An incremental learning temporal influence model for identifying topical influencers on Twitter dataset

Sentiment analysis explores the views, perceptions and feelings of people concerning entities like subjects, goods, organizations, resources and individuals. The opinion of some people in social network influences the opinion behavior and thoughts of other people. They are known as influential user....

Full description

Saved in:
Bibliographic Details
Published inSocial network analysis and mining Vol. 11; no. 1; p. 27
Main Authors Ramya, G. R., Bagavathi Sivakumar, P.
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.12.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sentiment analysis explores the views, perceptions and feelings of people concerning entities like subjects, goods, organizations, resources and individuals. The opinion of some people in social network influences the opinion behavior and thoughts of other people. They are known as influential user. In this article, both the sentiment analysis and identification of influential user are proposed. Initially, Twitter data are preprocessed by proposing weighted partition around medoids (WPAM) with artificial cooperative search (WPAM-ACS) which extracts topics from Twitter data through dynamic clustering (DC). For sentiment classification, NLP has been used in many works. The main issue of using NLP for sentiment classification is that many languages do not have the adequate resources to develop NLP models. So, a fuzzy deep neural network (FDNN) is proposed in this paper for sentiment classification, because FDNN effectively handles the uncertainties and noises in tweet data than other state of the arts. Emotional conformity is a metric that refers to how people from an emotional point of view agree with another person. It is given as additional input to FDNN along with the tweets for sentiment classification. Finally, influential users are detected by temporal influential model (TIM) formulated as likelihood function using incremental logistic regression (ILLR) in which user’s opinion sequence is considered for identification of influential user. In the experimental results, sentiment analysis is evaluated in terms of precision, recall and F-measure and proved that the proposed DC–FDNN sentiment classification is better than fixed clustering and NLP (FC–NLP)-based sentiment classification. Influential user detection using TIM-ILLR on opinion sequences which are identified by DC-FDNN is evaluated in terms of accuracy and proved that TIM-ILLR is better than other methods such as maximum likelihood estimation (MLE), support vector regression (SVR) and logistic regression (LR).
AbstractList Sentiment analysis explores the views, perceptions and feelings of people concerning entities like subjects, goods, organizations, resources and individuals. The opinion of some people in social network influences the opinion behavior and thoughts of other people. They are known as influential user. In this article, both the sentiment analysis and identification of influential user are proposed. Initially, Twitter data are preprocessed by proposing weighted partition around medoids (WPAM) with artificial cooperative search (WPAM-ACS) which extracts topics from Twitter data through dynamic clustering (DC). For sentiment classification, NLP has been used in many works. The main issue of using NLP for sentiment classification is that many languages do not have the adequate resources to develop NLP models. So, a fuzzy deep neural network (FDNN) is proposed in this paper for sentiment classification, because FDNN effectively handles the uncertainties and noises in tweet data than other state of the arts. Emotional conformity is a metric that refers to how people from an emotional point of view agree with another person. It is given as additional input to FDNN along with the tweets for sentiment classification. Finally, influential users are detected by temporal influential model (TIM) formulated as likelihood function using incremental logistic regression (ILLR) in which user’s opinion sequence is considered for identification of influential user. In the experimental results, sentiment analysis is evaluated in terms of precision, recall and F-measure and proved that the proposed DC–FDNN sentiment classification is better than fixed clustering and NLP (FC–NLP)-based sentiment classification. Influential user detection using TIM-ILLR on opinion sequences which are identified by DC-FDNN is evaluated in terms of accuracy and proved that TIM-ILLR is better than other methods such as maximum likelihood estimation (MLE), support vector regression (SVR) and logistic regression (LR).
Sentiment analysis explores the views, perceptions and feelings of people concerning entities like subjects, goods, organizations, resources and individuals. The opinion of some people in social network influences the opinion behavior and thoughts of other people. They are known as influential user. In this article, both the sentiment analysis and identification of influential user are proposed. Initially, Twitter data are preprocessed by proposing weighted partition around medoids (WPAM) with artificial cooperative search (WPAM-ACS) which extracts topics from Twitter data through dynamic clustering (DC). For sentiment classification, NLP has been used in many works. The main issue of using NLP for sentiment classification is that many languages do not have the adequate resources to develop NLP models. So, a fuzzy deep neural network (FDNN) is proposed in this paper for sentiment classification, because FDNN effectively handles the uncertainties and noises in tweet data than other state of the arts. Emotional conformity is a metric that refers to how people from an emotional point of view agree with another person. It is given as additional input to FDNN along with the tweets for sentiment classification. Finally, influential users are detected by temporal influential model (TIM) formulated as likelihood function using incremental logistic regression (ILLR) in which user’s opinion sequence is considered for identification of influential user. In the experimental results, sentiment analysis is evaluated in terms of precision, recall and F-measure and proved that the proposed DC–FDNN sentiment classification is better than fixed clustering and NLP (FC–NLP)-based sentiment classification. Influential user detection using TIM-ILLR on opinion sequences which are identified by DC-FDNN is evaluated in terms of accuracy and proved that TIM-ILLR is better than other methods such as maximum likelihood estimation (MLE), support vector regression (SVR) and logistic regression (LR).
ArticleNumber 27
Author Bagavathi Sivakumar, P.
Ramya, G. R.
Author_xml – sequence: 1
  givenname: G. R.
  orcidid: 0000-0001-8184-048X
  surname: Ramya
  fullname: Ramya, G. R.
  email: gr_ramya@cb.amrita.edu
  organization: Department of Computer Science and Engineering, Amrita School of Engineering
– sequence: 2
  givenname: P.
  surname: Bagavathi Sivakumar
  fullname: Bagavathi Sivakumar, P.
  organization: Department of Computer Science and Engineering, Amrita School of Engineering
BookMark eNp9kMtKAzEUhoNUsGpfwFXA9Wguk0mzLMUbFNzUdchkzpQpM8mYpEjf3tgRdeXqXPj-c-C7RDPnHSB0Q8kdJUTeR8qZXBaE0SKPnBXlGZrTZaUKUVZq9tMLcoEWMe4JIZRwrkg1R7uVw52zAQZwyfS4BxNc53Y4wTD6kDeda_sDOAt48A30uPUBd02mu_Z4Av3Y2b9ciNg7vP3oUoKAG5NMhHSNzlvTR1h81yv09viwXT8Xm9enl_VqU1heyVQYYzirKsOIASlaI6mqLfCqpqwCBtYSZTkHQWspmRAGlGwaVQpTC0XrVvIrdDvdHYN_P0BMeu8PweWXmilGOFOc00yxibLBxxig1WPoBhOOmhL95VRPTnV2qk9OdZlDfArFDLsdhN_T_6Q-Afo7fUM
CitedBy_id crossref_primary_10_1186_s40537_022_00660_w
crossref_primary_10_1007_s10489_022_03831_7
crossref_primary_10_1007_s40435_023_01315_1
crossref_primary_10_1016_j_procs_2023_01_152
Cites_doi 10.1109/ACCESS.2017.2672680
10.1016/j.eswa.2017.02.002
10.1142/S0218001416590151
10.1016/j.swevo.2018.02.003
10.1016/j.procs.2018.10.466
10.1016/j.knosys.2015.09.008
10.1109/TFUZZ.2016.2574915
10.1016/j.ipm.2017.02.004
10.1109/ACCESS.2017.2776930
10.1016/j.eswa.2016.05.038
10.1016/j.cogsys.2018.10.001
10.1016/j.ins.2012.11.013
10.1016/j.eswa.2017.10.006
10.1109/iFUZZY.2016.8004974
10.1007/978-3-319-33625-1_23
10.1633/JISTaP.2015.3.1.1
10.1109/ICECA.2018.8474783
10.1007/978-3-319-71767-8_19
10.1109/ICAIET.2014.43
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021.
DBID AAYXX
CITATION
0-V
3V.
7XB
88J
8BJ
8FE
8FG
8FK
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FQK
GNUQQ
HCIFZ
JBE
JQ2
K7-
M2R
P5Z
P62
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s13278-021-00732-4
DatabaseName CrossRef
ProQuest Social Sciences Premium Collection【Remote access available】
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Social Science Database (Alumni Edition)
International Bibliography of the Social Sciences (IBSS)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Social Science Premium Collection
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
International Bibliography of the Social Sciences
ProQuest Central Student
SciTech Premium Collection
International Bibliography of the Social Sciences
ProQuest Computer Science Collection
Computer Science Database
Social Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Social Science Journals (Alumni Edition)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
International Bibliography of the Social Sciences (IBSS)
ProQuest Central Korea
Advanced Technologies & Aerospace Collection
Social Science Premium Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Social Science Journals
ProQuest Social Sciences Premium Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList Computer Science Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Law
Computer Science
EISSN 1869-5469
ExternalDocumentID 10_1007_s13278_021_00732_4
GroupedDBID -EM
0R~
0VY
203
2VQ
30V
4.4
406
408
409
96X
AAAVM
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZMS
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACBMV
ACBRV
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACKNC
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEOHA
AEPYU
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKLTO
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
AZFZN
BGNMA
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ8
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I0C
IKXTQ
ITM
IWAJR
IZIGR
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
PT4
RIG
RLLFE
RSV
S1Z
S27
SCO
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
WK8
Z7X
Z7Z
Z81
Z83
Z88
ZMTXR
~A9
AACDK
AAJBT
AASML
AAYXX
ABAKF
ABUWG
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AFKRA
AGQEE
AGRTI
AIGIU
ALSLI
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2R
ROL
SJYHP
0-V
3V.
7XB
8BJ
8FE
8FG
8FK
FQK
JBE
JQ2
P62
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c367t-aaa3266a20ae75fa719bce36b126e2ecc09c33e51b77255ae97dd945ab591bf73
IEDL.DBID BENPR
ISSN 1869-5450
IngestDate Tue Oct 22 16:07:45 EDT 2024
Thu Sep 12 17:37:43 EDT 2024
Sat Dec 16 12:08:34 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Artificial cooperative search
Sentiment analysis
Weighted partition around medoids
Fuzzy deep neural network
Incremental learning logistic regression
Influential user
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-aaa3266a20ae75fa719bce36b126e2ecc09c33e51b77255ae97dd945ab591bf73
ORCID 0000-0001-8184-048X
PQID 2920329331
PQPubID 2044166
ParticipantIDs proquest_journals_2920329331
crossref_primary_10_1007_s13278_021_00732_4
springer_journals_10_1007_s13278_021_00732_4
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Heidelberg
PublicationTitle Social network analysis and mining
PublicationTitleAbbrev Soc. Netw. Anal. Min
PublicationYear 2021
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References Jianqiang, Xiaolin, Feng (CR15) 2017; 5
Li, Liu (CR19) 2010
Dohaiha, Prasad, Maag, Alsadoon (CR11) 2018; 118
Suzuki, Kaneda, Mineno (CR27) 2015; 3
Kauer, Moreira (CR18) 2016; 61
Tang, Miao, Quan, Tang, Deng (CR28) 2015; 89
CR17
Heikal, Torki, El-Makky (CR14) 2018; 142
CR10
CR30
Sun, Wang, Zhou, Luo (CR26) 2016; 30
Jianqiang, Xiaolin, Xuejun (CR16) 2018; 6
de Amorim, Fenner (CR3) 2012
Araque, Corcuera-Platas, Sanchez-Rada, Iglesias (CR4) 2017; 77
CR5
CR7
CR29
Eliacik, Erdogan (CR12) 2018; 92
Deng, Ren, Kong, Bao, Dai (CR9) 2017; 25
CR22
Mohammadi, Saraee (CR21) 2018; 40
Shalini, Sravya (CR25) 2018; 5
Alharbi, de Doncker (CR2) 2018; 54
Civicioglu (CR8) 2013; 229
Pandey, Rajpoot, Saraswat (CR24) 2017; 53
Hasan, Moin, Karim, Shamshirband (CR13) 2018; 23
Chen, Li, Gao, Hou (CR6) 2017; 32
RC de Amorim (732_CR3) 2012
X Tang (732_CR28) 2015; 89
ASM Alharbi (732_CR2) 2018; 54
Q Sun (732_CR26) 2016; 30
A Hasan (732_CR13) 2018; 23
Y Suzuki (732_CR27) 2015; 3
732_CR22
732_CR29
732_CR7
732_CR5
A Mohammadi (732_CR21) 2018; 40
AC Pandey (732_CR24) 2017; 53
AB Eliacik (732_CR12) 2018; 92
Z Jianqiang (732_CR15) 2017; 5
G Li (732_CR19) 2010
L Shalini (732_CR25) 2018; 5
Z Jianqiang (732_CR16) 2018; 6
O Araque (732_CR4) 2017; 77
732_CR17
C Chen (732_CR6) 2017; 32
AU Kauer (732_CR18) 2016; 61
M Heikal (732_CR14) 2018; 142
HH Dohaiha (732_CR11) 2018; 118
P Civicioglu (732_CR8) 2013; 229
732_CR10
732_CR30
Y Deng (732_CR9) 2017; 25
References_xml – ident: CR22
– start-page: 331
  year: 2010
  end-page: 337
  ident: CR19
  article-title: A clustering-based approach on sentiment analysis
  publication-title: International conference on INTELLIGENT systems and knowledge engineering (ISKE)
  contributor:
    fullname: Liu
– volume: 5
  start-page: 2074
  year: 2018
  end-page: 2077
  ident: CR25
  article-title: Analysis of health-tweets using K-means clustering
  publication-title: Int Res J Eng Tech
  contributor:
    fullname: Sravya
– volume: 5
  start-page: 3008
  year: 2017
  end-page: 3015
  ident: CR15
  article-title: A new method of identifying influential users in the micro-blog networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2672680
  contributor:
    fullname: Feng
– volume: 77
  start-page: 236
  year: 2017
  end-page: 246
  ident: CR4
  article-title: Enhancing deep learning sentiment analysis with ensemble techniques in social applications
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.02.002
  contributor:
    fullname: Iglesias
– ident: CR30
– ident: CR10
– volume: 23
  start-page: 1
  year: 2018
  end-page: 15
  ident: CR13
  article-title: Machine learning-based sentiment analysis for twitter accounts
  publication-title: Math Comput Appl
  contributor:
    fullname: Shamshirband
– volume: 30
  start-page: 1659015
  issue: 1659015–1
  year: 2016
  end-page: 1659016
  ident: CR26
  article-title: Identification of influential online social network users based on multi-features
  publication-title: Int J Pattern Recognit Artif Intell
  doi: 10.1142/S0218001416590151
  contributor:
    fullname: Luo
– ident: CR29
– volume: 40
  start-page: 158
  year: 2018
  end-page: 165
  ident: CR21
  article-title: Finding influential users for different time bounds in social networks using multi-objective optimization
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2018.02.003
  contributor:
    fullname: Saraee
– volume: 142
  start-page: 114
  year: 2018
  end-page: 122
  ident: CR14
  article-title: Sentiment analysis of Arabic tweets using deep learning
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2018.10.466
  contributor:
    fullname: El-Makky
– volume: 89
  start-page: 681
  year: 2015
  end-page: 688
  ident: CR28
  article-title: Predicting individual retweet behavior by user similarity: a multi-task learning approach
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.09.008
  contributor:
    fullname: Deng
– volume: 25
  start-page: 1006
  year: 2017
  end-page: 1012
  ident: CR9
  article-title: A hierarchical fused fuzzy deep neural network for data classification
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2016.2574915
  contributor:
    fullname: Dai
– volume: 53
  start-page: 764
  year: 2017
  end-page: 779
  ident: CR24
  article-title: Twitter sentiment analysis using hybrid cuckoo search method
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2017.02.004
  contributor:
    fullname: Saraswat
– volume: 32
  start-page: 28
  year: 2017
  end-page: 35
  ident: CR6
  article-title: Exploring interpersonal influence by tracking user dynamic interactions
  publication-title: IEEE Intell Syst
  contributor:
    fullname: Hou
– volume: 6
  start-page: 23253
  year: 2018
  end-page: 23260
  ident: CR16
  article-title: Deep convolution neural networks for twitter sentiment analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2776930
  contributor:
    fullname: Xuejun
– volume: 61
  start-page: 282
  year: 2016
  end-page: 289
  ident: CR18
  article-title: Using information retrieval for sentiment polarity prediction
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.05.038
  contributor:
    fullname: Moreira
– ident: CR17
– volume: 118
  start-page: 272
  year: 2018
  end-page: 299
  ident: CR11
  article-title: Deep learning for aspect-based sentiment analysis: a comparative review
  publication-title: Expert Syst Appl
  contributor:
    fullname: Alsadoon
– volume: 54
  start-page: 50
  year: 2018
  end-page: 61
  ident: CR2
  article-title: Twitter sentiment analysis with a deep neural network: an enhanced approach using user behavioral information
  publication-title: Cogn Syst Res
  doi: 10.1016/j.cogsys.2018.10.001
  contributor:
    fullname: de Doncker
– volume: 229
  start-page: 58
  year: 2013
  end-page: 76
  ident: CR8
  article-title: Artificial cooperative search algorithm for numerical optimization problems
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2012.11.013
  contributor:
    fullname: Civicioglu
– ident: CR5
– ident: CR7
– volume: 3
  start-page: 37
  year: 2015
  end-page: 48
  ident: CR27
  article-title: Analysis of support vector regression model for micrometeorological data prediction
  publication-title: Comput Sci Inf Tech
  contributor:
    fullname: Mineno
– start-page: 35
  year: 2012
  end-page: 44
  ident: CR3
  publication-title: Weighting features for partition around medoids using the minkowski metric
  contributor:
    fullname: Fenner
– volume: 92
  start-page: 403
  year: 2018
  end-page: 418
  ident: CR12
  article-title: Influential user weighted sentiment analysis on topic based microblogging community
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.10.006
  contributor:
    fullname: Erdogan
– volume: 40
  start-page: 158
  year: 2018
  ident: 732_CR21
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2018.02.003
  contributor:
    fullname: A Mohammadi
– start-page: 35
  volume-title: Weighting features for partition around medoids using the minkowski metric
  year: 2012
  ident: 732_CR3
  contributor:
    fullname: RC de Amorim
– volume: 118
  start-page: 272
  year: 2018
  ident: 732_CR11
  publication-title: Expert Syst Appl
  contributor:
    fullname: HH Dohaiha
– start-page: 331
  volume-title: International conference on INTELLIGENT systems and knowledge engineering (ISKE)
  year: 2010
  ident: 732_CR19
  contributor:
    fullname: G Li
– ident: 732_CR17
  doi: 10.1109/iFUZZY.2016.8004974
– volume: 5
  start-page: 3008
  year: 2017
  ident: 732_CR15
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2672680
  contributor:
    fullname: Z Jianqiang
– volume: 30
  start-page: 1659015
  issue: 1659015–1
  year: 2016
  ident: 732_CR26
  publication-title: Int J Pattern Recognit Artif Intell
  doi: 10.1142/S0218001416590151
  contributor:
    fullname: Q Sun
– volume: 6
  start-page: 23253
  year: 2018
  ident: 732_CR16
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2776930
  contributor:
    fullname: Z Jianqiang
– volume: 23
  start-page: 1
  year: 2018
  ident: 732_CR13
  publication-title: Math Comput Appl
  contributor:
    fullname: A Hasan
– volume: 61
  start-page: 282
  year: 2016
  ident: 732_CR18
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2016.05.038
  contributor:
    fullname: AU Kauer
– volume: 32
  start-page: 28
  year: 2017
  ident: 732_CR6
  publication-title: IEEE Intell Syst
  contributor:
    fullname: C Chen
– ident: 732_CR5
  doi: 10.1007/978-3-319-33625-1_23
– ident: 732_CR30
  doi: 10.1633/JISTaP.2015.3.1.1
– volume: 89
  start-page: 681
  year: 2015
  ident: 732_CR28
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.09.008
  contributor:
    fullname: X Tang
– volume: 53
  start-page: 764
  year: 2017
  ident: 732_CR24
  publication-title: Inf Process Manag
  doi: 10.1016/j.ipm.2017.02.004
  contributor:
    fullname: AC Pandey
– ident: 732_CR29
  doi: 10.1109/ICECA.2018.8474783
– ident: 732_CR10
  doi: 10.1007/978-3-319-71767-8_19
– volume: 142
  start-page: 114
  year: 2018
  ident: 732_CR14
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2018.10.466
  contributor:
    fullname: M Heikal
– volume: 3
  start-page: 37
  year: 2015
  ident: 732_CR27
  publication-title: Comput Sci Inf Tech
  contributor:
    fullname: Y Suzuki
– volume: 5
  start-page: 2074
  year: 2018
  ident: 732_CR25
  publication-title: Int Res J Eng Tech
  contributor:
    fullname: L Shalini
– volume: 92
  start-page: 403
  year: 2018
  ident: 732_CR12
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.10.006
  contributor:
    fullname: AB Eliacik
– volume: 25
  start-page: 1006
  year: 2017
  ident: 732_CR9
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2016.2574915
  contributor:
    fullname: Y Deng
– ident: 732_CR22
– ident: 732_CR7
  doi: 10.1109/ICAIET.2014.43
– volume: 77
  start-page: 236
  year: 2017
  ident: 732_CR4
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.02.002
  contributor:
    fullname: O Araque
– volume: 54
  start-page: 50
  year: 2018
  ident: 732_CR2
  publication-title: Cogn Syst Res
  doi: 10.1016/j.cogsys.2018.10.001
  contributor:
    fullname: ASM Alharbi
– volume: 229
  start-page: 58
  year: 2013
  ident: 732_CR8
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2012.11.013
  contributor:
    fullname: P Civicioglu
SSID ssj0001033906
Score 2.2996151
Snippet Sentiment analysis explores the views, perceptions and feelings of people concerning entities like subjects, goods, organizations, resources and individuals....
Sentiment analysis explores the views, perceptions and feelings of people concerning entities like subjects, goods, organizations, resources and individuals....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 27
SubjectTerms Accuracy
Algorithms
Applications of Graph Theory and Complex Networks
Artificial neural networks
Classification
Clustering
Computer Science
Conformity
Data mining
Data Mining and Knowledge Discovery
Datasets
Deep learning
Dissolution
Economics
Emotions
Evaluation
Fuzzy logic
Game Theory
Humanities
Influence
Law
Learning
Literature reviews
Machine learning
Maximum likelihood estimation
Maximum likelihood method
Methodology of the Social Sciences
Methods
Natural language processing
Neural networks
Original Article
Partition
Regression
Regression analysis
Sentiment analysis
Sequences
Social and Behav. Sciences
Social networks
Statistics for Social Sciences
Support vector machines
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGP1w86AXf0zF6ZQcvGmg-dn2OMQxRDxtsFtJ0nQMpBtrZf--SdZSFD14Tsgh70vyknzvewAPwpKoiLXBjCccc0sM1poTLGwu8zR127IKWb7vcjrnrwux6HTcIdm9_ZEMG3WndWPUF4Ol7vbrwpJi3oNDRx64z-Oa03H3sBIxd48PqqJEptgxhKgRy_w-zPcDqWOZPz5Gw3kzOYOThiii8R7Zcziw5QBOWxMG1KzJARy10uJqAL03tbuA5bhEq9LsH_7cEI0xxBI1Zag-XGvjTIKCEQ5yxBWtgmI3qJ5Qvd547Lp-2wqtSzTbrbz2B_ms0srWlzCfvMyep7jxU8CGybjGSilH1qSikbKxKFRMUm0sk5pQaanDMkoNY1YQ7Si3EMqmcZ6nXCgtUqKLmF1Bv1yX9hqQMjYpckJzGhlOYqN9zR_HLGJNiyKRyRAe20nNNvuyGVlXINlDkDkIsgBBxocwauc9a5ZQlXkbLebICCNDeGqx6Jr_Hu3mf91v4Zj6cAgpKiPo19tPe-eIRq3vQ2B9ATbSylE
  priority: 102
  providerName: Springer Nature
Title An incremental learning temporal influence model for identifying topical influencers on Twitter dataset
URI https://link.springer.com/article/10.1007/s13278-021-00732-4
https://www.proquest.com/docview/2920329331
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEB4S-9JLaWhK3TpGh9wSkdVrH6fgBD9owIRgQ3paJK02GMrasbf072ckyywtNNedRYcZaebTaGY-gEvlWFJnxlIhc0mlY5YaIxlVrkqrokC3rEOV7yKdr-SPZ_UcE277WFZ59InBUVcb63PkN55VSWBsEux2-0o9a5R_XY0UGqfQ53hT4D3o300Wj09dliUReKkPLUZ5WlCEC0nsnDn0zwnuB8xyvFHjVudU_h2dOsj5zytpCD7TT_AxokYyPpj5DE5c8xlexg1ZN_aQ4ENpJIB4IXHc1C-URgYSEghvCAJUsg6duaG7ibSbrbdR999uTzYNWf5Z-x4f4qtH9649h9V0sryf08ibQK1Is5ZqrRGUpZon2mWq1hkrjHUiNYynjqPNksIK4RQzCK2V0q7IqqqQShtVMFNn4gv0mk3jvgLR1uV1xXjFEytZZo2f7YMIIjO8rvM0H8DVUV_l9jAeo-wGIXvtlqjdMmi3lAMYHlVaxqOyLzvDDuD6qOZO_P_Vvr2_2nf4wL1lQ-nJEHrt7re7QADRmhGc5tPZCPrj2c-HySjuGfy64uM33Q_HSw
link.rule.ids 315,783,787,12779,21402,27938,27939,33387,33758,41095,41537,42164,42606,43614,43819,52125,52248
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgDLAgECAKBTywgUX8lY8JVYhSoHRqpW6R7ThVJZSUJoi_j-04ikCC2ZGHO-fu-XzvHgDXXOMgj6RClMUMMY0VkpJhxHUWZkliwrJwXb7TcDxnLwu-8AW3yrdVtjHRBeqsVLZGfmdVlajJTRTfrz-QVY2yr6teQmMb7DBqEo1lio-euhpLQM2V3hGM4jBBBiwEnjfTsOcoseNliblPm4NOEPuZmzrA-euN1KWe0QHY95gRDhsnH4ItXRyB5bCAq0I15T2z6uUfltAPm3o3q15_BDq5G2jgKVw5Xq7jNsG6XFsPdd9tKlgWcPa1sgwfaHtHK10fg_nocfYwRl41ASkaRjUSQhhIFgoSCB3xXEQ4kUrTUGISamI8FiSKUs2xNMCac6GTKMsSxoXkCZZ5RE9ArygLfQqgUDrOM0wyEiiGIyXtZB-DHyJJ8jwO4z64ae2VrpvhGGk3BtlaNzXWTZ11U9YHg9akqf9RqrRzax_ctmbulv_e7ez_3a7A7nj2Nkknz9PXc7BHrJddE8oA9OrNp74wUKKWl-68fANwgMVz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BIrVcCl2K2HYBH3prDfErj-MKWJ5CPYBET5HtOKsVKLtig1bi19d2HIWi9oA427KSmbH92Z7vG4DvwpCoTJTGjKccc0M0VooTLEwRF1lml2Xps3yv47NbfnEn7l6w-H22e_sk2XAanEpTVR_Oi_KwI74x6pRhqT0K2xilmK_CGicWLvRgbXT6-_LFPUvE7LHek4zSOMMWMESBO_Pvgf7enzrQ-eqd1G8_4w2Q7Yc3WSf3B0-1OtDPrzQd3_Nnm_ApYFM0aoLpM6yYqg8bbd0HFJaBPnxs2cyLPqxeyeUWTEYVmla6uWu0Q4RaFBMUlK8ebGsohoJ87R1ksTKaepKwJ1qhejZ34dL1e1ygWYVullNHN0IukXVh6i9wOz65OTrDoYQD1ixOaiyltPgwljSSJhGlTEimtGGxIjQ21IZPlGnGjCDKonwhpMmSosi4kEpkRJUJ24ZeNavMDiCpTVoWhBY00pwkWjmZIQtmEkXLMo3TAfxoHZfPG6WOvNNkdlbNrVVzb9WcD2DY-jYPs3aRu8pdzOIfRgbws3VV1_z_0b6-rfs-fPh1PM6vzq8vv8E6dc72CTJD6NWPT2bXwpxa7YVI_gN-NfOA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+incremental+learning+temporal+influence+model+for+identifying+topical+influencers+on+Twitter+dataset&rft.jtitle=Social+network+analysis+and+mining&rft.au=Ramya%2C+G.+R.&rft.au=Bagavathi+Sivakumar%2C+P.&rft.date=2021-12-01&rft.issn=1869-5450&rft.eissn=1869-5469&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1007%2Fs13278-021-00732-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13278_021_00732_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1869-5450&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1869-5450&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1869-5450&client=summon