13031809
crossref_primary_10_3390_machines10040282
crossref_primary_10_1371_journal_pone_0289672
crossref_primary_10_1109_JSEN_2023_3337853
crossref_primary_10_1007_s11042_022_12823_1
crossref_primary_10_1080_00207543_2019_1662133
crossref_primary_10_1016_j_mechmachtheory_2023_105292
crossref_primary_10_1016_j_bspc_2023_104624
crossref_primary_10_1515_ehs_2023_0049
crossref_primary_10_1038_s41598_024_80167_x
crossref_primary_10_1109_TIM_2022_3216593
crossref_primary_10_1007_s40962_024_01542_y
crossref_primary_10_1108_LHT_08_2021_0252
crossref_primary_10_1007_s10489_022_04208_6
crossref_primary_10_1007_s42417_022_00566_0
crossref_primary_10_1016_j_measurement_2022_110977
crossref_primary_10_1109_TIM_2021_3107046
crossref_primary_10_1016_j_cmpb_2022_107053
crossref_primary_10_1007_s10845_023_02176_3
crossref_primary_10_1007_s11265_023_01846_y
crossref_primary_10_1016_j_measurement_2024_114260
crossref_primary_10_1007_s11554_024_01534_5
crossref_primary_10_3390_s22176570
crossref_primary_10_3390_electronics12030768
crossref_primary_10_3390_s23062976
crossref_primary_10_1088_1361_6501_ad6a2e
crossref_primary_10_3390_s23083797
crossref_primary_10_1016_j_engappai_2023_106829
crossref_primary_10_1007_s00521_024_10035_2
crossref_primary_10_1016_j_engappai_2022_105459
crossref_primary_10_1016_j_measurement_2022_111855
crossref_primary_10_3390_app14114928
crossref_primary_10_1155_2022_7674421
crossref_primary_10_1016_j_ecoinf_2023_102382
crossref_primary_10_1007_s11042_023_16233_9
crossref_primary_10_1007_s00521_021_06279_x
crossref_primary_10_1088_2631_8695_ad907f
crossref_primary_10_1108_LHT_10_2021_0355
crossref_primary_10_1016_j_ijcip_2024_100674
crossref_primary_10_3390_s20061693
crossref_primary_10_1016_j_neucom_2024_128934
crossref_primary_10_1080_10095020_2023_2183145
crossref_primary_10_1088_1361_6501_ad45f4
crossref_primary_10_1016_j_knosys_2022_109272
crossref_primary_10_1109_ACCESS_2024_3404968
crossref_primary_10_1007_s10462_023_10513_4
crossref_primary_10_47164_ijngc_v14i1_1020
crossref_primary_10_1038_s41598_023_33887_5
crossref_primary_10_1007_s11517_023_02773_7
crossref_primary_10_3390_s21238114
crossref_primary_10_1016_j_ress_2024_110121
crossref_primary_10_3390_math12030368
crossref_primary_10_3390_s22197257
crossref_primary_10_3390_jimaging8110293
crossref_primary_10_1016_j_neucom_2021_01_099
crossref_primary_10_1007_s00521_023_08553_6
crossref_primary_10_1155_2021_3782446
crossref_primary_10_1109_TCBB_2024_3410696
crossref_primary_10_3934_era_2023383
crossref_primary_10_1109_TIM_2025_3546375
crossref_primary_10_1016_j_microc_2024_111234
crossref_primary_10_3390_app14062226
crossref_primary_10_1109_TII_2019_2947539
crossref_primary_10_1155_2020_1274380
crossref_primary_10_1002_rob_22373
crossref_primary_10_1109_ACCESS_2020_3010496
crossref_primary_10_1016_j_measurement_2023_112697
crossref_primary_10_1109_JSEN_2024_3362402
crossref_primary_10_3390_electronics10202557
crossref_primary_10_1007_s10845_021_01829_5
crossref_primary_10_1016_j_chaos_2023_114432
crossref_primary_10_1177_14759217241241985
crossref_primary_10_1016_j_energy_2023_127701
crossref_primary_10_1080_1206212X_2025_2465727
crossref_primary_10_1109_ACCESS_2025_3541096
crossref_primary_10_1016_j_addma_2024_104467
crossref_primary_10_1016_j_egyr_2023_04_058
crossref_primary_10_1007_s11071_023_08638_w
crossref_primary_10_1109_JSEN_2024_3487209
crossref_primary_10_1007_s42452_024_06033_7
crossref_primary_10_3390_app142210483
crossref_primary_10_1109_TIM_2023_3346539
crossref_primary_10_1007_s00521_023_08893_3
crossref_primary_10_1155_2021_6678031
crossref_primary_10_1016_j_aej_2023_04_053
crossref_primary_10_1109_ACCESS_2020_3014508
crossref_primary_10_3390_rs16193741
crossref_primary_10_1007_s11227_022_04830_8
crossref_primary_10_1109_TGRS_2025_3541248
crossref_primary_10_1088_1361_6501_ac66c4
crossref_primary_10_1016_j_jobe_2023_108421
crossref_primary_10_3389_fgene_2022_1097207
crossref_primary_10_1088_1361_6501_ac56f0
crossref_primary_10_1016_j_agrformet_2023_109646
crossref_primary_10_1016_j_pmcj_2022_101727
crossref_primary_10_1016_j_engappai_2024_109372
crossref_primary_10_1016_j_fusengdes_2024_114475
crossref_primary_10_32604_cmes_2025_059914
crossref_primary_10_3390_math11030517
crossref_primary_10_1080_13467581_2023_2238038
crossref_primary_10_1109_ACCESS_2023_3239784
crossref_primary_10_3390_s24010124
crossref_primary_10_3390_s22114147
crossref_primary_10_1007_s42979_023_02524_3
crossref_primary_10_1088_1742_6596_2467_1_012011
crossref_primary_10_3390_s20236711
crossref_primary_10_1016_j_measurement_2021_109864
crossref_primary_10_1016_j_knosys_2023_111158
crossref_primary_10_1080_08839514_2024_2378270
crossref_primary_10_1109_TIM_2024_3375404
crossref_primary_10_19053_01211129_v30_n56_2021_12776
crossref_primary_10_1177_14727978251322050
crossref_primary_10_3390_su151914538
crossref_primary_10_1155_2023_8805817
crossref_primary_10_1177_1077546320936506
crossref_primary_10_1016_j_measurement_2023_113461
crossref_primary_10_2139_ssrn_3996107
crossref_primary_10_1088_1361_6501_ac7036
crossref_primary_10_1142_S0219455424500706
crossref_primary_10_1007_s13042_024_02315_z
crossref_primary_10_1016_j_procs_2023_01_085
crossref_primary_10_1109_TFUZZ_2019_2952792
crossref_primary_10_1109_TIM_2022_3227995
crossref_primary_10_1109_TSP_2022_3141896
crossref_primary_10_1155_2022_6709787
crossref_primary_10_1007_s10845_022_01944_x
crossref_primary_10_3390_app14177637
crossref_primary_10_1007_s00521_021_06139_8
crossref_primary_10_1016_j_ultras_2023_107177
crossref_primary_10_1587_elex_21_20230579
crossref_primary_10_1016_j_knosys_2024_111407
crossref_primary_10_1007_s10462_024_10820_4
crossref_primary_10_1155_2022_4848425
crossref_primary_10_1109_ACCESS_2019_2950985
crossref_primary_10_1109_TIM_2021_3111977
crossref_primary_10_1007_s11694_024_02897_w
crossref_primary_10_1177_14759217221149129
crossref_primary_10_1088_1742_6596_2258_1_012062
crossref_primary_10_1088_2631_8695_ad5e34
crossref_primary_10_1007_s00500_022_06902_6
crossref_primary_10_1007_s00261_025_04860_9
crossref_primary_10_1109_ACCESS_2021_3119752
crossref_primary_10_1109_JSEN_2023_3332653
crossref_primary_10_1109_TIM_2023_3244237
crossref_primary_10_3389_fpls_2022_1006292
crossref_primary_10_1109_TMECH_2020_2996223
crossref_primary_10_3390_s23198167
crossref_primary_10_1088_1742_6596_2711_1_012006
crossref_primary_10_1002_adfm_202416437
crossref_primary_10_1088_1361_6501_ac3945
crossref_primary_10_1155_2020_8891595
crossref_primary_10_1016_j_istruc_2023_105780
crossref_primary_10_1016_j_cogr_2023_07_006
crossref_primary_10_1177_00368504211029777
crossref_primary_10_1049_cim2_12047
crossref_primary_10_1109_ACCESS_2024_3497716
crossref_primary_10_1016_j_jvoice_2023_11_025
crossref_primary_10_1088_1361_6501_acca37
crossref_primary_10_1177_01423312231188777
crossref_primary_10_3390_s21124182
crossref_primary_10_3390_machines10050326
crossref_primary_10_1109_TIM_2023_3271746
crossref_primary_10_1142_S021819402450013X
crossref_primary_10_1109_TCE_2024_3420936
crossref_primary_10_1007_s42979_022_01226_6
crossref_primary_10_1007_s11119_023_10085_x
crossref_primary_10_1109_TCSVT_2023_3324905
crossref_primary_10_1007_s11042_023_14884_2
crossref_primary_10_3390_s23146281
crossref_primary_10_1016_j_ymssp_2024_111770
crossref_primary_10_1109_TIM_2024_3351257
crossref_primary_10_1109_JSEN_2023_3307677
crossref_primary_10_1016_j_ijrmms_2023_105578
crossref_primary_10_1080_17499518_2023_2182891
crossref_primary_10_1016_j_isatra_2022_08_002
crossref_primary_10_3390_s24020353
crossref_primary_10_1016_j_jmsy_2022_09_003
crossref_primary_10_1007_s00521_020_05104_1
crossref_primary_10_1109_MIE_2024_3391943
crossref_primary_10_1631_jzus_A2300273
crossref_primary_10_3233_JIFS_213340
crossref_primary_10_1016_j_vacuum_2025_114258
crossref_primary_10_3389_frai_2020_578613
crossref_primary_10_3390_s24185952
crossref_primary_10_1016_j_knosys_2021_107386
crossref_primary_10_1007_s42979_024_03345_8
crossref_primary_10_3390_f12020212
crossref_primary_10_1080_22797254_2023_2271651
crossref_primary_10_1016_j_ress_2022_108890
crossref_primary_10_1109_ACCESS_2021_3063929
crossref_primary_10_1109_TIE_2023_3265054
crossref_primary_10_1016_j_heliyon_2023_e17647
crossref_primary_10_1093_bib_bbae257
crossref_primary_10_3390_s20174939
crossref_primary_10_1016_j_engappai_2024_108315
crossref_primary_10_1142_S0218348X23400984
crossref_primary_10_1016_j_engappai_2024_109529
crossref_primary_10_1177_14727978251321946
crossref_primary_10_1007_s00170_021_08392_6
crossref_primary_10_1109_TITS_2021_3108520
crossref_primary_10_1002_asmb_2685
crossref_primary_10_3390_en13051094
crossref_primary_10_1088_1361_6501_acc2d9
crossref_primary_10_1080_15435075_2020_1825443
crossref_primary_10_34133_plantphenomics_0265
crossref_primary_10_1109_JSEN_2024_3505792
crossref_primary_10_1039_D4AY01005A
crossref_primary_10_1177_0020294020964232
crossref_primary_10_1016_j_neucom_2020_07_088
crossref_primary_10_1007_s00170_023_11258_8
crossref_primary_10_2298_CSIS220120036Z
crossref_primary_10_1016_j_jmsy_2020_12_002
crossref_primary_10_1016_j_knosys_2024_112003
crossref_primary_10_1007_s10489_024_05466_2
crossref_primary_10_1016_j_bspc_2023_105150
crossref_primary_10_1109_TCDS_2023_3266103
crossref_primary_10_1109_ACCESS_2021_3059221
crossref_primary_10_1007_s10921_024_01089_2
crossref_primary_10_1016_j_measurement_2025_117027
crossref_primary_10_1186_s10033_021_00570_7
crossref_primary_10_1016_j_eswa_2022_117247
crossref_primary_10_3389_fenrg_2022_843765
crossref_primary_10_5213_inj_2244064_032
crossref_primary_10_1007_s10489_022_03622_0
crossref_primary_10_3390_e24091277
crossref_primary_10_1016_j_engappai_2023_107032
crossref_primary_10_3390_jimaging9070140
crossref_primary_10_3390_cancers15030762
crossref_primary_10_1177_14759217241289874
crossref_primary_10_1002_smr_2734
crossref_primary_10_1088_1361_6501_ac60d4
crossref_primary_10_1080_15567036_2022_2083729
crossref_primary_10_1088_1742_6596_1986_1_012099
crossref_primary_10_1016_j_jfranklin_2022_11_004
crossref_primary_10_3390_app132111837
crossref_primary_10_1016_j_jmapro_2021_12_022
crossref_primary_10_3390_s23146384
crossref_primary_10_3390_logistics6020035
crossref_primary_10_1080_15567036_2021_2020379
crossref_primary_10_3390_ijgi11100502
crossref_primary_10_3390_electronics13152988
crossref_primary_10_1016_j_compag_2022_107086
crossref_primary_10_3934_era_2024292
crossref_primary_10_1016_j_engappai_2024_109845
crossref_primary_10_1016_j_bspc_2023_105374
crossref_primary_10_1186_s10033_024_01046_0
crossref_primary_10_1177_01423312241279701
crossref_primary_10_1038_s41598_025_86634_3
crossref_primary_10_1088_1361_6501_ad356e
crossref_primary_10_1007_s41348_024_00973_3
crossref_primary_10_1088_1361_6501_ad71e8
crossref_primary_10_1109_TIM_2023_3293554
Cites_doi 10.1016/j.ymssp.2018.05.050
10.1007/s00521-017-2986-8
10.1016/j.measurement.2013.09.019
10.1016/j.ymssp.2015.04.021
10.1007/s00521-012-0912-7
10.1038/nature14539
10.1109/TII.2018.2819674
10.1109/TII.2013.2243743
10.1016/j.neucom.2017.07.032
10.1109/TII.2018.2843441
10.1371/journal.pone.0164111
10.1109/tii.2018.2864759
10.1109/TIE.2016.2519325
10.1109/TMAG.2014.2316474
10.1109/TMECH.2017.2722479
10.1016/j.ymssp.2015.11.014
10.1109/TSMC.2018.2881686
10.1109/ACCESS.2017.2728010
10.1016/j.neucom.2017.07.012
10.1016/j.jmsy.2018.01.003
10.1109/TCST.2009.2020863
10.1109/TIE.2017.2774777
10.1016/j.measurement.2016.07.054
10.1088/1361-6501/aa781a
10.1109/TMI.2016.2528162
10.1007/s00521-018-3525-y
10.1109/TIE.2014.2327589
10.1109/TII.2016.2605629
10.1016/j.ijpe.2016.01.016
10.1109/TIE.2014.2301773
10.1109/TIM.2019.2896370
10.1007/s00521-015-1990-0
10.1109/TCYB.2017.2668395
10.5545/sv-jme.2010.162
10.1016/j.ymssp.2018.02.016
10.1109/tsmc.2017.2754287
10.1109/TMECH.2017.2728371
10.1016/j.aei.2017.02.005
10.1007/s00521-012-1310-x
10.1007/s00521-018-3579-x
10.36001/phme.2016.v3i1.1577
10.1109/ICPHM.2013.6621447
10.1155/2017/3084197
ContentType Journal Article
Copyright Springer-Verlag London Ltd., part of Springer Nature 2019
Springer-Verlag London Ltd., part of Springer Nature 2019.
Copyright_xml – notice: Springer-Verlag London Ltd., part of Springer Nature 2019
– notice: Springer-Verlag London Ltd., part of Springer Nature 2019.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1007/s00521-019-04097-w
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 6124
ExternalDocumentID 10_1007_s00521_019_04097_w
GrantInformation_xml – fundername: Program for HUST Academic Frontier Youth Team
– fundername: Natural Science Foundation of Hubei Province
  grantid: 2018CFA078
  funderid: http://dx.doi.org/10.13039/501100003819
– fundername: Natural Science Foundation of China
  grantid: 51825502; 51805192; 51775216
– fundername: China Postdoctoral Science Foundation
  grantid: 2017M622414
  funderid: http://dx.doi.org/10.13039/501100002858
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c367t-b06b884e85dac4266c3458c060f216c46cba8b88bde6ef3a8d95e3134ece3bb43
IEDL.DBID BENPR
ISSN 0941-0643
IngestDate Fri Jul 25 02:50:30 EDT 2025
Tue Jul 01 01:46:51 EDT 2025
Thu Apr 24 23:09:12 EDT 2025
Fri Feb 21 02:35:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Fault diagnosis
Convolutional neural network
Feature transferring
ResNet-50
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-b06b884e85dac4266c3458c060f216c46cba8b88bde6ef3a8d95e3134ece3bb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8355-9947
0000-0002-1485-0722
PQID 2396584443
PQPubID 2043988
PageCount 14
ParticipantIDs proquest_journals_2396584443
crossref_primary_10_1007_s00521_019_04097_w
crossref_citationtrail_10_1007_s00521_019_04097_w
springer_journals_10_1007_s00521_019_04097_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationYear 2020
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Lei, Jia, Lin, Xing, Ding (CR48) 2016; 63
Shao, McAleer, Yan, Baldi (CR39) 2018; 1
Qi, Shen, Wang, Shi, Jiang, Zhu (CR24) 2017; 5
Wang, Jiang, Shao, Duan, Wu (CR30) 2017; 28
Chong (CR40) 2011; 57
Sun, Ma, Zhao, Chen (CR21) 2018; 14
Kiakojoori, Khorasani (CR9) 2016; 27
Li, Gao (CR3) 2016; 174
CR17
Zhao, Yan, Chen, Mao, Wang, Gao (CR14) 2019; 115
CR16
Antonino-Daviu, Aviyente, Strangas, Riera-Guasp (CR4) 2013
CR15
Jia, Lei, Guo, Lin, Xing (CR23) 2018; 272
Wehrmann, Simoes, Barros, Cavalcante (CR36) 2018; 272
Yin, Ding, Xie, Luo (CR2) 2014; 61
Guo, Chen, Shen (CR31) 2016; 93
CR33
Liu, Yang, Zio, Chen (CR11) 2018; 108
Ren, Hung, Tan (CR35) 2018; 48
Zhu, Song, Xue (CR45) 2014; 47
Lu, Wang, Zhou (CR32) 2017; 32
Lu, Wang, Ragulskis, Cheng (CR42) 2016; 11
Kang, Kim (CR41) 2014; 50
Zhang, Cao, Ho, Chow (CR27) 2017; 13
Wang, Ma, Zhang, Gao, Wu (CR12) 2018; 48
Janssens, Van de Walle, Loccufier, Van Hoecke (CR38) 2018; 23
Wen, Li, Gao, Zhang (CR29) 2018; 65
Yang, Song, Liu (CR7) 2019; 31
Smith, Randall (CR47) 2015; 64
Dai, Gao (CR5) 2013; 9
Rauber, Assis Boldt, Varejão (CR43) 2015; 62
Ertunc, Ocak, Aliustaoglu (CR8) 2013; 22
Gan, Wang (CR25) 2016; 72
Li, Lu, Gao, Xiao, Wen (CR18) 2018; 14
CR26
Yang, Chen (CR1) 2018
Cho, Knowles, Fadali, Lee (CR20) 2010; 18
CR46
Li, Gao, Pan, Wan, Chao (CR6) 2018
Zhang, Ji, Huang, Liu (CR28) 2018
CR22
CR44
Wen, Gao, Li (CR19) 2017
LeCun, Bengio, Hinton (CR13) 2015; 521
Shin, Roth, Gao, Lu, Xu, Nogues, Yao, Mollura, Summers (CR37) 2016; 35
Seera, Lim, Ishak, Singh (CR10) 2013; 23
Xia, Li, Xu, Liu, de Silva (CR34) 2018; 23
HM Ertunc (4097_CR8) 2013; 22
RN Liu (4097_CR11) 2018; 108
4097_CR33
R Zhao (4097_CR14) 2019; 115
S Shao (4097_CR39) 2018; 1
M Gan (4097_CR25) 2016; 72
4097_CR17
L Wen (4097_CR19) 2017
HJ Zhang (4097_CR28) 2018
4097_CR16
4097_CR15
UP Chong (4097_CR40) 2011; 57
XY Li (4097_CR18) 2018; 14
X Dai (4097_CR5) 2013; 9
Y LeCun (4097_CR13) 2015; 521
Y Lei (4097_CR48) 2016; 63
M Kang (4097_CR41) 2014; 50
HC Shin (4097_CR37) 2016; 35
F Wang (4097_CR30) 2017; 28
M Xia (4097_CR34) 2018; 23
L Yang (4097_CR1) 2018
TW Rauber (4097_CR43) 2015; 62
C Yang (4097_CR7) 2019; 31
HJ Zhang (4097_CR27) 2017; 13
R Ren (4097_CR35) 2018; 48
J Wehrmann (4097_CR36) 2018; 272
4097_CR46
C Sun (4097_CR21) 2018; 14
JJ Wang (4097_CR12) 2018; 48
4097_CR22
4097_CR44
K Zhu (4097_CR45) 2014; 47
WA Smith (4097_CR47) 2015; 64
M Seera (4097_CR10) 2013; 23
HC Cho (4097_CR20) 2010; 18
XY Li (4097_CR3) 2016; 174
O Janssens (4097_CR38) 2018; 23
J Antonino-Daviu (4097_CR4) 2013
F Jia (4097_CR23) 2018; 272
C Lu (4097_CR42) 2016; 11
4097_CR26
C Lu (4097_CR32) 2017; 32
S Kiakojoori (4097_CR9) 2016; 27
X Guo (4097_CR31) 2016; 93
S Yin (4097_CR2) 2014; 61
XY Li (4097_CR6) 2018
Y Qi (4097_CR24) 2017; 5
L Wen (4097_CR29) 2018; 65
References_xml – ident: CR22
– volume: 115
  start-page: 213
  year: 2019
  end-page: 237
  ident: CR14
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.05.050
– volume: 31
  start-page: 139
  issue: 1
  year: 2019
  end-page: 156
  ident: CR7
  article-title: Failure prognostics of heavy vehicle hydro-pneumatic spring based on novel degradation feature and support vector regression
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-2986-8
– volume: 47
  start-page: 669
  year: 2014
  end-page: 675
  ident: CR45
  article-title: A roller bearing fault diagnosis method based on hierarchical entropy and support vector machine with particle swarm optimization algorithm
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.09.019
– volume: 64
  start-page: 100
  year: 2015
  end-page: 131
  ident: CR47
  article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2015.04.021
– volume: 22
  start-page: 435
  issue: 1
  year: 2013
  end-page: 446
  ident: CR8
  article-title: ANN- and ANFIS-based multi-staged decision algorithm for the detection and diagnosis of bearing faults
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-0912-7
– ident: CR16
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  ident: CR13
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 14
  start-page: 3261
  issue: 7
  year: 2018
  end-page: 3270
  ident: CR21
  article-title: Sparse deep stacking network for fault diagnosis of motor
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2018.2819674
– ident: CR33
– volume: 9
  start-page: 2226
  issue: 4
  year: 2013
  end-page: 2238
  ident: CR5
  article-title: From model, signal to knowledge: a data-driven perspective of fault detection and diagnosis
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2013.2243743
– volume: 272
  start-page: 619
  issue: 10
  year: 2018
  end-page: 628
  ident: CR23
  article-title: A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.07.032
– volume: 14
  start-page: 5400
  issue: 12
  year: 2018
  end-page: 5409
  ident: CR18
  article-title: An effective multi-objective algorithm for energy efficient scheduling in a real-life welding shop
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2018.2843441
– volume: 11
  start-page: e0164111
  issue: 10
  year: 2016
  ident: CR42
  article-title: Fault diagnosis for rotating machinery: a method based on image processing
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0164111
– volume: 1
  start-page: 1
  year: 2018
  ident: CR39
  article-title: Highly-accurate machine fault diagnosis using deep transfer learning
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/tii.2018.2864759
– volume: 63
  start-page: 3137
  issue: 5
  year: 2016
  end-page: 3147
  ident: CR48
  article-title: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2016.2519325
– volume: 50
  start-page: 1
  issue: 10
  year: 2014
  end-page: 13
  ident: CR41
  article-title: Reliable fault diagnosis of multiple induction motor defects using a 2-d representation of Shannon wavelets
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2014.2316474
– volume: 23
  start-page: 151
  issue: 1
  year: 2018
  end-page: 159
  ident: CR38
  article-title: Deep learning for infrared thermal image based machine health monitoring
  publication-title: IEEE/ASME Trans Mechatron
  doi: 10.1109/TMECH.2017.2722479
– volume: 72
  start-page: 92
  year: 2016
  end-page: 104
  ident: CR25
  article-title: Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2015.11.014
– year: 2018
  ident: CR6
  article-title: An effective hybrid genetic algorithm and variable neighborhood search for integrated process planning and scheduling in a packaging machine workshop
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2018.2881686
– volume: 5
  start-page: 15066
  year: 2017
  end-page: 15079
  ident: CR24
  article-title: Stacked sparse autoencoder-based deep network for fault diagnosis of rotating machinery
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2728010
– volume: 272
  start-page: 432
  year: 2018
  end-page: 438
  ident: CR36
  article-title: Adult content detection in videos with convolutional and recurrent neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.07.012
– volume: 48
  start-page: 144
  issue: Part C
  year: 2018
  end-page: 156
  ident: CR12
  article-title: Deep learning for smart manufacturing: methods and applications
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2018.01.003
– volume: 18
  start-page: 430
  issue: 2
  year: 2010
  end-page: 437
  ident: CR20
  article-title: Fault detection and isolation of induction motors using recurrent neural networks and dynamic Bayesian modeling
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2009.2020863
– ident: CR46
– volume: 65
  start-page: 5990
  issue: 7
  year: 2018
  end-page: 5998
  ident: CR29
  article-title: A new convolutional neural network based data-driven fault diagnosis method
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2017.2774777
– volume: 93
  start-page: 490
  year: 2016
  end-page: 502
  ident: CR31
  article-title: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.07.054
– ident: CR44
– volume: 28
  start-page: 095005
  issue: 9
  year: 2017
  ident: CR30
  article-title: An adaptive deep convolutional neural network for rolling bearing fault diagnosis
  publication-title: Meas Sci Technol
  doi: 10.1088/1361-6501/aa781a
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  end-page: 1298
  ident: CR37
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2528162
– year: 2018
  ident: CR1
  article-title: Fault diagnosis of gearbox based on RBF-PF and particle swarm optimization wavelet neural network
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3525-y
– ident: CR15
– volume: 62
  start-page: 637
  issue: 1
  year: 2015
  end-page: 646
  ident: CR43
  article-title: Heterogeneous feature models and feature selection applied to bearing fault diagnosis
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2014.2327589
– ident: CR17
– volume: 13
  start-page: 520
  issue: 2
  year: 2017
  end-page: 531
  ident: CR27
  article-title: Object-level video advertising: an optimization framework
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2016.2605629
– volume: 174
  start-page: 93
  year: 2016
  end-page: 110
  ident: CR3
  article-title: An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2016.01.016
– volume: 61
  start-page: 6418
  issue: 11
  year: 2014
  end-page: 6428
  ident: CR2
  article-title: A review on basic data-driven approaches for industrial process monitoring
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2014.2301773
– year: 2013
  ident: CR4
  article-title: Scale invariant feature extraction algorithm for the automatic diagnosis of rotor asymmetries in induction motors
  publication-title: IEEE T Instrum Meas
  doi: 10.1109/TIM.2019.2896370
– volume: 27
  start-page: 2157
  issue: 8
  year: 2016
  end-page: 2192
  ident: CR9
  article-title: Dynamic neural networks for gas turbine engine degradation prediction, health monitoring and prognosis
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1990-0
– volume: 48
  start-page: 929
  issue: 3
  year: 2018
  end-page: 940
  ident: CR35
  article-title: A generic deep-learning-based approach for automated surface inspection
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2017.2668395
– volume: 57
  start-page: 655
  issue: 9
  year: 2011
  end-page: 666
  ident: CR40
  article-title: Signal model-based fault detection and diagnosis for induction motors using features of vibration signal in two-dimension domain
  publication-title: Stroj Vestn J Mech Eng
  doi: 10.5545/sv-jme.2010.162
– volume: 108
  start-page: 33
  year: 2018
  end-page: 47
  ident: CR11
  article-title: Artificial intelligence for fault diagnosis of rotating machinery: a review
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.02.016
– year: 2017
  ident: CR19
  article-title: A new deep transfer learning based on sparse auto-encoder for fault diagnosis
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/tsmc.2017.2754287
– ident: CR26
– volume: 23
  start-page: 101
  issue: 1
  year: 2018
  end-page: 110
  ident: CR34
  article-title: Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks
  publication-title: IEEE/ASME Trans Mechatron
  doi: 10.1109/TMECH.2017.2728371
– volume: 32
  start-page: 139
  year: 2017
  end-page: 151
  ident: CR32
  article-title: Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification
  publication-title: Adv Eng Inf
  doi: 10.1016/j.aei.2017.02.005
– volume: 23
  start-page: 191
  issue: 1
  year: 2013
  end-page: 200
  ident: CR10
  article-title: Application of the fuzzy min–max neural network to fault detection and diagnosis of induction motors
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-1310-x
– year: 2018
  ident: CR28
  article-title: Sitcom-star-based clothing retrieval for video advertising: a deep learning framework
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3579-x
– volume: 23
  start-page: 191
  issue: 1
  year: 2013
  ident: 4097_CR10
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-1310-x
– volume: 64
  start-page: 100
  year: 2015
  ident: 4097_CR47
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2015.04.021
– volume: 61
  start-page: 6418
  issue: 11
  year: 2014
  ident: 4097_CR2
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2014.2301773
– volume: 23
  start-page: 151
  issue: 1
  year: 2018
  ident: 4097_CR38
  publication-title: IEEE/ASME Trans Mechatron
  doi: 10.1109/TMECH.2017.2722479
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 4097_CR13
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 11
  start-page: e0164111
  issue: 10
  year: 2016
  ident: 4097_CR42
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0164111
– volume: 50
  start-page: 1
  issue: 10
  year: 2014
  ident: 4097_CR41
  publication-title: IEEE Trans Magn
  doi: 10.1109/TMAG.2014.2316474
– volume: 14
  start-page: 3261
  issue: 7
  year: 2018
  ident: 4097_CR21
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2018.2819674
– ident: 4097_CR15
– ident: 4097_CR17
– volume: 48
  start-page: 929
  issue: 3
  year: 2018
  ident: 4097_CR35
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2017.2668395
– volume: 108
  start-page: 33
  year: 2018
  ident: 4097_CR11
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.02.016
– volume: 72
  start-page: 92
  year: 2016
  ident: 4097_CR25
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2015.11.014
– volume: 93
  start-page: 490
  year: 2016
  ident: 4097_CR31
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.07.054
– ident: 4097_CR46
  doi: 10.36001/phme.2016.v3i1.1577
– volume: 57
  start-page: 655
  issue: 9
  year: 2011
  ident: 4097_CR40
  publication-title: Stroj Vestn J Mech Eng
  doi: 10.5545/sv-jme.2010.162
– volume: 62
  start-page: 637
  issue: 1
  year: 2015
  ident: 4097_CR43
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2014.2327589
– volume: 63
  start-page: 3137
  issue: 5
  year: 2016
  ident: 4097_CR48
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2016.2519325
– volume: 47
  start-page: 669
  year: 2014
  ident: 4097_CR45
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.09.019
– volume: 32
  start-page: 139
  year: 2017
  ident: 4097_CR32
  publication-title: Adv Eng Inf
  doi: 10.1016/j.aei.2017.02.005
– volume: 48
  start-page: 144
  issue: Part C
  year: 2018
  ident: 4097_CR12
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2018.01.003
– volume: 22
  start-page: 435
  issue: 1
  year: 2013
  ident: 4097_CR8
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-0912-7
– year: 2018
  ident: 4097_CR1
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3525-y
– volume: 9
  start-page: 2226
  issue: 4
  year: 2013
  ident: 4097_CR5
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2013.2243743
– ident: 4097_CR26
– volume: 14
  start-page: 5400
  issue: 12
  year: 2018
  ident: 4097_CR18
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2018.2843441
– volume: 31
  start-page: 139
  issue: 1
  year: 2019
  ident: 4097_CR7
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-2986-8
– ident: 4097_CR22
  doi: 10.1109/ICPHM.2013.6621447
– volume: 174
  start-page: 93
  year: 2016
  ident: 4097_CR3
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2016.01.016
– volume: 13
  start-page: 520
  issue: 2
  year: 2017
  ident: 4097_CR27
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2016.2605629
– year: 2018
  ident: 4097_CR6
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2018.2881686
– volume: 5
  start-page: 15066
  year: 2017
  ident: 4097_CR24
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2728010
– year: 2018
  ident: 4097_CR28
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-018-3579-x
– ident: 4097_CR16
– volume: 27
  start-page: 2157
  issue: 8
  year: 2016
  ident: 4097_CR9
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1990-0
– volume: 28
  start-page: 095005
  issue: 9
  year: 2017
  ident: 4097_CR30
  publication-title: Meas Sci Technol
  doi: 10.1088/1361-6501/aa781a
– volume: 115
  start-page: 213
  year: 2019
  ident: 4097_CR14
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.05.050
– ident: 4097_CR33
  doi: 10.1155/2017/3084197
– volume: 23
  start-page: 101
  issue: 1
  year: 2018
  ident: 4097_CR34
  publication-title: IEEE/ASME Trans Mechatron
  doi: 10.1109/TMECH.2017.2728371
– volume: 65
  start-page: 5990
  issue: 7
  year: 2018
  ident: 4097_CR29
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2017.2774777
– year: 2013
  ident: 4097_CR4
  publication-title: IEEE T Instrum Meas
  doi: 10.1109/TIM.2019.2896370
– volume: 272
  start-page: 432
  year: 2018
  ident: 4097_CR36
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.07.012
– volume: 272
  start-page: 619
  issue: 10
  year: 2018
  ident: 4097_CR23
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.07.032
– volume: 1
  start-page: 1
  year: 2018
  ident: 4097_CR39
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/tii.2018.2864759
– year: 2017
  ident: 4097_CR19
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/tsmc.2017.2754287
– volume: 18
  start-page: 430
  issue: 2
  year: 2010
  ident: 4097_CR20
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2009.2020863
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  ident: 4097_CR37
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2528162
– ident: 4097_CR44
SSID ssj0004685
Score 2.6538715
Snippet With the rapid development of smart manufacturing, data-driven fault diagnosis has attracted increasing attentions. As one of the most popular methods applied...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6111
SubjectTerms Artificial Intelligence
Artificial neural networks
Centrifugal pumps
Color imagery
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Datasets
Fault diagnosis
Feature extraction
Image Processing and Computer Vision
Machine learning
Neural networks
Original Article
Priming
Probability and Statistics in Computer Science
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60Xrz4FqtV9uBNF5LsI5tjEaUI9iAWegvZFwglFZPSv-_udtOqqOApkMzsYWY389hvZgCuFc9VKlmKFTUCU5tyLBPrQhVn-5WxwkrtE_pPYz6a0Mcpm8aisKZDu3dXkuFPvS528xlMH_r6ZH5S5Hi5DTvMxe4eyDXJhp-qIcMgThe3eEwPJbFU5uc1vpqjjY_57Vo0WJuHA9iLbiIarvR6CFumPoL9bgQDiifyGMZD1AbX0730APK4kRyrb1QZHgHmjZxvimy1mLVIr8B1rw3yFkyjeY2eTTM2LWbJCUwe7l_uRjiOSMCK8Lx1cuVSCCdmpivlja0ilAmV8MRmKVeUK1kJRyG14caSSuiCGZISapQhUlJyCr16XpszQHleMe4YMm4IrXIthRZFppguCpZVSvch7SRVqtg_3I-xmJXrzsdBuqWTbhmkWy77cLPmeVt1z_iTetApoIwnqSkz4tvTUEpJH247pWw-_77a-f_IL2A386F0wDIOoNe-L8yl8zdaeRW21wfZ5cxa
  priority: 102
  providerName: Springer Nature
Title A transfer convolutional neural network for fault diagnosis based on ResNet-50
URI https://link.springer.com/article/10.1007/s00521-019-04097-w
https://www.proquest.com/docview/2396584443
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LSgMxcND24sW3WK0lB2-6uLt5bPYkrbaKYpFioZ6WzWNBKG21W_r7JmnWqqCnQJLJYTKZV-YBcC5ZIiNBo0ASzQNSRCwQYWFMFSP7pS54IZR16D_12f2QPIzoyDvc5j6ssuKJjlGrqbQ-8qsY2zIlhBB8PXsPbNco-7vqW2hsQt2wYM5rUO90-8-Db5mRrimnsWFsfA_BPm3GJc9Zj6g1pe3nQJgmwfKnaFrrm7--SJ3k6e3CtlcZUXt1x3uwoSf7sFO1Y0D-dR5Av41Kp4aaSRtM7onKgNqilW5wId_I6KmoyBfjEqlVoN3bHFlpptB0ggZ63tdlQMNDGPa6Lzf3gW-XEEjMktLgmAnODcqpyqUVvBITymXIwiKOmCRMipybHUJppgucc5VSjSNMtNRYCIKPoDaZTvQxoCTJKTMAMdOY5IkSXPE0llSlKY1zqRoQVZjKpK8lbltajLOvKsgOu5nBbuawmy0bcPEFM1tV0vh3d7O6gMy_qnm2poEGXFaXsl7--7ST_087ha3YmtEujrEJtfJjoc-MrlGKFmzy3l0L6u3Obadnx7vXx27Lk5lZHcbtT8XA1TY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58HPTiW1yfOehJi23zaHoQEXVdX3sQBW-1eRSEZVfdyuKf8jeaybauCnrzVGiTECbTzOubGYBtLRIdKR4FmlkZsCISgQoLZ6o42a9tIQtl0KF_3RatO3Zxz-_H4L3OhUFYZX0n-ova9DT6yPdjimVKGGP08Ok5wK5RGF2tW2gM2eLSvg2cydY_OD9x57sTx83T2-NWUHUVCDQVSem2IpSUbmfc5Brlk6aMSx2KsIgjoZnQKpduhDJW2ILm0qTc0ogyqy1VilG37jhMMuokOWamN8--5GH6FqDOYkI0EaNVko5P1UP_KxruGIoI0yQYfBeEI-32R0DWy7nmHMxUCio5GnLUPIzZ7gLM1s0fSHUXLEL7iJRe6XUvEbpesbCbiiUy_cMDzInTikmRv3ZKYoawvsc-QdlpSK9Lbmy_bcuAh0tw9y9kXIaJbq9rV4AkSc6FmxALS1meGCWNTGPNTZryONemAVFNqUxXlcuxgUYn-6y57KmbOepmnrrZoAG7n3OehnU7_hy9Xh9AVv3D_WzEcQ3Yqw9l9Pn31Vb_Xm0Lplq311fZ1Xn7cg2mYzTgPYJyHSbKl1e74bScUm161iLw8N-8_AFPmQzk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQbz4FqtVc_CmS3c3j80ei1rqq4hY6C1sXiCUbbFb-vdNsrttFRU8LWRncvhmwswk8wDgUtJERoJEgcSaBdhENBChsaGKtf1SG2aEchf6z33aG-CHIRmuVPH7bPf6SbKsaXBdmvKiPVGmvSh8c7eZLgx2F_thmgTzdbCBXTWw1ehB3FmpjPRDOW0M4_J7MKrKZn7e46tpWvqb355IveXp7oLtymWEnVLGe2BN5_tgpx7HAKvTeQD6HVh4N9QuumTySqksq2ta6T8-5RtaPxWabDYqoCoT7d6n0FkzBcc5fNXTvi4CEh6CQffu7aYXVOMSAoloUliMqWDMQk5UJp3hlQgTJkMamjiiElMpMmYphNJUG5QxlRKNIoS11EgIjI5AIx_n-hjAJMkItQwx1QhniRJMsTSWRKUpiTOpmiCqkeKy6iXuRlqM-KILskeXW3S5R5fPm-BqwTMpO2n8Sd2qBcCrUzXlMXKtajDGqAmua6Esf_--28n_yC_A5sttlz_d9x9PwVbsImyf4tgCjeJjps-sG1KIc69pn73v04A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+transfer+convolutional+neural+network+for+fault+diagnosis+based+on+ResNet-50&rft.jtitle=Neural+computing+%26+applications&rft.au=Wen%2C+Long&rft.au=Li%2C+Xinyu&rft.au=Gao%2C+Liang&rft.date=2020-05-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=32&rft.issue=10&rft.spage=6111&rft.epage=6124&rft_id=info:doi/10.1007%2Fs00521-019-04097-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_019_04097_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon