Design optimization of a heating network with multiple heat pumps using mixed integer quadratically constrained programming

District heating is a state of the art technology for efficient supply of heat. Modern 4th generation and 5th generation district heating networks can be used to integrate sources of waste heat, which allows efficient operation. The design of such heating networks is subject of many optimization mod...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 226; p. 120384
Main Authors Hering, Dominik, Xhonneux, André, Müller, Dirk
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.07.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract District heating is a state of the art technology for efficient supply of heat. Modern 4th generation and 5th generation district heating networks can be used to integrate sources of waste heat, which allows efficient operation. The design of such heating networks is subject of many optimization models. Most optimization models focus on energy flows and result in Mixed Integer Linear Programs. This requires simplifications, where temperatures and mass flow rates are neglected or simplified. This work presents a Mixed Integer Quadratically Constrained Program with temperature constraints. A case study is presented, where the integration of low temperature waste heat in a district heating network is optimized. In this case study the positioning of heat pumps at the supply or at the consumers influences network operation. The results show a trade-off between economical and ecological optimal solutions with a range of total annualized costs from 120,000 EUR/a to 307,000 EUR/a and a range of CO2-Emissions from 193 t/a to 605 t/a. Furthermore, the influence of design decisions on the optimal operation is demonstrated. All in all, the quadratic model formulation stresses the influence of temperatures on the optimization outcome and offers pareto optimal solutions for the design of the presented case study. •Low temperature district heating allows to integrate waste heat sources.•Design optimization of district heating depends on temperatures of all parties.•MIQCP formulation of design optimization allows to regard temperatures.•Temperature sensitive Heat Pump positioning in district heating is demonstrated.
AbstractList District heating is a state of the art technology for efficient supply of heat. Modern 4th generation and 5th generation district heating networks can be used to integrate sources of waste heat, which allows efficient operation. The design of such heating networks is subject of many optimization models. Most optimization models focus on energy flows and result in Mixed Integer Linear Programs. This requires simplifications, where temperatures and mass flow rates are neglected or simplified. This work presents a Mixed Integer Quadratically Constrained Program with temperature constraints. A case study is presented, where the integration of low temperature waste heat in a district heating network is optimized. In this case study the positioning of heat pumps at the supply or at the consumers influences network operation. The results show a trade-off between economical and ecological optimal solutions with a range of total annualized costs from 120,000 EUR/a to 307,000 EUR/a and a range of CO2-Emissions from 193 t/a to 605 t/a. Furthermore, the influence of design decisions on the optimal operation is demonstrated. All in all, the quadratic model formulation stresses the influence of temperatures on the optimization outcome and offers pareto optimal solutions for the design of the presented case study.
District heating is a state of the art technology for efficient supply of heat. Modern 4th generation and 5th generation district heating networks can be used to integrate sources of waste heat, which allows efficient operation. The design of such heating networks is subject of many optimization models. Most optimization models focus on energy flows and result in Mixed Integer Linear Programs. This requires simplifications, where temperatures and mass flow rates are neglected or simplified. This work presents a Mixed Integer Quadratically Constrained Program with temperature constraints. A case study is presented, where the integration of low temperature waste heat in a district heating network is optimized. In this case study the positioning of heat pumps at the supply or at the consumers influences network operation. The results show a trade-off between economical and ecological optimal solutions with a range of total annualized costs from 120,000 EUR/a to 307,000 EUR/a and a range of CO₂-Emissions from 193 t/a to 605 t/a. Furthermore, the influence of design decisions on the optimal operation is demonstrated. All in all, the quadratic model formulation stresses the influence of temperatures on the optimization outcome and offers pareto optimal solutions for the design of the presented case study.
District heating is a state of the art technology for efficient supply of heat. Modern 4th generation and 5th generation district heating networks can be used to integrate sources of waste heat, which allows efficient operation. The design of such heating networks is subject of many optimization models. Most optimization models focus on energy flows and result in Mixed Integer Linear Programs. This requires simplifications, where temperatures and mass flow rates are neglected or simplified. This work presents a Mixed Integer Quadratically Constrained Program with temperature constraints. A case study is presented, where the integration of low temperature waste heat in a district heating network is optimized. In this case study the positioning of heat pumps at the supply or at the consumers influences network operation. The results show a trade-off between economical and ecological optimal solutions with a range of total annualized costs from 120,000 EUR/a to 307,000 EUR/a and a range of CO2-Emissions from 193 t/a to 605 t/a. Furthermore, the influence of design decisions on the optimal operation is demonstrated. All in all, the quadratic model formulation stresses the influence of temperatures on the optimization outcome and offers pareto optimal solutions for the design of the presented case study. •Low temperature district heating allows to integrate waste heat sources.•Design optimization of district heating depends on temperatures of all parties.•MIQCP formulation of design optimization allows to regard temperatures.•Temperature sensitive Heat Pump positioning in district heating is demonstrated.
ArticleNumber 120384
Author Hering, Dominik
Müller, Dirk
Xhonneux, André
Author_xml – sequence: 1
  givenname: Dominik
  orcidid: 0000-0001-6460-1954
  surname: Hering
  fullname: Hering, Dominik
  email: d.hering@fz-juelich.de
  organization: Institute of Energy and Climate Research - Energy Systems Engineering (IEK-10), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
– sequence: 2
  givenname: André
  surname: Xhonneux
  fullname: Xhonneux, André
  organization: Institute of Energy and Climate Research - Energy Systems Engineering (IEK-10), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
– sequence: 3
  givenname: Dirk
  surname: Müller
  fullname: Müller, Dirk
  organization: Institute of Energy and Climate Research - Energy Systems Engineering (IEK-10), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
BookMark eNqFkcGO1SAUhokZE--MvoELEjdueoVCKbgwMaOOJpO40TWh9LTDtYUOUMerLz_cqatZ6Iqc8H0H8v_n6MwHDwi9pGRPCRVvDnvwEMfjviY13dOaMMmfoB2VLatEK5sztCNMkKrhvH6GzlM6EEIaqdQO_fkAyY0ehyW72f022YUyDNjgGyiDH7GHfBfiD3zn8g2e1ym7ZYKHW7ys85Lwmk7Y7H5Bj53PMELEt6vpY_GtmaYjtsGnHI3zhVhiGKOZ5-I8R08HMyV48fe8QN8_ffx2-bm6_nr15fL9dWWZaHNlOmlbwYngve3kYFTLBmoNlZR0nRJ9L2lLOqCG9Eoa2bW1UkLRTpGO25oLdoFeb3vL27crpKxnlyxMk_EQ1qTrRtCGtYLVBX31CD2ENfryu0IVRLW8YYXiG2VjSCnCoJfoZhOPmhJ9akQf9NaIPjWit0aK9vaRZl1-SPwUzvQ_-d0mQ0nqp4Ook3XgLfQugs26D-7fC-4BoyeuLw
CitedBy_id crossref_primary_10_1016_j_enconman_2024_119233
crossref_primary_10_1088_1742_6596_2237_1_012023
crossref_primary_10_1016_j_energy_2024_132461
crossref_primary_10_1016_j_enconman_2022_116593
crossref_primary_10_1016_j_energy_2024_131872
crossref_primary_10_1016_j_enconman_2024_118079
crossref_primary_10_1016_j_enbuild_2025_115618
crossref_primary_10_1016_j_procs_2024_09_277
crossref_primary_10_3390_en15155478
crossref_primary_10_1016_j_energy_2025_134615
crossref_primary_10_1016_j_enbuild_2024_114904
crossref_primary_10_1016_j_epsr_2024_111046
crossref_primary_10_1007_s10898_024_01370_8
crossref_primary_10_1038_s43247_024_01439_y
crossref_primary_10_1016_j_rser_2023_113429
crossref_primary_10_1109_OJIES_2024_3486560
crossref_primary_10_1016_j_rser_2024_114729
crossref_primary_10_1016_j_adapen_2024_100190
crossref_primary_10_1016_j_scs_2024_105897
crossref_primary_10_1016_j_energy_2022_123766
crossref_primary_10_1111_1477_8947_12543
Cites_doi 10.1016/j.rser.2017.10.058
10.1016/j.energy.2015.04.052
10.1016/j.energy.2020.119095
10.1016/j.apenergy.2019.114158
10.3389/fenrg.2017.00035
10.1016/j.enbuild.2017.01.062
10.1016/j.applthermaleng.2020.115975
10.1016/j.egypro.2018.07.104
10.1016/j.renene.2017.10.017
10.1016/j.energy.2014.02.089
10.1016/j.egypro.2017.05.050
10.1016/j.energy.2017.08.078
10.1016/j.applthermaleng.2016.05.193
10.1016/j.apenergy.2018.08.101
10.1016/j.energy.2009.09.028
10.1016/j.apenergy.2017.10.072
10.1016/j.egypro.2017.05.073
10.1016/j.rser.2013.12.007
10.1016/j.enbuild.2011.07.024
10.1016/j.rser.2018.12.059
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Jul 1, 2021
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 1, 2021
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2021.120384
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
ExternalDocumentID 10_1016_j_energy_2021_120384
S0360544221006332
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SEW
SSH
WUQ
7SP
7ST
7TB
8FD
C1K
EFKBS
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c367t-ab8c764064dcb8fa973f1ca1810bb96dd8170be1a0d98a8b7299691b90b4c2463
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Mon Jul 21 11:20:58 EDT 2025
Wed Aug 13 07:20:26 EDT 2025
Tue Jul 01 00:43:40 EDT 2025
Thu Apr 24 22:51:05 EDT 2025
Fri Feb 23 02:41:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Heat pump
Waste heat
MIQCP
Low temperature district heating
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-ab8c764064dcb8fa973f1ca1810bb96dd8170be1a0d98a8b7299691b90b4c2463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6460-1954
PQID 2537697453
PQPubID 2045484
ParticipantIDs proquest_miscellaneous_2561537632
proquest_journals_2537697453
crossref_primary_10_1016_j_energy_2021_120384
crossref_citationtrail_10_1016_j_energy_2021_120384
elsevier_sciencedirect_doi_10_1016_j_energy_2021_120384
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-01
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Mansoor, Stadler, Zellinger, Lichtenegger, Auer, Cosic (bib19) 2021; 215
Nussbaumer T, Thalmann S, Jenni A, Ködel J. Planungshandbuch fernwärme: schlussbericht: Version 1.1;.
Pieper, Ommen, Buhler, Paaske, Elmegaard, Markussen (bib25) 2018; 147
Kotzur, Markewitz, Robinius, Stolten (bib32) 2018; 117
Icha, Kuhs (bib29) 2020
Voll (bib17) 2014
Gurobi Optimization (bib35)
Fang, Xia, Jiang (bib4) 2015; 86
Buffa, Cozzini, D’Antoni, Baratieri, Fedrizzi (bib12) 2019; 104
bib28
Miika, Sipilä (bib10) 2017; 116
Molyneaux, Leyland, Favrat (bib15) 2010; 35
Wasserfall, Powilleit, Kirschbaum, Wrobel (bib22) 2019; 2019
Castro Flores, Lacarrière, B Chiu, Martin (bib8) 2017; 116
Wang, Tian, Yan, Feng, Wang, Pan (bib20) 2020; 181
Wirtz, Kivilip, Remmen, Müller (bib21) 2020; 260
Bahl, Söhler, Hennen, Bardow (bib36) 2018; 5
Lund, Yang, Vad Mathiesen (bib11) 2017; 12
Domínguez-Muñoz, Cejudo-López, Carrillo-Andrés, Gallardo-Salazar (bib34) 2011; 43
Wahlroos, Pärssinen, Manner, Syri (bib3) 2017; 140
Schütz (bib18) 2018
Hering, Cansev, Tamassia, Xhonneux, Müller (bib23) 2021
A P Dobos: NREL. PVWatts version 5 manual;.
Lund, Werner, Wiltshire, Svendsen, Thorsen, Hvelplund (bib7) 2014; 68
Bünning, Wetter, Fuchs, Müller (bib13) 2018; 209
Wahlroos, Pärssinen, Rinne, Syri, Manner (bib5) 2018; 82
Ebrahimi, Jones, Fleischer (bib6) 2014; 31
Li, Sun, Zhang, Zhang (bib16) 2018; 230
(bib2) 2020
Imran, Usman, Hoon, Yong, Park, Byung (bib9) 2017; 116
Schütz, Schraven, Harb, Fuchs, Müller (bib33) 2016; 2016
bib1
Waddicor, Fuentes, Azar, Salom (bib24) 2016; 106
Sameti, Haghighat (bib14) 2017; 140
(bib30) 2020
Bundesministerium für Verkehr, Bau und Stadtentwicklung, editor. Ermittlung von spezifischen Kosten energiesparender Bauteil-, Beleuchtungs-, Heizungs- und Klimatechnikausführungen bei Nichtwohngebäuden für die Wirtschaftlichkeitsuntersuchungen zur EnEV 2012. BMVBS-Online-Publikation;.
Bünning (10.1016/j.energy.2021.120384_bib13) 2018; 209
Wahlroos (10.1016/j.energy.2021.120384_bib5) 2018; 82
Hering (10.1016/j.energy.2021.120384_bib23) 2021
Li (10.1016/j.energy.2021.120384_bib16) 2018; 230
Sameti (10.1016/j.energy.2021.120384_bib14) 2017; 140
Waddicor (10.1016/j.energy.2021.120384_bib24) 2016; 106
10.1016/j.energy.2021.120384_bib27
10.1016/j.energy.2021.120384_bib26
Schütz (10.1016/j.energy.2021.120384_bib33) 2016; 2016
Castro Flores (10.1016/j.energy.2021.120384_bib8) 2017; 116
Imran (10.1016/j.energy.2021.120384_bib9) 2017; 116
Wasserfall (10.1016/j.energy.2021.120384_bib22) 2019; 2019
Pieper (10.1016/j.energy.2021.120384_bib25) 2018; 147
Voll (10.1016/j.energy.2021.120384_bib17) 2014
10.1016/j.energy.2021.120384_bib31
Kotzur (10.1016/j.energy.2021.120384_bib32) 2018; 117
Ebrahimi (10.1016/j.energy.2021.120384_bib6) 2014; 31
Buffa (10.1016/j.energy.2021.120384_bib12) 2019; 104
Schütz (10.1016/j.energy.2021.120384_bib18) 2018
Domínguez-Muñoz (10.1016/j.energy.2021.120384_bib34) 2011; 43
Lund (10.1016/j.energy.2021.120384_bib7) 2014; 68
Gurobi Optimization (10.1016/j.energy.2021.120384_bib35)
Molyneaux (10.1016/j.energy.2021.120384_bib15) 2010; 35
Bahl (10.1016/j.energy.2021.120384_bib36) 2018; 5
Wang (10.1016/j.energy.2021.120384_bib20) 2020; 181
Wirtz (10.1016/j.energy.2021.120384_bib21) 2020; 260
Icha (10.1016/j.energy.2021.120384_bib29) 2020
Lund (10.1016/j.energy.2021.120384_bib11) 2017; 12
Fang (10.1016/j.energy.2021.120384_bib4) 2015; 86
Wahlroos (10.1016/j.energy.2021.120384_bib3) 2017; 140
(10.1016/j.energy.2021.120384_bib2) 2020
Mansoor (10.1016/j.energy.2021.120384_bib19) 2021; 215
Miika (10.1016/j.energy.2021.120384_bib10) 2017; 116
References_xml – volume: 140
  start-page: 1228
  year: 2017
  end-page: 1238
  ident: bib3
  article-title: Utilizing data center waste heat in district heating – impacts on energy efficiency and prospects for low-temperature district heating networks
  publication-title: Energy
– ident: bib28
  article-title: SMARD de. Markt - großhandelspreise
– volume: 116
  start-page: 56
  year: 2017
  end-page: 68
  ident: bib10
  article-title: Transition to low temperature distribution in existing systems
  publication-title: Energy Procedia
– year: 2021
  ident: bib23
  article-title: Temperature control of a low-temperature district heating network with model predictive control and mixed-integer quadratically constrained programming
– volume: 140
  start-page: 121
  year: 2017
  end-page: 130
  ident: bib14
  article-title: Optimization approaches in district heating and cooling thermal network
  publication-title: Energy Build
– ident: bib1
  article-title: Bundesministerium für Wirtschaft und Energie, editor. Zahlen und Fakten Energiedaten
– volume: 31
  start-page: 622
  year: 2014
  end-page: 638
  ident: bib6
  article-title: A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities
  publication-title: Renew Sustain Energy Rev
– volume: 68
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib7
  article-title: 4th generation district heating (4GDH)
  publication-title: Energy
– volume: 260
  start-page: 114158
  year: 2020
  ident: bib21
  article-title: 5th Generation District Heating: a novel design approach based on mathematical optimization
  publication-title: Appl Energy
– reference: Nussbaumer T, Thalmann S, Jenni A, Ködel J. Planungshandbuch fernwärme: schlussbericht: Version 1.1;.
– volume: 43
  start-page: 3036
  year: 2011
  end-page: 3043
  ident: bib34
  article-title: Selection of typical demand days for CHP optimization
  publication-title: Energy Build
– volume: 117
  start-page: 474
  year: 2018
  end-page: 487
  ident: bib32
  article-title: Impact of different time series aggregation methods on optimal energy system design
  publication-title: Renew Energy
– year: 2020
  ident: bib30
  article-title: European union
– volume: 104
  start-page: 504
  year: 2019
  end-page: 522
  ident: bib12
  article-title: 5th generation district heating and cooling systems: a review of existing cases in Europe
  publication-title: Renew Sustain Energy Rev
– volume: 106
  start-page: 275
  year: 2016
  end-page: 285
  ident: bib24
  article-title: Partial load efficiency degradation of a water-to-water heat pump under fixed set-point control
  publication-title: Appl Therm Eng
– reference: Bundesministerium für Verkehr, Bau und Stadtentwicklung, editor. Ermittlung von spezifischen Kosten energiesparender Bauteil-, Beleuchtungs-, Heizungs- und Klimatechnikausführungen bei Nichtwohngebäuden für die Wirtschaftlichkeitsuntersuchungen zur EnEV 2012. BMVBS-Online-Publikation;.
– volume: 12
  start-page: 5
  year: 2017
  end-page: 12
  ident: bib11
  article-title: Comparison of low-temperature district heating concepts in a long-term energy system perspective
  publication-title: International Journal of Sustainable Energy Planning and Management
– volume: 116
  start-page: 260
  year: 2017
  end-page: 272
  ident: bib8
  article-title: Assessing the techno-economic impact of low-temperature subnets in conventional district heating networks
  publication-title: Energy Procedia
– volume: 116
  start-page: 4
  year: 2017
  end-page: 12
  ident: bib9
  article-title: The fesibility analysis for the concept of low temperature district heating network with cascade utilization of heat between networks
  publication-title: Energy Procedia
– volume: 82
  start-page: 1749
  year: 2018
  end-page: 1764
  ident: bib5
  article-title: Future views on waste heat utilization – case of data centers in Northern Europe
  publication-title: Renew Sustain Energy Rev
– year: 2018
  ident: bib18
  article-title: Optimal design of energy conversion units and building envelopes for residential neighborhoods [Dissertation]
– volume: 230
  start-page: 305
  year: 2018
  end-page: 316
  ident: bib16
  article-title: Operation optimization for combined cooling, heating, and power system with condensation heat recovery
  publication-title: Appl Energy
– reference: A P Dobos: NREL. PVWatts version 5 manual;.
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 12
  ident: bib33
  article-title: Clustering algorithms for the selection of typical demand days for the optimal design of building energy systems
  publication-title: Proceedings of ECOS
– volume: 215
  start-page: 119095
  year: 2021
  ident: bib19
  article-title: Optimal planning of thermal energy systems in a microgrid with seasonal storage and piecewise affine cost functions
  publication-title: Energy
– volume: 147
  start-page: 358
  year: 2018
  end-page: 367
  ident: bib25
  article-title: Allocation of investment costs for large-scale heat pumps supplying district heating
  publication-title: Energy Procedia
– volume: 2019
  start-page: 953
  year: 2019
  end-page: 965
  ident: bib22
  article-title: Efficient formulation for optimizing temperature dependent energy systems with mixed-integer quadratically constrained programming
  publication-title: Proceedings of ECOS
– volume: 181
  start-page: 115975
  year: 2020
  ident: bib20
  article-title: Optimization of a distributed energy system with multiple waste heat sources and heat storage of different temperatures based on the energy quality
  publication-title: Appl Therm Eng
– year: 2014
  ident: bib17
  article-title: Automated optimization-based synthesis of distributed energy supply systems: zugl.: aachen, Techn. Hochsch., Diss
  publication-title: 2013. vol. 1 of Aachener Beiträge zur Technischen Thermodynamik
– volume: 35
  start-page: 751
  year: 2010
  end-page: 758
  ident: bib15
  article-title: Environomic multi-objective optimisation of a district heating network considering centralized and decentralized heat pumps
  publication-title: Energy
– volume: 209
  start-page: 502
  year: 2018
  end-page: 515
  ident: bib13
  article-title: Bidirectional low temperature district energy systems with agent-based control: performance comparison and operation optimization
  publication-title: Appl Energy
– volume: 5
  start-page: 333
  year: 2018
  ident: bib36
  article-title: Typical periods for two-stage synthesis by time-series aggregation with bounded error in objective function
  publication-title: Frontiers in Energy Research
– volume: 86
  start-page: 589
  year: 2015
  end-page: 602
  ident: bib4
  article-title: Key issues and solutions in a district heating system using low-grade industrial waste heat
  publication-title: Energy
– year: 2020
  ident: bib2
  publication-title: Union E. Publications office of the European union
– year: 2020
  ident: bib29
  publication-title: Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990 - 2019
– ident: bib35
  article-title: Gurobi optimizer reference manual
– volume: 2016
  start-page: 1
  year: 2016
  ident: 10.1016/j.energy.2021.120384_bib33
  article-title: Clustering algorithms for the selection of typical demand days for the optimal design of building energy systems
  publication-title: Proceedings of ECOS
– volume: 82
  start-page: 1749
  year: 2018
  ident: 10.1016/j.energy.2021.120384_bib5
  article-title: Future views on waste heat utilization – case of data centers in Northern Europe
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.10.058
– volume: 86
  start-page: 589
  year: 2015
  ident: 10.1016/j.energy.2021.120384_bib4
  article-title: Key issues and solutions in a district heating system using low-grade industrial waste heat
  publication-title: Energy
  doi: 10.1016/j.energy.2015.04.052
– volume: 215
  start-page: 119095
  year: 2021
  ident: 10.1016/j.energy.2021.120384_bib19
  article-title: Optimal planning of thermal energy systems in a microgrid with seasonal storage and piecewise affine cost functions
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119095
– volume: 12
  start-page: 5
  year: 2017
  ident: 10.1016/j.energy.2021.120384_bib11
  article-title: Comparison of low-temperature district heating concepts in a long-term energy system perspective
  publication-title: International Journal of Sustainable Energy Planning and Management
– volume: 2019
  start-page: 953
  year: 2019
  ident: 10.1016/j.energy.2021.120384_bib22
  article-title: Efficient formulation for optimizing temperature dependent energy systems with mixed-integer quadratically constrained programming
  publication-title: Proceedings of ECOS
– ident: 10.1016/j.energy.2021.120384_bib27
– volume: 260
  start-page: 114158
  year: 2020
  ident: 10.1016/j.energy.2021.120384_bib21
  article-title: 5th Generation District Heating: a novel design approach based on mathematical optimization
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114158
– ident: 10.1016/j.energy.2021.120384_bib35
– volume: 5
  start-page: 333
  year: 2018
  ident: 10.1016/j.energy.2021.120384_bib36
  article-title: Typical periods for two-stage synthesis by time-series aggregation with bounded error in objective function
  publication-title: Frontiers in Energy Research
  doi: 10.3389/fenrg.2017.00035
– volume: 140
  start-page: 121
  year: 2017
  ident: 10.1016/j.energy.2021.120384_bib14
  article-title: Optimization approaches in district heating and cooling thermal network
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2017.01.062
– volume: 181
  start-page: 115975
  year: 2020
  ident: 10.1016/j.energy.2021.120384_bib20
  article-title: Optimization of a distributed energy system with multiple waste heat sources and heat storage of different temperatures based on the energy quality
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2020.115975
– volume: 147
  start-page: 358
  year: 2018
  ident: 10.1016/j.energy.2021.120384_bib25
  article-title: Allocation of investment costs for large-scale heat pumps supplying district heating
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2018.07.104
– year: 2020
  ident: 10.1016/j.energy.2021.120384_bib29
– volume: 117
  start-page: 474
  year: 2018
  ident: 10.1016/j.energy.2021.120384_bib32
  article-title: Impact of different time series aggregation methods on optimal energy system design
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.10.017
– year: 2020
  ident: 10.1016/j.energy.2021.120384_bib2
– volume: 68
  start-page: 1
  year: 2014
  ident: 10.1016/j.energy.2021.120384_bib7
  article-title: 4th generation district heating (4GDH)
  publication-title: Energy
  doi: 10.1016/j.energy.2014.02.089
– volume: 116
  start-page: 4
  year: 2017
  ident: 10.1016/j.energy.2021.120384_bib9
  article-title: The fesibility analysis for the concept of low temperature district heating network with cascade utilization of heat between networks
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.05.050
– volume: 140
  start-page: 1228
  year: 2017
  ident: 10.1016/j.energy.2021.120384_bib3
  article-title: Utilizing data center waste heat in district heating – impacts on energy efficiency and prospects for low-temperature district heating networks
  publication-title: Energy
  doi: 10.1016/j.energy.2017.08.078
– year: 2014
  ident: 10.1016/j.energy.2021.120384_bib17
  article-title: Automated optimization-based synthesis of distributed energy supply systems: zugl.: aachen, Techn. Hochsch., Diss
– year: 2018
  ident: 10.1016/j.energy.2021.120384_bib18
– ident: 10.1016/j.energy.2021.120384_bib31
– year: 2021
  ident: 10.1016/j.energy.2021.120384_bib23
– volume: 106
  start-page: 275
  year: 2016
  ident: 10.1016/j.energy.2021.120384_bib24
  article-title: Partial load efficiency degradation of a water-to-water heat pump under fixed set-point control
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.05.193
– volume: 230
  start-page: 305
  year: 2018
  ident: 10.1016/j.energy.2021.120384_bib16
  article-title: Operation optimization for combined cooling, heating, and power system with condensation heat recovery
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.08.101
– volume: 116
  start-page: 56
  year: 2017
  ident: 10.1016/j.energy.2021.120384_bib10
  article-title: Transition to low temperature distribution in existing systems
  publication-title: Energy Procedia
– volume: 35
  start-page: 751
  issue: 2
  year: 2010
  ident: 10.1016/j.energy.2021.120384_bib15
  article-title: Environomic multi-objective optimisation of a district heating network considering centralized and decentralized heat pumps
  publication-title: Energy
  doi: 10.1016/j.energy.2009.09.028
– ident: 10.1016/j.energy.2021.120384_bib26
– volume: 209
  start-page: 502
  year: 2018
  ident: 10.1016/j.energy.2021.120384_bib13
  article-title: Bidirectional low temperature district energy systems with agent-based control: performance comparison and operation optimization
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.10.072
– volume: 116
  start-page: 260
  year: 2017
  ident: 10.1016/j.energy.2021.120384_bib8
  article-title: Assessing the techno-economic impact of low-temperature subnets in conventional district heating networks
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.05.073
– volume: 31
  start-page: 622
  year: 2014
  ident: 10.1016/j.energy.2021.120384_bib6
  article-title: A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.12.007
– volume: 43
  start-page: 3036
  issue: 11
  year: 2011
  ident: 10.1016/j.energy.2021.120384_bib34
  article-title: Selection of typical demand days for CHP optimization
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2011.07.024
– volume: 104
  start-page: 504
  year: 2019
  ident: 10.1016/j.energy.2021.120384_bib12
  article-title: 5th generation district heating and cooling systems: a review of existing cases in Europe
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.12.059
SSID ssj0005899
Score 2.4504905
Snippet District heating is a state of the art technology for efficient supply of heat. Modern 4th generation and 5th generation district heating networks can be used...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 120384
SubjectTerms Carbon dioxide
Carbon dioxide emissions
Case studies
Constraints
Design
Design optimization
District heating
Ecological effects
Energy flow
Flow rates
Heat
Heat exchangers
Heat pump
Heat pumps
Heating
Low temperature
Low temperature district heating
mass flow
Mass flow rate
MIQCP
Mixed integer
Optimization
temperature
Waste heat
Title Design optimization of a heating network with multiple heat pumps using mixed integer quadratically constrained programming
URI https://dx.doi.org/10.1016/j.energy.2021.120384
https://www.proquest.com/docview/2537697453
https://www.proquest.com/docview/2561537632
Volume 226
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PaxQxFA6lHvQiWi2u1hLBa7ozSTaTHEttWRV70UJvIb9GVrqz2-4uKEL_9r6XydRWkILHmbwwYV7yfS8z33sh5H3lJfBy5CxOTGSy4ZEBKQhWibYxtTYq5LKLX07V9Ex-Op-cb5GjIRcGZZUF-3tMz2hd7ozL2xwvZ7PxV8BeiDckh00L8KxAHJaywVl-cH1H5qHzGZJozNB6SJ_LGq-U8-tgl8jrg5pXQst_0dNfQJ3Z5-QZeVrCRnrYj-w52UrdDnk8ZBWvdsju8Z-MNTAsS3b1gvz-kDUadAHYMC9Jl3TRUkcRhoG4aNcrwSl-kqWDwDC30iU4e0VRG_-dzmc_U6S5vES6opcbF3HygIsvftGAUSYeNgEWRfE1hz4vydnJ8bejKSsnLrAgVLNmzuvQKOB4GYPXrTONaOvgIAqovDcqRizn51Ptqmi00x4ic6NM7Q24PHCpxC7Z7hZdekUo3PFpEppkopEpVboNXGMxPQX8l5QbETG8aBtKOXIc6IUddGc_bO8ei-6xvXtGhN32WvblOB6wbwYf2nvTygJjPNBzb3C5Lct6ZTkWv4Ed2ESMyLvbZliQ-JfFdWmxQRuMoQG2-ev_fvgb8gSvelnwHtleX23SWwh-1n4_z-598ujw4-fp6Q08HQZd
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELXQcqCXqqVFXUqpK_XqbhInjn1EFLQU2EtB4mb5K9VWbHbL7kpF_PnOOA6ISgiJazxWLI_93jh5Mybka2ZL4GVfMF8pz8q68AxIgbOMN7XKpRIull08n4jxZfnjqrraIId9LgzKKhP2d5ge0To9GaXZHC2m09FPwF6IN8oCDi3AsxxweBOrU1UDsnlwcjqePCg9ZLxGEu0Zdugz6KLMK8QUOzgoFvm3vMi4LJ9iqP-wOhLQ8RvyOkWO9KAb3FuyEdptstUnFi-3yc7RQ9IaGKZdu3xH7r5HmQadAzzMUt4lnTfUUERi4C7admJwil9laa8xjK10Af5eUpTH_6Kz6d_gaawwEW7on7XxuH7Ay9e31GGgifdNgEUSfc2gz3tyeXx0cThm6dIF5rioV8xY6WoBNF96Z2VjVM2b3BkIBDJrlfAeK_rZkJvMK2mkheBcCZVbBV53RSn4Dhm08zZ8IBSe2FC5OiivyhAy2bhCYj09ARQYhBkS3k-0dqkiOQ70WvfSs9-6c49G9-jOPUPC7nstuoocz9jXvQ_1o5WlgTSe6bnXu1ynnb3UBda_gUNYxYfky30z7En80WLaMF-jDYbRgNzF7otf_plsjS_Oz_TZyeT0I3mFLZ1KeI8MVjfr8AlioZXdT2v9HyimCQ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+optimization+of+a+heating+network+with+multiple+heat+pumps+using+mixed+integer+quadratically+constrained+programming&rft.jtitle=Energy+%28Oxford%29&rft.au=Hering%2C+Dominik&rft.au=Xhonneux%2C+Andr%C3%A9&rft.au=M%C3%BCller%2C+Dirk&rft.date=2021-07-01&rft.issn=0360-5442&rft.volume=226+p.120384-&rft_id=info:doi/10.1016%2Fj.energy.2021.120384&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon