Design optimization of a heating network with multiple heat pumps using mixed integer quadratically constrained programming
District heating is a state of the art technology for efficient supply of heat. Modern 4th generation and 5th generation district heating networks can be used to integrate sources of waste heat, which allows efficient operation. The design of such heating networks is subject of many optimization mod...
Saved in:
Published in | Energy (Oxford) Vol. 226; p. 120384 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.07.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | District heating is a state of the art technology for efficient supply of heat. Modern 4th generation and 5th generation district heating networks can be used to integrate sources of waste heat, which allows efficient operation. The design of such heating networks is subject of many optimization models. Most optimization models focus on energy flows and result in Mixed Integer Linear Programs. This requires simplifications, where temperatures and mass flow rates are neglected or simplified. This work presents a Mixed Integer Quadratically Constrained Program with temperature constraints. A case study is presented, where the integration of low temperature waste heat in a district heating network is optimized. In this case study the positioning of heat pumps at the supply or at the consumers influences network operation. The results show a trade-off between economical and ecological optimal solutions with a range of total annualized costs from 120,000 EUR/a to 307,000 EUR/a and a range of CO2-Emissions from 193 t/a to 605 t/a. Furthermore, the influence of design decisions on the optimal operation is demonstrated. All in all, the quadratic model formulation stresses the influence of temperatures on the optimization outcome and offers pareto optimal solutions for the design of the presented case study.
•Low temperature district heating allows to integrate waste heat sources.•Design optimization of district heating depends on temperatures of all parties.•MIQCP formulation of design optimization allows to regard temperatures.•Temperature sensitive Heat Pump positioning in district heating is demonstrated. |
---|---|
AbstractList | District heating is a state of the art technology for efficient supply of heat. Modern 4th generation and 5th generation district heating networks can be used to integrate sources of waste heat, which allows efficient operation. The design of such heating networks is subject of many optimization models. Most optimization models focus on energy flows and result in Mixed Integer Linear Programs. This requires simplifications, where temperatures and mass flow rates are neglected or simplified. This work presents a Mixed Integer Quadratically Constrained Program with temperature constraints. A case study is presented, where the integration of low temperature waste heat in a district heating network is optimized. In this case study the positioning of heat pumps at the supply or at the consumers influences network operation. The results show a trade-off between economical and ecological optimal solutions with a range of total annualized costs from 120,000 EUR/a to 307,000 EUR/a and a range of CO2-Emissions from 193 t/a to 605 t/a. Furthermore, the influence of design decisions on the optimal operation is demonstrated. All in all, the quadratic model formulation stresses the influence of temperatures on the optimization outcome and offers pareto optimal solutions for the design of the presented case study. District heating is a state of the art technology for efficient supply of heat. Modern 4th generation and 5th generation district heating networks can be used to integrate sources of waste heat, which allows efficient operation. The design of such heating networks is subject of many optimization models. Most optimization models focus on energy flows and result in Mixed Integer Linear Programs. This requires simplifications, where temperatures and mass flow rates are neglected or simplified. This work presents a Mixed Integer Quadratically Constrained Program with temperature constraints. A case study is presented, where the integration of low temperature waste heat in a district heating network is optimized. In this case study the positioning of heat pumps at the supply or at the consumers influences network operation. The results show a trade-off between economical and ecological optimal solutions with a range of total annualized costs from 120,000 EUR/a to 307,000 EUR/a and a range of CO₂-Emissions from 193 t/a to 605 t/a. Furthermore, the influence of design decisions on the optimal operation is demonstrated. All in all, the quadratic model formulation stresses the influence of temperatures on the optimization outcome and offers pareto optimal solutions for the design of the presented case study. District heating is a state of the art technology for efficient supply of heat. Modern 4th generation and 5th generation district heating networks can be used to integrate sources of waste heat, which allows efficient operation. The design of such heating networks is subject of many optimization models. Most optimization models focus on energy flows and result in Mixed Integer Linear Programs. This requires simplifications, where temperatures and mass flow rates are neglected or simplified. This work presents a Mixed Integer Quadratically Constrained Program with temperature constraints. A case study is presented, where the integration of low temperature waste heat in a district heating network is optimized. In this case study the positioning of heat pumps at the supply or at the consumers influences network operation. The results show a trade-off between economical and ecological optimal solutions with a range of total annualized costs from 120,000 EUR/a to 307,000 EUR/a and a range of CO2-Emissions from 193 t/a to 605 t/a. Furthermore, the influence of design decisions on the optimal operation is demonstrated. All in all, the quadratic model formulation stresses the influence of temperatures on the optimization outcome and offers pareto optimal solutions for the design of the presented case study. •Low temperature district heating allows to integrate waste heat sources.•Design optimization of district heating depends on temperatures of all parties.•MIQCP formulation of design optimization allows to regard temperatures.•Temperature sensitive Heat Pump positioning in district heating is demonstrated. |
ArticleNumber | 120384 |
Author | Hering, Dominik Müller, Dirk Xhonneux, André |
Author_xml | – sequence: 1 givenname: Dominik orcidid: 0000-0001-6460-1954 surname: Hering fullname: Hering, Dominik email: d.hering@fz-juelich.de organization: Institute of Energy and Climate Research - Energy Systems Engineering (IEK-10), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany – sequence: 2 givenname: André surname: Xhonneux fullname: Xhonneux, André organization: Institute of Energy and Climate Research - Energy Systems Engineering (IEK-10), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany – sequence: 3 givenname: Dirk surname: Müller fullname: Müller, Dirk organization: Institute of Energy and Climate Research - Energy Systems Engineering (IEK-10), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany |
BookMark | eNqFkcGO1SAUhokZE--MvoELEjdueoVCKbgwMaOOJpO40TWh9LTDtYUOUMerLz_cqatZ6Iqc8H0H8v_n6MwHDwi9pGRPCRVvDnvwEMfjviY13dOaMMmfoB2VLatEK5sztCNMkKrhvH6GzlM6EEIaqdQO_fkAyY0ehyW72f022YUyDNjgGyiDH7GHfBfiD3zn8g2e1ym7ZYKHW7ys85Lwmk7Y7H5Bj53PMELEt6vpY_GtmaYjtsGnHI3zhVhiGKOZ5-I8R08HMyV48fe8QN8_ffx2-bm6_nr15fL9dWWZaHNlOmlbwYngve3kYFTLBmoNlZR0nRJ9L2lLOqCG9Eoa2bW1UkLRTpGO25oLdoFeb3vL27crpKxnlyxMk_EQ1qTrRtCGtYLVBX31CD2ENfryu0IVRLW8YYXiG2VjSCnCoJfoZhOPmhJ9akQf9NaIPjWit0aK9vaRZl1-SPwUzvQ_-d0mQ0nqp4Ook3XgLfQugs26D-7fC-4BoyeuLw |
CitedBy_id | crossref_primary_10_1016_j_enconman_2024_119233 crossref_primary_10_1088_1742_6596_2237_1_012023 crossref_primary_10_1016_j_energy_2024_132461 crossref_primary_10_1016_j_enconman_2022_116593 crossref_primary_10_1016_j_energy_2024_131872 crossref_primary_10_1016_j_enconman_2024_118079 crossref_primary_10_1016_j_enbuild_2025_115618 crossref_primary_10_1016_j_procs_2024_09_277 crossref_primary_10_3390_en15155478 crossref_primary_10_1016_j_energy_2025_134615 crossref_primary_10_1016_j_enbuild_2024_114904 crossref_primary_10_1016_j_epsr_2024_111046 crossref_primary_10_1007_s10898_024_01370_8 crossref_primary_10_1038_s43247_024_01439_y crossref_primary_10_1016_j_rser_2023_113429 crossref_primary_10_1109_OJIES_2024_3486560 crossref_primary_10_1016_j_rser_2024_114729 crossref_primary_10_1016_j_adapen_2024_100190 crossref_primary_10_1016_j_scs_2024_105897 crossref_primary_10_1016_j_energy_2022_123766 crossref_primary_10_1111_1477_8947_12543 |
Cites_doi | 10.1016/j.rser.2017.10.058 10.1016/j.energy.2015.04.052 10.1016/j.energy.2020.119095 10.1016/j.apenergy.2019.114158 10.3389/fenrg.2017.00035 10.1016/j.enbuild.2017.01.062 10.1016/j.applthermaleng.2020.115975 10.1016/j.egypro.2018.07.104 10.1016/j.renene.2017.10.017 10.1016/j.energy.2014.02.089 10.1016/j.egypro.2017.05.050 10.1016/j.energy.2017.08.078 10.1016/j.applthermaleng.2016.05.193 10.1016/j.apenergy.2018.08.101 10.1016/j.energy.2009.09.028 10.1016/j.apenergy.2017.10.072 10.1016/j.egypro.2017.05.073 10.1016/j.rser.2013.12.007 10.1016/j.enbuild.2011.07.024 10.1016/j.rser.2018.12.059 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Jul 1, 2021 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Jul 1, 2021 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
DOI | 10.1016/j.energy.2021.120384 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 1873-6785 |
ExternalDocumentID | 10_1016_j_energy_2021_120384 S0360544221006332 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SEW SSH WUQ 7SP 7ST 7TB 8FD C1K EFKBS F28 FR3 KR7 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c367t-ab8c764064dcb8fa973f1ca1810bb96dd8170be1a0d98a8b7299691b90b4c2463 |
IEDL.DBID | .~1 |
ISSN | 0360-5442 |
IngestDate | Mon Jul 21 11:20:58 EDT 2025 Wed Aug 13 07:20:26 EDT 2025 Tue Jul 01 00:43:40 EDT 2025 Thu Apr 24 22:51:05 EDT 2025 Fri Feb 23 02:41:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Heat pump Waste heat MIQCP Low temperature district heating Optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-ab8c764064dcb8fa973f1ca1810bb96dd8170be1a0d98a8b7299691b90b4c2463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6460-1954 |
PQID | 2537697453 |
PQPubID | 2045484 |
ParticipantIDs | proquest_miscellaneous_2561537632 proquest_journals_2537697453 crossref_primary_10_1016_j_energy_2021_120384 crossref_citationtrail_10_1016_j_energy_2021_120384 elsevier_sciencedirect_doi_10_1016_j_energy_2021_120384 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 2021-07-00 20210701 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Mansoor, Stadler, Zellinger, Lichtenegger, Auer, Cosic (bib19) 2021; 215 Nussbaumer T, Thalmann S, Jenni A, Ködel J. Planungshandbuch fernwärme: schlussbericht: Version 1.1;. Pieper, Ommen, Buhler, Paaske, Elmegaard, Markussen (bib25) 2018; 147 Kotzur, Markewitz, Robinius, Stolten (bib32) 2018; 117 Icha, Kuhs (bib29) 2020 Voll (bib17) 2014 Gurobi Optimization (bib35) Fang, Xia, Jiang (bib4) 2015; 86 Buffa, Cozzini, D’Antoni, Baratieri, Fedrizzi (bib12) 2019; 104 bib28 Miika, Sipilä (bib10) 2017; 116 Molyneaux, Leyland, Favrat (bib15) 2010; 35 Wasserfall, Powilleit, Kirschbaum, Wrobel (bib22) 2019; 2019 Castro Flores, Lacarrière, B Chiu, Martin (bib8) 2017; 116 Wang, Tian, Yan, Feng, Wang, Pan (bib20) 2020; 181 Wirtz, Kivilip, Remmen, Müller (bib21) 2020; 260 Bahl, Söhler, Hennen, Bardow (bib36) 2018; 5 Lund, Yang, Vad Mathiesen (bib11) 2017; 12 Domínguez-Muñoz, Cejudo-López, Carrillo-Andrés, Gallardo-Salazar (bib34) 2011; 43 Wahlroos, Pärssinen, Manner, Syri (bib3) 2017; 140 Schütz (bib18) 2018 Hering, Cansev, Tamassia, Xhonneux, Müller (bib23) 2021 A P Dobos: NREL. PVWatts version 5 manual;. Lund, Werner, Wiltshire, Svendsen, Thorsen, Hvelplund (bib7) 2014; 68 Bünning, Wetter, Fuchs, Müller (bib13) 2018; 209 Wahlroos, Pärssinen, Rinne, Syri, Manner (bib5) 2018; 82 Ebrahimi, Jones, Fleischer (bib6) 2014; 31 Li, Sun, Zhang, Zhang (bib16) 2018; 230 (bib2) 2020 Imran, Usman, Hoon, Yong, Park, Byung (bib9) 2017; 116 Schütz, Schraven, Harb, Fuchs, Müller (bib33) 2016; 2016 bib1 Waddicor, Fuentes, Azar, Salom (bib24) 2016; 106 Sameti, Haghighat (bib14) 2017; 140 (bib30) 2020 Bundesministerium für Verkehr, Bau und Stadtentwicklung, editor. Ermittlung von spezifischen Kosten energiesparender Bauteil-, Beleuchtungs-, Heizungs- und Klimatechnikausführungen bei Nichtwohngebäuden für die Wirtschaftlichkeitsuntersuchungen zur EnEV 2012. BMVBS-Online-Publikation;. Bünning (10.1016/j.energy.2021.120384_bib13) 2018; 209 Wahlroos (10.1016/j.energy.2021.120384_bib5) 2018; 82 Hering (10.1016/j.energy.2021.120384_bib23) 2021 Li (10.1016/j.energy.2021.120384_bib16) 2018; 230 Sameti (10.1016/j.energy.2021.120384_bib14) 2017; 140 Waddicor (10.1016/j.energy.2021.120384_bib24) 2016; 106 10.1016/j.energy.2021.120384_bib27 10.1016/j.energy.2021.120384_bib26 Schütz (10.1016/j.energy.2021.120384_bib33) 2016; 2016 Castro Flores (10.1016/j.energy.2021.120384_bib8) 2017; 116 Imran (10.1016/j.energy.2021.120384_bib9) 2017; 116 Wasserfall (10.1016/j.energy.2021.120384_bib22) 2019; 2019 Pieper (10.1016/j.energy.2021.120384_bib25) 2018; 147 Voll (10.1016/j.energy.2021.120384_bib17) 2014 10.1016/j.energy.2021.120384_bib31 Kotzur (10.1016/j.energy.2021.120384_bib32) 2018; 117 Ebrahimi (10.1016/j.energy.2021.120384_bib6) 2014; 31 Buffa (10.1016/j.energy.2021.120384_bib12) 2019; 104 Schütz (10.1016/j.energy.2021.120384_bib18) 2018 Domínguez-Muñoz (10.1016/j.energy.2021.120384_bib34) 2011; 43 Lund (10.1016/j.energy.2021.120384_bib7) 2014; 68 Gurobi Optimization (10.1016/j.energy.2021.120384_bib35) Molyneaux (10.1016/j.energy.2021.120384_bib15) 2010; 35 Bahl (10.1016/j.energy.2021.120384_bib36) 2018; 5 Wang (10.1016/j.energy.2021.120384_bib20) 2020; 181 Wirtz (10.1016/j.energy.2021.120384_bib21) 2020; 260 Icha (10.1016/j.energy.2021.120384_bib29) 2020 Lund (10.1016/j.energy.2021.120384_bib11) 2017; 12 Fang (10.1016/j.energy.2021.120384_bib4) 2015; 86 Wahlroos (10.1016/j.energy.2021.120384_bib3) 2017; 140 (10.1016/j.energy.2021.120384_bib2) 2020 Mansoor (10.1016/j.energy.2021.120384_bib19) 2021; 215 Miika (10.1016/j.energy.2021.120384_bib10) 2017; 116 |
References_xml | – volume: 140 start-page: 1228 year: 2017 end-page: 1238 ident: bib3 article-title: Utilizing data center waste heat in district heating – impacts on energy efficiency and prospects for low-temperature district heating networks publication-title: Energy – ident: bib28 article-title: SMARD de. Markt - großhandelspreise – volume: 116 start-page: 56 year: 2017 end-page: 68 ident: bib10 article-title: Transition to low temperature distribution in existing systems publication-title: Energy Procedia – year: 2021 ident: bib23 article-title: Temperature control of a low-temperature district heating network with model predictive control and mixed-integer quadratically constrained programming – volume: 140 start-page: 121 year: 2017 end-page: 130 ident: bib14 article-title: Optimization approaches in district heating and cooling thermal network publication-title: Energy Build – ident: bib1 article-title: Bundesministerium für Wirtschaft und Energie, editor. Zahlen und Fakten Energiedaten – volume: 31 start-page: 622 year: 2014 end-page: 638 ident: bib6 article-title: A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities publication-title: Renew Sustain Energy Rev – volume: 68 start-page: 1 year: 2014 end-page: 11 ident: bib7 article-title: 4th generation district heating (4GDH) publication-title: Energy – volume: 260 start-page: 114158 year: 2020 ident: bib21 article-title: 5th Generation District Heating: a novel design approach based on mathematical optimization publication-title: Appl Energy – reference: Nussbaumer T, Thalmann S, Jenni A, Ködel J. Planungshandbuch fernwärme: schlussbericht: Version 1.1;. – volume: 43 start-page: 3036 year: 2011 end-page: 3043 ident: bib34 article-title: Selection of typical demand days for CHP optimization publication-title: Energy Build – volume: 117 start-page: 474 year: 2018 end-page: 487 ident: bib32 article-title: Impact of different time series aggregation methods on optimal energy system design publication-title: Renew Energy – year: 2020 ident: bib30 article-title: European union – volume: 104 start-page: 504 year: 2019 end-page: 522 ident: bib12 article-title: 5th generation district heating and cooling systems: a review of existing cases in Europe publication-title: Renew Sustain Energy Rev – volume: 106 start-page: 275 year: 2016 end-page: 285 ident: bib24 article-title: Partial load efficiency degradation of a water-to-water heat pump under fixed set-point control publication-title: Appl Therm Eng – reference: Bundesministerium für Verkehr, Bau und Stadtentwicklung, editor. Ermittlung von spezifischen Kosten energiesparender Bauteil-, Beleuchtungs-, Heizungs- und Klimatechnikausführungen bei Nichtwohngebäuden für die Wirtschaftlichkeitsuntersuchungen zur EnEV 2012. BMVBS-Online-Publikation;. – volume: 12 start-page: 5 year: 2017 end-page: 12 ident: bib11 article-title: Comparison of low-temperature district heating concepts in a long-term energy system perspective publication-title: International Journal of Sustainable Energy Planning and Management – volume: 116 start-page: 260 year: 2017 end-page: 272 ident: bib8 article-title: Assessing the techno-economic impact of low-temperature subnets in conventional district heating networks publication-title: Energy Procedia – volume: 116 start-page: 4 year: 2017 end-page: 12 ident: bib9 article-title: The fesibility analysis for the concept of low temperature district heating network with cascade utilization of heat between networks publication-title: Energy Procedia – volume: 82 start-page: 1749 year: 2018 end-page: 1764 ident: bib5 article-title: Future views on waste heat utilization – case of data centers in Northern Europe publication-title: Renew Sustain Energy Rev – year: 2018 ident: bib18 article-title: Optimal design of energy conversion units and building envelopes for residential neighborhoods [Dissertation] – volume: 230 start-page: 305 year: 2018 end-page: 316 ident: bib16 article-title: Operation optimization for combined cooling, heating, and power system with condensation heat recovery publication-title: Appl Energy – reference: A P Dobos: NREL. PVWatts version 5 manual;. – volume: 2016 start-page: 1 year: 2016 end-page: 12 ident: bib33 article-title: Clustering algorithms for the selection of typical demand days for the optimal design of building energy systems publication-title: Proceedings of ECOS – volume: 215 start-page: 119095 year: 2021 ident: bib19 article-title: Optimal planning of thermal energy systems in a microgrid with seasonal storage and piecewise affine cost functions publication-title: Energy – volume: 147 start-page: 358 year: 2018 end-page: 367 ident: bib25 article-title: Allocation of investment costs for large-scale heat pumps supplying district heating publication-title: Energy Procedia – volume: 2019 start-page: 953 year: 2019 end-page: 965 ident: bib22 article-title: Efficient formulation for optimizing temperature dependent energy systems with mixed-integer quadratically constrained programming publication-title: Proceedings of ECOS – volume: 181 start-page: 115975 year: 2020 ident: bib20 article-title: Optimization of a distributed energy system with multiple waste heat sources and heat storage of different temperatures based on the energy quality publication-title: Appl Therm Eng – year: 2014 ident: bib17 article-title: Automated optimization-based synthesis of distributed energy supply systems: zugl.: aachen, Techn. Hochsch., Diss publication-title: 2013. vol. 1 of Aachener Beiträge zur Technischen Thermodynamik – volume: 35 start-page: 751 year: 2010 end-page: 758 ident: bib15 article-title: Environomic multi-objective optimisation of a district heating network considering centralized and decentralized heat pumps publication-title: Energy – volume: 209 start-page: 502 year: 2018 end-page: 515 ident: bib13 article-title: Bidirectional low temperature district energy systems with agent-based control: performance comparison and operation optimization publication-title: Appl Energy – volume: 5 start-page: 333 year: 2018 ident: bib36 article-title: Typical periods for two-stage synthesis by time-series aggregation with bounded error in objective function publication-title: Frontiers in Energy Research – volume: 86 start-page: 589 year: 2015 end-page: 602 ident: bib4 article-title: Key issues and solutions in a district heating system using low-grade industrial waste heat publication-title: Energy – year: 2020 ident: bib2 publication-title: Union E. Publications office of the European union – year: 2020 ident: bib29 publication-title: Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2019 – ident: bib35 article-title: Gurobi optimizer reference manual – volume: 2016 start-page: 1 year: 2016 ident: 10.1016/j.energy.2021.120384_bib33 article-title: Clustering algorithms for the selection of typical demand days for the optimal design of building energy systems publication-title: Proceedings of ECOS – volume: 82 start-page: 1749 year: 2018 ident: 10.1016/j.energy.2021.120384_bib5 article-title: Future views on waste heat utilization – case of data centers in Northern Europe publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.10.058 – volume: 86 start-page: 589 year: 2015 ident: 10.1016/j.energy.2021.120384_bib4 article-title: Key issues and solutions in a district heating system using low-grade industrial waste heat publication-title: Energy doi: 10.1016/j.energy.2015.04.052 – volume: 215 start-page: 119095 year: 2021 ident: 10.1016/j.energy.2021.120384_bib19 article-title: Optimal planning of thermal energy systems in a microgrid with seasonal storage and piecewise affine cost functions publication-title: Energy doi: 10.1016/j.energy.2020.119095 – volume: 12 start-page: 5 year: 2017 ident: 10.1016/j.energy.2021.120384_bib11 article-title: Comparison of low-temperature district heating concepts in a long-term energy system perspective publication-title: International Journal of Sustainable Energy Planning and Management – volume: 2019 start-page: 953 year: 2019 ident: 10.1016/j.energy.2021.120384_bib22 article-title: Efficient formulation for optimizing temperature dependent energy systems with mixed-integer quadratically constrained programming publication-title: Proceedings of ECOS – ident: 10.1016/j.energy.2021.120384_bib27 – volume: 260 start-page: 114158 year: 2020 ident: 10.1016/j.energy.2021.120384_bib21 article-title: 5th Generation District Heating: a novel design approach based on mathematical optimization publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114158 – ident: 10.1016/j.energy.2021.120384_bib35 – volume: 5 start-page: 333 year: 2018 ident: 10.1016/j.energy.2021.120384_bib36 article-title: Typical periods for two-stage synthesis by time-series aggregation with bounded error in objective function publication-title: Frontiers in Energy Research doi: 10.3389/fenrg.2017.00035 – volume: 140 start-page: 121 year: 2017 ident: 10.1016/j.energy.2021.120384_bib14 article-title: Optimization approaches in district heating and cooling thermal network publication-title: Energy Build doi: 10.1016/j.enbuild.2017.01.062 – volume: 181 start-page: 115975 year: 2020 ident: 10.1016/j.energy.2021.120384_bib20 article-title: Optimization of a distributed energy system with multiple waste heat sources and heat storage of different temperatures based on the energy quality publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2020.115975 – volume: 147 start-page: 358 year: 2018 ident: 10.1016/j.energy.2021.120384_bib25 article-title: Allocation of investment costs for large-scale heat pumps supplying district heating publication-title: Energy Procedia doi: 10.1016/j.egypro.2018.07.104 – year: 2020 ident: 10.1016/j.energy.2021.120384_bib29 – volume: 117 start-page: 474 year: 2018 ident: 10.1016/j.energy.2021.120384_bib32 article-title: Impact of different time series aggregation methods on optimal energy system design publication-title: Renew Energy doi: 10.1016/j.renene.2017.10.017 – year: 2020 ident: 10.1016/j.energy.2021.120384_bib2 – volume: 68 start-page: 1 year: 2014 ident: 10.1016/j.energy.2021.120384_bib7 article-title: 4th generation district heating (4GDH) publication-title: Energy doi: 10.1016/j.energy.2014.02.089 – volume: 116 start-page: 4 year: 2017 ident: 10.1016/j.energy.2021.120384_bib9 article-title: The fesibility analysis for the concept of low temperature district heating network with cascade utilization of heat between networks publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.05.050 – volume: 140 start-page: 1228 year: 2017 ident: 10.1016/j.energy.2021.120384_bib3 article-title: Utilizing data center waste heat in district heating – impacts on energy efficiency and prospects for low-temperature district heating networks publication-title: Energy doi: 10.1016/j.energy.2017.08.078 – year: 2014 ident: 10.1016/j.energy.2021.120384_bib17 article-title: Automated optimization-based synthesis of distributed energy supply systems: zugl.: aachen, Techn. Hochsch., Diss – year: 2018 ident: 10.1016/j.energy.2021.120384_bib18 – ident: 10.1016/j.energy.2021.120384_bib31 – year: 2021 ident: 10.1016/j.energy.2021.120384_bib23 – volume: 106 start-page: 275 year: 2016 ident: 10.1016/j.energy.2021.120384_bib24 article-title: Partial load efficiency degradation of a water-to-water heat pump under fixed set-point control publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.05.193 – volume: 230 start-page: 305 year: 2018 ident: 10.1016/j.energy.2021.120384_bib16 article-title: Operation optimization for combined cooling, heating, and power system with condensation heat recovery publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.08.101 – volume: 116 start-page: 56 year: 2017 ident: 10.1016/j.energy.2021.120384_bib10 article-title: Transition to low temperature distribution in existing systems publication-title: Energy Procedia – volume: 35 start-page: 751 issue: 2 year: 2010 ident: 10.1016/j.energy.2021.120384_bib15 article-title: Environomic multi-objective optimisation of a district heating network considering centralized and decentralized heat pumps publication-title: Energy doi: 10.1016/j.energy.2009.09.028 – ident: 10.1016/j.energy.2021.120384_bib26 – volume: 209 start-page: 502 year: 2018 ident: 10.1016/j.energy.2021.120384_bib13 article-title: Bidirectional low temperature district energy systems with agent-based control: performance comparison and operation optimization publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.10.072 – volume: 116 start-page: 260 year: 2017 ident: 10.1016/j.energy.2021.120384_bib8 article-title: Assessing the techno-economic impact of low-temperature subnets in conventional district heating networks publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.05.073 – volume: 31 start-page: 622 year: 2014 ident: 10.1016/j.energy.2021.120384_bib6 article-title: A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.12.007 – volume: 43 start-page: 3036 issue: 11 year: 2011 ident: 10.1016/j.energy.2021.120384_bib34 article-title: Selection of typical demand days for CHP optimization publication-title: Energy Build doi: 10.1016/j.enbuild.2011.07.024 – volume: 104 start-page: 504 year: 2019 ident: 10.1016/j.energy.2021.120384_bib12 article-title: 5th generation district heating and cooling systems: a review of existing cases in Europe publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.12.059 |
SSID | ssj0005899 |
Score | 2.4504905 |
Snippet | District heating is a state of the art technology for efficient supply of heat. Modern 4th generation and 5th generation district heating networks can be used... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 120384 |
SubjectTerms | Carbon dioxide Carbon dioxide emissions Case studies Constraints Design Design optimization District heating Ecological effects Energy flow Flow rates Heat Heat exchangers Heat pump Heat pumps Heating Low temperature Low temperature district heating mass flow Mass flow rate MIQCP Mixed integer Optimization temperature Waste heat |
Title | Design optimization of a heating network with multiple heat pumps using mixed integer quadratically constrained programming |
URI | https://dx.doi.org/10.1016/j.energy.2021.120384 https://www.proquest.com/docview/2537697453 https://www.proquest.com/docview/2561537632 |
Volume | 226 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PaxQxFA6lHvQiWi2u1hLBa7ozSTaTHEttWRV70UJvIb9GVrqz2-4uKEL_9r6XydRWkILHmbwwYV7yfS8z33sh5H3lJfBy5CxOTGSy4ZEBKQhWibYxtTYq5LKLX07V9Ex-Op-cb5GjIRcGZZUF-3tMz2hd7ozL2xwvZ7PxV8BeiDckh00L8KxAHJaywVl-cH1H5qHzGZJozNB6SJ_LGq-U8-tgl8jrg5pXQst_0dNfQJ3Z5-QZeVrCRnrYj-w52UrdDnk8ZBWvdsju8Z-MNTAsS3b1gvz-kDUadAHYMC9Jl3TRUkcRhoG4aNcrwSl-kqWDwDC30iU4e0VRG_-dzmc_U6S5vES6opcbF3HygIsvftGAUSYeNgEWRfE1hz4vydnJ8bejKSsnLrAgVLNmzuvQKOB4GYPXrTONaOvgIAqovDcqRizn51Ptqmi00x4ic6NM7Q24PHCpxC7Z7hZdekUo3PFpEppkopEpVboNXGMxPQX8l5QbETG8aBtKOXIc6IUddGc_bO8ei-6xvXtGhN32WvblOB6wbwYf2nvTygJjPNBzb3C5Lct6ZTkWv4Ed2ESMyLvbZliQ-JfFdWmxQRuMoQG2-ev_fvgb8gSvelnwHtleX23SWwh-1n4_z-598ujw4-fp6Q08HQZd |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELXQcqCXqqVFXUqpK_XqbhInjn1EFLQU2EtB4mb5K9VWbHbL7kpF_PnOOA6ISgiJazxWLI_93jh5Mybka2ZL4GVfMF8pz8q68AxIgbOMN7XKpRIull08n4jxZfnjqrraIId9LgzKKhP2d5ge0To9GaXZHC2m09FPwF6IN8oCDi3AsxxweBOrU1UDsnlwcjqePCg9ZLxGEu0Zdugz6KLMK8QUOzgoFvm3vMi4LJ9iqP-wOhLQ8RvyOkWO9KAb3FuyEdptstUnFi-3yc7RQ9IaGKZdu3xH7r5HmQadAzzMUt4lnTfUUERi4C7admJwil9laa8xjK10Af5eUpTH_6Kz6d_gaawwEW7on7XxuH7Ay9e31GGgifdNgEUSfc2gz3tyeXx0cThm6dIF5rioV8xY6WoBNF96Z2VjVM2b3BkIBDJrlfAeK_rZkJvMK2mkheBcCZVbBV53RSn4Dhm08zZ8IBSe2FC5OiivyhAy2bhCYj09ARQYhBkS3k-0dqkiOQ70WvfSs9-6c49G9-jOPUPC7nstuoocz9jXvQ_1o5WlgTSe6bnXu1ynnb3UBda_gUNYxYfky30z7En80WLaMF-jDYbRgNzF7otf_plsjS_Oz_TZyeT0I3mFLZ1KeI8MVjfr8AlioZXdT2v9HyimCQ4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+optimization+of+a+heating+network+with+multiple+heat+pumps+using+mixed+integer+quadratically+constrained+programming&rft.jtitle=Energy+%28Oxford%29&rft.au=Hering%2C+Dominik&rft.au=Xhonneux%2C+Andr%C3%A9&rft.au=M%C3%BCller%2C+Dirk&rft.date=2021-07-01&rft.issn=0360-5442&rft.volume=226+p.120384-&rft_id=info:doi/10.1016%2Fj.energy.2021.120384&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |