Identification of wood from the Amazon by characteristics of Haralick and Neural Network: image segmentation and polishing of the surface

The identification of Amazonian timber species is a complex problem due to their great diversity and the lack of leaf material in the post-harvest inspection often hampers a correct recognition of the wood species. In this context, we developed a pattern recognition system of wood images to identify...

Full description

Saved in:
Bibliographic Details
Published inIForest (Viterbo) Vol. 15; no. 4; pp. 234 - 239
Main Authors de Souza Vieira, GL, Moutinho da Ponte, MJ, Pereira Moutinho, VH, Jardim-Gonçalves, R, Pantoja Lima, C, de Albuquerque Vinagre, MV
Format Journal Article
LanguageEnglish
Published Potenza The Italian Society of Silviculture and Forest Ecology (SISEF) 01.08.2022
Italian Society of Silviculture and Forest Ecology (SISEF)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The identification of Amazonian timber species is a complex problem due to their great diversity and the lack of leaf material in the post-harvest inspection often hampers a correct recognition of the wood species. In this context, we developed a pattern recognition system of wood images to identify commonly traded species, with the aim of increasing the accuracy and efficiency of current identification methods. We used ten different species with three polishing treatments and twenty images for each wood species. As for the image recognition system, the textural segmentation associated with Haralick characteristics and classified by Artificial Neural Networks was used. We verified that the improvement of sandpaper granulometry increased the accuracy of species recognition. The developed model based on linear regression achieved a recognition rate of 94% in the training phase, and a post-training recognition rate of 65% for wood treated with 120-grit sandpaper mesh. We concluded that the wood pattern recognition model presented has the potential to correctly identify the wood species studied.
AbstractList The identification of Amazonian timber species is a complex problem due to their great diversity and the lack of leaf material in the post-harvest inspection often hampers a correct recognition of the wood species. In this context, we developed a pattern recognition system of wood images to identify commonly traded species, with the aim of increasing the accuracy and efficiency of current identification methods. We used ten different species with three polishing treatments and twenty images for each wood species. As for the image recognition system, the textural segmentation associated with Haralick characteristics and classified by Artificial Neural Networks was used. We verified that the improvement of sandpaper granulometry increased the accuracy of species recognition. The developed model based on linear regression achieved a recognition rate of 94% in the training phase, and a post-training recognition rate of 65% for wood treated with 120-grit sandpaper mesh. We concluded that the wood pattern recognition model presented has the potential to correctly identify the wood species studied.
Author Moutinho da Ponte, MJ
Pantoja Lima, C
Jardim-Gonçalves, R
de Albuquerque Vinagre, MV
Pereira Moutinho, VH
de Souza Vieira, GL
Author_xml – sequence: 1
  givenname: GL
  surname: de Souza Vieira
  fullname: de Souza Vieira, GL
– sequence: 2
  givenname: MJ
  surname: Moutinho da Ponte
  fullname: Moutinho da Ponte, MJ
– sequence: 3
  givenname: VH
  surname: Pereira Moutinho
  fullname: Pereira Moutinho, VH
– sequence: 4
  givenname: R
  surname: Jardim-Gonçalves
  fullname: Jardim-Gonçalves, R
– sequence: 5
  givenname: C
  surname: Pantoja Lima
  fullname: Pantoja Lima, C
– sequence: 6
  givenname: MV
  surname: de Albuquerque Vinagre
  fullname: de Albuquerque Vinagre, MV
BookMark eNpNUctOwzAQtBBIlNIbH2CJKwEnTpyEW1UBrVTBBc6WH-vWfcTFTlWVP-CvcQggfFnvaDQzq7lAp41rAKGrlNzSimZ31jhPa8ISkhYnaJDWZZqUeVGd_vufo1EIK9K9khR1OkCfMw1Na41VorWuwc7gg3MaG--2uF0CHm_FR8TlEaul8EK14G1orQoddRqRjVVrLBqNn2Eftzjag_Pre2y3YgE4wGIbHXr1jrZzGxuWtll0Ap1D2HsjFFyiMyM2AUY_c4jeHh9eJ9Nk_vI0m4zniaKsbBMBlBCpTEp1zoqirATUNCNSxpvqqgBBCJjIMKbOU8kAGKM0U6AIBQa5pEM063W1Eyu-8zGmP3InLP8GnF9w4eOBG-AAMVguNatEmWsKUklZapplRItMShW1rnutnXfvewgtX7m9b2J8nrGaVVUXKbJuepbyLgQP5s81Jbzrjv92x2N39AsvjJGW
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3296801
Cites_doi 10.1109/5.58325
10.1016/j.rse.2019.05.013
10.1080/07038992.2014.913477
10.1109/TSMC.1973.4309314
10.1109/ICASSP.1990.115636
10.1137/0111030
10.1109/IECON.2012.6388523
10.24302/agora.v16i2esp.121
10.11707/j.1001-7488.20070413
10.1109/ICNC.2012.6234674
10.1090/QAM/10666
10.1109/ICCASM.2010.5619388
10.1590/S0044-59672008000100005
10.1007/s11632-008-0038-2
10.1007/s00138-014-0592-7
10.1890/08-0074.1
10.1016/j.chemolab.2011.05.005
10.4028/www.scientific.net/AMM.58-60.1744
10.1109/MASSP.1987.1165576
10.11707/j.1001-7488.20111022.
ContentType Journal Article
Copyright 2022. This work is licensed under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FH
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PATMY
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
DOA
DOI 10.3832/ifor3906-015
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
Environmental Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Environmental Science Collection
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Environmental Science Database
ProQuest One Academic
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
EISSN 1971-7458
EndPage 239
ExternalDocumentID oai_doaj_org_article_eefac4bd68a74d3ebcbb7d3220da2bbc
10_3832_ifor3906_015
GeographicLocations Brazil
Amazon Basin
GeographicLocations_xml – name: Amazon Basin
– name: Brazil
GroupedDBID 29I
2WC
5GY
AAYXX
ABDBF
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBNVY
BENPR
BHPHI
CCPQU
CITATION
CS3
E3Z
ECGQY
ESX
GROUPED_DOAJ
HCIFZ
KQ8
M7P
MM-
M~E
OK1
PATMY
PIMPY
PYCSY
RNS
8FE
8FH
ABUWG
AZQEC
DWQXO
GNUQQ
LK8
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c367t-ae300bcf13d465578ae9320bb000985ea00ef00bff941b6ee66332cec03e6e4b3
IEDL.DBID DOA
ISSN 1971-7458
IngestDate Tue Oct 22 15:08:37 EDT 2024
Thu Oct 10 20:38:06 EDT 2024
Fri Aug 23 01:39:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-ae300bcf13d465578ae9320bb000985ea00ef00bff941b6ee66332cec03e6e4b3
OpenAccessLink https://doaj.org/article/eefac4bd68a74d3ebcbb7d3220da2bbc
PQID 2696880985
PQPubID 5474054
PageCount 6
ParticipantIDs doaj_primary_oai_doaj_org_article_eefac4bd68a74d3ebcbb7d3220da2bbc
proquest_journals_2696880985
crossref_primary_10_3832_ifor3906_015
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Potenza
PublicationPlace_xml – name: Potenza
PublicationTitle IForest (Viterbo)
PublicationYear 2022
Publisher The Italian Society of Silviculture and Forest Ecology (SISEF)
Italian Society of Silviculture and Forest Ecology (SISEF)
Publisher_xml – name: The Italian Society of Silviculture and Forest Ecology (SISEF)
– name: Italian Society of Silviculture and Forest Ecology (SISEF)
References ifor3906-ref10
ifor3906-ref20
ifor3906-ref12
ifor3906-ref23
ifor3906-ref34
ifor3906-ref11
ifor3906-ref22
ifor3906-ref25
ifor3906-ref13
ifor3906-ref24
ifor3906-ref15
ifor3906-ref26
ifor3906-ref29
ifor3906-ref3
ifor3906-ref4
ifor3906-ref19
ifor3906-ref7
ifor3906-ref8
ifor3906-ref9
ifor3906-ref1
References_xml – ident: ifor3906-ref19
  doi: 10.1109/5.58325
– ident: ifor3906-ref4
  doi: 10.1016/j.rse.2019.05.013
– ident: ifor3906-ref3
  doi: 10.1080/07038992.2014.913477
– ident: ifor3906-ref13
  doi: 10.1109/TSMC.1973.4309314
– ident: ifor3906-ref9
  doi: 10.1109/ICASSP.1990.115636
– ident: ifor3906-ref25
  doi: 10.1137/0111030
– ident: ifor3906-ref26
  doi: 10.1109/IECON.2012.6388523
– ident: ifor3906-ref7
  doi: 10.24302/agora.v16i2esp.121
– ident: ifor3906-ref11
  doi: 10.11707/j.1001-7488.20070413
– ident: ifor3906-ref22
  doi: 10.1109/ICNC.2012.6234674
– ident: ifor3906-ref20
  doi: 10.1090/QAM/10666
– ident: ifor3906-ref1
  doi: 10.1109/ICCASM.2010.5619388
– ident: ifor3906-ref29
  doi: 10.1590/S0044-59672008000100005
– ident: ifor3906-ref15
  doi: 10.1007/s11632-008-0038-2
– ident: ifor3906-ref8
  doi: 10.1007/s00138-014-0592-7
– ident: ifor3906-ref10
  doi: 10.1890/08-0074.1
– ident: ifor3906-ref24
  doi: 10.1016/j.chemolab.2011.05.005
– ident: ifor3906-ref34
  doi: 10.4028/www.scientific.net/AMM.58-60.1744
– ident: ifor3906-ref23
  doi: 10.1109/MASSP.1987.1165576
– ident: ifor3906-ref12
  doi: 10.11707/j.1001-7488.20111022.
SSID ssj0000070591
Score 2.2897003
Snippet The identification of Amazonian timber species is a complex problem due to their great diversity and the lack of leaf material in the post-harvest inspection...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 234
SubjectTerms Algorithms
Amazon
Artificial Neural Networks
Back propagation
Biodiversity
Classification
Decision making
Digital Image Processing
Finite element method
Forests
Identification
Identification methods
Image processing
Image segmentation
Inspection
Neural networks
Object recognition
Pattern Recognition
Polishing
Rainforests
Regression models
Sandpaper
Species
Technology
Training
Wood
Wood Identification
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fSxwxEA72hNKXYm1Lr7WSB_sYzCbZ7J4vRUU5Ch4iFXxb8mMipdyevTsf6n_Q_7oz2ZxFCu5jdthlM8nkm9mZbxg78CoiZrOtsCpaYYxqxARPHgE6EoGaTzLTF1_M7PTafLupb0rAbVXSKjc2MRvquAgUIz9UxOLSyklbf737JahrFP1dLS00XrBthZ6CGrHtk7PZ5dVjlIXYbOrcNq-aNJVoTN0O2e_omKlDqn1Cn59c6vrJuZTp-_-zzvnIOd9hrwtW5MeDct-wLeh32Utqpkkd2t6yP0OVbSphN75InDJoOJWMcAR2_HjuHnDc_-bhKS8ziU4dxTjCT-76yImjA181G5LCj_iPOdoZvoLbealN6rMYtXTIMSt6AL1hdb9MLsA7dn1-9v10KkprBRG0bdbCgZbSh1TpSARqTesAgZz0GXO1NTgpIaFEShNTeQuAwESrAEFqsGC8fs9G_aKHD4wb6bRvISZn8AqVk8EFW3vEOWBx9sfsy2Ziu7uBQaNDz4MU0G0U0KECxuyEZv1Rhniv88BieduVbdQB4EcZH23rGhM1-OB9E9EoyeiU92HM9jY668pmXHX_ls7H529_Yq8UVTfk_L49Nlov7-EzYo613y8L6y_OcdjP
  priority: 102
  providerName: ProQuest
Title Identification of wood from the Amazon by characteristics of Haralick and Neural Network: image segmentation and polishing of the surface
URI https://www.proquest.com/docview/2696880985
https://doaj.org/article/eefac4bd68a74d3ebcbb7d3220da2bbc
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SQbyIT6zWkoMeF9NNmt16U7EUwSJiwduSx0REupU-DvoP_NfOZLdi8eDFPS7DZne-bPJNmPmGsVObeuRsOk906nWiVJolPdx5EpCeBNRsEFG--G6oByN1-9R9-tHqi3LCKnngynHnAME4Zb3OTaa8BOuszTxOQ-FNaq2Lq6_o_QimKuKbIW_oVJnuGISl51TnhPE9hc_dlT0oSvX_Wonj9tLfZls1L-SX1fvssDUod9kGNc6kbmx77LOqqA31ERufBE7ZMpzKQziSOH45Nh94375zt6rBTKYDQ-cZ7pWb0nPS48ChhlUC-AV_GeOawmfwPK7rkMpoRu0b4vkUPYBGmC2m6CTYZ6P-zeP1IKnbKCRO6myeGJBCWBc60pNYWpYbQNImbORXeReMEBDQIoSe6lgNgCREpg6ckKBBWXnAGuWkhEPGlTDS5uCDUXi5jhHOON21yGlAo8eb7Gzp2OKtUssoMMogAIolAAUC0GRX5PVvG9K4jjcQ-aJGvvgL-SZrLTEr6h9vVqQk9pPTdx39xxjHbDOleoeY8ddijfl0ASfIQua2zdavbob3D-048b4AYNnicQ
link.rule.ids 315,783,787,867,2109,21402,27938,27939,33758,43819,74638
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELaglYBLxVNsW8AHOFp1YsfJcqla1GqBdoVQK_Vm-TGuENpsu7s9wD_gX3fG8RZVSOTojBLFY4-_mcx8w9h7X0fEbKYTpo5GaF23YownjwAViUDNJ5npi0-nZnKuv1w0FyXgtixplWubmA11nAeKke_VxOLSyXHX7F9dC-oaRX9XSwuNh2yTqKpwVW8eHk2_fb-LshCbTZPb5lXjthKtbroh-x0ds3qPap_Q5yeXurl3LmX6_n-scz5yjp-yrYIV-cGg3GfsAfTP2SNqpkkd2l6wP0OVbSphNz5PnDJoOJWMcAR2_GDmfuO4_8XDfV5mEp04inGEn9z1kRNHB75qOiSFf-Q_Zmhn-BIuZ6U2qc9i1NIhx6zoAfSG5c0iuQAv2fnx0dmniSitFURQpl0JB0pKH1KlIhGotZ0DBHLSZ8zVNeCkhIQSKY115Q0AAhNVBwhSgQHt1Su20c97eM24lk75DmJyGq9QORlcMI1HnAMGZ3_EPqwn1l4NDBoWPQ9SgF0rwKICRuyQZv1Ohniv88B8cWnLNrIA-FHaR9O5VkcFPnjfRjRKMrra-zBiu2ud2bIZl_bv0tn-_-137PHk7PTEnnyeft1hT2qqdMi5frtsY7W4gTeIP1b-bVlktz8X28k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgK1VcEE-xUMAHOFrrxI6T5YJa6Gp5rSpEpd4sP8ZVhTZbdrcH-Af8a2Ycb1GFRI7OKFE84_Hnycw3jL3ydUTMZjph6miE1nUrprjzCFCRCNR8kpm--MvCzE_1x7PmrOQ_bUpa5c4nZkcdV4Fi5JOaWFw6Oe2aSSppESfvZ28vfwjqIEV_Wks7jdtsr9VoVSO2d3S8OPl6HXEhZpsmt9Crpm0lWt10QyY8HtLqCdVB4fmfjtfNjT0qU_n_46nz9jO7x-4W3MgPB0XfZ7egf8D2qbEmdWt7yH4PFbephOD4KnHKpuFUPsIR5PHDpfuF4_4nDzc5mkl07ijeEb5z10dOfB34qsWQIP6GXyzR5_ANnC9LnVKfxai9Q45f0QPoDZurdXIBHrHT2fG3d3NR2iyIoEy7FQ6UlD6kSkUiU2s7BwjqpM_4q2vASQkJJVKa6sobAAQpqg4QpAID2qvHbNSvenjCuJZO-Q5ichqvUDkZXDCNR8wDBmd_zF7vJtZeDmwaFk8hpAC7U4BFBYzZEc36tQxxYOeB1frcliVlAfCjtI-mc62OCnzwvo3ooGR0tfdhzA52OrNlYW7sXzN6-v_bL9k-2pf9_GHx6Rm7U1PRQ077O2Cj7foKniMU2foXxcb-AESW3_0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+wood+from+the+Amazon+by+characteristics+of+Haralick+and+Neural+Network%3A+image+segmentation+and+polishing+of+the+surface&rft.jtitle=IForest+%28Viterbo%29&rft.au=De+Souza+Vieira+GL&rft.au=Moutinho+Da+Ponte+MJ&rft.au=Pereira+Moutinho+VH&rft.au=Jardim-Gon%C3%A7alves+R&rft.date=2022-08-01&rft.pub=Italian+Society+of+Silviculture+and+Forest+Ecology+%28SISEF%29&rft.eissn=1971-7458&rft.volume=15&rft.issue=1&rft.spage=234&rft.epage=239&rft_id=info:doi/10.3832%2Fifor3906-015&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_eefac4bd68a74d3ebcbb7d3220da2bbc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1971-7458&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1971-7458&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1971-7458&client=summon