An incremental learning temporal influence model for identifying topical influencers on Twitter dataset
Sentiment analysis explores the views, perceptions and feelings of people concerning entities like subjects, goods, organizations, resources and individuals. The opinion of some people in social network influences the opinion behavior and thoughts of other people. They are known as influential user....
Saved in:
Published in | Social network analysis and mining Vol. 11; no. 1; p. 27 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Vienna
Springer Vienna
01.12.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sentiment analysis explores the views, perceptions and feelings of people concerning entities like subjects, goods, organizations, resources and individuals. The opinion of some people in social network influences the opinion behavior and thoughts of other people. They are known as influential user. In this article, both the sentiment analysis and identification of influential user are proposed. Initially, Twitter data are preprocessed by proposing weighted partition around medoids (WPAM) with artificial cooperative search (WPAM-ACS) which extracts topics from Twitter data through dynamic clustering (DC). For sentiment classification, NLP has been used in many works. The main issue of using NLP for sentiment classification is that many languages do not have the adequate resources to develop NLP models. So, a fuzzy deep neural network (FDNN) is proposed in this paper for sentiment classification, because FDNN effectively handles the uncertainties and noises in tweet data than other state of the arts. Emotional conformity is a metric that refers to how people from an emotional point of view agree with another person. It is given as additional input to FDNN along with the tweets for sentiment classification. Finally, influential users are detected by temporal influential model (TIM) formulated as likelihood function using incremental logistic regression (ILLR) in which user’s opinion sequence is considered for identification of influential user. In the experimental results, sentiment analysis is evaluated in terms of precision, recall and F-measure and proved that the proposed DC–FDNN sentiment classification is better than fixed clustering and NLP (FC–NLP)-based sentiment classification. Influential user detection using TIM-ILLR on opinion sequences which are identified by DC-FDNN is evaluated in terms of accuracy and proved that TIM-ILLR is better than other methods such as maximum likelihood estimation (MLE), support vector regression (SVR) and logistic regression (LR). |
---|---|
AbstractList | Sentiment analysis explores the views, perceptions and feelings of people concerning entities like subjects, goods, organizations, resources and individuals. The opinion of some people in social network influences the opinion behavior and thoughts of other people. They are known as influential user. In this article, both the sentiment analysis and identification of influential user are proposed. Initially, Twitter data are preprocessed by proposing weighted partition around medoids (WPAM) with artificial cooperative search (WPAM-ACS) which extracts topics from Twitter data through dynamic clustering (DC). For sentiment classification, NLP has been used in many works. The main issue of using NLP for sentiment classification is that many languages do not have the adequate resources to develop NLP models. So, a fuzzy deep neural network (FDNN) is proposed in this paper for sentiment classification, because FDNN effectively handles the uncertainties and noises in tweet data than other state of the arts. Emotional conformity is a metric that refers to how people from an emotional point of view agree with another person. It is given as additional input to FDNN along with the tweets for sentiment classification. Finally, influential users are detected by temporal influential model (TIM) formulated as likelihood function using incremental logistic regression (ILLR) in which user’s opinion sequence is considered for identification of influential user. In the experimental results, sentiment analysis is evaluated in terms of precision, recall and F-measure and proved that the proposed DC–FDNN sentiment classification is better than fixed clustering and NLP (FC–NLP)-based sentiment classification. Influential user detection using TIM-ILLR on opinion sequences which are identified by DC-FDNN is evaluated in terms of accuracy and proved that TIM-ILLR is better than other methods such as maximum likelihood estimation (MLE), support vector regression (SVR) and logistic regression (LR). Sentiment analysis explores the views, perceptions and feelings of people concerning entities like subjects, goods, organizations, resources and individuals. The opinion of some people in social network influences the opinion behavior and thoughts of other people. They are known as influential user. In this article, both the sentiment analysis and identification of influential user are proposed. Initially, Twitter data are preprocessed by proposing weighted partition around medoids (WPAM) with artificial cooperative search (WPAM-ACS) which extracts topics from Twitter data through dynamic clustering (DC). For sentiment classification, NLP has been used in many works. The main issue of using NLP for sentiment classification is that many languages do not have the adequate resources to develop NLP models. So, a fuzzy deep neural network (FDNN) is proposed in this paper for sentiment classification, because FDNN effectively handles the uncertainties and noises in tweet data than other state of the arts. Emotional conformity is a metric that refers to how people from an emotional point of view agree with another person. It is given as additional input to FDNN along with the tweets for sentiment classification. Finally, influential users are detected by temporal influential model (TIM) formulated as likelihood function using incremental logistic regression (ILLR) in which user’s opinion sequence is considered for identification of influential user. In the experimental results, sentiment analysis is evaluated in terms of precision, recall and F-measure and proved that the proposed DC–FDNN sentiment classification is better than fixed clustering and NLP (FC–NLP)-based sentiment classification. Influential user detection using TIM-ILLR on opinion sequences which are identified by DC-FDNN is evaluated in terms of accuracy and proved that TIM-ILLR is better than other methods such as maximum likelihood estimation (MLE), support vector regression (SVR) and logistic regression (LR). |
ArticleNumber | 27 |
Author | Bagavathi Sivakumar, P. Ramya, G. R. |
Author_xml | – sequence: 1 givenname: G. R. orcidid: 0000-0001-8184-048X surname: Ramya fullname: Ramya, G. R. email: gr_ramya@cb.amrita.edu organization: Department of Computer Science and Engineering, Amrita School of Engineering – sequence: 2 givenname: P. surname: Bagavathi Sivakumar fullname: Bagavathi Sivakumar, P. organization: Department of Computer Science and Engineering, Amrita School of Engineering |
BookMark | eNp9kMtKAzEUhoNUsGpfwFXA9Wguk0mzLMUbFNzUdchkzpQpM8mYpEjf3tgRdeXqXPj-c-C7RDPnHSB0Q8kdJUTeR8qZXBaE0SKPnBXlGZrTZaUKUVZq9tMLcoEWMe4JIZRwrkg1R7uVw52zAQZwyfS4BxNc53Y4wTD6kDeda_sDOAt48A30uPUBd02mu_Z4Av3Y2b9ciNg7vP3oUoKAG5NMhHSNzlvTR1h81yv09viwXT8Xm9enl_VqU1heyVQYYzirKsOIASlaI6mqLfCqpqwCBtYSZTkHQWspmRAGlGwaVQpTC0XrVvIrdDvdHYN_P0BMeu8PweWXmilGOFOc00yxibLBxxig1WPoBhOOmhL95VRPTnV2qk9OdZlDfArFDLsdhN_T_6Q-Afo7fUM |
CitedBy_id | crossref_primary_10_1186_s40537_022_00660_w crossref_primary_10_1007_s10489_022_03831_7 crossref_primary_10_1007_s40435_023_01315_1 crossref_primary_10_1016_j_procs_2023_01_152 |
Cites_doi | 10.1109/ACCESS.2017.2672680 10.1016/j.eswa.2017.02.002 10.1142/S0218001416590151 10.1016/j.swevo.2018.02.003 10.1016/j.procs.2018.10.466 10.1016/j.knosys.2015.09.008 10.1109/TFUZZ.2016.2574915 10.1016/j.ipm.2017.02.004 10.1109/ACCESS.2017.2776930 10.1016/j.eswa.2016.05.038 10.1016/j.cogsys.2018.10.001 10.1016/j.ins.2012.11.013 10.1016/j.eswa.2017.10.006 10.1109/iFUZZY.2016.8004974 10.1007/978-3-319-33625-1_23 10.1633/JISTaP.2015.3.1.1 10.1109/ICECA.2018.8474783 10.1007/978-3-319-71767-8_19 10.1109/ICAIET.2014.43 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021. |
DBID | AAYXX CITATION 0-V 3V. 7XB 88J 8BJ 8FE 8FG 8FK ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FQK GNUQQ HCIFZ JBE JQ2 K7- M2R P5Z P62 PQEST PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s13278-021-00732-4 |
DatabaseName | CrossRef ProQuest Social Sciences Premium Collection【Remote access available】 ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Social Science Database (Alumni Edition) International Bibliography of the Social Sciences (IBSS) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Social Science Premium Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea International Bibliography of the Social Sciences ProQuest Central Student SciTech Premium Collection International Bibliography of the Social Sciences ProQuest Computer Science Collection Computer Science Database Social Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Social Science Journals (Alumni Edition) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central International Bibliography of the Social Sciences (IBSS) ProQuest Central Korea Advanced Technologies & Aerospace Collection Social Science Premium Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Social Science Journals ProQuest Social Sciences Premium Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Law Computer Science |
EISSN | 1869-5469 |
ExternalDocumentID | 10_1007_s13278_021_00732_4 |
GroupedDBID | -EM 0R~ 0VY 203 2VQ 30V 4.4 406 408 409 96X AAAVM AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZMS ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABJNI ABJOX ABKAS ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABXPI ACBMV ACBRV ACBYP ACGFS ACHSB ACIGE ACIPQ ACKNC ACMLO ACOKC ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEOHA AEPYU AESKC AESTI AETCA AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKLTO AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG AUKKA AVWKF AXYYD AYJHY AZFZN BGNMA CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ8 HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I0C IKXTQ ITM IWAJR IZIGR J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J PT4 RIG RLLFE RSV S1Z S27 SCO SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VFIZW W48 WK8 Z7X Z7Z Z81 Z83 Z88 ZMTXR ~A9 AACDK AAJBT AASML AAYXX ABAKF ABUWG ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AFKRA AGQEE AGRTI AIGIU ALSLI ARAPS AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ K7- M2R ROL SJYHP 0-V 3V. 7XB 8BJ 8FE 8FG 8FK FQK JBE JQ2 P62 PQEST PQQKQ PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c367t-aaa3266a20ae75fa719bce36b126e2ecc09c33e51b77255ae97dd945ab591bf73 |
IEDL.DBID | BENPR |
ISSN | 1869-5450 |
IngestDate | Tue Oct 22 16:07:45 EDT 2024 Thu Sep 12 17:37:43 EDT 2024 Sat Dec 16 12:08:34 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Artificial cooperative search Sentiment analysis Weighted partition around medoids Fuzzy deep neural network Incremental learning logistic regression Influential user |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-aaa3266a20ae75fa719bce36b126e2ecc09c33e51b77255ae97dd945ab591bf73 |
ORCID | 0000-0001-8184-048X |
PQID | 2920329331 |
PQPubID | 2044166 |
ParticipantIDs | proquest_journals_2920329331 crossref_primary_10_1007_s13278_021_00732_4 springer_journals_10_1007_s13278_021_00732_4 |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Vienna |
PublicationPlace_xml | – name: Vienna – name: Heidelberg |
PublicationTitle | Social network analysis and mining |
PublicationTitleAbbrev | Soc. Netw. Anal. Min |
PublicationYear | 2021 |
Publisher | Springer Vienna Springer Nature B.V |
Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
References | Jianqiang, Xiaolin, Feng (CR15) 2017; 5 Li, Liu (CR19) 2010 Dohaiha, Prasad, Maag, Alsadoon (CR11) 2018; 118 Suzuki, Kaneda, Mineno (CR27) 2015; 3 Kauer, Moreira (CR18) 2016; 61 Tang, Miao, Quan, Tang, Deng (CR28) 2015; 89 CR17 Heikal, Torki, El-Makky (CR14) 2018; 142 CR10 CR30 Sun, Wang, Zhou, Luo (CR26) 2016; 30 Jianqiang, Xiaolin, Xuejun (CR16) 2018; 6 de Amorim, Fenner (CR3) 2012 Araque, Corcuera-Platas, Sanchez-Rada, Iglesias (CR4) 2017; 77 CR5 CR7 CR29 Eliacik, Erdogan (CR12) 2018; 92 Deng, Ren, Kong, Bao, Dai (CR9) 2017; 25 CR22 Mohammadi, Saraee (CR21) 2018; 40 Shalini, Sravya (CR25) 2018; 5 Alharbi, de Doncker (CR2) 2018; 54 Civicioglu (CR8) 2013; 229 Pandey, Rajpoot, Saraswat (CR24) 2017; 53 Hasan, Moin, Karim, Shamshirband (CR13) 2018; 23 Chen, Li, Gao, Hou (CR6) 2017; 32 RC de Amorim (732_CR3) 2012 X Tang (732_CR28) 2015; 89 ASM Alharbi (732_CR2) 2018; 54 Q Sun (732_CR26) 2016; 30 A Hasan (732_CR13) 2018; 23 Y Suzuki (732_CR27) 2015; 3 732_CR22 732_CR29 732_CR7 732_CR5 A Mohammadi (732_CR21) 2018; 40 AC Pandey (732_CR24) 2017; 53 AB Eliacik (732_CR12) 2018; 92 Z Jianqiang (732_CR15) 2017; 5 G Li (732_CR19) 2010 L Shalini (732_CR25) 2018; 5 Z Jianqiang (732_CR16) 2018; 6 O Araque (732_CR4) 2017; 77 732_CR17 C Chen (732_CR6) 2017; 32 AU Kauer (732_CR18) 2016; 61 M Heikal (732_CR14) 2018; 142 HH Dohaiha (732_CR11) 2018; 118 P Civicioglu (732_CR8) 2013; 229 732_CR10 732_CR30 Y Deng (732_CR9) 2017; 25 |
References_xml | – ident: CR22 – start-page: 331 year: 2010 end-page: 337 ident: CR19 article-title: A clustering-based approach on sentiment analysis publication-title: International conference on INTELLIGENT systems and knowledge engineering (ISKE) contributor: fullname: Liu – volume: 5 start-page: 2074 year: 2018 end-page: 2077 ident: CR25 article-title: Analysis of health-tweets using K-means clustering publication-title: Int Res J Eng Tech contributor: fullname: Sravya – volume: 5 start-page: 3008 year: 2017 end-page: 3015 ident: CR15 article-title: A new method of identifying influential users in the micro-blog networks publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2672680 contributor: fullname: Feng – volume: 77 start-page: 236 year: 2017 end-page: 246 ident: CR4 article-title: Enhancing deep learning sentiment analysis with ensemble techniques in social applications publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.02.002 contributor: fullname: Iglesias – ident: CR30 – ident: CR10 – volume: 23 start-page: 1 year: 2018 end-page: 15 ident: CR13 article-title: Machine learning-based sentiment analysis for twitter accounts publication-title: Math Comput Appl contributor: fullname: Shamshirband – volume: 30 start-page: 1659015 issue: 1659015–1 year: 2016 end-page: 1659016 ident: CR26 article-title: Identification of influential online social network users based on multi-features publication-title: Int J Pattern Recognit Artif Intell doi: 10.1142/S0218001416590151 contributor: fullname: Luo – ident: CR29 – volume: 40 start-page: 158 year: 2018 end-page: 165 ident: CR21 article-title: Finding influential users for different time bounds in social networks using multi-objective optimization publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2018.02.003 contributor: fullname: Saraee – volume: 142 start-page: 114 year: 2018 end-page: 122 ident: CR14 article-title: Sentiment analysis of Arabic tweets using deep learning publication-title: Proc Comput Sci doi: 10.1016/j.procs.2018.10.466 contributor: fullname: El-Makky – volume: 89 start-page: 681 year: 2015 end-page: 688 ident: CR28 article-title: Predicting individual retweet behavior by user similarity: a multi-task learning approach publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.09.008 contributor: fullname: Deng – volume: 25 start-page: 1006 year: 2017 end-page: 1012 ident: CR9 article-title: A hierarchical fused fuzzy deep neural network for data classification publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2016.2574915 contributor: fullname: Dai – volume: 53 start-page: 764 year: 2017 end-page: 779 ident: CR24 article-title: Twitter sentiment analysis using hybrid cuckoo search method publication-title: Inf Process Manag doi: 10.1016/j.ipm.2017.02.004 contributor: fullname: Saraswat – volume: 32 start-page: 28 year: 2017 end-page: 35 ident: CR6 article-title: Exploring interpersonal influence by tracking user dynamic interactions publication-title: IEEE Intell Syst contributor: fullname: Hou – volume: 6 start-page: 23253 year: 2018 end-page: 23260 ident: CR16 article-title: Deep convolution neural networks for twitter sentiment analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2776930 contributor: fullname: Xuejun – volume: 61 start-page: 282 year: 2016 end-page: 289 ident: CR18 article-title: Using information retrieval for sentiment polarity prediction publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.05.038 contributor: fullname: Moreira – ident: CR17 – volume: 118 start-page: 272 year: 2018 end-page: 299 ident: CR11 article-title: Deep learning for aspect-based sentiment analysis: a comparative review publication-title: Expert Syst Appl contributor: fullname: Alsadoon – volume: 54 start-page: 50 year: 2018 end-page: 61 ident: CR2 article-title: Twitter sentiment analysis with a deep neural network: an enhanced approach using user behavioral information publication-title: Cogn Syst Res doi: 10.1016/j.cogsys.2018.10.001 contributor: fullname: de Doncker – volume: 229 start-page: 58 year: 2013 end-page: 76 ident: CR8 article-title: Artificial cooperative search algorithm for numerical optimization problems publication-title: Inf Sci doi: 10.1016/j.ins.2012.11.013 contributor: fullname: Civicioglu – ident: CR5 – ident: CR7 – volume: 3 start-page: 37 year: 2015 end-page: 48 ident: CR27 article-title: Analysis of support vector regression model for micrometeorological data prediction publication-title: Comput Sci Inf Tech contributor: fullname: Mineno – start-page: 35 year: 2012 end-page: 44 ident: CR3 publication-title: Weighting features for partition around medoids using the minkowski metric contributor: fullname: Fenner – volume: 92 start-page: 403 year: 2018 end-page: 418 ident: CR12 article-title: Influential user weighted sentiment analysis on topic based microblogging community publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.10.006 contributor: fullname: Erdogan – volume: 40 start-page: 158 year: 2018 ident: 732_CR21 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2018.02.003 contributor: fullname: A Mohammadi – start-page: 35 volume-title: Weighting features for partition around medoids using the minkowski metric year: 2012 ident: 732_CR3 contributor: fullname: RC de Amorim – volume: 118 start-page: 272 year: 2018 ident: 732_CR11 publication-title: Expert Syst Appl contributor: fullname: HH Dohaiha – start-page: 331 volume-title: International conference on INTELLIGENT systems and knowledge engineering (ISKE) year: 2010 ident: 732_CR19 contributor: fullname: G Li – ident: 732_CR17 doi: 10.1109/iFUZZY.2016.8004974 – volume: 5 start-page: 3008 year: 2017 ident: 732_CR15 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2672680 contributor: fullname: Z Jianqiang – volume: 30 start-page: 1659015 issue: 1659015–1 year: 2016 ident: 732_CR26 publication-title: Int J Pattern Recognit Artif Intell doi: 10.1142/S0218001416590151 contributor: fullname: Q Sun – volume: 6 start-page: 23253 year: 2018 ident: 732_CR16 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2776930 contributor: fullname: Z Jianqiang – volume: 23 start-page: 1 year: 2018 ident: 732_CR13 publication-title: Math Comput Appl contributor: fullname: A Hasan – volume: 61 start-page: 282 year: 2016 ident: 732_CR18 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2016.05.038 contributor: fullname: AU Kauer – volume: 32 start-page: 28 year: 2017 ident: 732_CR6 publication-title: IEEE Intell Syst contributor: fullname: C Chen – ident: 732_CR5 doi: 10.1007/978-3-319-33625-1_23 – ident: 732_CR30 doi: 10.1633/JISTaP.2015.3.1.1 – volume: 89 start-page: 681 year: 2015 ident: 732_CR28 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.09.008 contributor: fullname: X Tang – volume: 53 start-page: 764 year: 2017 ident: 732_CR24 publication-title: Inf Process Manag doi: 10.1016/j.ipm.2017.02.004 contributor: fullname: AC Pandey – ident: 732_CR29 doi: 10.1109/ICECA.2018.8474783 – ident: 732_CR10 doi: 10.1007/978-3-319-71767-8_19 – volume: 142 start-page: 114 year: 2018 ident: 732_CR14 publication-title: Proc Comput Sci doi: 10.1016/j.procs.2018.10.466 contributor: fullname: M Heikal – volume: 3 start-page: 37 year: 2015 ident: 732_CR27 publication-title: Comput Sci Inf Tech contributor: fullname: Y Suzuki – volume: 5 start-page: 2074 year: 2018 ident: 732_CR25 publication-title: Int Res J Eng Tech contributor: fullname: L Shalini – volume: 92 start-page: 403 year: 2018 ident: 732_CR12 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.10.006 contributor: fullname: AB Eliacik – volume: 25 start-page: 1006 year: 2017 ident: 732_CR9 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2016.2574915 contributor: fullname: Y Deng – ident: 732_CR22 – ident: 732_CR7 doi: 10.1109/ICAIET.2014.43 – volume: 77 start-page: 236 year: 2017 ident: 732_CR4 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.02.002 contributor: fullname: O Araque – volume: 54 start-page: 50 year: 2018 ident: 732_CR2 publication-title: Cogn Syst Res doi: 10.1016/j.cogsys.2018.10.001 contributor: fullname: ASM Alharbi – volume: 229 start-page: 58 year: 2013 ident: 732_CR8 publication-title: Inf Sci doi: 10.1016/j.ins.2012.11.013 contributor: fullname: P Civicioglu |
SSID | ssj0001033906 |
Score | 2.2996151 |
Snippet | Sentiment analysis explores the views, perceptions and feelings of people concerning entities like subjects, goods, organizations, resources and individuals.... Sentiment analysis explores the views, perceptions and feelings of people concerning entities like subjects, goods, organizations, resources and individuals.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 27 |
SubjectTerms | Accuracy Algorithms Applications of Graph Theory and Complex Networks Artificial neural networks Classification Clustering Computer Science Conformity Data mining Data Mining and Knowledge Discovery Datasets Deep learning Dissolution Economics Emotions Evaluation Fuzzy logic Game Theory Humanities Influence Law Learning Literature reviews Machine learning Maximum likelihood estimation Maximum likelihood method Methodology of the Social Sciences Methods Natural language processing Neural networks Original Article Partition Regression Regression analysis Sentiment analysis Sequences Social and Behav. Sciences Social networks Statistics for Social Sciences Support vector machines |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwGP1w86AXf0zF6ZQcvGmg-dn2OMQxRDxtsFtJ0nQMpBtrZf--SdZSFD14Tsgh70vyknzvewAPwpKoiLXBjCccc0sM1poTLGwu8zR127IKWb7vcjrnrwux6HTcIdm9_ZEMG3WndWPUF4Ol7vbrwpJi3oNDRx64z-Oa03H3sBIxd48PqqJEptgxhKgRy_w-zPcDqWOZPz5Gw3kzOYOThiii8R7Zcziw5QBOWxMG1KzJARy10uJqAL03tbuA5bhEq9LsH_7cEI0xxBI1Zag-XGvjTIKCEQ5yxBWtgmI3qJ5Qvd547Lp-2wqtSzTbrbz2B_ms0srWlzCfvMyep7jxU8CGybjGSilH1qSikbKxKFRMUm0sk5pQaanDMkoNY1YQ7Si3EMqmcZ6nXCgtUqKLmF1Bv1yX9hqQMjYpckJzGhlOYqN9zR_HLGJNiyKRyRAe20nNNvuyGVlXINlDkDkIsgBBxocwauc9a5ZQlXkbLebICCNDeGqx6Jr_Hu3mf91v4Zj6cAgpKiPo19tPe-eIRq3vQ2B9ATbSylE priority: 102 providerName: Springer Nature |
Title | An incremental learning temporal influence model for identifying topical influencers on Twitter dataset |
URI | https://link.springer.com/article/10.1007/s13278-021-00732-4 https://www.proquest.com/docview/2920329331 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEB4S-9JLaWhK3TpGh9wSkdVrH6fgBD9owIRgQ3paJK02GMrasbf072ckyywtNNedRYcZaebTaGY-gEvlWFJnxlIhc0mlY5YaIxlVrkqrokC3rEOV7yKdr-SPZ_UcE277WFZ59InBUVcb63PkN55VSWBsEux2-0o9a5R_XY0UGqfQ53hT4D3o300Wj09dliUReKkPLUZ5WlCEC0nsnDn0zwnuB8xyvFHjVudU_h2dOsj5zytpCD7TT_AxokYyPpj5DE5c8xlexg1ZN_aQ4ENpJIB4IXHc1C-URgYSEghvCAJUsg6duaG7ibSbrbdR999uTzYNWf5Z-x4f4qtH9649h9V0sryf08ibQK1Is5ZqrRGUpZon2mWq1hkrjHUiNYynjqPNksIK4RQzCK2V0q7IqqqQShtVMFNn4gv0mk3jvgLR1uV1xXjFEytZZo2f7YMIIjO8rvM0H8DVUV_l9jAeo-wGIXvtlqjdMmi3lAMYHlVaxqOyLzvDDuD6qOZO_P_Vvr2_2nf4wL1lQ-nJEHrt7re7QADRmhGc5tPZCPrj2c-HySjuGfy64uM33Q_HSw |
link.rule.ids | 315,783,787,12779,21402,27938,27939,33387,33758,41095,41537,42164,42606,43614,43819,52125,52248 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgDLAgECAKBTywgUX8lY8JVYhSoHRqpW6R7ThVJZSUJoi_j-04ikCC2ZGHO-fu-XzvHgDXXOMgj6RClMUMMY0VkpJhxHUWZkliwrJwXb7TcDxnLwu-8AW3yrdVtjHRBeqsVLZGfmdVlajJTRTfrz-QVY2yr6teQmMb7DBqEo1lio-euhpLQM2V3hGM4jBBBiwEnjfTsOcoseNliblPm4NOEPuZmzrA-euN1KWe0QHY95gRDhsnH4ItXRyB5bCAq0I15T2z6uUfltAPm3o3q15_BDq5G2jgKVw5Xq7jNsG6XFsPdd9tKlgWcPa1sgwfaHtHK10fg_nocfYwRl41ASkaRjUSQhhIFgoSCB3xXEQ4kUrTUGISamI8FiSKUs2xNMCac6GTKMsSxoXkCZZ5RE9ArygLfQqgUDrOM0wyEiiGIyXtZB-DHyJJ8jwO4z64ae2VrpvhGGk3BtlaNzXWTZ11U9YHg9akqf9RqrRzax_ctmbulv_e7ez_3a7A7nj2Nkknz9PXc7BHrJddE8oA9OrNp74wUKKWl-68fANwgMVz |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BIrVcCl2K2HYBH3prDfErj-MKWJ5CPYBET5HtOKsVKLtig1bi19d2HIWi9oA427KSmbH92Z7vG4DvwpCoTJTGjKccc0M0VooTLEwRF1lml2Xps3yv47NbfnEn7l6w-H22e_sk2XAanEpTVR_Oi_KwI74x6pRhqT0K2xilmK_CGicWLvRgbXT6-_LFPUvE7LHek4zSOMMWMESBO_Pvgf7enzrQ-eqd1G8_4w2Q7Yc3WSf3B0-1OtDPrzQd3_Nnm_ApYFM0aoLpM6yYqg8bbd0HFJaBPnxs2cyLPqxeyeUWTEYVmla6uWu0Q4RaFBMUlK8ebGsohoJ87R1ksTKaepKwJ1qhejZ34dL1e1ygWYVullNHN0IukXVh6i9wOz65OTrDoYQD1ixOaiyltPgwljSSJhGlTEimtGGxIjQ21IZPlGnGjCDKonwhpMmSosi4kEpkRJUJ24ZeNavMDiCpTVoWhBY00pwkWjmZIQtmEkXLMo3TAfxoHZfPG6WOvNNkdlbNrVVzb9WcD2DY-jYPs3aRu8pdzOIfRgbws3VV1_z_0b6-rfs-fPh1PM6vzq8vv8E6dc72CTJD6NWPT2bXwpxa7YVI_gN-NfOA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+incremental+learning+temporal+influence+model+for+identifying+topical+influencers+on+Twitter+dataset&rft.jtitle=Social+network+analysis+and+mining&rft.au=Ramya%2C+G.+R.&rft.au=Bagavathi+Sivakumar%2C+P.&rft.date=2021-12-01&rft.issn=1869-5450&rft.eissn=1869-5469&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1007%2Fs13278-021-00732-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13278_021_00732_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1869-5450&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1869-5450&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1869-5450&client=summon |