A method combining FTIR-ATR and Raman spectroscopy to determine soil organic matter: Improvement of prediction accuracy using competitive adaptive reweighted sampling (CARS)

[Display omitted] •Combination of Raman and ATR spectroscopies to predict the content of SOM.•Reduction of RMSEP of prediction model with the application of CARS algorithm.•Improved performance of models based on fused spectra with selected variables. Determination of soil organic matter (SOM) is ex...

Full description

Saved in:
Bibliographic Details
Published inComputers and electronics in agriculture Vol. 191; p. 106549
Main Authors Xing, Zhe, Du, Changwen, Shen, Yazhen, Ma, Fei, Zhou, Jianmin
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.12.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Combination of Raman and ATR spectroscopies to predict the content of SOM.•Reduction of RMSEP of prediction model with the application of CARS algorithm.•Improved performance of models based on fused spectra with selected variables. Determination of soil organic matter (SOM) is extremely important for diagnosing the fertility status of agricultural soils. Thus, fast and efficient approaches are needed to aid soil fertilization assessment. In this work, the method proposed is based on the combination of mid-infrared attenuated total reflection (FTIR-ATR) and dispersive Raman spectroscopy, as a rapid and nondestructive alternative to traditional chemical analysis. The ability of both two individual and the fused spectroscopy in SOM prediction was tested. Partial least squares regression (PLSR) was used to construct predictive models to correlate soil spectra with SOM content. Simple data fusion was accomplished by concatenating the principal components of the two spectra. The predictive performance was not essentially improved, and even decreased for the fused ATR-Raman spectra based on the simple fusion strategy. Better results were obtained with the advanced method of data fusion, which is, concatenating the selected variables of the two spectroscopic techniques after the step of variable selection by competitive adaptive reweighted sampling (CARS). The results showed that the RMSEP of the prediction model was decreased using both the individual and fused spectra data, combining with the CARS algorithm. Models based on fused spectra data with selected variables had the best performance in accuracy of SOM prediction. Therefore, the fused technology of ATR and Raman spectroscopy is a promising approach to predict soil properties, such as SOM, with the advantage of simple preparation of soil samples.
AbstractList Determination of soil organic matter (SOM) is extremely important for diagnosing the fertility status of agricultural soils. Thus, fast and efficient approaches are needed to aid soil fertilization assessment. In this work, the method proposed is based on the combination of mid-infrared attenuated total reflection (FTIR-ATR) and dispersive Raman spectroscopy, as a rapid and nondestructive alternative to traditional chemical analysis. The ability of both two individual and the fused spectroscopy in SOM prediction was tested. Partial least squares regression (PLSR) was used to construct predictive models to correlate soil spectra with SOM content. Simple data fusion was accomplished by concatenating the principal components of the two spectra. The predictive performance was not essentially improved, and even decreased for the fused ATR-Raman spectra based on the simple fusion strategy. Better results were obtained with the advanced method of data fusion, which is, concatenating the selected variables of the two spectroscopic techniques after the step of variable selection by competitive adaptive reweighted sampling (CARS). The results showed that the RMSEP of the prediction model was decreased using both the individual and fused spectra data, combining with the CARS algorithm. Models based on fused spectra data with selected variables had the best performance in accuracy of SOM prediction. Therefore, the fused technology of ATR and Raman spectroscopy is a promising approach to predict soil properties, such as SOM, with the advantage of simple preparation of soil samples.
[Display omitted] •Combination of Raman and ATR spectroscopies to predict the content of SOM.•Reduction of RMSEP of prediction model with the application of CARS algorithm.•Improved performance of models based on fused spectra with selected variables. Determination of soil organic matter (SOM) is extremely important for diagnosing the fertility status of agricultural soils. Thus, fast and efficient approaches are needed to aid soil fertilization assessment. In this work, the method proposed is based on the combination of mid-infrared attenuated total reflection (FTIR-ATR) and dispersive Raman spectroscopy, as a rapid and nondestructive alternative to traditional chemical analysis. The ability of both two individual and the fused spectroscopy in SOM prediction was tested. Partial least squares regression (PLSR) was used to construct predictive models to correlate soil spectra with SOM content. Simple data fusion was accomplished by concatenating the principal components of the two spectra. The predictive performance was not essentially improved, and even decreased for the fused ATR-Raman spectra based on the simple fusion strategy. Better results were obtained with the advanced method of data fusion, which is, concatenating the selected variables of the two spectroscopic techniques after the step of variable selection by competitive adaptive reweighted sampling (CARS). The results showed that the RMSEP of the prediction model was decreased using both the individual and fused spectra data, combining with the CARS algorithm. Models based on fused spectra data with selected variables had the best performance in accuracy of SOM prediction. Therefore, the fused technology of ATR and Raman spectroscopy is a promising approach to predict soil properties, such as SOM, with the advantage of simple preparation of soil samples.
ArticleNumber 106549
Author Ma, Fei
Zhou, Jianmin
Shen, Yazhen
Du, Changwen
Xing, Zhe
Author_xml – sequence: 1
  givenname: Zhe
  surname: Xing
  fullname: Xing, Zhe
  email: zhxing@issas.ac.cn
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 2
  givenname: Changwen
  surname: Du
  fullname: Du, Changwen
  email: chwdu@issas.ac.cn
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 3
  givenname: Yazhen
  surname: Shen
  fullname: Shen, Yazhen
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 4
  givenname: Fei
  surname: Ma
  fullname: Ma, Fei
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 5
  givenname: Jianmin
  surname: Zhou
  fullname: Zhou, Jianmin
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
BookMark eNqFUcGO0zAUtNAi0S38AQdLXJZDip2kTrIHpKpi2UorIZVyth7OS9dVbAfb6aofxT_ikD3tAU62n2bmjWeuyZV1Fgl5z9mKMy4-nVbKmQGOq5zlPI3EumxekQWvqzyrOKuuyCLB6oyLpnlDrkM4sfRu6mpBfm-owfjoWpokfmqr7ZHeHXb7bHPYU7At3YMBS8OAKnoXlBsuNDraYkRvtEUanO6p80ewWlEDMc1v6c4M3p3RoI3UdXTw2GoVtbMUlBo9qAsdw7Rq8o1RR31GCi0Mfy8en1AfHyO2NIAZ-gl4s93sv398S1530Ad893wuyY-7L4ftffbw7etuu3nIVCGqmEGt1nkBdaNqtq55UTYpmAJL1nLRQcXyssKyhFxVhSpa3imm8qpmDTAQdZdjsSQ3s276xq8RQ5RGB4V9DxbdGGQuClE2Yl3UCfrhBfTkRm-Tu4TijRBVnrwsSTmjVAoxeOzk4LUBf5GcyalDeZJzh3LqUM4dJtrtC5rSEaYgowfd_4_8eSZjSuqs0cugNFqVuvCpTdk6_W-BP4KmvcE
CitedBy_id crossref_primary_10_1016_j_chemolab_2024_105222
crossref_primary_10_1016_j_geoderma_2024_117127
crossref_primary_10_3390_app14114744
crossref_primary_10_1016_j_geoderma_2024_116877
crossref_primary_10_1016_j_geoderma_2024_117161
crossref_primary_10_1016_j_lwt_2022_113625
crossref_primary_10_3390_rs15030854
crossref_primary_10_1021_acs_analchem_3c05311
crossref_primary_10_1038_s41598_025_90322_7
crossref_primary_10_1016_j_saa_2022_121416
crossref_primary_10_1007_s40333_023_0094_4
crossref_primary_10_3390_rs13245140
crossref_primary_10_1016_j_compag_2023_108561
crossref_primary_10_1016_j_compag_2024_108760
crossref_primary_10_1016_j_microc_2025_113410
crossref_primary_10_1016_j_aiia_2025_02_001
crossref_primary_10_1016_j_vibspec_2025_103786
crossref_primary_10_3390_foods14030484
crossref_primary_10_1016_j_saa_2022_121936
crossref_primary_10_1080_00032719_2023_2289185
crossref_primary_10_1016_j_aca_2023_341782
crossref_primary_10_1007_s00299_024_03298_5
crossref_primary_10_3390_app13010152
crossref_primary_10_1016_j_arabjc_2023_105462
crossref_primary_10_1021_acs_analchem_2c05094
crossref_primary_10_1016_j_compag_2023_107640
crossref_primary_10_1007_s10266_024_01018_9
crossref_primary_10_3390_agriengineering6010004
crossref_primary_10_1016_j_compag_2024_108636
crossref_primary_10_1080_00032719_2022_2101060
crossref_primary_10_1016_j_compag_2024_108627
crossref_primary_10_1016_j_jenvman_2024_120503
crossref_primary_10_3390_s25030684
crossref_primary_10_7717_peerj_17954
crossref_primary_10_1016_j_aca_2025_343655
crossref_primary_10_3390_agronomy13071806
crossref_primary_10_1016_j_infrared_2024_105374
crossref_primary_10_1016_j_infrared_2024_105211
crossref_primary_10_1016_j_microc_2025_112979
crossref_primary_10_3390_foods11142024
crossref_primary_10_3389_fchem_2024_1398984
crossref_primary_10_3390_agronomy13112808
crossref_primary_10_3390_s22166124
crossref_primary_10_1016_j_compag_2023_108067
crossref_primary_10_3390_soilsystems8010022
crossref_primary_10_1016_j_saa_2024_123976
crossref_primary_10_1016_j_conbuildmat_2024_135890
crossref_primary_10_1016_j_geoderma_2024_116938
crossref_primary_10_3788_LOP231520
crossref_primary_10_1063_5_0186340
crossref_primary_10_1016_j_jfca_2024_106469
crossref_primary_10_1016_j_aiia_2024_12_004
crossref_primary_10_1177_00037028231203249
crossref_primary_10_1007_s40098_024_01156_5
crossref_primary_10_3788_LOP221956
crossref_primary_10_3390_agronomy13030617
crossref_primary_10_3389_fpls_2024_1458589
crossref_primary_10_3390_agriculture12091337
crossref_primary_10_3390_agronomy14102374
crossref_primary_10_1007_s10853_024_09415_9
crossref_primary_10_1007_s11368_024_03724_x
crossref_primary_10_17221_421_2023_PSE
crossref_primary_10_1016_j_seppur_2022_120832
crossref_primary_10_48130_fia_0025_0004
Cites_doi 10.1016/j.jaap.2018.04.004
10.1016/j.forsciint.2017.12.034
10.1002/jrs.4191
10.1039/B613962K
10.1111/j.1475-2743.2009.00242.x
10.1016/S0924-2031(96)00044-6
10.1016/j.talanta.2018.06.058
10.1021/es504272x
10.2136/sssaj2005.0107dup
10.1002/jrs.3031
10.1016/j.geoderma.2005.12.005
10.1016/j.soilbio.2017.11.011
10.1016/j.micron.2014.06.008
10.1016/j.geoderma.2013.07.017
10.3390/molecules21050633
10.1016/B978-0-12-800132-5.00001-8
10.1016/j.geoderma.2010.10.009
10.4141/S97-015
10.1097/00010694-193401000-00003
10.1016/j.biosystemseng.2006.01.014
10.2136/sssaj2000.643873x
10.3390/nano10102021
10.1080/05704928.2011.593216
10.1016/j.aca.2009.06.046
10.1016/j.aca.2016.07.039
10.1038/nature04514
10.2136/sssaj1989.03615995005300030008x
10.1063/1.5012685
10.2136/sssaj1989.03615995005300060014x
10.1016/j.chemosphere.2005.03.034
10.1039/C6AY02904C
10.1071/SR9910049
10.1038/nnano.2013.46
10.1029/1999GB001208
10.1016/j.still.2018.05.001
10.1007/s12161-011-9285-2
10.1016/j.agee.2006.07.011
10.1016/j.talanta.2016.05.076
10.1039/C4AN00837E
10.1016/j.geoderma.2016.12.008
10.1016/j.snb.2015.04.060
10.1016/S0016-7061(98)00008-1
10.1016/S1002-0160(15)60029-7
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Dec 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Dec 2021
DBID AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
DOI 10.1016/j.compag.2021.106549
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
ExternalDocumentID 10_1016_j_compag_2021_106549
S0168169921005664
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
7SC
7SP
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c367t-a8c523a89c805813492023e40d16fa70247e44a2c73c3d1fc0c27809a0a68f2e3
IEDL.DBID .~1
ISSN 0168-1699
IngestDate Mon Jul 21 09:19:57 EDT 2025
Fri Jul 25 05:17:53 EDT 2025
Tue Jul 01 01:58:23 EDT 2025
Thu Apr 24 23:01:30 EDT 2025
Fri Feb 23 02:41:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords CARS algorithm
FTIR-ATR spectroscopy
Raman spectroscopy
SOM prediction
Variable selection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-a8c523a89c805813492023e40d16fa70247e44a2c73c3d1fc0c27809a0a68f2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2619667252
PQPubID 2045491
ParticipantIDs proquest_miscellaneous_2636496538
proquest_journals_2619667252
crossref_primary_10_1016_j_compag_2021_106549
crossref_citationtrail_10_1016_j_compag_2021_106549
elsevier_sciencedirect_doi_10_1016_j_compag_2021_106549
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers and electronics in agriculture
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Linker, Weiner, Shmulevich, Shaviv (b0105) 2006; 94
Nkwain, Demyan, Rasche, Dignac, Schulz, Katterer, Mueller, Cadisch (b0145) 2018; 133
Schmidt, Noack (b0175) 2000; 14
Ge, Thomasson, Morgan (b0055) 2014; 213
Comino, Ayora-Canada, Aranda, Diaz, Dominguez-Vidal (b0025) 2018; 188
Huck (b0070) 2016; 21
Zheng, Ryu, Jiao, Hong (b0235) 2016; 26
Hepper, Buschiazzo, Hevia, Urioste, Anton (b0065) 2006; 135
Haberhauer, Rafferty, Strebl, Gerzabek (b0060) 1998; 83
Linker, Shmulevich, Kenny, Shaviv (b0090) 2005; 61
Ferrari, Basko (b0050) 2013; 8
Sheka, Golubev, Popova (b0185) 2020; 10
Curtin, Rostad (b0030) 1997; 77
Li, Shi, Chen, Ji, Zhou, Yu, Webster (b0100) 2015; 49
Tang, Huang, Tian, Song, Yan, Hu, Xiong, Min (b0200) 2014; 139
Yang, Ying (b0225) 2011; 46
Sarker, Incerti, Spaccini, Piccolo, Mazzoleni, Bonanomi (b0170) 2018; 117
Solomon, Lehmann, Kinyangi, Liang, Schäfer (b0190) 2005; 69
Walkley, Black (b0205) 1934; 37
Fan, Shan, Li, Lv, Li, Liang (b0045) 2012; 5
Pimenta, Dresselhaus, Dresselhaus, Cancado, Jorio, Saito (b0160) 2007; 9
Edwards, Munshi, Scowen, Surtees, Swindles (b0040) 2012; 43
Mao, Hu, Schmidt-Rohr, Davies, Ghabbour, Xing (b0125) 2000; 64
Xing, Du, Tian, Ma, Shen, Zhou (b0220) 2016; 158
Parikh, Goyne, Margenot, Mukome, Calderon (b0155) 2014; 126
Yang, Wang (b0230) 1997; 14
Wille, Bourrat, Maubec, Lahfid (b0215) 2014; 67
Li, Liang, Xu, Cao (b0095) 2009; 648
Davidson, Janssens (b0035) 2006; 440
Beltrame, Souza, Coelho, Winkler, Souza, Valderrama (b0010) 2016; 27
Chen, Dong, Li, Wang (b0015) 2017; 9
Kammrath, Koutrakos, Castillo, Langley, Huck-Jones (b0080) 2018; 285
Senesi, Senesi (b0180) 2016; 938
Nguyen, Janik, Raupach (b0140) 1991; 29
Wielopolski, Chatterjee, Mitra, Lal (b0210) 2011; 160
Tanaka, Nagao, Ogawa (b0195) 2001; 17
Inbar, Chen, Hadar (b0075) 1989; 53
Manlay, Feller, Swift (b0120) 2007; 119
Lohumi, Lee, Cho (b0110) 2015; 216
Meersmans, Wesemael, Molle (b0130) 2009; 25
Malone, Styc, Minasny, McBratney (b0115) 2017; 290
Ribeiro-Soares, Cancado, Falcao, Martins Ferreira, Achete, Jorio (b0165) 2013; 44
Baes, Bloom (b0005) 1989; 53
Chen, Zou, Wan, Fan, Yang (b0020) 2018; 8
Obour, Jensen, Lamande, Watts, Munkholm (b0150) 2018; 182
Linker (10.1016/j.compag.2021.106549_b0105) 2006; 94
Ferrari (10.1016/j.compag.2021.106549_b0050) 2013; 8
Chen (10.1016/j.compag.2021.106549_b0015) 2017; 9
Li (10.1016/j.compag.2021.106549_b0100) 2015; 49
Davidson (10.1016/j.compag.2021.106549_b0035) 2006; 440
Xing (10.1016/j.compag.2021.106549_b0220) 2016; 158
Wille (10.1016/j.compag.2021.106549_b0215) 2014; 67
Inbar (10.1016/j.compag.2021.106549_b0075) 1989; 53
Manlay (10.1016/j.compag.2021.106549_b0120) 2007; 119
Nguyen (10.1016/j.compag.2021.106549_b0140) 1991; 29
Li (10.1016/j.compag.2021.106549_b0095) 2009; 648
Meersmans (10.1016/j.compag.2021.106549_b0130) 2009; 25
Hepper (10.1016/j.compag.2021.106549_b0065) 2006; 135
Yang (10.1016/j.compag.2021.106549_b0230) 1997; 14
Tanaka (10.1016/j.compag.2021.106549_b0195) 2001; 17
Wielopolski (10.1016/j.compag.2021.106549_b0210) 2011; 160
Comino (10.1016/j.compag.2021.106549_b0025) 2018; 188
Tang (10.1016/j.compag.2021.106549_b0200) 2014; 139
Fan (10.1016/j.compag.2021.106549_b0045) 2012; 5
Parikh (10.1016/j.compag.2021.106549_b0155) 2014; 126
Ge (10.1016/j.compag.2021.106549_b0055) 2014; 213
Baes (10.1016/j.compag.2021.106549_b0005) 1989; 53
Nkwain (10.1016/j.compag.2021.106549_b0145) 2018; 133
Obour (10.1016/j.compag.2021.106549_b0150) 2018; 182
Solomon (10.1016/j.compag.2021.106549_b0190) 2005; 69
Haberhauer (10.1016/j.compag.2021.106549_b0060) 1998; 83
Kammrath (10.1016/j.compag.2021.106549_b0080) 2018; 285
Senesi (10.1016/j.compag.2021.106549_b0180) 2016; 938
Pimenta (10.1016/j.compag.2021.106549_b0160) 2007; 9
Ribeiro-Soares (10.1016/j.compag.2021.106549_b0165) 2013; 44
Sarker (10.1016/j.compag.2021.106549_b0170) 2018; 117
Walkley (10.1016/j.compag.2021.106549_b0205) 1934; 37
Curtin (10.1016/j.compag.2021.106549_b0030) 1997; 77
Zheng (10.1016/j.compag.2021.106549_b0235) 2016; 26
Chen (10.1016/j.compag.2021.106549_b0020) 2018; 8
Lohumi (10.1016/j.compag.2021.106549_b0110) 2015; 216
Schmidt (10.1016/j.compag.2021.106549_b0175) 2000; 14
Yang (10.1016/j.compag.2021.106549_b0225) 2011; 46
Beltrame (10.1016/j.compag.2021.106549_b0010) 2016; 27
Linker (10.1016/j.compag.2021.106549_b0090) 2005; 61
Malone (10.1016/j.compag.2021.106549_b0115) 2017; 290
Edwards (10.1016/j.compag.2021.106549_b0040) 2012; 43
Mao (10.1016/j.compag.2021.106549_b0125) 2000; 64
Sheka (10.1016/j.compag.2021.106549_b0185) 2020; 10
Huck (10.1016/j.compag.2021.106549_b0070) 2016; 21
References_xml – volume: 139
  start-page: 4894
  year: 2014
  end-page: 4902
  ident: b0200
  article-title: A new spectral variable selection pattern using competitive adaptive reweighted sampling combined with successive projections algorithm
  publication-title: Analyst
– volume: 440
  start-page: 165
  year: 2006
  end-page: 173
  ident: b0035
  article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
  publication-title: Nature
– volume: 158
  start-page: 262
  year: 2016
  end-page: 269
  ident: b0220
  article-title: Application of FTIR-PAS and Raman spectroscopies for the determination of organic matter in farmland soils
  publication-title: Talanta
– volume: 64
  start-page: 873
  year: 2000
  end-page: 884
  ident: b0125
  article-title: Quantitative characterization of humic substances by solid-state carbon-13 nuclear magnetic resonance
  publication-title: Soil Sci. Soc. Am. J.
– volume: 188
  start-page: 676
  year: 2018
  end-page: 684
  ident: b0025
  article-title: Near-infrared spectroscopy and X-ray fluorescence data fusion for olive leaf analysis and crop nutritional status determination
  publication-title: Talanta
– volume: 49
  start-page: 4980
  year: 2015
  end-page: 4987
  ident: b0100
  article-title: In Situ Measurements of Organic Carbon in Soil Profiles Using vis-NIR Spectroscopy on the Qinghai-Tibet Plateau
  publication-title: Environ. Sci. Technol.
– volume: 29
  start-page: 49
  year: 1991
  end-page: 67
  ident: b0140
  article-title: Diffuse reflectance infrared fourier transform (DRIFT) spectroscopy in soil studies
  publication-title: Aust. J. Soil Res.
– volume: 61
  start-page: 652
  year: 2005
  end-page: 658
  ident: b0090
  article-title: Soil identification and chemometrics for direct determination of nitrate in soils using FTIR-ATR mid-infrared spectroscopy
  publication-title: Chemosphere
– volume: 290
  start-page: 91
  year: 2017
  end-page: 99
  ident: b0115
  article-title: Digital soil mapping of soil carbon at the farm scale: A spatial downscaling approach in consideration of measured and uncertain data
  publication-title: Geoderma
– volume: 53
  start-page: 695
  year: 1989
  end-page: 700
  ident: b0005
  article-title: Diffuse Reflectance and Transmission Fourier Transform Infrared (DRIFT) Spectroscopy of Humic and Fulvic Acids
  publication-title: Soil Sci. Soc. Am. J.
– volume: 27
  start-page: 1527
  year: 2016
  end-page: 1532
  ident: b0010
  article-title: Soil Organic Carbon Determination Using NIRS: Evaluation of Dichromate Oxidation and Dry Combustion Analysis as Reference Methods in Multivariate Calibration
  publication-title: J. Brazil Chem. Soc.
– volume: 83
  start-page: 331
  year: 1998
  end-page: 342
  ident: b0060
  article-title: Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR spectroscopy
  publication-title: Geoderma
– volume: 126
  start-page: 1
  year: 2014
  end-page: 148
  ident: b0155
  article-title: Soil chemical insights provided through vibrational spectroscopy
  publication-title: Adv. Agron.
– volume: 213
  start-page: 57
  year: 2014
  end-page: 63
  ident: b0055
  article-title: Mid-infrared attenuated total reflectance spectroscopy for soil carbon and particle size determination
  publication-title: Geoderma
– volume: 8
  start-page: 235
  year: 2013
  end-page: 246
  ident: b0050
  article-title: Raman spectroscopy as a versatile tool for studying the properties of graphene
  publication-title: Nat. Nanotechnol.
– volume: 648
  start-page: 77
  year: 2009
  end-page: 84
  ident: b0095
  article-title: Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration
  publication-title: Anal. Chim. Acta
– volume: 14
  start-page: 777
  year: 2000
  end-page: 793
  ident: b0175
  article-title: Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges
  publication-title: Global Biogeochem. Cy.
– volume: 5
  start-page: 585
  year: 2012
  end-page: 590
  ident: b0045
  article-title: Application of Competitive Adaptive Reweighted Sampling Method to Determine Effective Wavelengths for Prediction of Total Acid of Vinegar
  publication-title: Food Anal. Metho
– volume: 14
  start-page: 105
  year: 1997
  end-page: 112
  ident: b0230
  article-title: Fourier transform Raman spectroscopic characterization of humic substances
  publication-title: Vib. Spectrosc.
– volume: 182
  start-page: 57
  year: 2018
  end-page: 65
  ident: b0150
  article-title: Soil organic matter widens the range of water contents for tillage
  publication-title: Soil Tillage Res.
– volume: 9
  start-page: 528
  year: 2017
  end-page: 533
  ident: b0015
  article-title: A novel soil nutrient detection method based on combined ATR and DRIFT mid-infrared spectra
  publication-title: Anal. Methods-UK
– volume: 285
  start-page: E25
  year: 2018
  end-page: E33
  ident: b0080
  article-title: Morphologically-directed Raman spectroscopy for forensic soil analysis
  publication-title: Forensic Sci. Int.
– volume: 160
  start-page: 394
  year: 2011
  end-page: 399
  ident: b0210
  article-title: In situ determination of soil carbon pool by inelastic neutron scattering: Comparison with dry combustion
  publication-title: Geoderma
– volume: 17
  start-page: 1081
  year: 2001
  end-page: 1084
  ident: b0195
  article-title: Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy of Functional Groups of Humic Acid Dissolving in Aqueous Solution
  publication-title: Anal. Sci.
– volume: 43
  start-page: 323
  year: 2012
  end-page: 325
  ident: b0040
  article-title: Development of oxidative sample preparation for the analysis of forensic soil samples with near-IR Raman spectroscopy
  publication-title: J. Raman Spectrosc.
– volume: 133
  start-page: 176
  year: 2018
  end-page: 184
  ident: b0145
  article-title: Coupling pyrolysis with mid-infrared spectroscopy (Py-MIRS) to fingerprint soil organic matter bulk chemistry
  publication-title: Anal. Appl. Pyrolysis
– volume: 117
  start-page: 175
  year: 2018
  end-page: 184
  ident: b0170
  article-title: Linking organic matter chemistry with soil aggregate stability: Insight from 13C NMR spectroscopy
  publication-title: Soil Biol. Biochem.
– volume: 94
  start-page: 111
  year: 2006
  end-page: 118
  ident: b0105
  article-title: Nitrate Determination in Soil Pastes using Attenuated Total Reflectance Mid-infrared Spectroscopy: Improved Accuracy via Soil Identification
  publication-title: Biosyst. Eng.
– volume: 8
  start-page: 035204
  year: 2018
  ident: b0020
  article-title: Application of surface enhanced Raman scattering and competitive adaptive reweighted sampling on detecting furfural dissolved in transformer oil
  publication-title: AIP Adv.
– volume: 135
  start-page: 216
  year: 2006
  end-page: 223
  ident: b0065
  article-title: Clay mineralogy, cation exchange capacity and specific surface area of loess soils with different volcanic ash contents
  publication-title: Geoderma
– volume: 67
  start-page: 50
  year: 2014
  end-page: 64
  ident: b0215
  article-title: Raman-in-SEM, a multimodal and multiscale analytical tool: Performance for materials and expertise
  publication-title: Micron
– volume: 37
  start-page: 29
  year: 1934
  end-page: 38
  ident: b0205
  article-title: An examination of the degtjareff method for deterrnining soil organic matter, and a proposed modification of the chromic acid titration method
  publication-title: Soil Science
– volume: 216
  start-page: 622
  year: 2015
  end-page: 628
  ident: b0110
  article-title: Optimal variable selection for Fourier transform infrared spectroscopic analysis of starch-adulterated garlic powder
  publication-title: Sens. Actuators, B
– volume: 25
  start-page: 346
  year: 2009
  end-page: 353
  ident: b0130
  article-title: Determining soil organic carbon for agricultural soils: A comparison between the Walkley & Black and the dry combustion methods (north Belgium)
  publication-title: Soil Use Manage.
– volume: 46
  start-page: 539
  year: 2011
  end-page: 560
  ident: b0225
  article-title: Applications of Raman Spectroscopy in Agricultural Products and Food Analysis: A Review
  publication-title: Appl. Spectrosc. Rev.
– volume: 938
  start-page: 7
  year: 2016
  end-page: 17
  ident: b0180
  article-title: Laser-induced breakdown spectroscopy (LIBS) to measure quantitatively soil carbon with emphasis on soil organic carbon
  publication-title: A review.
– volume: 10
  start-page: 2021
  year: 2020
  ident: b0185
  article-title: Graphene domain signature of Raman spectra of sp2 amorphous carbons
  publication-title: Nanomaterials
– volume: 119
  start-page: 217
  year: 2007
  end-page: 233
  ident: b0120
  article-title: Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems
  publication-title: Agric. Ecosyst. Environ.
– volume: 9
  start-page: 1276
  year: 2007
  end-page: 1290
  ident: b0160
  article-title: Studying disorder in graphite-based systems by Raman spectroscopy
  publication-title: Phys. Chem. Chem. Phys.
– volume: 21
  start-page: 633
  year: 2016
  ident: b0070
  article-title: Recent Developments in Solid-Phase Extraction for Near and Attenuated Total Reflection Infrared Spectroscopic Analysis
  publication-title: Molecules
– volume: 77
  start-page: 621
  year: 1997
  end-page: 626
  ident: b0030
  article-title: Cation exchange and buffer potential of Saskatchewan soils estimated from texture, organic matter and pH
  publication-title: Can. J. Soil Sci.
– volume: 53
  start-page: 1695
  year: 1989
  end-page: 1701
  ident: b0075
  article-title: Solid-state Carbon-13 Nuclear Magnetic Resonance and Infrared Spectroscopy of Composted Organic Matter
  publication-title: Soil Sci. Soc. Am. J.
– volume: 69
  start-page: 107
  year: 2005
  end-page: 119
  ident: b0190
  article-title: Carbon K-Edge NEXAFS and FTIR-ATR Spectroscopic Investigation of Organic Carbon Speciation in Soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 26
  start-page: 130
  year: 2016
  end-page: 136
  ident: b0235
  article-title: Estimation of organic matter content in coastal soil using reflectance spectroscopy
  publication-title: Pedosphere
– volume: 44
  start-page: 283
  year: 2013
  end-page: 289
  ident: b0165
  article-title: The use of Raman spectroscopy to characterize the carbon materials found in Amazonian anthrosoils
  publication-title: J. Raman Spectrosc.
– volume: 133
  start-page: 176
  year: 2018
  ident: 10.1016/j.compag.2021.106549_b0145
  article-title: Coupling pyrolysis with mid-infrared spectroscopy (Py-MIRS) to fingerprint soil organic matter bulk chemistry
  publication-title: Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2018.04.004
– volume: 285
  start-page: E25
  year: 2018
  ident: 10.1016/j.compag.2021.106549_b0080
  article-title: Morphologically-directed Raman spectroscopy for forensic soil analysis
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2017.12.034
– volume: 44
  start-page: 283
  year: 2013
  ident: 10.1016/j.compag.2021.106549_b0165
  article-title: The use of Raman spectroscopy to characterize the carbon materials found in Amazonian anthrosoils
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.4191
– volume: 9
  start-page: 1276
  year: 2007
  ident: 10.1016/j.compag.2021.106549_b0160
  article-title: Studying disorder in graphite-based systems by Raman spectroscopy
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B613962K
– volume: 25
  start-page: 346
  year: 2009
  ident: 10.1016/j.compag.2021.106549_b0130
  article-title: Determining soil organic carbon for agricultural soils: A comparison between the Walkley & Black and the dry combustion methods (north Belgium)
  publication-title: Soil Use Manage.
  doi: 10.1111/j.1475-2743.2009.00242.x
– volume: 14
  start-page: 105
  issue: 1
  year: 1997
  ident: 10.1016/j.compag.2021.106549_b0230
  article-title: Fourier transform Raman spectroscopic characterization of humic substances
  publication-title: Vib. Spectrosc.
  doi: 10.1016/S0924-2031(96)00044-6
– volume: 188
  start-page: 676
  year: 2018
  ident: 10.1016/j.compag.2021.106549_b0025
  article-title: Near-infrared spectroscopy and X-ray fluorescence data fusion for olive leaf analysis and crop nutritional status determination
  publication-title: Talanta
  doi: 10.1016/j.talanta.2018.06.058
– volume: 49
  start-page: 4980
  issue: 8
  year: 2015
  ident: 10.1016/j.compag.2021.106549_b0100
  article-title: In Situ Measurements of Organic Carbon in Soil Profiles Using vis-NIR Spectroscopy on the Qinghai-Tibet Plateau
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es504272x
– volume: 69
  start-page: 107
  issue: 1
  year: 2005
  ident: 10.1016/j.compag.2021.106549_b0190
  article-title: Carbon K-Edge NEXAFS and FTIR-ATR Spectroscopic Investigation of Organic Carbon Speciation in Soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2005.0107dup
– volume: 17
  start-page: 1081
  year: 2001
  ident: 10.1016/j.compag.2021.106549_b0195
  article-title: Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy of Functional Groups of Humic Acid Dissolving in Aqueous Solution
  publication-title: Anal. Sci.
– volume: 43
  start-page: 323
  issue: 2
  year: 2012
  ident: 10.1016/j.compag.2021.106549_b0040
  article-title: Development of oxidative sample preparation for the analysis of forensic soil samples with near-IR Raman spectroscopy
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.3031
– volume: 135
  start-page: 216
  year: 2006
  ident: 10.1016/j.compag.2021.106549_b0065
  article-title: Clay mineralogy, cation exchange capacity and specific surface area of loess soils with different volcanic ash contents
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2005.12.005
– volume: 117
  start-page: 175
  year: 2018
  ident: 10.1016/j.compag.2021.106549_b0170
  article-title: Linking organic matter chemistry with soil aggregate stability: Insight from 13C NMR spectroscopy
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2017.11.011
– volume: 67
  start-page: 50
  year: 2014
  ident: 10.1016/j.compag.2021.106549_b0215
  article-title: Raman-in-SEM, a multimodal and multiscale analytical tool: Performance for materials and expertise
  publication-title: Micron
  doi: 10.1016/j.micron.2014.06.008
– volume: 213
  start-page: 57
  year: 2014
  ident: 10.1016/j.compag.2021.106549_b0055
  article-title: Mid-infrared attenuated total reflectance spectroscopy for soil carbon and particle size determination
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.07.017
– volume: 21
  start-page: 633
  year: 2016
  ident: 10.1016/j.compag.2021.106549_b0070
  article-title: Recent Developments in Solid-Phase Extraction for Near and Attenuated Total Reflection Infrared Spectroscopic Analysis
  publication-title: Molecules
  doi: 10.3390/molecules21050633
– volume: 126
  start-page: 1
  year: 2014
  ident: 10.1016/j.compag.2021.106549_b0155
  article-title: Soil chemical insights provided through vibrational spectroscopy
  publication-title: Adv. Agron.
  doi: 10.1016/B978-0-12-800132-5.00001-8
– volume: 160
  start-page: 394
  issue: 3-4
  year: 2011
  ident: 10.1016/j.compag.2021.106549_b0210
  article-title: In situ determination of soil carbon pool by inelastic neutron scattering: Comparison with dry combustion
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.10.009
– volume: 27
  start-page: 1527
  year: 2016
  ident: 10.1016/j.compag.2021.106549_b0010
  article-title: Soil Organic Carbon Determination Using NIRS: Evaluation of Dichromate Oxidation and Dry Combustion Analysis as Reference Methods in Multivariate Calibration
  publication-title: J. Brazil Chem. Soc.
– volume: 77
  start-page: 621
  issue: 4
  year: 1997
  ident: 10.1016/j.compag.2021.106549_b0030
  article-title: Cation exchange and buffer potential of Saskatchewan soils estimated from texture, organic matter and pH
  publication-title: Can. J. Soil Sci.
  doi: 10.4141/S97-015
– volume: 37
  start-page: 29
  year: 1934
  ident: 10.1016/j.compag.2021.106549_b0205
  article-title: An examination of the degtjareff method for deterrnining soil organic matter, and a proposed modification of the chromic acid titration method
  publication-title: Soil Science
  doi: 10.1097/00010694-193401000-00003
– volume: 94
  start-page: 111
  issue: 1
  year: 2006
  ident: 10.1016/j.compag.2021.106549_b0105
  article-title: Nitrate Determination in Soil Pastes using Attenuated Total Reflectance Mid-infrared Spectroscopy: Improved Accuracy via Soil Identification
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2006.01.014
– volume: 64
  start-page: 873
  year: 2000
  ident: 10.1016/j.compag.2021.106549_b0125
  article-title: Quantitative characterization of humic substances by solid-state carbon-13 nuclear magnetic resonance
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2000.643873x
– volume: 10
  start-page: 2021
  year: 2020
  ident: 10.1016/j.compag.2021.106549_b0185
  article-title: Graphene domain signature of Raman spectra of sp2 amorphous carbons
  publication-title: Nanomaterials
  doi: 10.3390/nano10102021
– volume: 46
  start-page: 539
  issue: 7
  year: 2011
  ident: 10.1016/j.compag.2021.106549_b0225
  article-title: Applications of Raman Spectroscopy in Agricultural Products and Food Analysis: A Review
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2011.593216
– volume: 648
  start-page: 77
  issue: 1
  year: 2009
  ident: 10.1016/j.compag.2021.106549_b0095
  article-title: Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2009.06.046
– volume: 938
  start-page: 7
  year: 2016
  ident: 10.1016/j.compag.2021.106549_b0180
  article-title: Laser-induced breakdown spectroscopy (LIBS) to measure quantitatively soil carbon with emphasis on soil organic carbon
  publication-title: A review. Anal. Chim. Acta
  doi: 10.1016/j.aca.2016.07.039
– volume: 440
  start-page: 165
  issue: 7081
  year: 2006
  ident: 10.1016/j.compag.2021.106549_b0035
  article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
  publication-title: Nature
  doi: 10.1038/nature04514
– volume: 53
  start-page: 695
  issue: 3
  year: 1989
  ident: 10.1016/j.compag.2021.106549_b0005
  article-title: Diffuse Reflectance and Transmission Fourier Transform Infrared (DRIFT) Spectroscopy of Humic and Fulvic Acids
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1989.03615995005300030008x
– volume: 8
  start-page: 035204
  issue: 3
  year: 2018
  ident: 10.1016/j.compag.2021.106549_b0020
  article-title: Application of surface enhanced Raman scattering and competitive adaptive reweighted sampling on detecting furfural dissolved in transformer oil
  publication-title: AIP Adv.
  doi: 10.1063/1.5012685
– volume: 53
  start-page: 1695
  issue: 6
  year: 1989
  ident: 10.1016/j.compag.2021.106549_b0075
  article-title: Solid-state Carbon-13 Nuclear Magnetic Resonance and Infrared Spectroscopy of Composted Organic Matter
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1989.03615995005300060014x
– volume: 61
  start-page: 652
  issue: 5
  year: 2005
  ident: 10.1016/j.compag.2021.106549_b0090
  article-title: Soil identification and chemometrics for direct determination of nitrate in soils using FTIR-ATR mid-infrared spectroscopy
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2005.03.034
– volume: 9
  start-page: 528
  issue: 3
  year: 2017
  ident: 10.1016/j.compag.2021.106549_b0015
  article-title: A novel soil nutrient detection method based on combined ATR and DRIFT mid-infrared spectra
  publication-title: Anal. Methods-UK
  doi: 10.1039/C6AY02904C
– volume: 29
  start-page: 49
  year: 1991
  ident: 10.1016/j.compag.2021.106549_b0140
  article-title: Diffuse reflectance infrared fourier transform (DRIFT) spectroscopy in soil studies
  publication-title: Aust. J. Soil Res.
  doi: 10.1071/SR9910049
– volume: 8
  start-page: 235
  issue: 4
  year: 2013
  ident: 10.1016/j.compag.2021.106549_b0050
  article-title: Raman spectroscopy as a versatile tool for studying the properties of graphene
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2013.46
– volume: 14
  start-page: 777
  year: 2000
  ident: 10.1016/j.compag.2021.106549_b0175
  article-title: Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges
  publication-title: Global Biogeochem. Cy.
  doi: 10.1029/1999GB001208
– volume: 182
  start-page: 57
  year: 2018
  ident: 10.1016/j.compag.2021.106549_b0150
  article-title: Soil organic matter widens the range of water contents for tillage
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2018.05.001
– volume: 5
  start-page: 585
  issue: 3
  year: 2012
  ident: 10.1016/j.compag.2021.106549_b0045
  article-title: Application of Competitive Adaptive Reweighted Sampling Method to Determine Effective Wavelengths for Prediction of Total Acid of Vinegar
  publication-title: Food Anal. Metho
  doi: 10.1007/s12161-011-9285-2
– volume: 119
  start-page: 217
  year: 2007
  ident: 10.1016/j.compag.2021.106549_b0120
  article-title: Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems
  publication-title: Agric. Ecosyst. Environ.
  doi: 10.1016/j.agee.2006.07.011
– volume: 158
  start-page: 262
  year: 2016
  ident: 10.1016/j.compag.2021.106549_b0220
  article-title: Application of FTIR-PAS and Raman spectroscopies for the determination of organic matter in farmland soils
  publication-title: Talanta
  doi: 10.1016/j.talanta.2016.05.076
– volume: 139
  start-page: 4894
  year: 2014
  ident: 10.1016/j.compag.2021.106549_b0200
  article-title: A new spectral variable selection pattern using competitive adaptive reweighted sampling combined with successive projections algorithm
  publication-title: Analyst
  doi: 10.1039/C4AN00837E
– volume: 290
  start-page: 91
  year: 2017
  ident: 10.1016/j.compag.2021.106549_b0115
  article-title: Digital soil mapping of soil carbon at the farm scale: A spatial downscaling approach in consideration of measured and uncertain data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.12.008
– volume: 216
  start-page: 622
  year: 2015
  ident: 10.1016/j.compag.2021.106549_b0110
  article-title: Optimal variable selection for Fourier transform infrared spectroscopic analysis of starch-adulterated garlic powder
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2015.04.060
– volume: 83
  start-page: 331
  issue: 3-4
  year: 1998
  ident: 10.1016/j.compag.2021.106549_b0060
  article-title: Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR spectroscopy
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(98)00008-1
– volume: 26
  start-page: 130
  year: 2016
  ident: 10.1016/j.compag.2021.106549_b0235
  article-title: Estimation of organic matter content in coastal soil using reflectance spectroscopy
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(15)60029-7
SSID ssj0016987
Score 2.566709
Snippet [Display omitted] •Combination of Raman and ATR spectroscopies to predict the content of SOM.•Reduction of RMSEP of prediction model with the application of...
Determination of soil organic matter (SOM) is extremely important for diagnosing the fertility status of agricultural soils. Thus, fast and efficient...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106549
SubjectTerms Adaptive sampling
agriculture
Algorithms
CARS algorithm
Chemical analysis
Data integration
electronics
Fourier transforms
FTIR-ATR spectroscopy
Infrared reflection
Infrared spectroscopy
Least squares method
Organic matter
Performance prediction
prediction
Prediction models
Raman spectra
Raman spectroscopy
Soil fertility
Soil improvement
soil organic matter
Soil properties
SOM prediction
Spectrum analysis
Variable selection
Title A method combining FTIR-ATR and Raman spectroscopy to determine soil organic matter: Improvement of prediction accuracy using competitive adaptive reweighted sampling (CARS)
URI https://dx.doi.org/10.1016/j.compag.2021.106549
https://www.proquest.com/docview/2619667252
https://www.proquest.com/docview/2636496538
Volume 191
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5CemkPpemDuk3CFHpoD6olrbS76k2YGqelOTgO5CbWq5VxSCQh25Rc-o_6HzuzKxkSCoHe9BixkmY0s7P65hvGPlo0o7Q0VUD9rShByQLNhaXSJ6ME53ielgZ-novZZfL9Kr06YJOhFoZglb3v9z7deev-yLh_m-N2vR5f4GRFRSLLMGnBKC6IEzRJJFn5l997mAcKKF8yLTBbQumhfM5hvBzOe4VZYhzhIZESo-a_w9MDR-2iz_QFe95PGyH3d3bEDmz9kj3LV11PnWFfsT85-HbQgOMtXd8HmC7O5kG-mIOuS5jrW12DK60kCsumvYNtA2WPh7GwadY34Ls8Gbh1vJtfwS86uDVEaCpoO_qxQ8oEbcyu0-YOCDq_okFbqlhD7wm61K3b6Owvt_RqS9howq6j4KdJPr_4_JpdTr8tJrOgb8YQGC7kNtDKYM6qVWZUmCpHaojh3iZhGYlKSwz10iaJjo3khpdRZUITSxVmOtRCVbHlb9hh3dT2LQNMioSMK60zYZLSJnpZcamiqpSVTG3ER4wPOihMz1RODTNuigGSdl14zRWkucJrbsSC_VWtZ-p4RF4O6i3uWVyBweSRK48Hayj6L35TUCYq8LHSeMQ-7E_jt0o_YHRtmx3JcEH8_Fy9--_B37OntOcRNcfscNvt7AnOi7bLU2f4p-xJfvZjdv4XYRgOTA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBddeth2GPtk2bpNgx22g4lt2ZK8mwkLydrmkKbQm1BkOWS0tnESSv-o_o97T7IDG4PCbkYfyPaT3tOTfu_3CPliYRqlhSkDzG-FDkoWaMYthj4ZyRmDejwaOJ_z6WXy8yq9OiLjPhYGYZWd7vc63WnrrmTU_c1Rs9mMLmCzIiOeZeC0gBXnySNyjOxU6YAc57PT6fxwmcAz6aOmOThM0KGPoHMwLwf1XoOjGEdQxFMk1fy3hfpLVzsDNHlOnnU7R5r7l3tBjmz1kjzN123HnmFfkfuc-ozQFMZbudQPdLKcLYJ8uaC6KuhC3-iKuuhKZLGsmzu6q2nRQWIs3daba-oTPRl646g3v1N_7uCOEWld0qbFux2UJ9XG7Ftt7iii59c4aINBa6BAqS504x5ae-tOX21Btxrh69Dw6zhfXHx7TS4nP5bjadDlYwgM42IXaGnAbdUyMzJMpeM1BItvk7CIeKkFWHthk0THRjDDiqg0oYmFDDMdai7L2LI3ZFDVlX1LKPhFXMSl1hk3SWETvSqZkFFZiFKkNmJDwnoZKNORlWPOjGvVo9J-KS85hZJTXnJDEhx6NZ6s44H2ohev-mPSKbAnD_Q86WeD6hb9VqEzyuGz0nhIPh-qYbniHYyubL3HNowjRT-T7_578E_k8XR5fqbOZvPT9-QJ1niAzQkZ7Nq9_QDbpN3qY7cMfgOSvBD9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+combining+FTIR-ATR+and+Raman+spectroscopy+to+determine+soil+organic+matter%3A+Improvement+of+prediction+accuracy+using+competitive+adaptive+reweighted+sampling+%28CARS%29&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Xing%2C+Zhe&rft.au=Du%2C+Changwen&rft.au=Shen%2C+Yazhen&rft.au=Ma%2C+Fei&rft.date=2021-12-01&rft.pub=Elsevier+BV&rft.issn=0168-1699&rft.eissn=1872-7107&rft.volume=191&rft.spage=1&rft_id=info:doi/10.1016%2Fj.compag.2021.106549&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon