Surface-engineered N-doped carbon nanotubes with B-doped graphene quantum dots: Strategies to develop highly-efficient noble metal-free electrocatalyst for online-monitoring dissolved oxygen biosensor
Dissolved oxygen (DO) is an essential indicator for evaluating water quality, the exquisitely sensitive electrochemical DO sensor could accurately record response which was based on oxygen reduction reaction (ORR) with a sluggish reaction rate. Thus, high-efficient ORR electrocatalysts are urgently...
Saved in:
Published in | Carbon (New York) Vol. 186; pp. 406 - 415 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
01.01.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dissolved oxygen (DO) is an essential indicator for evaluating water quality, the exquisitely sensitive electrochemical DO sensor could accurately record response which was based on oxygen reduction reaction (ORR) with a sluggish reaction rate. Thus, high-efficient ORR electrocatalysts are urgently needed for broad applications. As a matter of fact, graphene quantum dots (GQDs) have attracted a great deal of attention, several heteroatoms are extensively introduced in GQDs fragments to regulate their inherent chemical and electrical properties by adjusting their electronic structure. However, B–N–C moieties always exist for some BN-codoped carbons due to the intermolecular force that might prohibit its electrocatalytic activity. Therefore, this research design a strategy to solve this problem; despite substantial efforts, this study shows a metal-free B-doped GQD/N-doped carbon nanotubes (BGQD/NCNTs) electrode significantly influences ORR electrocatalytic activity due to the synergistic effect and abundant active sites. Herein, BGQD/NCNTs exhibit an excellent ORR performance with an onset potential of 0.91 V (vs. RHE), exceeding most reported GQDs-introduced electrocatalysts; it also outperformed the commercial electrocatalyst in terms of long-term stability. For seawater DO sensing, BGQD/NCNTs exhibit ultra-high sensitivity of 0.011 mA/cm2ppm and further integrate into an online detection platform to accomplish the aim of continuous monitoring via a wireless connection.
[Display omitted]
•A novel strategy to lower B–N moieties in B,N-codoped carbon based electrocatalyst was proposed.•BGQDs/NCNTs display better onset potential toward ORR than pristine CNTs.•BGQD/NCNTs shows promising sensitivity and stability for dissolved oxygen sensing in seawater.•The aim of continuous online monitoring was achieved via a wireless connection. |
---|---|
AbstractList | Dissolved oxygen (DO) is an essential indicator for evaluating water quality, the exquisitely sensitive electrochemical DO sensor could accurately record response which was based on oxygen reduction reaction (ORR) with a sluggish reaction rate. Thus, high-efficient ORR electrocatalysts are urgently needed for broad applications. As a matter of fact, graphene quantum dots (GQDs) have attracted a great deal of attention, several heteroatoms are extensively introduced in GQDs fragments to regulate their inherent chemical and electrical properties by adjusting their electronic structure. However, B–N–C moieties always exist for some BN-codoped carbons due to the intermolecular force that might prohibit its electrocatalytic activity. Therefore, this research design a strategy to solve this problem; despite substantial efforts, this study shows a metal-free B-doped GQD/N-doped carbon nanotubes (BGQD/NCNTs) electrode significantly influences ORR electrocatalytic activity due to the synergistic effect and abundant active sites. Herein, BGQD/NCNTs exhibit an excellent ORR performance with an onset potential of 0.91 V (vs. RHE), exceeding most reported GQDs-introduced electrocatalysts; it also outperformed the commercial electrocatalyst in terms of long-term stability. For seawater DO sensing, BGQD/NCNTs exhibit ultra-high sensitivity of 0.011 mA/cm²ppm and further integrate into an online detection platform to accomplish the aim of continuous monitoring via a wireless connection. Dissolved oxygen (DO) is an essential indicator for evaluating water quality, the exquisitely sensitive electrochemical DO sensor could accurately record response which was based on oxygen reduction reaction (ORR) with a sluggish reaction rate. Thus, high-efficient ORR electrocatalysts are urgently needed for broad applications. As a matter of fact, graphene quantum dots (GQDs) have attracted a great deal of attention, several heteroatoms are extensively introduced in GQDs fragments to regulate their inherent chemical and electrical properties by adjusting their electronic structure. However, B–N–C moieties always exist for some BN-codoped carbons due to the intermolecular force that might prohibit its electrocatalytic activity. Therefore, this research design a strategy to solve this problem; despite substantial efforts, this study shows a metal-free B-doped GQD/N-doped carbon nanotubes (BGQD/NCNTs) electrode significantly influences ORR electrocatalytic activity due to the synergistic effect and abundant active sites. Herein, BGQD/NCNTs exhibit an excellent ORR performance with an onset potential of 0.91 V (vs. RHE), exceeding most reported GQDs-introduced electrocatalysts; it also outperformed the commercial electrocatalyst in terms of long-term stability. For seawater DO sensing, BGQD/NCNTs exhibit ultra-high sensitivity of 0.011 mA/cm2ppm and further integrate into an online detection platform to accomplish the aim of continuous monitoring via a wireless connection. [Display omitted] •A novel strategy to lower B–N moieties in B,N-codoped carbon based electrocatalyst was proposed.•BGQDs/NCNTs display better onset potential toward ORR than pristine CNTs.•BGQD/NCNTs shows promising sensitivity and stability for dissolved oxygen sensing in seawater.•The aim of continuous online monitoring was achieved via a wireless connection. Dissolved oxygen (DO) is an essential indicator for evaluating water quality, the exquisitely sensitive electrochemical DO sensor could accurately record response which was based on oxygen reduction reaction (ORR) with a sluggish reaction rate. Thus, high-efficient ORR electrocatalysts are urgently needed for broad applications. As a matter of fact, graphene quantum dots (GQDs) have attracted a great deal of attention, several heteroatoms are extensively introduced in GQDs fragments to regulate their inherent chemical and electrical properties by adjusting their electronic structure. However, B–N–C moieties always exist for some BN-codoped carbons due to the intermolecular force that might prohibit its electrocatalytic activity. Therefore, this research design a strategy to solve this problem; despite substantial efforts, this study shows a metal-free B-doped GQD/N-doped carbon nanotubes (BGQD/NCNTs) electrode significantly influences ORR electrocatalytic activity due to the synergistic effect and abundant active sites. Herein, BGQD/NCNTs exhibit an excellent ORR performance with an onset potential of 0.91 V (vs. RHE), exceeding most reported GQDs-introduced electrocatalysts; it also outperformed the commercial electrocatalyst in terms of long-term stability. For seawater DO sensing, BGQD/NCNTs exhibit ultra-high sensitivity of 0.011 mA/cm2ppm and further integrate into an online detection platform to accomplish the aim of continuous monitoring via a wireless connection. |
Author | Wang, Yu-Xuan Rinawati, Mia Lin, Pin-Hsuan Cheng, Yao-Sheng Chen, Kuan-Jung Ho, Kuo-Chuan Yeh, Min-Hsin Huang, Wei-Hsiang Chang, Ling-Yu Su, Wei-Nien |
Author_xml | – sequence: 1 givenname: Yu-Xuan surname: Wang fullname: Wang, Yu-Xuan organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan – sequence: 2 givenname: Mia surname: Rinawati fullname: Rinawati, Mia organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan – sequence: 3 givenname: Wei-Hsiang surname: Huang fullname: Huang, Wei-Hsiang organization: Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan – sequence: 4 givenname: Yao-Sheng surname: Cheng fullname: Cheng, Yao-Sheng organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan – sequence: 5 givenname: Pin-Hsuan surname: Lin fullname: Lin, Pin-Hsuan organization: Mighty Electronic Co, Ltd, Hsinchu City, Taiwan – sequence: 6 givenname: Kuan-Jung surname: Chen fullname: Chen, Kuan-Jung organization: Mighty Electronic Co, Ltd, Hsinchu City, Taiwan – sequence: 7 givenname: Ling-Yu surname: Chang fullname: Chang, Ling-Yu organization: Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan – sequence: 8 givenname: Kuo-Chuan surname: Ho fullname: Ho, Kuo-Chuan organization: Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 10617, Taiwan – sequence: 9 givenname: Wei-Nien surname: Su fullname: Su, Wei-Nien organization: Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan – sequence: 10 givenname: Min-Hsin orcidid: 0000-0002-6150-4750 surname: Yeh fullname: Yeh, Min-Hsin email: mhyeh@mail.ntust.edu.tw organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan |
BookMark | eNqFUU1v1DAUjFCR2Bb-AQdLXLhksePgpD0gQQUFqYJD4Wz54yXrleOX2s7C_kN-Vr1KTz3A6cnjmXlPM-fVWcAAVfWa0S2jTLzbb42KGsO2oQ0r0JY23bNqw_qO17y_ZGfVhlLa16Jp-IvqPKV9ebY9azfV37slDspADWF0ASCCJd9ri3OZqykJKmBeNCTy2-Ud-fT4O0Y17yAAuV9UyMtELOZ0Re5yVBlGV-gZiYUDeJzJzo07f6xhGJxxEDIJqD2QCbLy9RABCHgwOaJRBTmmTAaMBIMvN9UTBpcxujAS61JCfyjr8c9xhEC0wwQhYXxZPR-UT_DqcV5Uv758_nn9tb79cfPt-uNtbbjocq005VppI7Q2jRKMM9sz6Fsz0KHV_JKLoe-50q0u4QkAw5Th1vYdCKuNZfyierv6zhHvF0hZTi4Z8F4FwCXJRnDxnrYtFYX65gl1j0sM5brCahjr-pbSwrpaWSZiShEGaVxW2WEoSTovGZWnkuVern3IU8kntJRcxO0T8RzdpOLxf7IPqwxKUgcHUaZTLQasi6UGadH92-ABGD3MVw |
CitedBy_id | crossref_primary_10_1016_j_carbon_2022_08_067 crossref_primary_10_1016_j_cej_2024_148813 crossref_primary_10_1016_j_talanta_2024_126529 crossref_primary_10_1016_j_cej_2023_146754 crossref_primary_10_1016_j_electacta_2023_142494 crossref_primary_10_1021_acsaelm_3c01508 crossref_primary_10_1002_adsu_202300165 crossref_primary_10_1016_j_ccr_2025_216612 crossref_primary_10_1016_j_ijhydene_2023_06_315 crossref_primary_10_1016_j_jcis_2023_10_028 crossref_primary_10_1039_D3QI00865G crossref_primary_10_1016_j_cclet_2023_109136 crossref_primary_10_1002_admi_202101964 crossref_primary_10_1002_cssc_202300479 crossref_primary_10_1002_smll_202207181 crossref_primary_10_1016_j_foodchem_2024_139264 crossref_primary_10_1021_acsomega_2c05979 crossref_primary_10_1002_cctc_202201469 crossref_primary_10_1021_acsanm_2c02279 crossref_primary_10_1016_j_cjche_2023_11_027 crossref_primary_10_1016_j_inoche_2023_110894 crossref_primary_10_1021_acsanm_4c01899 crossref_primary_10_1021_acsomega_4c00169 crossref_primary_10_3390_pr10040643 crossref_primary_10_3389_fenrg_2023_1194674 crossref_primary_10_1039_D4RA01431F crossref_primary_10_1016_j_seppur_2022_121563 crossref_primary_10_1016_j_smaim_2022_10_003 crossref_primary_10_1039_D1TA10352K crossref_primary_10_1016_j_cej_2024_151436 crossref_primary_10_1515_znb_2023_0027 crossref_primary_10_1016_j_jallcom_2022_167781 crossref_primary_10_1016_j_ijhydene_2024_09_086 crossref_primary_10_1021_acsami_3c07261 crossref_primary_10_1002_aenm_202203720 crossref_primary_10_1016_j_apenergy_2024_122930 crossref_primary_10_1016_j_snb_2023_133617 crossref_primary_10_1002_cctc_202301760 crossref_primary_10_3389_fmats_2022_886471 crossref_primary_10_1039_D3NR05842E crossref_primary_10_1016_j_carbon_2022_12_048 crossref_primary_10_3390_molecules28041532 crossref_primary_10_1016_j_nanoen_2023_109114 crossref_primary_10_1088_1361_6528_ac512b |
Cites_doi | 10.1016/j.carbon.2018.01.070 10.3390/s150820193 10.1038/s41467-021-24329-9 10.1016/j.bios.2016.06.032 10.4319/lo.1965.10.1.0135 10.1039/C8MH00966J 10.1039/c3nr05578g 10.3390/s18041130 10.3109/08958378.2013.775197 10.1002/elan.201700718 10.1016/j.aquaculture.2016.05.005 10.1021/acsnano.7b02148 10.1016/j.carbon.2012.05.001 10.1016/j.bios.2017.11.022 10.1016/j.bios.2018.12.028 10.1016/j.nanoen.2018.03.017 10.1016/j.jpowsour.2013.02.057 10.1039/C2RA22664B 10.1038/s41467-021-25640-1 10.1016/j.ijhydene.2015.10.059 10.1002/adma.201202424 10.1007/s11783-011-0280-z 10.1039/c2ee22982j 10.1002/chem.201802040 10.1111/j.1745-6592.2001.tb00648.x 10.1039/C8TA00968F 10.1016/j.bios.2017.11.041 10.1038/s41524-019-0210-3 10.1016/j.bios.2017.07.006 10.1021/acsami.9b03328 10.1016/j.electacta.2015.01.210 10.3390/s140711580 10.1039/C2CC16192C 10.1016/j.jpowsour.2017.11.041 10.1016/j.carbon.2017.06.043 10.3390/s130708640 10.1126/science.1168049 10.1039/C4TA06149G 10.1016/j.bios.2019.111947 10.1021/nl2038979 10.1002/er.5889 10.1039/C5NJ03390J 10.1039/C7TA01485F 10.1126/science.aat7439 10.1016/j.compositesa.2010.07.003 10.1039/C0EE00512F 10.1016/j.nanoms.2021.03.006 10.1016/j.snb.2017.03.118 10.1002/adma.201806312 10.1021/ja4099609 10.1002/adma.201808283 10.3390/s19183995 10.1039/C4TA02427C 10.1039/C5CS00414D |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Jan 2022 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Jan 2022 |
DBID | AAYXX CITATION 7SR 8FD JG9 7S9 L.6 |
DOI | 10.1016/j.carbon.2021.10.027 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3891 |
EndPage | 415 |
ExternalDocumentID | 10_1016_j_carbon_2021_10_027 S0008622321010034 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SSM SSR SSZ T5K TWZ WUQ XPP ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION EFKBS 7SR 8FD JG9 SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c367t-ab03babc6bbc2a6131d81e84cf0f4b3936f883ab4b8736eec1ac3dd87e6dbcd13 |
IEDL.DBID | .~1 |
ISSN | 0008-6223 |
IngestDate | Fri Jul 11 15:44:02 EDT 2025 Fri Jul 25 03:20:26 EDT 2025 Thu Apr 24 23:00:28 EDT 2025 Tue Aug 05 03:08:31 EDT 2025 Fri Feb 23 02:43:00 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Carbon nanotubes Online monitoring Dissolved oxygen measurement Heteroatom doping Oxygen reduction reaction Graphene quantum dots |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-ab03babc6bbc2a6131d81e84cf0f4b3936f883ab4b8736eec1ac3dd87e6dbcd13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6150-4750 |
PQID | 2621178400 |
PQPubID | 2045273 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2636504406 proquest_journals_2621178400 crossref_citationtrail_10_1016_j_carbon_2021_10_027 crossref_primary_10_1016_j_carbon_2021_10_027 elsevier_sciencedirect_doi_10_1016_j_carbon_2021_10_027 |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Carbon (New York) |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Ibrahim, Su, Tsai, Chala, Kahsay, Yeh, Chen, Duma, Dai, Hwang (bib17) 2018; 47 Chen, Bi, Zhao, Yang, Zhang, Ma, Wu, Wang, Hu (bib50) 2012; 24 Patel, Singh, Kim (bib23) 2019; 6 Shaari, Kamarudin, Bahru (bib26) 2021; 45 Wang, Wang, Liu, Yuan, Xue, Luo, Feng (bib13) 2018; 102 Yao, Nie, Yang, Zhou, Liu, Huang (bib49) 2012; 48 Zhou, Tian, Li, Ruan, Ma, Yang, Qu (bib39) 2014; 6 Yeh, Li, Chen, Lin, Li, Chuang, Hsieh, Lo, Chiang, Ho (bib32) 2015; 172 Lin, Chu, Wang, Yao, Liu, Ai, Zhuang, Han (bib29) 2016; 40 Rani, Jindal (bib37) 2012; 3 Hamilton, Xiang, Li, Ka, Yang, Ma, Porter, Wu, Holian (bib40) 2013; 25 Lin, Huang, Liang, Wang (bib47) 2011; 4 Wei, Jiao, An, Li, Li, Wei (bib2) 2019; 19 Muthusankar, Devi, Gopu (bib27) 2020; 150 Yeh, Sun, Su, Lin, Lee, Chen, Wu, Vittal, Ho (bib20) 2012; 50 Yan, Gong, Chen, Zeng, Huang, Pu, Liu, Chen (bib25) 2019; 31 Jian, Huang, Yeh, Ho (bib18) 2018; 6 Zhao, Yang, Chen, Wang, Ma, Wu, Jiang, Qian, Hu (bib46) 2013; 135 Shehata, Azab, Kandas, Meehan (bib10) 2015; 15 Zhang, Li, Huang, Guo, Li, Fang, Yadav, Shanov, Ajayan, Wang, Lian, Wu (bib44) 2021; 12 Xu, Han, Zhao, Wang, Li, Qu (bib59) 2015; 3 Zhu, Jiang, Wang, Shi, Shen (bib35) 2014; 2 Zhang, Sha, Fei, Liu, Yazdi, Zhang, Zhong, Zou, Zhao, Yu, Jiang, Ringe, Yakobson, Dong, Chen, Tour (bib14) 2017; 11 Peng, Gao, Gupta, Liu, Romero-Aburto, Ge, Song, Alemany, Zhan, Gao, Vithayathil, Kaipparettu, Marti, Hayashi, Zhu, Ajayan (bib43) 2012; 12 Tran-Ngoc, Dinh, Nguyen, Roem, Schrama, Verreth (bib1) 2016; 462 Jiang, Wang, Hao, Liu, Li, Li (bib55) 2017; 122 Wilkin, McNeil, Adair, Wilson (bib9) 2001; 21 Van Tam, Kang, Babu, Oh, Lee, Choi (bib22) 2017; 5 Yang, Nie, Chen, Chen, Huang (bib28) 2013; 236 Yang, Li, Pu, Liu, Ge, Pan, Liu (bib51) 2016; 86 Li, Yeh, Chiang, Li, Chen, Leu, Tien, Lo, Lin, Lin, Ho (bib31) 2017; 248 Niu, Zhang, Zhou, Shi, Liu, Qin (bib4) 2014; 14 Gong, Du, Xia, Durstock, Dai (bib48) 2009; 323 Wang, Jin, Bishop, Li (bib5) 2012; 6 Zhang, Su, Wang, Li, Li (bib15) 2019; 127 Huihua, Yang, Qu, Kang, Wang (bib54) 2015; 4 Kuo, Lin, Yeh, Fan, Hsiao, Lin, Jeng, Ho (bib19) 2019; 11 Martínez-Periñán, Bravo, Rowley-Neale, Lorenzo, Banks (bib56) 2018; 30 Chen, Li, Zhu, Sun, Liu, Xu, Tang (bib16) 2019; 31 Blakemore, Gupta, Warren, Brunschwig, Gray (bib53) 2013; 135 Zhou, Wang, Guo (bib24) 2016; 45 Sun, Wang, Qiu, Ling, Tian, Chen, Su (bib36) 2018; 5 Ma, Siddiqui, Marom, Kim (bib45) 2010; 41 Pham-Truong, Petenzi, Ranjan, Randriamahazaka, Ghilane (bib57) 2018; 130 Wang, Zhao, Liu, Ren, Li, Huang, Zhang (bib41) 2021; 3 Xia, Zhao, Xia, Wu, Zhu, Kim, Bai, Gao, Hu, Zhong, Liu, Wang (bib42) 2021; 12 Zhang, Zhang, Chen, Qu (bib52) 2012; 5 Lu, Zhu, Yin, Yang, Wu, Dang, Liu, Wei (bib21) 2017; 98 Liu, Song, Chen (bib58) 2016; 41 Trivellin, Barbisan, Badocco, Pastore, Meneghesso, Meneghini, Zanoni, Belgioioso, Cenedese (bib11) 2018; 18 Ma, Lin, Zhou, Liu, Zhang, Shan, Yang, Wang (bib33) 2019; 5 Zhao, Sun, Li (bib8) 2009 Yeh, Leu, Chiang, Li, Chen, Li, Chang, Lin, Lin, Ho (bib30) 2018; 375 Lin, Hu, Chen, Qu, Dai (bib12) 2018; 24 Kinloch, Suhr, Lou, Young, Ajayan (bib38) 2018; 362 Tai, Yang, Liu, Li (bib7) 2012 Chong, Aziz, Harun (bib3) 2013; 13 Carpenter (bib6) 1965; 10 Xu, You, Yang, Xing, Pan, Cai, Dai, Zou (bib34) 2018; 102 Yeh (10.1016/j.carbon.2021.10.027_bib20) 2012; 50 Jian (10.1016/j.carbon.2021.10.027_bib18) 2018; 6 Ma (10.1016/j.carbon.2021.10.027_bib33) 2019; 5 Wang (10.1016/j.carbon.2021.10.027_bib13) 2018; 102 Li (10.1016/j.carbon.2021.10.027_bib31) 2017; 248 Shaari (10.1016/j.carbon.2021.10.027_bib26) 2021; 45 Xia (10.1016/j.carbon.2021.10.027_bib42) 2021; 12 Hamilton (10.1016/j.carbon.2021.10.027_bib40) 2013; 25 Liu (10.1016/j.carbon.2021.10.027_bib58) 2016; 41 Wilkin (10.1016/j.carbon.2021.10.027_bib9) 2001; 21 Kinloch (10.1016/j.carbon.2021.10.027_bib38) 2018; 362 Lin (10.1016/j.carbon.2021.10.027_bib47) 2011; 4 Yang (10.1016/j.carbon.2021.10.027_bib51) 2016; 86 Van Tam (10.1016/j.carbon.2021.10.027_bib22) 2017; 5 Kuo (10.1016/j.carbon.2021.10.027_bib19) 2019; 11 Chong (10.1016/j.carbon.2021.10.027_bib3) 2013; 13 Shehata (10.1016/j.carbon.2021.10.027_bib10) 2015; 15 Zhou (10.1016/j.carbon.2021.10.027_bib39) 2014; 6 Blakemore (10.1016/j.carbon.2021.10.027_bib53) 2013; 135 Zhu (10.1016/j.carbon.2021.10.027_bib35) 2014; 2 Ibrahim (10.1016/j.carbon.2021.10.027_bib17) 2018; 47 Yao (10.1016/j.carbon.2021.10.027_bib49) 2012; 48 Zhang (10.1016/j.carbon.2021.10.027_bib44) 2021; 12 Chen (10.1016/j.carbon.2021.10.027_bib50) 2012; 24 Wei (10.1016/j.carbon.2021.10.027_bib2) 2019; 19 Muthusankar (10.1016/j.carbon.2021.10.027_bib27) 2020; 150 Zhao (10.1016/j.carbon.2021.10.027_bib46) 2013; 135 Sun (10.1016/j.carbon.2021.10.027_bib36) 2018; 5 Lin (10.1016/j.carbon.2021.10.027_bib29) 2016; 40 Xu (10.1016/j.carbon.2021.10.027_bib34) 2018; 102 Niu (10.1016/j.carbon.2021.10.027_bib4) 2014; 14 Ma (10.1016/j.carbon.2021.10.027_bib45) 2010; 41 Chen (10.1016/j.carbon.2021.10.027_bib16) 2019; 31 Tai (10.1016/j.carbon.2021.10.027_bib7) 2012 Lu (10.1016/j.carbon.2021.10.027_bib21) 2017; 98 Gong (10.1016/j.carbon.2021.10.027_bib48) 2009; 323 Jiang (10.1016/j.carbon.2021.10.027_bib55) 2017; 122 Carpenter (10.1016/j.carbon.2021.10.027_bib6) 1965; 10 Zhao (10.1016/j.carbon.2021.10.027_bib8) 2009 Yeh (10.1016/j.carbon.2021.10.027_bib32) 2015; 172 Peng (10.1016/j.carbon.2021.10.027_bib43) 2012; 12 Pham-Truong (10.1016/j.carbon.2021.10.027_bib57) 2018; 130 Zhou (10.1016/j.carbon.2021.10.027_bib24) 2016; 45 Zhang (10.1016/j.carbon.2021.10.027_bib52) 2012; 5 Martínez-Periñán (10.1016/j.carbon.2021.10.027_bib56) 2018; 30 Huihua (10.1016/j.carbon.2021.10.027_bib54) 2015; 4 Yang (10.1016/j.carbon.2021.10.027_bib28) 2013; 236 Xu (10.1016/j.carbon.2021.10.027_bib59) 2015; 3 Wang (10.1016/j.carbon.2021.10.027_bib5) 2012; 6 Rani (10.1016/j.carbon.2021.10.027_bib37) 2012; 3 Lin (10.1016/j.carbon.2021.10.027_bib12) 2018; 24 Tran-Ngoc (10.1016/j.carbon.2021.10.027_bib1) 2016; 462 Trivellin (10.1016/j.carbon.2021.10.027_bib11) 2018; 18 Yan (10.1016/j.carbon.2021.10.027_bib25) 2019; 31 Wang (10.1016/j.carbon.2021.10.027_bib41) 2021; 3 Yeh (10.1016/j.carbon.2021.10.027_bib30) 2018; 375 Zhang (10.1016/j.carbon.2021.10.027_bib15) 2019; 127 Zhang (10.1016/j.carbon.2021.10.027_bib14) 2017; 11 Patel (10.1016/j.carbon.2021.10.027_bib23) 2019; 6 |
References_xml | – volume: 4 year: 2015 ident: bib54 article-title: Cobalt, nitrogen-codoped carbon quantum dots as a synergistic catalyst for oxygen reduction reaction publication-title: Green Process. Synth. – volume: 50 start-page: 4192 year: 2012 end-page: 4202 ident: bib20 article-title: A low-cost counter electrode of ITO glass coated with a graphene/Nafion® composite film for use in dye-sensitized solar cells publication-title: Carbon – volume: 5 start-page: 10537 year: 2017 end-page: 10543 ident: bib22 article-title: Synthesis of B-doped graphene quantum dots as a metal-free electrocatalyst for the oxygen reduction reaction publication-title: J. Mater. Chem. – volume: 47 start-page: 309 year: 2018 end-page: 315 ident: bib17 article-title: Robust and conductive Magnéli Phase Ti4O7 decorated on 3D-nanoflower NiRu-LDH as high-performance oxygen reduction electrocatalyst publication-title: Nanomater. Energy – volume: 45 start-page: 1273 year: 2016 end-page: 1307 ident: bib24 article-title: Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials publication-title: Chem. Soc. Rev. – volume: 2 start-page: 15448 year: 2014 end-page: 15453 ident: bib35 article-title: One-pot synthesis of a nitrogen and phosphorus-dual-doped carbon nanotube array as a highly effective electrocatalyst for the oxygen reduction reaction publication-title: J. Mater. Chem. – volume: 135 start-page: 18288 year: 2013 end-page: 18291 ident: bib53 article-title: Noncovalent immobilization of electrocatalysts on carbon electrodes for fuel production publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 199 year: 2013 end-page: 210 ident: bib40 article-title: Purification and sidewall functionalization of multiwalled carbon nanotubes and resulting bioactivity in two macrophage models publication-title: Inhal. Toxicol. – volume: 19 start-page: 3995 year: 2019 ident: bib2 article-title: Review of dissolved oxygen detection Technology: from laboratory analysis to online intelligent detection publication-title: Sensors – volume: 248 start-page: 288 year: 2017 end-page: 297 ident: bib31 article-title: Boron-doped carbon nanotubes with uniform boron doping and tunable dopant functionalities as an efficient electrocatalyst for dopamine oxidation reaction publication-title: Sensor. Actuator. B Chem. – volume: 6 start-page: 2603 year: 2014 end-page: 2607 ident: bib39 article-title: Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction publication-title: Nanoscale – volume: 6 start-page: 288 year: 2012 end-page: 293 ident: bib5 article-title: Upgrade of three municipal wastewater treatment lagoons using a high surface area media publication-title: Front. Environ. Sci. Eng. – volume: 5 start-page: 8869 year: 2012 end-page: 8890 ident: bib52 article-title: Graphene quantum dots: an emerging material for energy-related applications and beyond publication-title: Energy Environ. Sci. – volume: 15 year: 2015 ident: bib10 article-title: Nano-enriched and autonomous sensing framework for dissolved oxygen publication-title: Sensors – volume: 45 start-page: 1396 year: 2021 end-page: 1424 ident: bib26 article-title: Carbon and graphene quantum dots in fuel cell application: an overview publication-title: Int. J. Energy Res. – volume: 462 start-page: 101 year: 2016 end-page: 108 ident: bib1 article-title: Interaction between dissolved oxygen concentration and diet composition on growth, digestibility and intestinal health of Nile tilapia (Oreochromis niloticus) publication-title: Aquaculture – volume: 13 year: 2013 ident: bib3 article-title: Fibre optic sensors for selected wastewater characteristics publication-title: Sensors – volume: 5 start-page: 78 year: 2019 ident: bib33 article-title: A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts publication-title: npj Computational Materials – volume: 3 start-page: 802 year: 2012 end-page: 812 ident: bib37 article-title: Designing band gap of graphene by B and N dopant atoms publication-title: RSC Adv. – start-page: 569 year: 2012 end-page: 576 ident: bib7 article-title: A review of measurement methods of dissolved oxygen in water publication-title: Computer and Computing Technologies in Agriculture V – volume: 10 start-page: 135 year: 1965 end-page: 140 ident: bib6 article-title: The accuracy OF the winkler method for dissolved oxygen ANALYSIS1 publication-title: Limnol. Oceanogr. – volume: 6 start-page: 5107 year: 2018 end-page: 5118 ident: bib18 article-title: A zeolitic imidazolate framework-derived ZnSe/N-doped carbon cube hybrid electrocatalyst as the counter electrode for dye-sensitized solar cells publication-title: J. Mater. Chem. – volume: 40 start-page: 6022 year: 2016 end-page: 6029 ident: bib29 article-title: Boron, nitrogen, and phosphorous ternary doped graphene aerogel with hierarchically porous structures as highly efficient electrocatalysts for oxygen reduction reaction publication-title: New J. Chem. – volume: 41 start-page: 1559 year: 2016 end-page: 1567 ident: bib58 article-title: Oxygen reduction catalyzed by nanocomposites based on graphene quantum dots-supported copper nanoparticles publication-title: Int. J. Hydrogen Energy – volume: 11 start-page: 6930 year: 2017 end-page: 6941 ident: bib14 article-title: Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium publication-title: ACS Nano – volume: 3 start-page: 313 year: 2021 end-page: 318 ident: bib41 article-title: Quantitative kinetic analysis on oxygen reduction reaction: a perspective publication-title: Nano Materials Science – volume: 3 start-page: 1841 year: 2015 end-page: 1846 ident: bib59 article-title: Sulfur-doped graphitic carbon nitride decorated with graphene quantum dots for an efficient metal-free electrocatalyst publication-title: J. Mater. Chem. – volume: 236 start-page: 238 year: 2013 end-page: 249 ident: bib28 article-title: Recent progress in doped carbon nanomaterials as effective cathode catalysts for fuel cell oxygen reduction reaction publication-title: J. Power Sources – volume: 6 start-page: 434 year: 2019 end-page: 469 ident: bib23 article-title: Carbon-based nanomaterials as an emerging platform for theranostics publication-title: Materials Horizons – volume: 135 year: 2013 ident: bib46 article-title: Can boron and nitrogen codoping improve oxygen reduction reaction activity of carbon nanotubes? publication-title: J. Am. Chem. Soc. – volume: 130 start-page: 544 year: 2018 end-page: 552 ident: bib57 article-title: Microwave assisted synthesis of carbon dots in ionic liquid as metal free catalyst for highly selective production of hydrogen peroxide publication-title: Carbon – volume: 12 start-page: 5265 year: 2021 ident: bib44 article-title: Regulation of functional groups on graphene quantum dots directs selective CO2 to CH4 conversion publication-title: Nat. Commun. – start-page: 1 year: 2009 end-page: 4 ident: bib8 article-title: The research about detection of dissolved oxygen in water based on C8051F040 – volume: 122 start-page: 64 year: 2017 end-page: 73 ident: bib55 article-title: N and P co-functionalized three-dimensional porous carbon networks as efficient metal-free electrocatalysts for oxygen reduction reaction publication-title: Carbon – volume: 18 year: 2018 ident: bib11 article-title: Study and development of a fluorescence based sensor system for monitoring oxygen in wine production: the WOW project publication-title: Sensors – volume: 11 start-page: 25090 year: 2019 end-page: 25099 ident: bib19 article-title: Synthesis of surfactant-free and morphology-controllable vanadium diselenide for efficient counter electrodes in dye-sensitized solar cells publication-title: ACS Appl. Mater. Interfaces – volume: 102 start-page: 276 year: 2018 end-page: 281 ident: bib13 article-title: A novel label-free electrochemical immunosensor for ultra-sensitively detecting prostate specific antigen based on the enhanced catalytic currents of oxygen reduction catalyzed by core-shell Au@Pt nanocrystals publication-title: Biosens. Bioelectron. – volume: 172 start-page: 52 year: 2015 end-page: 60 ident: bib32 article-title: Facile synthesis of boron-doped graphene nanosheets with hierarchical microstructure at atmosphere pressure for metal-free electrochemical detection of hydrogen peroxide publication-title: Electrochim. Acta – volume: 30 start-page: 436 year: 2018 end-page: 444 ident: bib56 article-title: Carbon nanodots as electrocatalysts towards the oxygen reduction reaction publication-title: Electroanalysis – volume: 24 start-page: 18487 year: 2018 end-page: 18493 ident: bib12 article-title: Microporous N,P-codoped graphitic nanosheets as an efficient electrocatalyst for oxygen reduction in whole pH range for energy conversion and biosensing dissolved oxygen publication-title: Chem. Eur J. – volume: 31 start-page: 1806312 year: 2019 ident: bib16 article-title: Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction publication-title: Adv. Mater. – volume: 31 start-page: 1808283 year: 2019 ident: bib25 article-title: Recent advances on graphene quantum dots: from chemistry and physics to applications publication-title: Adv. Mater. – volume: 4 start-page: 862 year: 2011 end-page: 865 ident: bib47 article-title: A facile preparation route for boron-doped graphene, and its CdTe solar cell application publication-title: Energy Environ. Sci. – volume: 86 start-page: 129 year: 2016 end-page: 134 ident: bib51 article-title: Hollow-spherical Co/N-C nanoparticle as an efficient electrocatalyst used in air cathode microbial fuel cell publication-title: Biosens. Bioelectron. – volume: 127 start-page: 181 year: 2019 end-page: 187 ident: bib15 article-title: Bimetallic metal-organic frameworks derived cobalt nanoparticles embedded in nitrogen-doped carbon nanotube nanopolyhedra as advanced electrocatalyst for high-performance of activated carbon air-cathode microbial fuel cell publication-title: Biosens. Bioelectron. – volume: 21 start-page: 124 year: 2001 end-page: 132 ident: bib9 article-title: Field measurement of dissolved oxygen: a comparison of methods publication-title: Groundwater Monitoring & Remediation – volume: 12 start-page: 844 year: 2012 end-page: 849 ident: bib43 article-title: Graphene quantum dots derived from carbon fibers publication-title: Nano Lett. – volume: 102 start-page: 101 year: 2018 end-page: 105 ident: bib34 article-title: Highly efficient charge transfer in Co/Co2P Schottky junctions embedded in nitrogen-doped porous carbon for enhancing bioelectricity generation publication-title: Biosens. Bioelectron. – volume: 362 start-page: 547 year: 2018 ident: bib38 article-title: Composites with carbon nanotubes and graphene: an outlook publication-title: Science (New York, N.Y.) – volume: 98 start-page: 350 year: 2017 end-page: 356 ident: bib21 article-title: Biomass-derived heteroatoms-doped mesoporous carbon for efficient oxygen reduction in microbial fuel cells publication-title: Biosens. Bioelectron. – volume: 41 start-page: 1345 year: 2010 end-page: 1367 ident: bib45 article-title: Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review publication-title: Compos. Appl. Sci. Manuf. – volume: 150 start-page: 111947 year: 2020 ident: bib27 article-title: Nitrogen-doped carbon quantum dots embedded Co3O4 with multiwall carbon nanotubes: an efficient probe for the simultaneous determination of anticancer and antibiotic drugs publication-title: Biosens. Bioelectron. – volume: 5 start-page: 1800036 year: 2018 ident: bib36 article-title: B, N codoped and defect-rich nanocarbon material as a metal-free bifunctional electrocatalyst for oxygen reduction and evolution reactions publication-title: Advanced science (Weinheim, Baden-Wurttemberg, Germany) – volume: 14 year: 2014 ident: bib4 article-title: The potential applications of real-time monitoring of water quality in a large shallow lake (lake taihu, China) using a chromophoric dissolved organic matter fluorescence sensor publication-title: Sensors – volume: 48 start-page: 1027 year: 2012 end-page: 1029 ident: bib49 article-title: Catalyst-free synthesis of iodine-doped graphenevia a facile thermal annealing process and its use for electrocatalytic oxygen reduction in an alkaline medium publication-title: Chem. Commun. – volume: 12 start-page: 4225 year: 2021 ident: bib42 article-title: Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates publication-title: Nat. Commun. – volume: 323 start-page: 760 year: 2009 ident: bib48 article-title: Nitrogen-doped carbon nanotube Arrays with high electrocatalytic activity for oxygen reduction publication-title: Science (New York, N.Y.) – volume: 24 start-page: 5593 year: 2012 end-page: 5597 ident: bib50 article-title: Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction publication-title: Adv. Mater. – volume: 375 start-page: 29 year: 2018 end-page: 36 ident: bib30 article-title: Boron-doped carbon nanotubes as metal-free electrocatalyst for dye-sensitized solar cells: heteroatom doping level effect on tri-iodide reduction reaction publication-title: J. Power Sources – volume: 130 start-page: 544 year: 2018 ident: 10.1016/j.carbon.2021.10.027_bib57 article-title: Microwave assisted synthesis of carbon dots in ionic liquid as metal free catalyst for highly selective production of hydrogen peroxide publication-title: Carbon doi: 10.1016/j.carbon.2018.01.070 – volume: 15 issue: 8 year: 2015 ident: 10.1016/j.carbon.2021.10.027_bib10 article-title: Nano-enriched and autonomous sensing framework for dissolved oxygen publication-title: Sensors doi: 10.3390/s150820193 – volume: 12 start-page: 4225 issue: 1 year: 2021 ident: 10.1016/j.carbon.2021.10.027_bib42 article-title: Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates publication-title: Nat. Commun. doi: 10.1038/s41467-021-24329-9 – volume: 86 start-page: 129 year: 2016 ident: 10.1016/j.carbon.2021.10.027_bib51 article-title: Hollow-spherical Co/N-C nanoparticle as an efficient electrocatalyst used in air cathode microbial fuel cell publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.06.032 – volume: 10 start-page: 135 issue: 1 year: 1965 ident: 10.1016/j.carbon.2021.10.027_bib6 article-title: The accuracy OF the winkler method for dissolved oxygen ANALYSIS1 publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1965.10.1.0135 – volume: 6 start-page: 434 issue: 3 year: 2019 ident: 10.1016/j.carbon.2021.10.027_bib23 article-title: Carbon-based nanomaterials as an emerging platform for theranostics publication-title: Materials Horizons doi: 10.1039/C8MH00966J – volume: 6 start-page: 2603 issue: 5 year: 2014 ident: 10.1016/j.carbon.2021.10.027_bib39 article-title: Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction publication-title: Nanoscale doi: 10.1039/c3nr05578g – volume: 18 issue: 4 year: 2018 ident: 10.1016/j.carbon.2021.10.027_bib11 article-title: Study and development of a fluorescence based sensor system for monitoring oxygen in wine production: the WOW project publication-title: Sensors doi: 10.3390/s18041130 – volume: 25 start-page: 199 issue: 4 year: 2013 ident: 10.1016/j.carbon.2021.10.027_bib40 article-title: Purification and sidewall functionalization of multiwalled carbon nanotubes and resulting bioactivity in two macrophage models publication-title: Inhal. Toxicol. doi: 10.3109/08958378.2013.775197 – volume: 30 start-page: 436 issue: 3 year: 2018 ident: 10.1016/j.carbon.2021.10.027_bib56 article-title: Carbon nanodots as electrocatalysts towards the oxygen reduction reaction publication-title: Electroanalysis doi: 10.1002/elan.201700718 – volume: 462 start-page: 101 year: 2016 ident: 10.1016/j.carbon.2021.10.027_bib1 article-title: Interaction between dissolved oxygen concentration and diet composition on growth, digestibility and intestinal health of Nile tilapia (Oreochromis niloticus) publication-title: Aquaculture doi: 10.1016/j.aquaculture.2016.05.005 – volume: 11 start-page: 6930 issue: 7 year: 2017 ident: 10.1016/j.carbon.2021.10.027_bib14 article-title: Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium publication-title: ACS Nano doi: 10.1021/acsnano.7b02148 – volume: 50 start-page: 4192 issue: 11 year: 2012 ident: 10.1016/j.carbon.2021.10.027_bib20 article-title: A low-cost counter electrode of ITO glass coated with a graphene/Nafion® composite film for use in dye-sensitized solar cells publication-title: Carbon doi: 10.1016/j.carbon.2012.05.001 – volume: 4 year: 2015 ident: 10.1016/j.carbon.2021.10.027_bib54 article-title: Cobalt, nitrogen-codoped carbon quantum dots as a synergistic catalyst for oxygen reduction reaction publication-title: Green Process. Synth. – volume: 102 start-page: 101 year: 2018 ident: 10.1016/j.carbon.2021.10.027_bib34 article-title: Highly efficient charge transfer in Co/Co2P Schottky junctions embedded in nitrogen-doped porous carbon for enhancing bioelectricity generation publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.11.022 – volume: 127 start-page: 181 year: 2019 ident: 10.1016/j.carbon.2021.10.027_bib15 article-title: Bimetallic metal-organic frameworks derived cobalt nanoparticles embedded in nitrogen-doped carbon nanotube nanopolyhedra as advanced electrocatalyst for high-performance of activated carbon air-cathode microbial fuel cell publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.12.028 – volume: 47 start-page: 309 year: 2018 ident: 10.1016/j.carbon.2021.10.027_bib17 article-title: Robust and conductive Magnéli Phase Ti4O7 decorated on 3D-nanoflower NiRu-LDH as high-performance oxygen reduction electrocatalyst publication-title: Nanomater. Energy doi: 10.1016/j.nanoen.2018.03.017 – volume: 236 start-page: 238 year: 2013 ident: 10.1016/j.carbon.2021.10.027_bib28 article-title: Recent progress in doped carbon nanomaterials as effective cathode catalysts for fuel cell oxygen reduction reaction publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.02.057 – volume: 3 start-page: 802 year: 2012 ident: 10.1016/j.carbon.2021.10.027_bib37 article-title: Designing band gap of graphene by B and N dopant atoms publication-title: RSC Adv. doi: 10.1039/C2RA22664B – volume: 12 start-page: 5265 issue: 1 year: 2021 ident: 10.1016/j.carbon.2021.10.027_bib44 article-title: Regulation of functional groups on graphene quantum dots directs selective CO2 to CH4 conversion publication-title: Nat. Commun. doi: 10.1038/s41467-021-25640-1 – volume: 41 start-page: 1559 issue: 3 year: 2016 ident: 10.1016/j.carbon.2021.10.027_bib58 article-title: Oxygen reduction catalyzed by nanocomposites based on graphene quantum dots-supported copper nanoparticles publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.10.059 – volume: 24 start-page: 5593 issue: 41 year: 2012 ident: 10.1016/j.carbon.2021.10.027_bib50 article-title: Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction publication-title: Adv. Mater. doi: 10.1002/adma.201202424 – volume: 6 start-page: 288 issue: 2 year: 2012 ident: 10.1016/j.carbon.2021.10.027_bib5 article-title: Upgrade of three municipal wastewater treatment lagoons using a high surface area media publication-title: Front. Environ. Sci. Eng. doi: 10.1007/s11783-011-0280-z – volume: 5 start-page: 8869 issue: 10 year: 2012 ident: 10.1016/j.carbon.2021.10.027_bib52 article-title: Graphene quantum dots: an emerging material for energy-related applications and beyond publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22982j – volume: 24 start-page: 18487 issue: 69 year: 2018 ident: 10.1016/j.carbon.2021.10.027_bib12 article-title: Microporous N,P-codoped graphitic nanosheets as an efficient electrocatalyst for oxygen reduction in whole pH range for energy conversion and biosensing dissolved oxygen publication-title: Chem. Eur J. doi: 10.1002/chem.201802040 – volume: 21 start-page: 124 issue: 4 year: 2001 ident: 10.1016/j.carbon.2021.10.027_bib9 article-title: Field measurement of dissolved oxygen: a comparison of methods publication-title: Groundwater Monitoring & Remediation doi: 10.1111/j.1745-6592.2001.tb00648.x – volume: 6 start-page: 5107 issue: 12 year: 2018 ident: 10.1016/j.carbon.2021.10.027_bib18 article-title: A zeolitic imidazolate framework-derived ZnSe/N-doped carbon cube hybrid electrocatalyst as the counter electrode for dye-sensitized solar cells publication-title: J. Mater. Chem. doi: 10.1039/C8TA00968F – start-page: 569 year: 2012 ident: 10.1016/j.carbon.2021.10.027_bib7 article-title: A review of measurement methods of dissolved oxygen in water – volume: 102 start-page: 276 year: 2018 ident: 10.1016/j.carbon.2021.10.027_bib13 article-title: A novel label-free electrochemical immunosensor for ultra-sensitively detecting prostate specific antigen based on the enhanced catalytic currents of oxygen reduction catalyzed by core-shell Au@Pt nanocrystals publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.11.041 – volume: 5 start-page: 78 issue: 1 year: 2019 ident: 10.1016/j.carbon.2021.10.027_bib33 article-title: A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts publication-title: npj Computational Materials doi: 10.1038/s41524-019-0210-3 – volume: 5 start-page: 1800036 issue: 7 year: 2018 ident: 10.1016/j.carbon.2021.10.027_bib36 article-title: B, N codoped and defect-rich nanocarbon material as a metal-free bifunctional electrocatalyst for oxygen reduction and evolution reactions publication-title: Advanced science (Weinheim, Baden-Wurttemberg, Germany) – volume: 98 start-page: 350 year: 2017 ident: 10.1016/j.carbon.2021.10.027_bib21 article-title: Biomass-derived heteroatoms-doped mesoporous carbon for efficient oxygen reduction in microbial fuel cells publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.07.006 – volume: 11 start-page: 25090 issue: 28 year: 2019 ident: 10.1016/j.carbon.2021.10.027_bib19 article-title: Synthesis of surfactant-free and morphology-controllable vanadium diselenide for efficient counter electrodes in dye-sensitized solar cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b03328 – volume: 172 start-page: 52 year: 2015 ident: 10.1016/j.carbon.2021.10.027_bib32 article-title: Facile synthesis of boron-doped graphene nanosheets with hierarchical microstructure at atmosphere pressure for metal-free electrochemical detection of hydrogen peroxide publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.01.210 – volume: 14 issue: 7 year: 2014 ident: 10.1016/j.carbon.2021.10.027_bib4 article-title: The potential applications of real-time monitoring of water quality in a large shallow lake (lake taihu, China) using a chromophoric dissolved organic matter fluorescence sensor publication-title: Sensors doi: 10.3390/s140711580 – volume: 48 start-page: 1027 issue: 7 year: 2012 ident: 10.1016/j.carbon.2021.10.027_bib49 article-title: Catalyst-free synthesis of iodine-doped graphenevia a facile thermal annealing process and its use for electrocatalytic oxygen reduction in an alkaline medium publication-title: Chem. Commun. doi: 10.1039/C2CC16192C – volume: 375 start-page: 29 year: 2018 ident: 10.1016/j.carbon.2021.10.027_bib30 article-title: Boron-doped carbon nanotubes as metal-free electrocatalyst for dye-sensitized solar cells: heteroatom doping level effect on tri-iodide reduction reaction publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.11.041 – volume: 122 start-page: 64 year: 2017 ident: 10.1016/j.carbon.2021.10.027_bib55 article-title: N and P co-functionalized three-dimensional porous carbon networks as efficient metal-free electrocatalysts for oxygen reduction reaction publication-title: Carbon doi: 10.1016/j.carbon.2017.06.043 – volume: 13 issue: 7 year: 2013 ident: 10.1016/j.carbon.2021.10.027_bib3 article-title: Fibre optic sensors for selected wastewater characteristics publication-title: Sensors doi: 10.3390/s130708640 – volume: 323 start-page: 760 issue: 5915 year: 2009 ident: 10.1016/j.carbon.2021.10.027_bib48 article-title: Nitrogen-doped carbon nanotube Arrays with high electrocatalytic activity for oxygen reduction publication-title: Science (New York, N.Y.) doi: 10.1126/science.1168049 – volume: 3 start-page: 1841 issue: 5 year: 2015 ident: 10.1016/j.carbon.2021.10.027_bib59 article-title: Sulfur-doped graphitic carbon nitride decorated with graphene quantum dots for an efficient metal-free electrocatalyst publication-title: J. Mater. Chem. doi: 10.1039/C4TA06149G – volume: 135 year: 2013 ident: 10.1016/j.carbon.2021.10.027_bib46 article-title: Can boron and nitrogen codoping improve oxygen reduction reaction activity of carbon nanotubes? publication-title: J. Am. Chem. Soc. – volume: 150 start-page: 111947 year: 2020 ident: 10.1016/j.carbon.2021.10.027_bib27 article-title: Nitrogen-doped carbon quantum dots embedded Co3O4 with multiwall carbon nanotubes: an efficient probe for the simultaneous determination of anticancer and antibiotic drugs publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2019.111947 – volume: 12 start-page: 844 issue: 2 year: 2012 ident: 10.1016/j.carbon.2021.10.027_bib43 article-title: Graphene quantum dots derived from carbon fibers publication-title: Nano Lett. doi: 10.1021/nl2038979 – volume: 45 start-page: 1396 issue: 2 year: 2021 ident: 10.1016/j.carbon.2021.10.027_bib26 article-title: Carbon and graphene quantum dots in fuel cell application: an overview publication-title: Int. J. Energy Res. doi: 10.1002/er.5889 – volume: 40 start-page: 6022 issue: 7 year: 2016 ident: 10.1016/j.carbon.2021.10.027_bib29 article-title: Boron, nitrogen, and phosphorous ternary doped graphene aerogel with hierarchically porous structures as highly efficient electrocatalysts for oxygen reduction reaction publication-title: New J. Chem. doi: 10.1039/C5NJ03390J – start-page: 1 year: 2009 ident: 10.1016/j.carbon.2021.10.027_bib8 – volume: 5 start-page: 10537 issue: 21 year: 2017 ident: 10.1016/j.carbon.2021.10.027_bib22 article-title: Synthesis of B-doped graphene quantum dots as a metal-free electrocatalyst for the oxygen reduction reaction publication-title: J. Mater. Chem. doi: 10.1039/C7TA01485F – volume: 362 start-page: 547 issue: 6414 year: 2018 ident: 10.1016/j.carbon.2021.10.027_bib38 article-title: Composites with carbon nanotubes and graphene: an outlook publication-title: Science (New York, N.Y.) doi: 10.1126/science.aat7439 – volume: 41 start-page: 1345 issue: 10 year: 2010 ident: 10.1016/j.carbon.2021.10.027_bib45 article-title: Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2010.07.003 – volume: 4 start-page: 862 issue: 3 year: 2011 ident: 10.1016/j.carbon.2021.10.027_bib47 article-title: A facile preparation route for boron-doped graphene, and its CdTe solar cell application publication-title: Energy Environ. Sci. doi: 10.1039/C0EE00512F – volume: 3 start-page: 313 issue: 5 year: 2021 ident: 10.1016/j.carbon.2021.10.027_bib41 article-title: Quantitative kinetic analysis on oxygen reduction reaction: a perspective publication-title: Nano Materials Science doi: 10.1016/j.nanoms.2021.03.006 – volume: 248 start-page: 288 year: 2017 ident: 10.1016/j.carbon.2021.10.027_bib31 article-title: Boron-doped carbon nanotubes with uniform boron doping and tunable dopant functionalities as an efficient electrocatalyst for dopamine oxidation reaction publication-title: Sensor. Actuator. B Chem. doi: 10.1016/j.snb.2017.03.118 – volume: 31 start-page: 1806312 issue: 8 year: 2019 ident: 10.1016/j.carbon.2021.10.027_bib16 article-title: Atomic Fe dispersed on N-doped carbon hollow nanospheres for high-efficiency electrocatalytic oxygen reduction publication-title: Adv. Mater. doi: 10.1002/adma.201806312 – volume: 135 start-page: 18288 issue: 49 year: 2013 ident: 10.1016/j.carbon.2021.10.027_bib53 article-title: Noncovalent immobilization of electrocatalysts on carbon electrodes for fuel production publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4099609 – volume: 31 start-page: 1808283 issue: 21 year: 2019 ident: 10.1016/j.carbon.2021.10.027_bib25 article-title: Recent advances on graphene quantum dots: from chemistry and physics to applications publication-title: Adv. Mater. doi: 10.1002/adma.201808283 – volume: 19 start-page: 3995 issue: 18 year: 2019 ident: 10.1016/j.carbon.2021.10.027_bib2 article-title: Review of dissolved oxygen detection Technology: from laboratory analysis to online intelligent detection publication-title: Sensors doi: 10.3390/s19183995 – volume: 2 start-page: 15448 issue: 37 year: 2014 ident: 10.1016/j.carbon.2021.10.027_bib35 article-title: One-pot synthesis of a nitrogen and phosphorus-dual-doped carbon nanotube array as a highly effective electrocatalyst for the oxygen reduction reaction publication-title: J. Mater. Chem. doi: 10.1039/C4TA02427C – volume: 45 start-page: 1273 issue: 5 year: 2016 ident: 10.1016/j.carbon.2021.10.027_bib24 article-title: Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00414D |
SSID | ssj0004814 |
Score | 2.5987957 |
Snippet | Dissolved oxygen (DO) is an essential indicator for evaluating water quality, the exquisitely sensitive electrochemical DO sensor could accurately record... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 406 |
SubjectTerms | Biosensors Carbon Carbon nanotubes Dissolved oxygen Dissolved oxygen measurement Electrical properties Electrocatalysis Electrocatalysts electrochemistry electrodes Electronic structure Graphene Graphene quantum dots Heteroatom doping Intermolecular forces Monitoring Nanotubes Noble metals Online monitoring Oxygen Oxygen reduction reaction Oxygen reduction reactions Quantum dots Seawater synergism Synergistic effect Water quality |
Title | Surface-engineered N-doped carbon nanotubes with B-doped graphene quantum dots: Strategies to develop highly-efficient noble metal-free electrocatalyst for online-monitoring dissolved oxygen biosensor |
URI | https://dx.doi.org/10.1016/j.carbon.2021.10.027 https://www.proquest.com/docview/2621178400 https://www.proquest.com/docview/2636504406 |
Volume | 186 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq9gAXRHmIhbYyEle3Sew4CbeyarWA2AtU6i2KX9Ki3XibB-pe-vv4WcwkThEIqRKnSH7IkT2el2e-IeQdj5SFW6OZc4ozETvOCpkVzOlEK8eF1hnmO39ZysWV-HSdXu-R-ZQLg2GVgfePPH3g1qHlLOzm2Xa1whxfVMcTTEKJEWYFM9hFhlR-evc7zEPkI743PvPj6Cl9bojx0lWjPKKgJvEpxnhhbZl_i6e_GPUgfS6fkidBbaTn458dkj1bPyOP5lO1tufk59e-cZW2zAaAQWvokhm_he-4Pq2r2ne9si1F5yv9EHoHyGrgePSmh13uNxTs1PY9nWBrYXjnacitoohuvN4xOwBPgLyiNdajoRsLOjxzjbU01NUZ3EK7tqOgFNMRjoNtBv6BjkSKYQB-_QOW97c7oGGqVr4Fi9o3L8jV5cW3-YKFKg1Mc5l1rFIRV5XSUimdVKAdxCaPbS60i5xQvODS5TmvlFB5xqW1Oq40NybPrDRKm5i_JPu1r-0rQtPUpSZNrS6kE06awmRAYMZEaWp0XrgZ4dPhlDpAmGMljXU5xap9L8ctLfFIsRWOdEbY_aztCOHxwPhsOvfyD1IsQco8MPNoIpMysIK2TCTY2BnY0dGMvL3vBurAl5mqtr7HMRw0ZQHK1ev_XvwNeZxgasbgHjoi-13T22NQmDp1MtyIE3Jw_vHzYvkLj5welw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOZQL4imWFjASHN0mceIkSBygUG1puxdaqbcQv6RFu_GSR2Ev_Cn-BD-LmcQpAiFVQuopkh9x5LHnlZlvCHnBA2ng1ihmreQsDi1nuUhzZlWkpOWxUinmO5_MxPQs_nCenG-QH2MuDIZVet4_8PSeW_uWPb-be6v5HHN8UR2PMAklRJgVH1l5ZNZfwW5rXh--AyK_jKKD96f7U-ZLCzDFRdqyUgZcllIJKVVUgkgLdRaaLFY2sLHkORc2y3gpY5mlXBijwlJxrbPUCC2VDjm89wa5GQO7wLIJu99_x5XE2QAojnEF-Hljvl4fVKbKWjqEXY3CXQwqw2I2_5aHf0mGXtwd3CG3vZ5K3wxbcZdsmOoe2dofy8PdJz8_drUtlWHGIxoaTWdMuxU8h_VpVVau7aRpKHp76Vvf22NkA4ulXzoga7ekYBg3r-iIkwvDW0d9MhdFOOXFmpke6QIEJK2wAA5dGjAamK2Nob6QT--HWjctBS2cDvgfbNkzLPRcUow7cIsLWN59W8OloXLuGjDhXf2AnF0L7R6SzcpV5hGhSWITnSRG5cLGVuhcp3CitQ6SRKsstxPCR-IUymOmY-mORTEGx30uhi0tkKTYCiSdEHY5azVghlwxPh3pXvxx9gsQa1fM3BmPSeF5T1NEAoz6FAz3YEKeX3bD6cBfQWVlXIdjOKjmMWhzj_978Wdka3p6clwcH86OtsmtCPNCet_UDtls6848AW2tlU_720HJp-u-jr8AQ6tc2w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface-engineered+N-doped+carbon+nanotubes+with+B-doped+graphene+quantum+dots%3A+Strategies+to+develop+highly-efficient+noble+metal-free+electrocatalyst+for+online-monitoring+dissolved+oxygen+biosensor&rft.jtitle=Carbon+%28New+York%29&rft.au=Wang%2C+Yu-Xuan&rft.au=Rinawati%2C+Mia&rft.au=Huang%2C+Wei-Hsiang&rft.au=Cheng%2C+Yao-Sheng&rft.date=2022-01-01&rft.pub=Elsevier+BV&rft.issn=0008-6223&rft.eissn=1873-3891&rft.volume=186&rft.spage=406&rft_id=info:doi/10.1016%2Fj.carbon.2021.10.027&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon |