A transfer convolutional neural network for fault diagnosis based on ResNet-50
With the rapid development of smart manufacturing, data-driven fault diagnosis has attracted increasing attentions. As one of the most popular methods applied in fault diagnosis, deep learning (DL) has achieved remarkable results. However, due to the fact that the volume of labeled samples is small...
Saved in:
Published in | Neural computing & applications Vol. 32; no. 10; pp. 6111 - 6124 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.05.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the rapid development of smart manufacturing, data-driven fault diagnosis has attracted increasing attentions. As one of the most popular methods applied in fault diagnosis, deep learning (DL) has achieved remarkable results. However, due to the fact that the volume of labeled samples is small in fault diagnosis, the depths of DL models for fault diagnosis are shallow compared with convolutional neural network in other areas (including ImageNet), which limits their final prediction accuracies. In this research, a new TCNN(ResNet-50) with the depth of 51 convolutional layers is proposed for fault diagnosis. By combining with transfer learning, TCNN(ResNet-50) applies ResNet-50 trained on ImageNet as feature extractor for fault diagnosis. Firstly, a signal-to-image method is developed to convert time-domain fault signals to RGB images format as the input datatype of ResNet-50. Then, a new structure of TCNN(ResNet-50) is proposed. Finally, the proposed TCNN(ResNet-50) has been tested on three datasets, including bearing damage dataset provided by KAT datacenter, motor bearing dataset provided by Case Western Reserve University (CWRU) and self-priming centrifugal pump dataset. It achieved state-of-the-art results. The prediction accuracies of TCNN(ResNet-50) are as high as 98.95% ± 0.0074, 99.99% ± 0 and 99.20% ± 0, which demonstrates that TCNN(ResNet-50) outperforms other DL models and traditional methods. |
---|---|
AbstractList | With the rapid development of smart manufacturing, data-driven fault diagnosis has attracted increasing attentions. As one of the most popular methods applied in fault diagnosis, deep learning (DL) has achieved remarkable results. However, due to the fact that the volume of labeled samples is small in fault diagnosis, the depths of DL models for fault diagnosis are shallow compared with convolutional neural network in other areas (including ImageNet), which limits their final prediction accuracies. In this research, a new TCNN(ResNet-50) with the depth of 51 convolutional layers is proposed for fault diagnosis. By combining with transfer learning, TCNN(ResNet-50) applies ResNet-50 trained on ImageNet as feature extractor for fault diagnosis. Firstly, a signal-to-image method is developed to convert time-domain fault signals to RGB images format as the input datatype of ResNet-50. Then, a new structure of TCNN(ResNet-50) is proposed. Finally, the proposed TCNN(ResNet-50) has been tested on three datasets, including bearing damage dataset provided by KAT datacenter, motor bearing dataset provided by Case Western Reserve University (CWRU) and self-priming centrifugal pump dataset. It achieved state-of-the-art results. The prediction accuracies of TCNN(ResNet-50) are as high as 98.95% ± 0.0074, 99.99% ± 0 and 99.20% ± 0, which demonstrates that TCNN(ResNet-50) outperforms other DL models and traditional methods. |
Author | Gao, Liang Wen, Long Li, Xinyu |
Author_xml | – sequence: 1 givenname: Long orcidid: 0000-0002-8355-9947 surname: Wen fullname: Wen, Long organization: The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology – sequence: 2 givenname: Xinyu surname: Li fullname: Li, Xinyu organization: The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology – sequence: 3 givenname: Liang orcidid: 0000-0002-1485-0722 surname: Gao fullname: Gao, Liang email: gaoliang@mail.hust.edu.cn organization: The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology |
BookMark | eNp9kMtKAzEUhoMo2FZfwFXAdfRkkkkzy1K8Qakgug6ZTKZMHZOaZCy-vWkrCC66Oovzf-fyjdGp884idEXhhgJMbyNAWVACtCLAoZqS7QkaUc4YYVDKUzSCiue24OwcjWNcAwAXshyh5QynoF1sbcDGuy_fD6nzTvfY2SHsS9r68I5bH3Crhz7hptMr52MXca2jbbB3-MXGpU2khAt01uo-2svfOkFv93ev80eyeH54ms8WxDAxTaQGUUvJrSwbbXghhGG8lAYEtAUVhgtTa5kTdWOFbZmWTVVaRhm3xrK65myCrg9zN8F_DjYmtfZDyGdHVbBKlJLz_PwEFYeUCT7GYFu1Cd2HDt-Kgtp5UwdvKntTe29qmyH5DzJd0jspWVTXH0fZAY15j1vZ8HfVEeoHB0-FFg |
CitedBy_id | crossref_primary_10_1016_j_jtice_2021_04_062 crossref_primary_10_1016_j_measurement_2022_110786 crossref_primary_10_1177_0020294020962130 crossref_primary_10_1088_2057_1976_ad9eb7 crossref_primary_10_3390_electronics10232996 crossref_primary_10_1007_s00521_023_09108_5 crossref_primary_10_3390_app13020970 crossref_primary_10_1016_j_measurement_2020_107929 crossref_primary_10_1515_jisys_2023_0119 crossref_primary_10_33166_AETiC_2021_04_004 crossref_primary_10_1109_ACCESS_2021_3089698 crossref_primary_10_1109_TR_2023_3332223 crossref_primary_10_1177_10775463241266277 crossref_primary_10_1109_TIE_2020_2972458 crossref_primary_10_1155_2021_5714240 crossref_primary_10_59400_sv2242 crossref_primary_10_32604_csse_2023_035869 crossref_primary_10_1088_2631_8695_ad55a6 crossref_primary_10_3390_s23041927 crossref_primary_10_1088_1361_6501_ad3fd4 crossref_primary_10_3390_machines10070550 crossref_primary_10_1155_2022_1828782 crossref_primary_10_1109_TIM_2022_3163156 crossref_primary_10_3389_fmech_2024_1341466 crossref_primary_10_1007_s42417_022_00841_0 crossref_primary_10_1088_1361_6501_acf2b1 crossref_primary_10_1109_ACCESS_2020_3028465 crossref_primary_10_1109_TR_2024_3381014 crossref_primary_10_1155_2022_8959185 crossref_primary_10_1093_comjnl_bxae106 crossref_primary_10_1177_0020294020960187 crossref_primary_10_1177_1748006X231207169 crossref_primary_10_2478_cait_2022_0007 crossref_primary_10_1016_j_infrared_2025_105740 crossref_primary_10_1016_j_ress_2021_107938 crossref_primary_10_3390_app122211375 crossref_primary_10_1155_2022_5767642 crossref_primary_10_1007_s11227_024_06793_4 crossref_primary_10_3390_e24121822 crossref_primary_10_3390_s21217073 crossref_primary_10_35378_gujs_710730 crossref_primary_10_1007_s13369_024_09359_x crossref_primary_10_3390_pr11051507 crossref_primary_10_1016_j_measurement_2021_110383 crossref_primary_10_1016_j_neucom_2024_129260 crossref_primary_10_1109_OJIES_2024_3350443 crossref_primary_10_1016_j_mex_2022_101936 crossref_primary_10_1177_14613484221119897 crossref_primary_10_3390_math10244683 crossref_primary_10_1088_1361_6501_ad28ee crossref_primary_10_3390_jimaging8050149 crossref_primary_10_1109_ACCESS_2020_2990528 crossref_primary_10_1007_s00202_025_02987_y crossref_primary_10_1109_TITS_2023_3251341 crossref_primary_10_3390_machines12120905 crossref_primary_10_1109_TII_2023_3258966 crossref_primary_10_1016_j_engappai_2025_110023 crossref_primary_10_1117_1_JEI_33_1_013038 crossref_primary_10_1155_2022_7592258 crossref_primary_10_3233_AIS_220017 crossref_primary_10_3390_land14030559 crossref_primary_10_1016_j_ress_2024_109966 crossref_primary_10_3390_knowledge4040032 crossref_primary_10_1063_5_0087060 crossref_primary_10_3389_fevo_2023_1208643 crossref_primary_10_3389_fnbot_2021_664135 crossref_primary_10_1109_TIM_2022_3199252 crossref_primary_10_5213_inj_2346070_035 crossref_primary_10_1109_TIM_2023_3277936 crossref_primary_10_1007_s00521_022_08104_5 crossref_primary_10_1007_s10489_023_05054_w crossref_primary_10_1109_TR_2021_3075234 crossref_primary_10_1016_j_energy_2021_122298 crossref_primary_10_1016_j_oceaneng_2025_120972 crossref_primary_10_1007_s13721_024_00459_0 crossref_primary_10_1007_s11831_022_09807_7 crossref_primary_10_1109_JSEN_2024_3457878 crossref_primary_10_1016_j_measurement_2020_108827 crossref_primary_10_1007_s00521_023_09185_6 crossref_primary_10_3390_rs14174131 crossref_primary_10_1016_j_cogr_2023_03_001 crossref_primary_10_1080_10589759_2025_2465409 crossref_primary_10_3390_agriculture14081286 crossref_primary_10_3390_electronics13163112 crossref_primary_10_1088_1361_665X_ad06e0 crossref_primary_10_1016_j_eswa_2022_118049 crossref_primary_10_3390_e24081055 crossref_primary_10_3390_s23094289 crossref_primary_10_5213_inj_2244202_101 crossref_primary_10_1016_j_engappai_2023_106670 crossref_primary_10_1016_j_knosys_2022_109437 crossref_primary_10_1016_j_ymssp_2024_111194 crossref_primary_10_3390_s24186053 crossref_primary_10_1016_j_sigpro_2024_109806 crossref_primary_10_1109_ACCESS_2023_3257041 crossref_primary_10_1016_j_aei_2025_103126 crossref_primary_10_1177_00202940241230488 crossref_primary_10_1007_s00170_021_07385_9 crossref_primary_10_1002_ima_22706 crossref_primary_10_1007_s00521_024_09550_z crossref_primary_10_1007_s10845_024_02458_4 crossref_primary_10_1109_TII_2022_3224979 crossref_primary_10_1016_j_bspc_2021_103185 crossref_primary_10_1111_exsy_13139 crossref_primary_10_1016_j_enbuild_2025_115659 crossref_primary_10_1177_14759217241227600 crossref_primary_10_1038_s41598_024_60526_4 crossref_primary_10_1016_j_fcr_2022_108797 crossref_primary_10_1016_j_isatra_2022_01_011 crossref_primary_10_1007_s00521_023_08910_5 crossref_primary_10_1016_j_eswa_2023_120225 crossref_primary_10_7717_peerj_cs_1672 crossref_primary_10_1109_TIM_2023_3272040 crossref_primary_10_7717_peerj_11825 crossref_primary_10_1007_s41315_024_00417_z crossref_primary_10_1177_1748006X211020305 crossref_primary_10_1080_17499518_2024_2422490 crossref_primary_10_1016_j_aej_2024_11_003 crossref_primary_10_3390_computers12080151 crossref_primary_10_1016_j_atech_2024_100746 crossref_primary_10_1088_1361_6501_ad099b crossref_primary_10_3934_mbe_2023754 crossref_primary_10_1080_15567036_2021_1905753 crossref_primary_10_1109_ACCESS_2022_3233220 crossref_primary_10_1016_j_autcon_2022_104734 crossref_primary_10_1016_j_knosys_2023_110891 crossref_primary_10_1088_1361_6501_adaa91 crossref_primary_10_1109_JSEN_2023_3251654 crossref_primary_10_3390_s22051705 crossref_primary_10_1016_j_egyr_2025_01_037 crossref_primary_10_1088_1361_6501_ace642 crossref_primary_10_3390_s23177431 crossref_primary_10_3390_s23177432 crossref_primary_10_1061_JCEMD4_COENG_15120 crossref_primary_10_1109_ACCESS_2019_2939876 crossref_primary_10_1016_j_enbuild_2025_115437 crossref_primary_10_1109_TIE_2023_3317847 crossref_primary_10_1016_j_engappai_2025_110241 crossref_primary_10_1109_TTE_2022_3209166 crossref_primary_10_1088_1742_6596_2076_1_012011 crossref_primary_10_1016_j_anucene_2021_108803 crossref_primary_10_1016_j_neunet_2024_106482 crossref_primary_10_1088_1361_6501_ad282f crossref_primary_10_1016_j_jmapro_2023_07_064 crossref_primary_10_1016_j_ymssp_2022_109789 crossref_primary_10_1016_j_measurement_2020_108288 crossref_primary_10_1109_TII_2021_3102017 crossref_primary_10_3390_agronomy13071770 crossref_primary_10_3390_app13031809 crossref_primary_10_3390_machines10040282 crossref_primary_10_1371_journal_pone_0289672 crossref_primary_10_1109_JSEN_2023_3337853 crossref_primary_10_1007_s11042_022_12823_1 crossref_primary_10_1080_00207543_2019_1662133 crossref_primary_10_1016_j_mechmachtheory_2023_105292 crossref_primary_10_1016_j_bspc_2023_104624 crossref_primary_10_1515_ehs_2023_0049 crossref_primary_10_1038_s41598_024_80167_x crossref_primary_10_1109_TIM_2022_3216593 crossref_primary_10_1007_s40962_024_01542_y crossref_primary_10_1108_LHT_08_2021_0252 crossref_primary_10_1007_s10489_022_04208_6 crossref_primary_10_1007_s42417_022_00566_0 crossref_primary_10_1016_j_measurement_2022_110977 crossref_primary_10_1109_TIM_2021_3107046 crossref_primary_10_1016_j_cmpb_2022_107053 crossref_primary_10_1007_s10845_023_02176_3 crossref_primary_10_1007_s11265_023_01846_y crossref_primary_10_1016_j_measurement_2024_114260 crossref_primary_10_1007_s11554_024_01534_5 crossref_primary_10_3390_s22176570 crossref_primary_10_3390_electronics12030768 crossref_primary_10_3390_s23062976 crossref_primary_10_1088_1361_6501_ad6a2e crossref_primary_10_3390_s23083797 crossref_primary_10_1016_j_engappai_2023_106829 crossref_primary_10_1007_s00521_024_10035_2 crossref_primary_10_1016_j_engappai_2022_105459 crossref_primary_10_1016_j_measurement_2022_111855 crossref_primary_10_3390_app14114928 crossref_primary_10_1155_2022_7674421 crossref_primary_10_1016_j_ecoinf_2023_102382 crossref_primary_10_1007_s11042_023_16233_9 crossref_primary_10_1007_s00521_021_06279_x crossref_primary_10_1088_2631_8695_ad907f crossref_primary_10_1108_LHT_10_2021_0355 crossref_primary_10_1016_j_ijcip_2024_100674 crossref_primary_10_3390_s20061693 crossref_primary_10_1016_j_neucom_2024_128934 crossref_primary_10_1080_10095020_2023_2183145 crossref_primary_10_1088_1361_6501_ad45f4 crossref_primary_10_1016_j_knosys_2022_109272 crossref_primary_10_1109_ACCESS_2024_3404968 crossref_primary_10_1007_s10462_023_10513_4 crossref_primary_10_47164_ijngc_v14i1_1020 crossref_primary_10_1038_s41598_023_33887_5 crossref_primary_10_1007_s11517_023_02773_7 crossref_primary_10_3390_s21238114 crossref_primary_10_1016_j_ress_2024_110121 crossref_primary_10_3390_math12030368 crossref_primary_10_3390_s22197257 crossref_primary_10_3390_jimaging8110293 crossref_primary_10_1016_j_neucom_2021_01_099 crossref_primary_10_1007_s00521_023_08553_6 crossref_primary_10_1155_2021_3782446 crossref_primary_10_1109_TCBB_2024_3410696 crossref_primary_10_3934_era_2023383 crossref_primary_10_1109_TIM_2025_3546375 crossref_primary_10_1016_j_microc_2024_111234 crossref_primary_10_3390_app14062226 crossref_primary_10_1109_TII_2019_2947539 crossref_primary_10_1155_2020_1274380 crossref_primary_10_1002_rob_22373 crossref_primary_10_1109_ACCESS_2020_3010496 crossref_primary_10_1016_j_measurement_2023_112697 crossref_primary_10_1109_JSEN_2024_3362402 crossref_primary_10_3390_electronics10202557 crossref_primary_10_1007_s10845_021_01829_5 crossref_primary_10_1016_j_chaos_2023_114432 crossref_primary_10_1177_14759217241241985 crossref_primary_10_1016_j_energy_2023_127701 crossref_primary_10_1080_1206212X_2025_2465727 crossref_primary_10_1109_ACCESS_2025_3541096 crossref_primary_10_1016_j_addma_2024_104467 crossref_primary_10_1016_j_egyr_2023_04_058 crossref_primary_10_1007_s11071_023_08638_w crossref_primary_10_1109_JSEN_2024_3487209 crossref_primary_10_1007_s42452_024_06033_7 crossref_primary_10_3390_app142210483 crossref_primary_10_1109_TIM_2023_3346539 crossref_primary_10_1007_s00521_023_08893_3 crossref_primary_10_1155_2021_6678031 crossref_primary_10_1016_j_aej_2023_04_053 crossref_primary_10_1109_ACCESS_2020_3014508 crossref_primary_10_3390_rs16193741 crossref_primary_10_1007_s11227_022_04830_8 crossref_primary_10_1109_TGRS_2025_3541248 crossref_primary_10_1088_1361_6501_ac66c4 crossref_primary_10_1016_j_jobe_2023_108421 crossref_primary_10_3389_fgene_2022_1097207 crossref_primary_10_1088_1361_6501_ac56f0 crossref_primary_10_1016_j_agrformet_2023_109646 crossref_primary_10_1016_j_pmcj_2022_101727 crossref_primary_10_1016_j_engappai_2024_109372 crossref_primary_10_1016_j_fusengdes_2024_114475 crossref_primary_10_32604_cmes_2025_059914 crossref_primary_10_3390_math11030517 crossref_primary_10_1080_13467581_2023_2238038 crossref_primary_10_1109_ACCESS_2023_3239784 crossref_primary_10_3390_s24010124 crossref_primary_10_3390_s22114147 crossref_primary_10_1007_s42979_023_02524_3 crossref_primary_10_1088_1742_6596_2467_1_012011 crossref_primary_10_3390_s20236711 crossref_primary_10_1016_j_measurement_2021_109864 crossref_primary_10_1016_j_knosys_2023_111158 crossref_primary_10_1080_08839514_2024_2378270 crossref_primary_10_1109_TIM_2024_3375404 crossref_primary_10_19053_01211129_v30_n56_2021_12776 crossref_primary_10_1177_14727978251322050 crossref_primary_10_3390_su151914538 crossref_primary_10_1155_2023_8805817 crossref_primary_10_1177_1077546320936506 crossref_primary_10_1016_j_measurement_2023_113461 crossref_primary_10_2139_ssrn_3996107 crossref_primary_10_1088_1361_6501_ac7036 crossref_primary_10_1142_S0219455424500706 crossref_primary_10_1007_s13042_024_02315_z crossref_primary_10_1016_j_procs_2023_01_085 crossref_primary_10_1109_TFUZZ_2019_2952792 crossref_primary_10_1109_TIM_2022_3227995 crossref_primary_10_1109_TSP_2022_3141896 crossref_primary_10_1155_2022_6709787 crossref_primary_10_1007_s10845_022_01944_x crossref_primary_10_3390_app14177637 crossref_primary_10_1007_s00521_021_06139_8 crossref_primary_10_1016_j_ultras_2023_107177 crossref_primary_10_1587_elex_21_20230579 crossref_primary_10_1016_j_knosys_2024_111407 crossref_primary_10_1007_s10462_024_10820_4 crossref_primary_10_1155_2022_4848425 crossref_primary_10_1109_ACCESS_2019_2950985 crossref_primary_10_1109_TIM_2021_3111977 crossref_primary_10_1007_s11694_024_02897_w crossref_primary_10_1177_14759217221149129 crossref_primary_10_1088_1742_6596_2258_1_012062 crossref_primary_10_1088_2631_8695_ad5e34 crossref_primary_10_1007_s00500_022_06902_6 crossref_primary_10_1007_s00261_025_04860_9 crossref_primary_10_1109_ACCESS_2021_3119752 crossref_primary_10_1109_JSEN_2023_3332653 crossref_primary_10_1109_TIM_2023_3244237 crossref_primary_10_3389_fpls_2022_1006292 crossref_primary_10_1109_TMECH_2020_2996223 crossref_primary_10_3390_s23198167 crossref_primary_10_1088_1742_6596_2711_1_012006 crossref_primary_10_1002_adfm_202416437 crossref_primary_10_1088_1361_6501_ac3945 crossref_primary_10_1155_2020_8891595 crossref_primary_10_1016_j_istruc_2023_105780 crossref_primary_10_1016_j_cogr_2023_07_006 crossref_primary_10_1177_00368504211029777 crossref_primary_10_1049_cim2_12047 crossref_primary_10_1109_ACCESS_2024_3497716 crossref_primary_10_1016_j_jvoice_2023_11_025 crossref_primary_10_1088_1361_6501_acca37 crossref_primary_10_1177_01423312231188777 crossref_primary_10_3390_s21124182 crossref_primary_10_3390_machines10050326 crossref_primary_10_1109_TIM_2023_3271746 crossref_primary_10_1142_S021819402450013X crossref_primary_10_1109_TCE_2024_3420936 crossref_primary_10_1007_s42979_022_01226_6 crossref_primary_10_1007_s11119_023_10085_x crossref_primary_10_1109_TCSVT_2023_3324905 crossref_primary_10_1007_s11042_023_14884_2 crossref_primary_10_3390_s23146281 crossref_primary_10_1016_j_ymssp_2024_111770 crossref_primary_10_1109_TIM_2024_3351257 crossref_primary_10_1109_JSEN_2023_3307677 crossref_primary_10_1016_j_ijrmms_2023_105578 crossref_primary_10_1080_17499518_2023_2182891 crossref_primary_10_1016_j_isatra_2022_08_002 crossref_primary_10_3390_s24020353 crossref_primary_10_1016_j_jmsy_2022_09_003 crossref_primary_10_1007_s00521_020_05104_1 crossref_primary_10_1109_MIE_2024_3391943 crossref_primary_10_1631_jzus_A2300273 crossref_primary_10_3233_JIFS_213340 crossref_primary_10_1016_j_vacuum_2025_114258 crossref_primary_10_3389_frai_2020_578613 crossref_primary_10_3390_s24185952 crossref_primary_10_1016_j_knosys_2021_107386 crossref_primary_10_1007_s42979_024_03345_8 crossref_primary_10_3390_f12020212 crossref_primary_10_1080_22797254_2023_2271651 crossref_primary_10_1016_j_ress_2022_108890 crossref_primary_10_1109_ACCESS_2021_3063929 crossref_primary_10_1109_TIE_2023_3265054 crossref_primary_10_1016_j_heliyon_2023_e17647 crossref_primary_10_1093_bib_bbae257 crossref_primary_10_3390_s20174939 crossref_primary_10_1016_j_engappai_2024_108315 crossref_primary_10_1142_S0218348X23400984 crossref_primary_10_1016_j_engappai_2024_109529 crossref_primary_10_1177_14727978251321946 crossref_primary_10_1007_s00170_021_08392_6 crossref_primary_10_1109_TITS_2021_3108520 crossref_primary_10_1002_asmb_2685 crossref_primary_10_3390_en13051094 crossref_primary_10_1088_1361_6501_acc2d9 crossref_primary_10_1080_15435075_2020_1825443 crossref_primary_10_34133_plantphenomics_0265 crossref_primary_10_1109_JSEN_2024_3505792 crossref_primary_10_1039_D4AY01005A crossref_primary_10_1177_0020294020964232 crossref_primary_10_1016_j_neucom_2020_07_088 crossref_primary_10_1007_s00170_023_11258_8 crossref_primary_10_2298_CSIS220120036Z crossref_primary_10_1016_j_jmsy_2020_12_002 crossref_primary_10_1016_j_knosys_2024_112003 crossref_primary_10_1007_s10489_024_05466_2 crossref_primary_10_1016_j_bspc_2023_105150 crossref_primary_10_1109_TCDS_2023_3266103 crossref_primary_10_1109_ACCESS_2021_3059221 crossref_primary_10_1007_s10921_024_01089_2 crossref_primary_10_1016_j_measurement_2025_117027 crossref_primary_10_1186_s10033_021_00570_7 crossref_primary_10_1016_j_eswa_2022_117247 crossref_primary_10_3389_fenrg_2022_843765 crossref_primary_10_5213_inj_2244064_032 crossref_primary_10_1007_s10489_022_03622_0 crossref_primary_10_3390_e24091277 crossref_primary_10_1016_j_engappai_2023_107032 crossref_primary_10_3390_jimaging9070140 crossref_primary_10_3390_cancers15030762 crossref_primary_10_1177_14759217241289874 crossref_primary_10_1002_smr_2734 crossref_primary_10_1088_1361_6501_ac60d4 crossref_primary_10_1080_15567036_2022_2083729 crossref_primary_10_1088_1742_6596_1986_1_012099 crossref_primary_10_1016_j_jfranklin_2022_11_004 crossref_primary_10_3390_app132111837 crossref_primary_10_1016_j_jmapro_2021_12_022 crossref_primary_10_3390_s23146384 crossref_primary_10_3390_logistics6020035 crossref_primary_10_1080_15567036_2021_2020379 crossref_primary_10_3390_ijgi11100502 crossref_primary_10_3390_electronics13152988 crossref_primary_10_1016_j_compag_2022_107086 crossref_primary_10_3934_era_2024292 crossref_primary_10_1016_j_engappai_2024_109845 crossref_primary_10_1016_j_bspc_2023_105374 crossref_primary_10_1186_s10033_024_01046_0 crossref_primary_10_1177_01423312241279701 crossref_primary_10_1038_s41598_025_86634_3 crossref_primary_10_1088_1361_6501_ad356e crossref_primary_10_1007_s41348_024_00973_3 crossref_primary_10_1088_1361_6501_ad71e8 crossref_primary_10_1109_TIM_2023_3293554 |
Cites_doi | 10.1016/j.ymssp.2018.05.050 10.1007/s00521-017-2986-8 10.1016/j.measurement.2013.09.019 10.1016/j.ymssp.2015.04.021 10.1007/s00521-012-0912-7 10.1038/nature14539 10.1109/TII.2018.2819674 10.1109/TII.2013.2243743 10.1016/j.neucom.2017.07.032 10.1109/TII.2018.2843441 10.1371/journal.pone.0164111 10.1109/tii.2018.2864759 10.1109/TIE.2016.2519325 10.1109/TMAG.2014.2316474 10.1109/TMECH.2017.2722479 10.1016/j.ymssp.2015.11.014 10.1109/TSMC.2018.2881686 10.1109/ACCESS.2017.2728010 10.1016/j.neucom.2017.07.012 10.1016/j.jmsy.2018.01.003 10.1109/TCST.2009.2020863 10.1109/TIE.2017.2774777 10.1016/j.measurement.2016.07.054 10.1088/1361-6501/aa781a 10.1109/TMI.2016.2528162 10.1007/s00521-018-3525-y 10.1109/TIE.2014.2327589 10.1109/TII.2016.2605629 10.1016/j.ijpe.2016.01.016 10.1109/TIE.2014.2301773 10.1109/TIM.2019.2896370 10.1007/s00521-015-1990-0 10.1109/TCYB.2017.2668395 10.5545/sv-jme.2010.162 10.1016/j.ymssp.2018.02.016 10.1109/tsmc.2017.2754287 10.1109/TMECH.2017.2728371 10.1016/j.aei.2017.02.005 10.1007/s00521-012-1310-x 10.1007/s00521-018-3579-x 10.36001/phme.2016.v3i1.1577 10.1109/ICPHM.2013.6621447 10.1155/2017/3084197 |
ContentType | Journal Article |
Copyright | Springer-Verlag London Ltd., part of Springer Nature 2019 Springer-Verlag London Ltd., part of Springer Nature 2019. |
Copyright_xml | – notice: Springer-Verlag London Ltd., part of Springer Nature 2019 – notice: Springer-Verlag London Ltd., part of Springer Nature 2019. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
DOI | 10.1007/s00521-019-04097-w |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-3058 |
EndPage | 6124 |
ExternalDocumentID | 10_1007_s00521_019_04097_w |
GrantInformation_xml | – fundername: Program for HUST Academic Frontier Youth Team – fundername: Natural Science Foundation of Hubei Province grantid: 2018CFA078 funderid: http://dx.doi.org/10.13039/501100003819 – fundername: Natural Science Foundation of China grantid: 51825502; 51805192; 51775216 – fundername: China Postdoctoral Science Foundation grantid: 2017M622414 funderid: http://dx.doi.org/10.13039/501100002858 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c367t-b06b884e85dac4266c3458c060f216c46cba8b88bde6ef3a8d95e3134ece3bb43 |
IEDL.DBID | BENPR |
ISSN | 0941-0643 |
IngestDate | Fri Jul 25 02:50:30 EDT 2025 Tue Jul 01 01:46:51 EDT 2025 Thu Apr 24 23:09:12 EDT 2025 Fri Feb 21 02:35:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Fault diagnosis Convolutional neural network Feature transferring ResNet-50 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-b06b884e85dac4266c3458c060f216c46cba8b88bde6ef3a8d95e3134ece3bb43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8355-9947 0000-0002-1485-0722 |
PQID | 2396584443 |
PQPubID | 2043988 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2396584443 crossref_primary_10_1007_s00521_019_04097_w crossref_citationtrail_10_1007_s00521_019_04097_w springer_journals_10_1007_s00521_019_04097_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Neural computing & applications |
PublicationTitleAbbrev | Neural Comput & Applic |
PublicationYear | 2020 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Lei, Jia, Lin, Xing, Ding (CR48) 2016; 63 Shao, McAleer, Yan, Baldi (CR39) 2018; 1 Qi, Shen, Wang, Shi, Jiang, Zhu (CR24) 2017; 5 Wang, Jiang, Shao, Duan, Wu (CR30) 2017; 28 Chong (CR40) 2011; 57 Sun, Ma, Zhao, Chen (CR21) 2018; 14 Kiakojoori, Khorasani (CR9) 2016; 27 Li, Gao (CR3) 2016; 174 CR17 Zhao, Yan, Chen, Mao, Wang, Gao (CR14) 2019; 115 CR16 Antonino-Daviu, Aviyente, Strangas, Riera-Guasp (CR4) 2013 CR15 Jia, Lei, Guo, Lin, Xing (CR23) 2018; 272 Wehrmann, Simoes, Barros, Cavalcante (CR36) 2018; 272 Yin, Ding, Xie, Luo (CR2) 2014; 61 Guo, Chen, Shen (CR31) 2016; 93 CR33 Liu, Yang, Zio, Chen (CR11) 2018; 108 Ren, Hung, Tan (CR35) 2018; 48 Zhu, Song, Xue (CR45) 2014; 47 Lu, Wang, Zhou (CR32) 2017; 32 Lu, Wang, Ragulskis, Cheng (CR42) 2016; 11 Kang, Kim (CR41) 2014; 50 Zhang, Cao, Ho, Chow (CR27) 2017; 13 Wang, Ma, Zhang, Gao, Wu (CR12) 2018; 48 Janssens, Van de Walle, Loccufier, Van Hoecke (CR38) 2018; 23 Wen, Li, Gao, Zhang (CR29) 2018; 65 Yang, Song, Liu (CR7) 2019; 31 Smith, Randall (CR47) 2015; 64 Dai, Gao (CR5) 2013; 9 Rauber, Assis Boldt, Varejão (CR43) 2015; 62 Ertunc, Ocak, Aliustaoglu (CR8) 2013; 22 Gan, Wang (CR25) 2016; 72 Li, Lu, Gao, Xiao, Wen (CR18) 2018; 14 CR26 Yang, Chen (CR1) 2018 Cho, Knowles, Fadali, Lee (CR20) 2010; 18 CR46 Li, Gao, Pan, Wan, Chao (CR6) 2018 Zhang, Ji, Huang, Liu (CR28) 2018 CR22 CR44 Wen, Gao, Li (CR19) 2017 LeCun, Bengio, Hinton (CR13) 2015; 521 Shin, Roth, Gao, Lu, Xu, Nogues, Yao, Mollura, Summers (CR37) 2016; 35 Seera, Lim, Ishak, Singh (CR10) 2013; 23 Xia, Li, Xu, Liu, de Silva (CR34) 2018; 23 HM Ertunc (4097_CR8) 2013; 22 RN Liu (4097_CR11) 2018; 108 4097_CR33 R Zhao (4097_CR14) 2019; 115 S Shao (4097_CR39) 2018; 1 M Gan (4097_CR25) 2016; 72 4097_CR17 L Wen (4097_CR19) 2017 HJ Zhang (4097_CR28) 2018 4097_CR16 4097_CR15 UP Chong (4097_CR40) 2011; 57 XY Li (4097_CR18) 2018; 14 X Dai (4097_CR5) 2013; 9 Y LeCun (4097_CR13) 2015; 521 Y Lei (4097_CR48) 2016; 63 M Kang (4097_CR41) 2014; 50 HC Shin (4097_CR37) 2016; 35 F Wang (4097_CR30) 2017; 28 M Xia (4097_CR34) 2018; 23 L Yang (4097_CR1) 2018 TW Rauber (4097_CR43) 2015; 62 C Yang (4097_CR7) 2019; 31 HJ Zhang (4097_CR27) 2017; 13 R Ren (4097_CR35) 2018; 48 J Wehrmann (4097_CR36) 2018; 272 4097_CR46 C Sun (4097_CR21) 2018; 14 JJ Wang (4097_CR12) 2018; 48 4097_CR22 4097_CR44 K Zhu (4097_CR45) 2014; 47 WA Smith (4097_CR47) 2015; 64 M Seera (4097_CR10) 2013; 23 HC Cho (4097_CR20) 2010; 18 XY Li (4097_CR3) 2016; 174 O Janssens (4097_CR38) 2018; 23 J Antonino-Daviu (4097_CR4) 2013 F Jia (4097_CR23) 2018; 272 C Lu (4097_CR42) 2016; 11 4097_CR26 C Lu (4097_CR32) 2017; 32 S Kiakojoori (4097_CR9) 2016; 27 X Guo (4097_CR31) 2016; 93 S Yin (4097_CR2) 2014; 61 XY Li (4097_CR6) 2018 Y Qi (4097_CR24) 2017; 5 L Wen (4097_CR29) 2018; 65 |
References_xml | – ident: CR22 – volume: 115 start-page: 213 year: 2019 end-page: 237 ident: CR14 article-title: Deep learning and its applications to machine health monitoring publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.05.050 – volume: 31 start-page: 139 issue: 1 year: 2019 end-page: 156 ident: CR7 article-title: Failure prognostics of heavy vehicle hydro-pneumatic spring based on novel degradation feature and support vector regression publication-title: Neural Comput Appl doi: 10.1007/s00521-017-2986-8 – volume: 47 start-page: 669 year: 2014 end-page: 675 ident: CR45 article-title: A roller bearing fault diagnosis method based on hierarchical entropy and support vector machine with particle swarm optimization algorithm publication-title: Measurement doi: 10.1016/j.measurement.2013.09.019 – volume: 64 start-page: 100 year: 2015 end-page: 131 ident: CR47 article-title: Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2015.04.021 – volume: 22 start-page: 435 issue: 1 year: 2013 end-page: 446 ident: CR8 article-title: ANN- and ANFIS-based multi-staged decision algorithm for the detection and diagnosis of bearing faults publication-title: Neural Comput Appl doi: 10.1007/s00521-012-0912-7 – ident: CR16 – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 ident: CR13 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 14 start-page: 3261 issue: 7 year: 2018 end-page: 3270 ident: CR21 article-title: Sparse deep stacking network for fault diagnosis of motor publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2018.2819674 – ident: CR33 – volume: 9 start-page: 2226 issue: 4 year: 2013 end-page: 2238 ident: CR5 article-title: From model, signal to knowledge: a data-driven perspective of fault detection and diagnosis publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2013.2243743 – volume: 272 start-page: 619 issue: 10 year: 2018 end-page: 628 ident: CR23 article-title: A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.07.032 – volume: 14 start-page: 5400 issue: 12 year: 2018 end-page: 5409 ident: CR18 article-title: An effective multi-objective algorithm for energy efficient scheduling in a real-life welding shop publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2018.2843441 – volume: 11 start-page: e0164111 issue: 10 year: 2016 ident: CR42 article-title: Fault diagnosis for rotating machinery: a method based on image processing publication-title: PLoS ONE doi: 10.1371/journal.pone.0164111 – volume: 1 start-page: 1 year: 2018 ident: CR39 article-title: Highly-accurate machine fault diagnosis using deep transfer learning publication-title: IEEE Trans Ind Inf doi: 10.1109/tii.2018.2864759 – volume: 63 start-page: 3137 issue: 5 year: 2016 end-page: 3147 ident: CR48 article-title: An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2016.2519325 – volume: 50 start-page: 1 issue: 10 year: 2014 end-page: 13 ident: CR41 article-title: Reliable fault diagnosis of multiple induction motor defects using a 2-d representation of Shannon wavelets publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2014.2316474 – volume: 23 start-page: 151 issue: 1 year: 2018 end-page: 159 ident: CR38 article-title: Deep learning for infrared thermal image based machine health monitoring publication-title: IEEE/ASME Trans Mechatron doi: 10.1109/TMECH.2017.2722479 – volume: 72 start-page: 92 year: 2016 end-page: 104 ident: CR25 article-title: Construction of hierarchical diagnosis network based on deep learning and its application in the fault pattern recognition of rolling element bearings publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2015.11.014 – year: 2018 ident: CR6 article-title: An effective hybrid genetic algorithm and variable neighborhood search for integrated process planning and scheduling in a packaging machine workshop publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2018.2881686 – volume: 5 start-page: 15066 year: 2017 end-page: 15079 ident: CR24 article-title: Stacked sparse autoencoder-based deep network for fault diagnosis of rotating machinery publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2728010 – volume: 272 start-page: 432 year: 2018 end-page: 438 ident: CR36 article-title: Adult content detection in videos with convolutional and recurrent neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.07.012 – volume: 48 start-page: 144 issue: Part C year: 2018 end-page: 156 ident: CR12 article-title: Deep learning for smart manufacturing: methods and applications publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2018.01.003 – volume: 18 start-page: 430 issue: 2 year: 2010 end-page: 437 ident: CR20 article-title: Fault detection and isolation of induction motors using recurrent neural networks and dynamic Bayesian modeling publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2009.2020863 – ident: CR46 – volume: 65 start-page: 5990 issue: 7 year: 2018 end-page: 5998 ident: CR29 article-title: A new convolutional neural network based data-driven fault diagnosis method publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2017.2774777 – volume: 93 start-page: 490 year: 2016 end-page: 502 ident: CR31 article-title: Hierarchical adaptive deep convolution neural network and its application to bearing fault diagnosis publication-title: Measurement doi: 10.1016/j.measurement.2016.07.054 – ident: CR44 – volume: 28 start-page: 095005 issue: 9 year: 2017 ident: CR30 article-title: An adaptive deep convolutional neural network for rolling bearing fault diagnosis publication-title: Meas Sci Technol doi: 10.1088/1361-6501/aa781a – volume: 35 start-page: 1285 issue: 5 year: 2016 end-page: 1298 ident: CR37 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2528162 – year: 2018 ident: CR1 article-title: Fault diagnosis of gearbox based on RBF-PF and particle swarm optimization wavelet neural network publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3525-y – ident: CR15 – volume: 62 start-page: 637 issue: 1 year: 2015 end-page: 646 ident: CR43 article-title: Heterogeneous feature models and feature selection applied to bearing fault diagnosis publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2014.2327589 – ident: CR17 – volume: 13 start-page: 520 issue: 2 year: 2017 end-page: 531 ident: CR27 article-title: Object-level video advertising: an optimization framework publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2016.2605629 – volume: 174 start-page: 93 year: 2016 end-page: 110 ident: CR3 article-title: An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem publication-title: Int J Prod Econ doi: 10.1016/j.ijpe.2016.01.016 – volume: 61 start-page: 6418 issue: 11 year: 2014 end-page: 6428 ident: CR2 article-title: A review on basic data-driven approaches for industrial process monitoring publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2014.2301773 – year: 2013 ident: CR4 article-title: Scale invariant feature extraction algorithm for the automatic diagnosis of rotor asymmetries in induction motors publication-title: IEEE T Instrum Meas doi: 10.1109/TIM.2019.2896370 – volume: 27 start-page: 2157 issue: 8 year: 2016 end-page: 2192 ident: CR9 article-title: Dynamic neural networks for gas turbine engine degradation prediction, health monitoring and prognosis publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1990-0 – volume: 48 start-page: 929 issue: 3 year: 2018 end-page: 940 ident: CR35 article-title: A generic deep-learning-based approach for automated surface inspection publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2017.2668395 – volume: 57 start-page: 655 issue: 9 year: 2011 end-page: 666 ident: CR40 article-title: Signal model-based fault detection and diagnosis for induction motors using features of vibration signal in two-dimension domain publication-title: Stroj Vestn J Mech Eng doi: 10.5545/sv-jme.2010.162 – volume: 108 start-page: 33 year: 2018 end-page: 47 ident: CR11 article-title: Artificial intelligence for fault diagnosis of rotating machinery: a review publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.02.016 – year: 2017 ident: CR19 article-title: A new deep transfer learning based on sparse auto-encoder for fault diagnosis publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/tsmc.2017.2754287 – ident: CR26 – volume: 23 start-page: 101 issue: 1 year: 2018 end-page: 110 ident: CR34 article-title: Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks publication-title: IEEE/ASME Trans Mechatron doi: 10.1109/TMECH.2017.2728371 – volume: 32 start-page: 139 year: 2017 end-page: 151 ident: CR32 article-title: Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification publication-title: Adv Eng Inf doi: 10.1016/j.aei.2017.02.005 – volume: 23 start-page: 191 issue: 1 year: 2013 end-page: 200 ident: CR10 article-title: Application of the fuzzy min–max neural network to fault detection and diagnosis of induction motors publication-title: Neural Comput Appl doi: 10.1007/s00521-012-1310-x – year: 2018 ident: CR28 article-title: Sitcom-star-based clothing retrieval for video advertising: a deep learning framework publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3579-x – volume: 23 start-page: 191 issue: 1 year: 2013 ident: 4097_CR10 publication-title: Neural Comput Appl doi: 10.1007/s00521-012-1310-x – volume: 64 start-page: 100 year: 2015 ident: 4097_CR47 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2015.04.021 – volume: 61 start-page: 6418 issue: 11 year: 2014 ident: 4097_CR2 publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2014.2301773 – volume: 23 start-page: 151 issue: 1 year: 2018 ident: 4097_CR38 publication-title: IEEE/ASME Trans Mechatron doi: 10.1109/TMECH.2017.2722479 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 4097_CR13 publication-title: Nature doi: 10.1038/nature14539 – volume: 11 start-page: e0164111 issue: 10 year: 2016 ident: 4097_CR42 publication-title: PLoS ONE doi: 10.1371/journal.pone.0164111 – volume: 50 start-page: 1 issue: 10 year: 2014 ident: 4097_CR41 publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2014.2316474 – volume: 14 start-page: 3261 issue: 7 year: 2018 ident: 4097_CR21 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2018.2819674 – ident: 4097_CR15 – ident: 4097_CR17 – volume: 48 start-page: 929 issue: 3 year: 2018 ident: 4097_CR35 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2017.2668395 – volume: 108 start-page: 33 year: 2018 ident: 4097_CR11 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.02.016 – volume: 72 start-page: 92 year: 2016 ident: 4097_CR25 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2015.11.014 – volume: 93 start-page: 490 year: 2016 ident: 4097_CR31 publication-title: Measurement doi: 10.1016/j.measurement.2016.07.054 – ident: 4097_CR46 doi: 10.36001/phme.2016.v3i1.1577 – volume: 57 start-page: 655 issue: 9 year: 2011 ident: 4097_CR40 publication-title: Stroj Vestn J Mech Eng doi: 10.5545/sv-jme.2010.162 – volume: 62 start-page: 637 issue: 1 year: 2015 ident: 4097_CR43 publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2014.2327589 – volume: 63 start-page: 3137 issue: 5 year: 2016 ident: 4097_CR48 publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2016.2519325 – volume: 47 start-page: 669 year: 2014 ident: 4097_CR45 publication-title: Measurement doi: 10.1016/j.measurement.2013.09.019 – volume: 32 start-page: 139 year: 2017 ident: 4097_CR32 publication-title: Adv Eng Inf doi: 10.1016/j.aei.2017.02.005 – volume: 48 start-page: 144 issue: Part C year: 2018 ident: 4097_CR12 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2018.01.003 – volume: 22 start-page: 435 issue: 1 year: 2013 ident: 4097_CR8 publication-title: Neural Comput Appl doi: 10.1007/s00521-012-0912-7 – year: 2018 ident: 4097_CR1 publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3525-y – volume: 9 start-page: 2226 issue: 4 year: 2013 ident: 4097_CR5 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2013.2243743 – ident: 4097_CR26 – volume: 14 start-page: 5400 issue: 12 year: 2018 ident: 4097_CR18 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2018.2843441 – volume: 31 start-page: 139 issue: 1 year: 2019 ident: 4097_CR7 publication-title: Neural Comput Appl doi: 10.1007/s00521-017-2986-8 – ident: 4097_CR22 doi: 10.1109/ICPHM.2013.6621447 – volume: 174 start-page: 93 year: 2016 ident: 4097_CR3 publication-title: Int J Prod Econ doi: 10.1016/j.ijpe.2016.01.016 – volume: 13 start-page: 520 issue: 2 year: 2017 ident: 4097_CR27 publication-title: IEEE Trans Ind Inf doi: 10.1109/TII.2016.2605629 – year: 2018 ident: 4097_CR6 publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/TSMC.2018.2881686 – volume: 5 start-page: 15066 year: 2017 ident: 4097_CR24 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2728010 – year: 2018 ident: 4097_CR28 publication-title: Neural Comput Appl doi: 10.1007/s00521-018-3579-x – ident: 4097_CR16 – volume: 27 start-page: 2157 issue: 8 year: 2016 ident: 4097_CR9 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1990-0 – volume: 28 start-page: 095005 issue: 9 year: 2017 ident: 4097_CR30 publication-title: Meas Sci Technol doi: 10.1088/1361-6501/aa781a – volume: 115 start-page: 213 year: 2019 ident: 4097_CR14 publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.05.050 – ident: 4097_CR33 doi: 10.1155/2017/3084197 – volume: 23 start-page: 101 issue: 1 year: 2018 ident: 4097_CR34 publication-title: IEEE/ASME Trans Mechatron doi: 10.1109/TMECH.2017.2728371 – volume: 65 start-page: 5990 issue: 7 year: 2018 ident: 4097_CR29 publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2017.2774777 – year: 2013 ident: 4097_CR4 publication-title: IEEE T Instrum Meas doi: 10.1109/TIM.2019.2896370 – volume: 272 start-page: 432 year: 2018 ident: 4097_CR36 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.07.012 – volume: 272 start-page: 619 issue: 10 year: 2018 ident: 4097_CR23 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.07.032 – volume: 1 start-page: 1 year: 2018 ident: 4097_CR39 publication-title: IEEE Trans Ind Inf doi: 10.1109/tii.2018.2864759 – year: 2017 ident: 4097_CR19 publication-title: IEEE Trans Syst Man Cybern Syst doi: 10.1109/tsmc.2017.2754287 – volume: 18 start-page: 430 issue: 2 year: 2010 ident: 4097_CR20 publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2009.2020863 – volume: 35 start-page: 1285 issue: 5 year: 2016 ident: 4097_CR37 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2528162 – ident: 4097_CR44 |
SSID | ssj0004685 |
Score | 2.6538715 |
Snippet | With the rapid development of smart manufacturing, data-driven fault diagnosis has attracted increasing attentions. As one of the most popular methods applied... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6111 |
SubjectTerms | Artificial Intelligence Artificial neural networks Centrifugal pumps Color imagery Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Datasets Fault diagnosis Feature extraction Image Processing and Computer Vision Machine learning Neural networks Original Article Priming Probability and Statistics in Computer Science |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60Xrz4FqtV9uBNF5LsI5tjEaUI9iAWegvZFwglFZPSv-_udtOqqOApkMzsYWY389hvZgCuFc9VKlmKFTUCU5tyLBPrQhVn-5WxwkrtE_pPYz6a0Mcpm8aisKZDu3dXkuFPvS528xlMH_r6ZH5S5Hi5DTvMxe4eyDXJhp-qIcMgThe3eEwPJbFU5uc1vpqjjY_57Vo0WJuHA9iLbiIarvR6CFumPoL9bgQDiifyGMZD1AbX0730APK4kRyrb1QZHgHmjZxvimy1mLVIr8B1rw3yFkyjeY2eTTM2LWbJCUwe7l_uRjiOSMCK8Lx1cuVSCCdmpivlja0ilAmV8MRmKVeUK1kJRyG14caSSuiCGZISapQhUlJyCr16XpszQHleMe4YMm4IrXIthRZFppguCpZVSvch7SRVqtg_3I-xmJXrzsdBuqWTbhmkWy77cLPmeVt1z_iTetApoIwnqSkz4tvTUEpJH247pWw-_77a-f_IL2A386F0wDIOoNe-L8yl8zdaeRW21wfZ5cxa priority: 102 providerName: Springer Nature |
Title | A transfer convolutional neural network for fault diagnosis based on ResNet-50 |
URI | https://link.springer.com/article/10.1007/s00521-019-04097-w https://www.proquest.com/docview/2396584443 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LSgMxcND24sW3WK0lB2-6uLt5bPYkrbaKYpFioZ6WzWNBKG21W_r7JmnWqqCnQJLJYTKZV-YBcC5ZIiNBo0ASzQNSRCwQYWFMFSP7pS54IZR16D_12f2QPIzoyDvc5j6ssuKJjlGrqbQ-8qsY2zIlhBB8PXsPbNco-7vqW2hsQt2wYM5rUO90-8-Db5mRrimnsWFsfA_BPm3GJc9Zj6g1pe3nQJgmwfKnaFrrm7--SJ3k6e3CtlcZUXt1x3uwoSf7sFO1Y0D-dR5Av41Kp4aaSRtM7onKgNqilW5wId_I6KmoyBfjEqlVoN3bHFlpptB0ggZ63tdlQMNDGPa6Lzf3gW-XEEjMktLgmAnODcqpyqUVvBITymXIwiKOmCRMipybHUJppgucc5VSjSNMtNRYCIKPoDaZTvQxoCTJKTMAMdOY5IkSXPE0llSlKY1zqRoQVZjKpK8lbltajLOvKsgOu5nBbuawmy0bcPEFM1tV0vh3d7O6gMy_qnm2poEGXFaXsl7--7ST_087ha3YmtEujrEJtfJjoc-MrlGKFmzy3l0L6u3Obadnx7vXx27Lk5lZHcbtT8XA1TY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58HPTiW1yfOehJi23zaHoQEXVdX3sQBW-1eRSEZVfdyuKf8jeaybauCnrzVGiTECbTzOubGYBtLRIdKR4FmlkZsCISgQoLZ6o42a9tIQtl0KF_3RatO3Zxz-_H4L3OhUFYZX0n-ova9DT6yPdjimVKGGP08Ok5wK5RGF2tW2gM2eLSvg2cydY_OD9x57sTx83T2-NWUHUVCDQVSem2IpSUbmfc5Brlk6aMSx2KsIgjoZnQKpduhDJW2ILm0qTc0ogyqy1VilG37jhMMuokOWamN8--5GH6FqDOYkI0EaNVko5P1UP_KxruGIoI0yQYfBeEI-32R0DWy7nmHMxUCio5GnLUPIzZ7gLM1s0fSHUXLEL7iJRe6XUvEbpesbCbiiUy_cMDzInTikmRv3ZKYoawvsc-QdlpSK9Lbmy_bcuAh0tw9y9kXIaJbq9rV4AkSc6FmxALS1meGCWNTGPNTZryONemAVFNqUxXlcuxgUYn-6y57KmbOepmnrrZoAG7n3OehnU7_hy9Xh9AVv3D_WzEcQ3Yqw9l9Pn31Vb_Xm0Lplq311fZ1Xn7cg2mYzTgPYJyHSbKl1e74bScUm161iLw8N-8_AFPmQzk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aQbz4FqtVc_CmS3c3j80ei1rqq4hY6C1sXiCUbbFb-vdNsrttFRU8LWRncvhmwswk8wDgUtJERoJEgcSaBdhENBChsaGKtf1SG2aEchf6z33aG-CHIRmuVPH7bPf6SbKsaXBdmvKiPVGmvSh8c7eZLgx2F_thmgTzdbCBXTWw1ehB3FmpjPRDOW0M4_J7MKrKZn7e46tpWvqb355IveXp7oLtymWEnVLGe2BN5_tgpx7HAKvTeQD6HVh4N9QuumTySqksq2ta6T8-5RtaPxWabDYqoCoT7d6n0FkzBcc5fNXTvi4CEh6CQffu7aYXVOMSAoloUliMqWDMQk5UJp3hlQgTJkMamjiiElMpMmYphNJUG5QxlRKNIoS11EgIjI5AIx_n-hjAJMkItQwx1QhniRJMsTSWRKUpiTOpmiCqkeKy6iXuRlqM-KILskeXW3S5R5fPm-BqwTMpO2n8Sd2qBcCrUzXlMXKtajDGqAmua6Esf_--28n_yC_A5sttlz_d9x9PwVbsImyf4tgCjeJjps-sG1KIc69pn73v04A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+transfer+convolutional+neural+network+for+fault+diagnosis+based+on+ResNet-50&rft.jtitle=Neural+computing+%26+applications&rft.au=Wen%2C+Long&rft.au=Li%2C+Xinyu&rft.au=Gao%2C+Liang&rft.date=2020-05-01&rft.issn=0941-0643&rft.eissn=1433-3058&rft.volume=32&rft.issue=10&rft.spage=6111&rft.epage=6124&rft_id=info:doi/10.1007%2Fs00521-019-04097-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00521_019_04097_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |