Identification of wood from the Amazon by characteristics of Haralick and Neural Network: image segmentation and polishing of the surface
The identification of Amazonian timber species is a complex problem due to their great diversity and the lack of leaf material in the post-harvest inspection often hampers a correct recognition of the wood species. In this context, we developed a pattern recognition system of wood images to identify...
Saved in:
Published in | IForest (Viterbo) Vol. 15; no. 4; pp. 234 - 239 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Potenza
The Italian Society of Silviculture and Forest Ecology (SISEF)
01.08.2022
Italian Society of Silviculture and Forest Ecology (SISEF) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The identification of Amazonian timber species is a complex problem due to their great diversity and the lack of leaf material in the post-harvest inspection often hampers a correct recognition of the wood species. In this context, we developed a pattern recognition system of wood images to identify commonly traded species, with the aim of increasing the accuracy and efficiency of current identification methods. We used ten different species with three polishing treatments and twenty images for each wood species. As for the image recognition system, the textural segmentation associated with Haralick characteristics and classified by Artificial Neural Networks was used. We verified that the improvement of sandpaper granulometry increased the accuracy of species recognition. The developed model based on linear regression achieved a recognition rate of 94% in the training phase, and a post-training recognition rate of 65% for wood treated with 120-grit sandpaper mesh. We concluded that the wood pattern recognition model presented has the potential to correctly identify the wood species studied. |
---|---|
AbstractList | The identification of Amazonian timber species is a complex problem due to their great diversity and the lack of leaf material in the post-harvest inspection often hampers a correct recognition of the wood species. In this context, we developed a pattern recognition system of wood images to identify commonly traded species, with the aim of increasing the accuracy and efficiency of current identification methods. We used ten different species with three polishing treatments and twenty images for each wood species. As for the image recognition system, the textural segmentation associated with Haralick characteristics and classified by Artificial Neural Networks was used. We verified that the improvement of sandpaper granulometry increased the accuracy of species recognition. The developed model based on linear regression achieved a recognition rate of 94% in the training phase, and a post-training recognition rate of 65% for wood treated with 120-grit sandpaper mesh. We concluded that the wood pattern recognition model presented has the potential to correctly identify the wood species studied. |
Author | Moutinho da Ponte, MJ Pantoja Lima, C Jardim-Gonçalves, R de Albuquerque Vinagre, MV Pereira Moutinho, VH de Souza Vieira, GL |
Author_xml | – sequence: 1 givenname: GL surname: de Souza Vieira fullname: de Souza Vieira, GL – sequence: 2 givenname: MJ surname: Moutinho da Ponte fullname: Moutinho da Ponte, MJ – sequence: 3 givenname: VH surname: Pereira Moutinho fullname: Pereira Moutinho, VH – sequence: 4 givenname: R surname: Jardim-Gonçalves fullname: Jardim-Gonçalves, R – sequence: 5 givenname: C surname: Pantoja Lima fullname: Pantoja Lima, C – sequence: 6 givenname: MV surname: de Albuquerque Vinagre fullname: de Albuquerque Vinagre, MV |
BookMark | eNpNUctOwzAQtBBIlNIbH2CJKwEnTpyEW1UBrVTBBc6WH-vWfcTFTlWVP-CvcQggfFnvaDQzq7lAp41rAKGrlNzSimZ31jhPa8ISkhYnaJDWZZqUeVGd_vufo1EIK9K9khR1OkCfMw1Na41VorWuwc7gg3MaG--2uF0CHm_FR8TlEaul8EK14G1orQoddRqRjVVrLBqNn2Eftzjag_Pre2y3YgE4wGIbHXr1jrZzGxuWtll0Ap1D2HsjFFyiMyM2AUY_c4jeHh9eJ9Nk_vI0m4zniaKsbBMBlBCpTEp1zoqirATUNCNSxpvqqgBBCJjIMKbOU8kAGKM0U6AIBQa5pEM063W1Eyu-8zGmP3InLP8GnF9w4eOBG-AAMVguNatEmWsKUklZapplRItMShW1rnutnXfvewgtX7m9b2J8nrGaVVUXKbJuepbyLgQP5s81Jbzrjv92x2N39AsvjJGW |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3296801 |
Cites_doi | 10.1109/5.58325 10.1016/j.rse.2019.05.013 10.1080/07038992.2014.913477 10.1109/TSMC.1973.4309314 10.1109/ICASSP.1990.115636 10.1137/0111030 10.1109/IECON.2012.6388523 10.24302/agora.v16i2esp.121 10.11707/j.1001-7488.20070413 10.1109/ICNC.2012.6234674 10.1090/QAM/10666 10.1109/ICCASM.2010.5619388 10.1590/S0044-59672008000100005 10.1007/s11632-008-0038-2 10.1007/s00138-014-0592-7 10.1890/08-0074.1 10.1016/j.chemolab.2011.05.005 10.4028/www.scientific.net/AMM.58-60.1744 10.1109/MASSP.1987.1165576 10.11707/j.1001-7488.20111022. |
ContentType | Journal Article |
Copyright | 2022. This work is licensed under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FH ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PATMY PIMPY PQEST PQQKQ PQUKI PRINS PYCSY DOA |
DOI | 10.3832/ifor3906-015 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database Environmental Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central Environmental Science Collection ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Environmental Science Database ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Forestry |
EISSN | 1971-7458 |
EndPage | 239 |
ExternalDocumentID | oai_doaj_org_article_eefac4bd68a74d3ebcbb7d3220da2bbc 10_3832_ifor3906_015 |
GeographicLocations | Brazil Amazon Basin |
GeographicLocations_xml | – name: Amazon Basin – name: Brazil |
GroupedDBID | 29I 2WC 5GY AAYXX ABDBF AFKRA ALMA_UNASSIGNED_HOLDINGS ATCPS BBNVY BENPR BHPHI CCPQU CITATION CS3 E3Z ECGQY ESX GROUPED_DOAJ HCIFZ KQ8 M7P MM- M~E OK1 PATMY PIMPY PYCSY RNS 8FE 8FH ABUWG AZQEC DWQXO GNUQQ LK8 PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c367t-ae300bcf13d465578ae9320bb000985ea00ef00bff941b6ee66332cec03e6e4b3 |
IEDL.DBID | DOA |
ISSN | 1971-7458 |
IngestDate | Tue Oct 22 15:08:37 EDT 2024 Thu Oct 10 20:38:06 EDT 2024 Fri Aug 23 01:39:55 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-ae300bcf13d465578ae9320bb000985ea00ef00bff941b6ee66332cec03e6e4b3 |
OpenAccessLink | https://doaj.org/article/eefac4bd68a74d3ebcbb7d3220da2bbc |
PQID | 2696880985 |
PQPubID | 5474054 |
PageCount | 6 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_eefac4bd68a74d3ebcbb7d3220da2bbc proquest_journals_2696880985 crossref_primary_10_3832_ifor3906_015 |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Potenza |
PublicationPlace_xml | – name: Potenza |
PublicationTitle | IForest (Viterbo) |
PublicationYear | 2022 |
Publisher | The Italian Society of Silviculture and Forest Ecology (SISEF) Italian Society of Silviculture and Forest Ecology (SISEF) |
Publisher_xml | – name: The Italian Society of Silviculture and Forest Ecology (SISEF) – name: Italian Society of Silviculture and Forest Ecology (SISEF) |
References | ifor3906-ref10 ifor3906-ref20 ifor3906-ref12 ifor3906-ref23 ifor3906-ref34 ifor3906-ref11 ifor3906-ref22 ifor3906-ref25 ifor3906-ref13 ifor3906-ref24 ifor3906-ref15 ifor3906-ref26 ifor3906-ref29 ifor3906-ref3 ifor3906-ref4 ifor3906-ref19 ifor3906-ref7 ifor3906-ref8 ifor3906-ref9 ifor3906-ref1 |
References_xml | – ident: ifor3906-ref19 doi: 10.1109/5.58325 – ident: ifor3906-ref4 doi: 10.1016/j.rse.2019.05.013 – ident: ifor3906-ref3 doi: 10.1080/07038992.2014.913477 – ident: ifor3906-ref13 doi: 10.1109/TSMC.1973.4309314 – ident: ifor3906-ref9 doi: 10.1109/ICASSP.1990.115636 – ident: ifor3906-ref25 doi: 10.1137/0111030 – ident: ifor3906-ref26 doi: 10.1109/IECON.2012.6388523 – ident: ifor3906-ref7 doi: 10.24302/agora.v16i2esp.121 – ident: ifor3906-ref11 doi: 10.11707/j.1001-7488.20070413 – ident: ifor3906-ref22 doi: 10.1109/ICNC.2012.6234674 – ident: ifor3906-ref20 doi: 10.1090/QAM/10666 – ident: ifor3906-ref1 doi: 10.1109/ICCASM.2010.5619388 – ident: ifor3906-ref29 doi: 10.1590/S0044-59672008000100005 – ident: ifor3906-ref15 doi: 10.1007/s11632-008-0038-2 – ident: ifor3906-ref8 doi: 10.1007/s00138-014-0592-7 – ident: ifor3906-ref10 doi: 10.1890/08-0074.1 – ident: ifor3906-ref24 doi: 10.1016/j.chemolab.2011.05.005 – ident: ifor3906-ref34 doi: 10.4028/www.scientific.net/AMM.58-60.1744 – ident: ifor3906-ref23 doi: 10.1109/MASSP.1987.1165576 – ident: ifor3906-ref12 doi: 10.11707/j.1001-7488.20111022. |
SSID | ssj0000070591 |
Score | 2.2897003 |
Snippet | The identification of Amazonian timber species is a complex problem due to their great diversity and the lack of leaf material in the post-harvest inspection... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 234 |
SubjectTerms | Algorithms Amazon Artificial Neural Networks Back propagation Biodiversity Classification Decision making Digital Image Processing Finite element method Forests Identification Identification methods Image processing Image segmentation Inspection Neural networks Object recognition Pattern Recognition Polishing Rainforests Regression models Sandpaper Species Technology Training Wood Wood Identification |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fSxwxEA72hNKXYm1Lr7WSB_sYzCbZ7J4vRUU5Ch4iFXxb8mMipdyevTsf6n_Q_7oz2ZxFCu5jdthlM8nkm9mZbxg78CoiZrOtsCpaYYxqxARPHgE6EoGaTzLTF1_M7PTafLupb0rAbVXSKjc2MRvquAgUIz9UxOLSyklbf737JahrFP1dLS00XrBthZ6CGrHtk7PZ5dVjlIXYbOrcNq-aNJVoTN0O2e_omKlDqn1Cn59c6vrJuZTp-_-zzvnIOd9hrwtW5MeDct-wLeh32Utqpkkd2t6yP0OVbSphN75InDJoOJWMcAR2_HjuHnDc_-bhKS8ziU4dxTjCT-76yImjA181G5LCj_iPOdoZvoLbealN6rMYtXTIMSt6AL1hdb9MLsA7dn1-9v10KkprBRG0bdbCgZbSh1TpSARqTesAgZz0GXO1NTgpIaFEShNTeQuAwESrAEFqsGC8fs9G_aKHD4wb6bRvISZn8AqVk8EFW3vEOWBx9sfsy2Ziu7uBQaNDz4MU0G0U0KECxuyEZv1Rhniv88BieduVbdQB4EcZH23rGhM1-OB9E9EoyeiU92HM9jY668pmXHX_ls7H529_Yq8UVTfk_L49Nlov7-EzYo613y8L6y_OcdjP priority: 102 providerName: ProQuest |
Title | Identification of wood from the Amazon by characteristics of Haralick and Neural Network: image segmentation and polishing of the surface |
URI | https://www.proquest.com/docview/2696880985 https://doaj.org/article/eefac4bd68a74d3ebcbb7d3220da2bbc |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SQbyIT6zWkoMeF9NNmt16U7EUwSJiwduSx0REupU-DvoP_NfOZLdi8eDFPS7DZne-bPJNmPmGsVObeuRsOk906nWiVJolPdx5EpCeBNRsEFG--G6oByN1-9R9-tHqi3LCKnngynHnAME4Zb3OTaa8BOuszTxOQ-FNaq2Lq6_o_QimKuKbIW_oVJnuGISl51TnhPE9hc_dlT0oSvX_Wonj9tLfZls1L-SX1fvssDUod9kGNc6kbmx77LOqqA31ERufBE7ZMpzKQziSOH45Nh94375zt6rBTKYDQ-cZ7pWb0nPS48ChhlUC-AV_GeOawmfwPK7rkMpoRu0b4vkUPYBGmC2m6CTYZ6P-zeP1IKnbKCRO6myeGJBCWBc60pNYWpYbQNImbORXeReMEBDQIoSe6lgNgCREpg6ckKBBWXnAGuWkhEPGlTDS5uCDUXi5jhHOON21yGlAo8eb7Gzp2OKtUssoMMogAIolAAUC0GRX5PVvG9K4jjcQ-aJGvvgL-SZrLTEr6h9vVqQk9pPTdx39xxjHbDOleoeY8ddijfl0ASfIQua2zdavbob3D-048b4AYNnicQ |
link.rule.ids | 315,783,787,867,2109,21402,27938,27939,33758,43819,74638 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELaglYBLxVNsW8AHOFp1YsfJcqla1GqBdoVQK_Vm-TGuENpsu7s9wD_gX3fG8RZVSOTojBLFY4-_mcx8w9h7X0fEbKYTpo5GaF23YownjwAViUDNJ5npi0-nZnKuv1w0FyXgtixplWubmA11nAeKke_VxOLSyXHX7F9dC-oaRX9XSwuNh2yTqKpwVW8eHk2_fb-LshCbTZPb5lXjthKtbroh-x0ds3qPap_Q5yeXurl3LmX6_n-scz5yjp-yrYIV-cGg3GfsAfTP2SNqpkkd2l6wP0OVbSphNz5PnDJoOJWMcAR2_GDmfuO4_8XDfV5mEp04inGEn9z1kRNHB75qOiSFf-Q_Zmhn-BIuZ6U2qc9i1NIhx6zoAfSG5c0iuQAv2fnx0dmniSitFURQpl0JB0pKH1KlIhGotZ0DBHLSZ8zVNeCkhIQSKY115Q0AAhNVBwhSgQHt1Su20c97eM24lk75DmJyGq9QORlcMI1HnAMGZ3_EPqwn1l4NDBoWPQ9SgF0rwKICRuyQZv1Ohniv88B8cWnLNrIA-FHaR9O5VkcFPnjfRjRKMrra-zBiu2ud2bIZl_bv0tn-_-137PHk7PTEnnyeft1hT2qqdMi5frtsY7W4gTeIP1b-bVlktz8X28k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgK1VcEE-xUMAHOFrrxI6T5YJa6Gp5rSpEpd4sP8ZVhTZbdrcH-Af8a2Ycb1GFRI7OKFE84_Hnycw3jL3ydUTMZjph6miE1nUrprjzCFCRCNR8kpm--MvCzE_1x7PmrOQ_bUpa5c4nZkcdV4Fi5JOaWFw6Oe2aSSppESfvZ28vfwjqIEV_Wks7jdtsr9VoVSO2d3S8OPl6HXEhZpsmt9Crpm0lWt10QyY8HtLqCdVB4fmfjtfNjT0qU_n_46nz9jO7x-4W3MgPB0XfZ7egf8D2qbEmdWt7yH4PFbephOD4KnHKpuFUPsIR5PHDpfuF4_4nDzc5mkl07ijeEb5z10dOfB34qsWQIP6GXyzR5_ANnC9LnVKfxai9Q45f0QPoDZurdXIBHrHT2fG3d3NR2iyIoEy7FQ6UlD6kSkUiU2s7BwjqpM_4q2vASQkJJVKa6sobAAQpqg4QpAID2qvHbNSvenjCuJZO-Q5ichqvUDkZXDCNR8wDBmd_zF7vJtZeDmwaFk8hpAC7U4BFBYzZEc36tQxxYOeB1frcliVlAfCjtI-mc62OCnzwvo3ooGR0tfdhzA52OrNlYW7sXzN6-v_bL9k-2pf9_GHx6Rm7U1PRQ077O2Cj7foKniMU2foXxcb-AESW3_0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+wood+from+the+Amazon+by+characteristics+of+Haralick+and+Neural+Network%3A+image+segmentation+and+polishing+of+the+surface&rft.jtitle=IForest+%28Viterbo%29&rft.au=De+Souza+Vieira+GL&rft.au=Moutinho+Da+Ponte+MJ&rft.au=Pereira+Moutinho+VH&rft.au=Jardim-Gon%C3%A7alves+R&rft.date=2022-08-01&rft.pub=Italian+Society+of+Silviculture+and+Forest+Ecology+%28SISEF%29&rft.eissn=1971-7458&rft.volume=15&rft.issue=1&rft.spage=234&rft.epage=239&rft_id=info:doi/10.3832%2Fifor3906-015&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_eefac4bd68a74d3ebcbb7d3220da2bbc |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1971-7458&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1971-7458&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1971-7458&client=summon |