A method combining FTIR-ATR and Raman spectroscopy to determine soil organic matter: Improvement of prediction accuracy using competitive adaptive reweighted sampling (CARS)
[Display omitted] •Combination of Raman and ATR spectroscopies to predict the content of SOM.•Reduction of RMSEP of prediction model with the application of CARS algorithm.•Improved performance of models based on fused spectra with selected variables. Determination of soil organic matter (SOM) is ex...
Saved in:
Published in | Computers and electronics in agriculture Vol. 191; p. 106549 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.12.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Combination of Raman and ATR spectroscopies to predict the content of SOM.•Reduction of RMSEP of prediction model with the application of CARS algorithm.•Improved performance of models based on fused spectra with selected variables.
Determination of soil organic matter (SOM) is extremely important for diagnosing the fertility status of agricultural soils. Thus, fast and efficient approaches are needed to aid soil fertilization assessment. In this work, the method proposed is based on the combination of mid-infrared attenuated total reflection (FTIR-ATR) and dispersive Raman spectroscopy, as a rapid and nondestructive alternative to traditional chemical analysis. The ability of both two individual and the fused spectroscopy in SOM prediction was tested. Partial least squares regression (PLSR) was used to construct predictive models to correlate soil spectra with SOM content. Simple data fusion was accomplished by concatenating the principal components of the two spectra. The predictive performance was not essentially improved, and even decreased for the fused ATR-Raman spectra based on the simple fusion strategy. Better results were obtained with the advanced method of data fusion, which is, concatenating the selected variables of the two spectroscopic techniques after the step of variable selection by competitive adaptive reweighted sampling (CARS). The results showed that the RMSEP of the prediction model was decreased using both the individual and fused spectra data, combining with the CARS algorithm. Models based on fused spectra data with selected variables had the best performance in accuracy of SOM prediction. Therefore, the fused technology of ATR and Raman spectroscopy is a promising approach to predict soil properties, such as SOM, with the advantage of simple preparation of soil samples. |
---|---|
AbstractList | Determination of soil organic matter (SOM) is extremely important for diagnosing the fertility status of agricultural soils. Thus, fast and efficient approaches are needed to aid soil fertilization assessment. In this work, the method proposed is based on the combination of mid-infrared attenuated total reflection (FTIR-ATR) and dispersive Raman spectroscopy, as a rapid and nondestructive alternative to traditional chemical analysis. The ability of both two individual and the fused spectroscopy in SOM prediction was tested. Partial least squares regression (PLSR) was used to construct predictive models to correlate soil spectra with SOM content. Simple data fusion was accomplished by concatenating the principal components of the two spectra. The predictive performance was not essentially improved, and even decreased for the fused ATR-Raman spectra based on the simple fusion strategy. Better results were obtained with the advanced method of data fusion, which is, concatenating the selected variables of the two spectroscopic techniques after the step of variable selection by competitive adaptive reweighted sampling (CARS). The results showed that the RMSEP of the prediction model was decreased using both the individual and fused spectra data, combining with the CARS algorithm. Models based on fused spectra data with selected variables had the best performance in accuracy of SOM prediction. Therefore, the fused technology of ATR and Raman spectroscopy is a promising approach to predict soil properties, such as SOM, with the advantage of simple preparation of soil samples. [Display omitted] •Combination of Raman and ATR spectroscopies to predict the content of SOM.•Reduction of RMSEP of prediction model with the application of CARS algorithm.•Improved performance of models based on fused spectra with selected variables. Determination of soil organic matter (SOM) is extremely important for diagnosing the fertility status of agricultural soils. Thus, fast and efficient approaches are needed to aid soil fertilization assessment. In this work, the method proposed is based on the combination of mid-infrared attenuated total reflection (FTIR-ATR) and dispersive Raman spectroscopy, as a rapid and nondestructive alternative to traditional chemical analysis. The ability of both two individual and the fused spectroscopy in SOM prediction was tested. Partial least squares regression (PLSR) was used to construct predictive models to correlate soil spectra with SOM content. Simple data fusion was accomplished by concatenating the principal components of the two spectra. The predictive performance was not essentially improved, and even decreased for the fused ATR-Raman spectra based on the simple fusion strategy. Better results were obtained with the advanced method of data fusion, which is, concatenating the selected variables of the two spectroscopic techniques after the step of variable selection by competitive adaptive reweighted sampling (CARS). The results showed that the RMSEP of the prediction model was decreased using both the individual and fused spectra data, combining with the CARS algorithm. Models based on fused spectra data with selected variables had the best performance in accuracy of SOM prediction. Therefore, the fused technology of ATR and Raman spectroscopy is a promising approach to predict soil properties, such as SOM, with the advantage of simple preparation of soil samples. |
ArticleNumber | 106549 |
Author | Ma, Fei Zhou, Jianmin Shen, Yazhen Du, Changwen Xing, Zhe |
Author_xml | – sequence: 1 givenname: Zhe surname: Xing fullname: Xing, Zhe email: zhxing@issas.ac.cn organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China – sequence: 2 givenname: Changwen surname: Du fullname: Du, Changwen email: chwdu@issas.ac.cn organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China – sequence: 3 givenname: Yazhen surname: Shen fullname: Shen, Yazhen organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China – sequence: 4 givenname: Fei surname: Ma fullname: Ma, Fei organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China – sequence: 5 givenname: Jianmin surname: Zhou fullname: Zhou, Jianmin organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China |
BookMark | eNqFUcGO0zAUtNAi0S38AQdLXJZDip2kTrIHpKpi2UorIZVyth7OS9dVbAfb6aofxT_ikD3tAU62n2bmjWeuyZV1Fgl5z9mKMy4-nVbKmQGOq5zlPI3EumxekQWvqzyrOKuuyCLB6oyLpnlDrkM4sfRu6mpBfm-owfjoWpokfmqr7ZHeHXb7bHPYU7At3YMBS8OAKnoXlBsuNDraYkRvtEUanO6p80ewWlEDMc1v6c4M3p3RoI3UdXTw2GoVtbMUlBo9qAsdw7Rq8o1RR31GCi0Mfy8en1AfHyO2NIAZ-gl4s93sv398S1530Ad893wuyY-7L4ftffbw7etuu3nIVCGqmEGt1nkBdaNqtq55UTYpmAJL1nLRQcXyssKyhFxVhSpa3imm8qpmDTAQdZdjsSQ3s276xq8RQ5RGB4V9DxbdGGQuClE2Yl3UCfrhBfTkRm-Tu4TijRBVnrwsSTmjVAoxeOzk4LUBf5GcyalDeZJzh3LqUM4dJtrtC5rSEaYgowfd_4_8eSZjSuqs0cugNFqVuvCpTdk6_W-BP4KmvcE |
CitedBy_id | crossref_primary_10_1016_j_chemolab_2024_105222 crossref_primary_10_1016_j_geoderma_2024_117127 crossref_primary_10_3390_app14114744 crossref_primary_10_1016_j_geoderma_2024_116877 crossref_primary_10_1016_j_geoderma_2024_117161 crossref_primary_10_1016_j_lwt_2022_113625 crossref_primary_10_3390_rs15030854 crossref_primary_10_1021_acs_analchem_3c05311 crossref_primary_10_1038_s41598_025_90322_7 crossref_primary_10_1016_j_saa_2022_121416 crossref_primary_10_1007_s40333_023_0094_4 crossref_primary_10_3390_rs13245140 crossref_primary_10_1016_j_compag_2023_108561 crossref_primary_10_1016_j_compag_2024_108760 crossref_primary_10_1016_j_microc_2025_113410 crossref_primary_10_1016_j_aiia_2025_02_001 crossref_primary_10_1016_j_vibspec_2025_103786 crossref_primary_10_3390_foods14030484 crossref_primary_10_1016_j_saa_2022_121936 crossref_primary_10_1080_00032719_2023_2289185 crossref_primary_10_1016_j_aca_2023_341782 crossref_primary_10_1007_s00299_024_03298_5 crossref_primary_10_3390_app13010152 crossref_primary_10_1016_j_arabjc_2023_105462 crossref_primary_10_1021_acs_analchem_2c05094 crossref_primary_10_1016_j_compag_2023_107640 crossref_primary_10_1007_s10266_024_01018_9 crossref_primary_10_3390_agriengineering6010004 crossref_primary_10_1016_j_compag_2024_108636 crossref_primary_10_1080_00032719_2022_2101060 crossref_primary_10_1016_j_compag_2024_108627 crossref_primary_10_1016_j_jenvman_2024_120503 crossref_primary_10_3390_s25030684 crossref_primary_10_7717_peerj_17954 crossref_primary_10_1016_j_aca_2025_343655 crossref_primary_10_3390_agronomy13071806 crossref_primary_10_1016_j_infrared_2024_105374 crossref_primary_10_1016_j_infrared_2024_105211 crossref_primary_10_1016_j_microc_2025_112979 crossref_primary_10_3390_foods11142024 crossref_primary_10_3389_fchem_2024_1398984 crossref_primary_10_3390_agronomy13112808 crossref_primary_10_3390_s22166124 crossref_primary_10_1016_j_compag_2023_108067 crossref_primary_10_3390_soilsystems8010022 crossref_primary_10_1016_j_saa_2024_123976 crossref_primary_10_1016_j_conbuildmat_2024_135890 crossref_primary_10_1016_j_geoderma_2024_116938 crossref_primary_10_3788_LOP231520 crossref_primary_10_1063_5_0186340 crossref_primary_10_1016_j_jfca_2024_106469 crossref_primary_10_1016_j_aiia_2024_12_004 crossref_primary_10_1177_00037028231203249 crossref_primary_10_1007_s40098_024_01156_5 crossref_primary_10_3788_LOP221956 crossref_primary_10_3390_agronomy13030617 crossref_primary_10_3389_fpls_2024_1458589 crossref_primary_10_3390_agriculture12091337 crossref_primary_10_3390_agronomy14102374 crossref_primary_10_1007_s10853_024_09415_9 crossref_primary_10_1007_s11368_024_03724_x crossref_primary_10_17221_421_2023_PSE crossref_primary_10_1016_j_seppur_2022_120832 crossref_primary_10_48130_fia_0025_0004 |
Cites_doi | 10.1016/j.jaap.2018.04.004 10.1016/j.forsciint.2017.12.034 10.1002/jrs.4191 10.1039/B613962K 10.1111/j.1475-2743.2009.00242.x 10.1016/S0924-2031(96)00044-6 10.1016/j.talanta.2018.06.058 10.1021/es504272x 10.2136/sssaj2005.0107dup 10.1002/jrs.3031 10.1016/j.geoderma.2005.12.005 10.1016/j.soilbio.2017.11.011 10.1016/j.micron.2014.06.008 10.1016/j.geoderma.2013.07.017 10.3390/molecules21050633 10.1016/B978-0-12-800132-5.00001-8 10.1016/j.geoderma.2010.10.009 10.4141/S97-015 10.1097/00010694-193401000-00003 10.1016/j.biosystemseng.2006.01.014 10.2136/sssaj2000.643873x 10.3390/nano10102021 10.1080/05704928.2011.593216 10.1016/j.aca.2009.06.046 10.1016/j.aca.2016.07.039 10.1038/nature04514 10.2136/sssaj1989.03615995005300030008x 10.1063/1.5012685 10.2136/sssaj1989.03615995005300060014x 10.1016/j.chemosphere.2005.03.034 10.1039/C6AY02904C 10.1071/SR9910049 10.1038/nnano.2013.46 10.1029/1999GB001208 10.1016/j.still.2018.05.001 10.1007/s12161-011-9285-2 10.1016/j.agee.2006.07.011 10.1016/j.talanta.2016.05.076 10.1039/C4AN00837E 10.1016/j.geoderma.2016.12.008 10.1016/j.snb.2015.04.060 10.1016/S0016-7061(98)00008-1 10.1016/S1002-0160(15)60029-7 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Dec 2021 |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Dec 2021 |
DBID | AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
DOI | 10.1016/j.compag.2021.106549 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-7107 |
ExternalDocumentID | 10_1016_j_compag_2021_106549 S0168169921005664 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO AAYFN ABBOA ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABLVK ABMAC ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLV HLZ HVGLF HZ~ IHE J1W KOM LCYCR LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 QYZTP R2- RIG ROL RPZ SAB SBC SDF SDG SES SEW SNL SPC SPCBC SSA SSH SSV SSZ T5K UHS UNMZH WUQ Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACMHX ACRPL ACVFH ADCNI ADNMO ADSLC AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AGWPP AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION 7SC 7SP 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
ID | FETCH-LOGICAL-c367t-a8c523a89c805813492023e40d16fa70247e44a2c73c3d1fc0c27809a0a68f2e3 |
IEDL.DBID | .~1 |
ISSN | 0168-1699 |
IngestDate | Mon Jul 21 09:19:57 EDT 2025 Fri Jul 25 05:17:53 EDT 2025 Tue Jul 01 01:58:23 EDT 2025 Thu Apr 24 23:01:30 EDT 2025 Fri Feb 23 02:41:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | CARS algorithm FTIR-ATR spectroscopy Raman spectroscopy SOM prediction Variable selection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-a8c523a89c805813492023e40d16fa70247e44a2c73c3d1fc0c27809a0a68f2e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2619667252 |
PQPubID | 2045491 |
ParticipantIDs | proquest_miscellaneous_2636496538 proquest_journals_2619667252 crossref_primary_10_1016_j_compag_2021_106549 crossref_citationtrail_10_1016_j_compag_2021_106549 elsevier_sciencedirect_doi_10_1016_j_compag_2021_106549 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2021 2021-12-00 20211201 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computers and electronics in agriculture |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Linker, Weiner, Shmulevich, Shaviv (b0105) 2006; 94 Nkwain, Demyan, Rasche, Dignac, Schulz, Katterer, Mueller, Cadisch (b0145) 2018; 133 Schmidt, Noack (b0175) 2000; 14 Ge, Thomasson, Morgan (b0055) 2014; 213 Comino, Ayora-Canada, Aranda, Diaz, Dominguez-Vidal (b0025) 2018; 188 Huck (b0070) 2016; 21 Zheng, Ryu, Jiao, Hong (b0235) 2016; 26 Hepper, Buschiazzo, Hevia, Urioste, Anton (b0065) 2006; 135 Haberhauer, Rafferty, Strebl, Gerzabek (b0060) 1998; 83 Linker, Shmulevich, Kenny, Shaviv (b0090) 2005; 61 Ferrari, Basko (b0050) 2013; 8 Sheka, Golubev, Popova (b0185) 2020; 10 Curtin, Rostad (b0030) 1997; 77 Li, Shi, Chen, Ji, Zhou, Yu, Webster (b0100) 2015; 49 Tang, Huang, Tian, Song, Yan, Hu, Xiong, Min (b0200) 2014; 139 Yang, Ying (b0225) 2011; 46 Sarker, Incerti, Spaccini, Piccolo, Mazzoleni, Bonanomi (b0170) 2018; 117 Solomon, Lehmann, Kinyangi, Liang, Schäfer (b0190) 2005; 69 Walkley, Black (b0205) 1934; 37 Fan, Shan, Li, Lv, Li, Liang (b0045) 2012; 5 Pimenta, Dresselhaus, Dresselhaus, Cancado, Jorio, Saito (b0160) 2007; 9 Edwards, Munshi, Scowen, Surtees, Swindles (b0040) 2012; 43 Mao, Hu, Schmidt-Rohr, Davies, Ghabbour, Xing (b0125) 2000; 64 Xing, Du, Tian, Ma, Shen, Zhou (b0220) 2016; 158 Parikh, Goyne, Margenot, Mukome, Calderon (b0155) 2014; 126 Yang, Wang (b0230) 1997; 14 Wille, Bourrat, Maubec, Lahfid (b0215) 2014; 67 Li, Liang, Xu, Cao (b0095) 2009; 648 Davidson, Janssens (b0035) 2006; 440 Beltrame, Souza, Coelho, Winkler, Souza, Valderrama (b0010) 2016; 27 Chen, Dong, Li, Wang (b0015) 2017; 9 Kammrath, Koutrakos, Castillo, Langley, Huck-Jones (b0080) 2018; 285 Senesi, Senesi (b0180) 2016; 938 Nguyen, Janik, Raupach (b0140) 1991; 29 Wielopolski, Chatterjee, Mitra, Lal (b0210) 2011; 160 Tanaka, Nagao, Ogawa (b0195) 2001; 17 Inbar, Chen, Hadar (b0075) 1989; 53 Manlay, Feller, Swift (b0120) 2007; 119 Lohumi, Lee, Cho (b0110) 2015; 216 Meersmans, Wesemael, Molle (b0130) 2009; 25 Malone, Styc, Minasny, McBratney (b0115) 2017; 290 Ribeiro-Soares, Cancado, Falcao, Martins Ferreira, Achete, Jorio (b0165) 2013; 44 Baes, Bloom (b0005) 1989; 53 Chen, Zou, Wan, Fan, Yang (b0020) 2018; 8 Obour, Jensen, Lamande, Watts, Munkholm (b0150) 2018; 182 Linker (10.1016/j.compag.2021.106549_b0105) 2006; 94 Ferrari (10.1016/j.compag.2021.106549_b0050) 2013; 8 Chen (10.1016/j.compag.2021.106549_b0015) 2017; 9 Li (10.1016/j.compag.2021.106549_b0100) 2015; 49 Davidson (10.1016/j.compag.2021.106549_b0035) 2006; 440 Xing (10.1016/j.compag.2021.106549_b0220) 2016; 158 Wille (10.1016/j.compag.2021.106549_b0215) 2014; 67 Inbar (10.1016/j.compag.2021.106549_b0075) 1989; 53 Manlay (10.1016/j.compag.2021.106549_b0120) 2007; 119 Nguyen (10.1016/j.compag.2021.106549_b0140) 1991; 29 Li (10.1016/j.compag.2021.106549_b0095) 2009; 648 Meersmans (10.1016/j.compag.2021.106549_b0130) 2009; 25 Hepper (10.1016/j.compag.2021.106549_b0065) 2006; 135 Yang (10.1016/j.compag.2021.106549_b0230) 1997; 14 Tanaka (10.1016/j.compag.2021.106549_b0195) 2001; 17 Wielopolski (10.1016/j.compag.2021.106549_b0210) 2011; 160 Comino (10.1016/j.compag.2021.106549_b0025) 2018; 188 Tang (10.1016/j.compag.2021.106549_b0200) 2014; 139 Fan (10.1016/j.compag.2021.106549_b0045) 2012; 5 Parikh (10.1016/j.compag.2021.106549_b0155) 2014; 126 Ge (10.1016/j.compag.2021.106549_b0055) 2014; 213 Baes (10.1016/j.compag.2021.106549_b0005) 1989; 53 Nkwain (10.1016/j.compag.2021.106549_b0145) 2018; 133 Obour (10.1016/j.compag.2021.106549_b0150) 2018; 182 Solomon (10.1016/j.compag.2021.106549_b0190) 2005; 69 Haberhauer (10.1016/j.compag.2021.106549_b0060) 1998; 83 Kammrath (10.1016/j.compag.2021.106549_b0080) 2018; 285 Senesi (10.1016/j.compag.2021.106549_b0180) 2016; 938 Pimenta (10.1016/j.compag.2021.106549_b0160) 2007; 9 Ribeiro-Soares (10.1016/j.compag.2021.106549_b0165) 2013; 44 Sarker (10.1016/j.compag.2021.106549_b0170) 2018; 117 Walkley (10.1016/j.compag.2021.106549_b0205) 1934; 37 Curtin (10.1016/j.compag.2021.106549_b0030) 1997; 77 Zheng (10.1016/j.compag.2021.106549_b0235) 2016; 26 Chen (10.1016/j.compag.2021.106549_b0020) 2018; 8 Lohumi (10.1016/j.compag.2021.106549_b0110) 2015; 216 Schmidt (10.1016/j.compag.2021.106549_b0175) 2000; 14 Yang (10.1016/j.compag.2021.106549_b0225) 2011; 46 Beltrame (10.1016/j.compag.2021.106549_b0010) 2016; 27 Linker (10.1016/j.compag.2021.106549_b0090) 2005; 61 Malone (10.1016/j.compag.2021.106549_b0115) 2017; 290 Edwards (10.1016/j.compag.2021.106549_b0040) 2012; 43 Mao (10.1016/j.compag.2021.106549_b0125) 2000; 64 Sheka (10.1016/j.compag.2021.106549_b0185) 2020; 10 Huck (10.1016/j.compag.2021.106549_b0070) 2016; 21 |
References_xml | – volume: 139 start-page: 4894 year: 2014 end-page: 4902 ident: b0200 article-title: A new spectral variable selection pattern using competitive adaptive reweighted sampling combined with successive projections algorithm publication-title: Analyst – volume: 440 start-page: 165 year: 2006 end-page: 173 ident: b0035 article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change publication-title: Nature – volume: 158 start-page: 262 year: 2016 end-page: 269 ident: b0220 article-title: Application of FTIR-PAS and Raman spectroscopies for the determination of organic matter in farmland soils publication-title: Talanta – volume: 64 start-page: 873 year: 2000 end-page: 884 ident: b0125 article-title: Quantitative characterization of humic substances by solid-state carbon-13 nuclear magnetic resonance publication-title: Soil Sci. Soc. Am. J. – volume: 188 start-page: 676 year: 2018 end-page: 684 ident: b0025 article-title: Near-infrared spectroscopy and X-ray fluorescence data fusion for olive leaf analysis and crop nutritional status determination publication-title: Talanta – volume: 49 start-page: 4980 year: 2015 end-page: 4987 ident: b0100 article-title: In Situ Measurements of Organic Carbon in Soil Profiles Using vis-NIR Spectroscopy on the Qinghai-Tibet Plateau publication-title: Environ. Sci. Technol. – volume: 29 start-page: 49 year: 1991 end-page: 67 ident: b0140 article-title: Diffuse reflectance infrared fourier transform (DRIFT) spectroscopy in soil studies publication-title: Aust. J. Soil Res. – volume: 61 start-page: 652 year: 2005 end-page: 658 ident: b0090 article-title: Soil identification and chemometrics for direct determination of nitrate in soils using FTIR-ATR mid-infrared spectroscopy publication-title: Chemosphere – volume: 290 start-page: 91 year: 2017 end-page: 99 ident: b0115 article-title: Digital soil mapping of soil carbon at the farm scale: A spatial downscaling approach in consideration of measured and uncertain data publication-title: Geoderma – volume: 53 start-page: 695 year: 1989 end-page: 700 ident: b0005 article-title: Diffuse Reflectance and Transmission Fourier Transform Infrared (DRIFT) Spectroscopy of Humic and Fulvic Acids publication-title: Soil Sci. Soc. Am. J. – volume: 27 start-page: 1527 year: 2016 end-page: 1532 ident: b0010 article-title: Soil Organic Carbon Determination Using NIRS: Evaluation of Dichromate Oxidation and Dry Combustion Analysis as Reference Methods in Multivariate Calibration publication-title: J. Brazil Chem. Soc. – volume: 83 start-page: 331 year: 1998 end-page: 342 ident: b0060 article-title: Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR spectroscopy publication-title: Geoderma – volume: 126 start-page: 1 year: 2014 end-page: 148 ident: b0155 article-title: Soil chemical insights provided through vibrational spectroscopy publication-title: Adv. Agron. – volume: 213 start-page: 57 year: 2014 end-page: 63 ident: b0055 article-title: Mid-infrared attenuated total reflectance spectroscopy for soil carbon and particle size determination publication-title: Geoderma – volume: 8 start-page: 235 year: 2013 end-page: 246 ident: b0050 article-title: Raman spectroscopy as a versatile tool for studying the properties of graphene publication-title: Nat. Nanotechnol. – volume: 648 start-page: 77 year: 2009 end-page: 84 ident: b0095 article-title: Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration publication-title: Anal. Chim. Acta – volume: 14 start-page: 777 year: 2000 end-page: 793 ident: b0175 article-title: Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges publication-title: Global Biogeochem. Cy. – volume: 5 start-page: 585 year: 2012 end-page: 590 ident: b0045 article-title: Application of Competitive Adaptive Reweighted Sampling Method to Determine Effective Wavelengths for Prediction of Total Acid of Vinegar publication-title: Food Anal. Metho – volume: 14 start-page: 105 year: 1997 end-page: 112 ident: b0230 article-title: Fourier transform Raman spectroscopic characterization of humic substances publication-title: Vib. Spectrosc. – volume: 182 start-page: 57 year: 2018 end-page: 65 ident: b0150 article-title: Soil organic matter widens the range of water contents for tillage publication-title: Soil Tillage Res. – volume: 9 start-page: 528 year: 2017 end-page: 533 ident: b0015 article-title: A novel soil nutrient detection method based on combined ATR and DRIFT mid-infrared spectra publication-title: Anal. Methods-UK – volume: 285 start-page: E25 year: 2018 end-page: E33 ident: b0080 article-title: Morphologically-directed Raman spectroscopy for forensic soil analysis publication-title: Forensic Sci. Int. – volume: 160 start-page: 394 year: 2011 end-page: 399 ident: b0210 article-title: In situ determination of soil carbon pool by inelastic neutron scattering: Comparison with dry combustion publication-title: Geoderma – volume: 17 start-page: 1081 year: 2001 end-page: 1084 ident: b0195 article-title: Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy of Functional Groups of Humic Acid Dissolving in Aqueous Solution publication-title: Anal. Sci. – volume: 43 start-page: 323 year: 2012 end-page: 325 ident: b0040 article-title: Development of oxidative sample preparation for the analysis of forensic soil samples with near-IR Raman spectroscopy publication-title: J. Raman Spectrosc. – volume: 133 start-page: 176 year: 2018 end-page: 184 ident: b0145 article-title: Coupling pyrolysis with mid-infrared spectroscopy (Py-MIRS) to fingerprint soil organic matter bulk chemistry publication-title: Anal. Appl. Pyrolysis – volume: 117 start-page: 175 year: 2018 end-page: 184 ident: b0170 article-title: Linking organic matter chemistry with soil aggregate stability: Insight from 13C NMR spectroscopy publication-title: Soil Biol. Biochem. – volume: 94 start-page: 111 year: 2006 end-page: 118 ident: b0105 article-title: Nitrate Determination in Soil Pastes using Attenuated Total Reflectance Mid-infrared Spectroscopy: Improved Accuracy via Soil Identification publication-title: Biosyst. Eng. – volume: 8 start-page: 035204 year: 2018 ident: b0020 article-title: Application of surface enhanced Raman scattering and competitive adaptive reweighted sampling on detecting furfural dissolved in transformer oil publication-title: AIP Adv. – volume: 135 start-page: 216 year: 2006 end-page: 223 ident: b0065 article-title: Clay mineralogy, cation exchange capacity and specific surface area of loess soils with different volcanic ash contents publication-title: Geoderma – volume: 67 start-page: 50 year: 2014 end-page: 64 ident: b0215 article-title: Raman-in-SEM, a multimodal and multiscale analytical tool: Performance for materials and expertise publication-title: Micron – volume: 37 start-page: 29 year: 1934 end-page: 38 ident: b0205 article-title: An examination of the degtjareff method for deterrnining soil organic matter, and a proposed modification of the chromic acid titration method publication-title: Soil Science – volume: 216 start-page: 622 year: 2015 end-page: 628 ident: b0110 article-title: Optimal variable selection for Fourier transform infrared spectroscopic analysis of starch-adulterated garlic powder publication-title: Sens. Actuators, B – volume: 25 start-page: 346 year: 2009 end-page: 353 ident: b0130 article-title: Determining soil organic carbon for agricultural soils: A comparison between the Walkley & Black and the dry combustion methods (north Belgium) publication-title: Soil Use Manage. – volume: 46 start-page: 539 year: 2011 end-page: 560 ident: b0225 article-title: Applications of Raman Spectroscopy in Agricultural Products and Food Analysis: A Review publication-title: Appl. Spectrosc. Rev. – volume: 938 start-page: 7 year: 2016 end-page: 17 ident: b0180 article-title: Laser-induced breakdown spectroscopy (LIBS) to measure quantitatively soil carbon with emphasis on soil organic carbon publication-title: A review. – volume: 10 start-page: 2021 year: 2020 ident: b0185 article-title: Graphene domain signature of Raman spectra of sp2 amorphous carbons publication-title: Nanomaterials – volume: 119 start-page: 217 year: 2007 end-page: 233 ident: b0120 article-title: Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems publication-title: Agric. Ecosyst. Environ. – volume: 9 start-page: 1276 year: 2007 end-page: 1290 ident: b0160 article-title: Studying disorder in graphite-based systems by Raman spectroscopy publication-title: Phys. Chem. Chem. Phys. – volume: 21 start-page: 633 year: 2016 ident: b0070 article-title: Recent Developments in Solid-Phase Extraction for Near and Attenuated Total Reflection Infrared Spectroscopic Analysis publication-title: Molecules – volume: 77 start-page: 621 year: 1997 end-page: 626 ident: b0030 article-title: Cation exchange and buffer potential of Saskatchewan soils estimated from texture, organic matter and pH publication-title: Can. J. Soil Sci. – volume: 53 start-page: 1695 year: 1989 end-page: 1701 ident: b0075 article-title: Solid-state Carbon-13 Nuclear Magnetic Resonance and Infrared Spectroscopy of Composted Organic Matter publication-title: Soil Sci. Soc. Am. J. – volume: 69 start-page: 107 year: 2005 end-page: 119 ident: b0190 article-title: Carbon K-Edge NEXAFS and FTIR-ATR Spectroscopic Investigation of Organic Carbon Speciation in Soils publication-title: Soil Sci. Soc. Am. J. – volume: 26 start-page: 130 year: 2016 end-page: 136 ident: b0235 article-title: Estimation of organic matter content in coastal soil using reflectance spectroscopy publication-title: Pedosphere – volume: 44 start-page: 283 year: 2013 end-page: 289 ident: b0165 article-title: The use of Raman spectroscopy to characterize the carbon materials found in Amazonian anthrosoils publication-title: J. Raman Spectrosc. – volume: 133 start-page: 176 year: 2018 ident: 10.1016/j.compag.2021.106549_b0145 article-title: Coupling pyrolysis with mid-infrared spectroscopy (Py-MIRS) to fingerprint soil organic matter bulk chemistry publication-title: Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2018.04.004 – volume: 285 start-page: E25 year: 2018 ident: 10.1016/j.compag.2021.106549_b0080 article-title: Morphologically-directed Raman spectroscopy for forensic soil analysis publication-title: Forensic Sci. Int. doi: 10.1016/j.forsciint.2017.12.034 – volume: 44 start-page: 283 year: 2013 ident: 10.1016/j.compag.2021.106549_b0165 article-title: The use of Raman spectroscopy to characterize the carbon materials found in Amazonian anthrosoils publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.4191 – volume: 9 start-page: 1276 year: 2007 ident: 10.1016/j.compag.2021.106549_b0160 article-title: Studying disorder in graphite-based systems by Raman spectroscopy publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B613962K – volume: 25 start-page: 346 year: 2009 ident: 10.1016/j.compag.2021.106549_b0130 article-title: Determining soil organic carbon for agricultural soils: A comparison between the Walkley & Black and the dry combustion methods (north Belgium) publication-title: Soil Use Manage. doi: 10.1111/j.1475-2743.2009.00242.x – volume: 14 start-page: 105 issue: 1 year: 1997 ident: 10.1016/j.compag.2021.106549_b0230 article-title: Fourier transform Raman spectroscopic characterization of humic substances publication-title: Vib. Spectrosc. doi: 10.1016/S0924-2031(96)00044-6 – volume: 188 start-page: 676 year: 2018 ident: 10.1016/j.compag.2021.106549_b0025 article-title: Near-infrared spectroscopy and X-ray fluorescence data fusion for olive leaf analysis and crop nutritional status determination publication-title: Talanta doi: 10.1016/j.talanta.2018.06.058 – volume: 49 start-page: 4980 issue: 8 year: 2015 ident: 10.1016/j.compag.2021.106549_b0100 article-title: In Situ Measurements of Organic Carbon in Soil Profiles Using vis-NIR Spectroscopy on the Qinghai-Tibet Plateau publication-title: Environ. Sci. Technol. doi: 10.1021/es504272x – volume: 69 start-page: 107 issue: 1 year: 2005 ident: 10.1016/j.compag.2021.106549_b0190 article-title: Carbon K-Edge NEXAFS and FTIR-ATR Spectroscopic Investigation of Organic Carbon Speciation in Soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2005.0107dup – volume: 17 start-page: 1081 year: 2001 ident: 10.1016/j.compag.2021.106549_b0195 article-title: Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy of Functional Groups of Humic Acid Dissolving in Aqueous Solution publication-title: Anal. Sci. – volume: 43 start-page: 323 issue: 2 year: 2012 ident: 10.1016/j.compag.2021.106549_b0040 article-title: Development of oxidative sample preparation for the analysis of forensic soil samples with near-IR Raman spectroscopy publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.3031 – volume: 135 start-page: 216 year: 2006 ident: 10.1016/j.compag.2021.106549_b0065 article-title: Clay mineralogy, cation exchange capacity and specific surface area of loess soils with different volcanic ash contents publication-title: Geoderma doi: 10.1016/j.geoderma.2005.12.005 – volume: 117 start-page: 175 year: 2018 ident: 10.1016/j.compag.2021.106549_b0170 article-title: Linking organic matter chemistry with soil aggregate stability: Insight from 13C NMR spectroscopy publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2017.11.011 – volume: 67 start-page: 50 year: 2014 ident: 10.1016/j.compag.2021.106549_b0215 article-title: Raman-in-SEM, a multimodal and multiscale analytical tool: Performance for materials and expertise publication-title: Micron doi: 10.1016/j.micron.2014.06.008 – volume: 213 start-page: 57 year: 2014 ident: 10.1016/j.compag.2021.106549_b0055 article-title: Mid-infrared attenuated total reflectance spectroscopy for soil carbon and particle size determination publication-title: Geoderma doi: 10.1016/j.geoderma.2013.07.017 – volume: 21 start-page: 633 year: 2016 ident: 10.1016/j.compag.2021.106549_b0070 article-title: Recent Developments in Solid-Phase Extraction for Near and Attenuated Total Reflection Infrared Spectroscopic Analysis publication-title: Molecules doi: 10.3390/molecules21050633 – volume: 126 start-page: 1 year: 2014 ident: 10.1016/j.compag.2021.106549_b0155 article-title: Soil chemical insights provided through vibrational spectroscopy publication-title: Adv. Agron. doi: 10.1016/B978-0-12-800132-5.00001-8 – volume: 160 start-page: 394 issue: 3-4 year: 2011 ident: 10.1016/j.compag.2021.106549_b0210 article-title: In situ determination of soil carbon pool by inelastic neutron scattering: Comparison with dry combustion publication-title: Geoderma doi: 10.1016/j.geoderma.2010.10.009 – volume: 27 start-page: 1527 year: 2016 ident: 10.1016/j.compag.2021.106549_b0010 article-title: Soil Organic Carbon Determination Using NIRS: Evaluation of Dichromate Oxidation and Dry Combustion Analysis as Reference Methods in Multivariate Calibration publication-title: J. Brazil Chem. Soc. – volume: 77 start-page: 621 issue: 4 year: 1997 ident: 10.1016/j.compag.2021.106549_b0030 article-title: Cation exchange and buffer potential of Saskatchewan soils estimated from texture, organic matter and pH publication-title: Can. J. Soil Sci. doi: 10.4141/S97-015 – volume: 37 start-page: 29 year: 1934 ident: 10.1016/j.compag.2021.106549_b0205 article-title: An examination of the degtjareff method for deterrnining soil organic matter, and a proposed modification of the chromic acid titration method publication-title: Soil Science doi: 10.1097/00010694-193401000-00003 – volume: 94 start-page: 111 issue: 1 year: 2006 ident: 10.1016/j.compag.2021.106549_b0105 article-title: Nitrate Determination in Soil Pastes using Attenuated Total Reflectance Mid-infrared Spectroscopy: Improved Accuracy via Soil Identification publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2006.01.014 – volume: 64 start-page: 873 year: 2000 ident: 10.1016/j.compag.2021.106549_b0125 article-title: Quantitative characterization of humic substances by solid-state carbon-13 nuclear magnetic resonance publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2000.643873x – volume: 10 start-page: 2021 year: 2020 ident: 10.1016/j.compag.2021.106549_b0185 article-title: Graphene domain signature of Raman spectra of sp2 amorphous carbons publication-title: Nanomaterials doi: 10.3390/nano10102021 – volume: 46 start-page: 539 issue: 7 year: 2011 ident: 10.1016/j.compag.2021.106549_b0225 article-title: Applications of Raman Spectroscopy in Agricultural Products and Food Analysis: A Review publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704928.2011.593216 – volume: 648 start-page: 77 issue: 1 year: 2009 ident: 10.1016/j.compag.2021.106549_b0095 article-title: Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2009.06.046 – volume: 938 start-page: 7 year: 2016 ident: 10.1016/j.compag.2021.106549_b0180 article-title: Laser-induced breakdown spectroscopy (LIBS) to measure quantitatively soil carbon with emphasis on soil organic carbon publication-title: A review. Anal. Chim. Acta doi: 10.1016/j.aca.2016.07.039 – volume: 440 start-page: 165 issue: 7081 year: 2006 ident: 10.1016/j.compag.2021.106549_b0035 article-title: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change publication-title: Nature doi: 10.1038/nature04514 – volume: 53 start-page: 695 issue: 3 year: 1989 ident: 10.1016/j.compag.2021.106549_b0005 article-title: Diffuse Reflectance and Transmission Fourier Transform Infrared (DRIFT) Spectroscopy of Humic and Fulvic Acids publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1989.03615995005300030008x – volume: 8 start-page: 035204 issue: 3 year: 2018 ident: 10.1016/j.compag.2021.106549_b0020 article-title: Application of surface enhanced Raman scattering and competitive adaptive reweighted sampling on detecting furfural dissolved in transformer oil publication-title: AIP Adv. doi: 10.1063/1.5012685 – volume: 53 start-page: 1695 issue: 6 year: 1989 ident: 10.1016/j.compag.2021.106549_b0075 article-title: Solid-state Carbon-13 Nuclear Magnetic Resonance and Infrared Spectroscopy of Composted Organic Matter publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1989.03615995005300060014x – volume: 61 start-page: 652 issue: 5 year: 2005 ident: 10.1016/j.compag.2021.106549_b0090 article-title: Soil identification and chemometrics for direct determination of nitrate in soils using FTIR-ATR mid-infrared spectroscopy publication-title: Chemosphere doi: 10.1016/j.chemosphere.2005.03.034 – volume: 9 start-page: 528 issue: 3 year: 2017 ident: 10.1016/j.compag.2021.106549_b0015 article-title: A novel soil nutrient detection method based on combined ATR and DRIFT mid-infrared spectra publication-title: Anal. Methods-UK doi: 10.1039/C6AY02904C – volume: 29 start-page: 49 year: 1991 ident: 10.1016/j.compag.2021.106549_b0140 article-title: Diffuse reflectance infrared fourier transform (DRIFT) spectroscopy in soil studies publication-title: Aust. J. Soil Res. doi: 10.1071/SR9910049 – volume: 8 start-page: 235 issue: 4 year: 2013 ident: 10.1016/j.compag.2021.106549_b0050 article-title: Raman spectroscopy as a versatile tool for studying the properties of graphene publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.46 – volume: 14 start-page: 777 year: 2000 ident: 10.1016/j.compag.2021.106549_b0175 article-title: Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges publication-title: Global Biogeochem. Cy. doi: 10.1029/1999GB001208 – volume: 182 start-page: 57 year: 2018 ident: 10.1016/j.compag.2021.106549_b0150 article-title: Soil organic matter widens the range of water contents for tillage publication-title: Soil Tillage Res. doi: 10.1016/j.still.2018.05.001 – volume: 5 start-page: 585 issue: 3 year: 2012 ident: 10.1016/j.compag.2021.106549_b0045 article-title: Application of Competitive Adaptive Reweighted Sampling Method to Determine Effective Wavelengths for Prediction of Total Acid of Vinegar publication-title: Food Anal. Metho doi: 10.1007/s12161-011-9285-2 – volume: 119 start-page: 217 year: 2007 ident: 10.1016/j.compag.2021.106549_b0120 article-title: Historical evolution of soil organic matter concepts and their relationships with the fertility and sustainability of cropping systems publication-title: Agric. Ecosyst. Environ. doi: 10.1016/j.agee.2006.07.011 – volume: 158 start-page: 262 year: 2016 ident: 10.1016/j.compag.2021.106549_b0220 article-title: Application of FTIR-PAS and Raman spectroscopies for the determination of organic matter in farmland soils publication-title: Talanta doi: 10.1016/j.talanta.2016.05.076 – volume: 139 start-page: 4894 year: 2014 ident: 10.1016/j.compag.2021.106549_b0200 article-title: A new spectral variable selection pattern using competitive adaptive reweighted sampling combined with successive projections algorithm publication-title: Analyst doi: 10.1039/C4AN00837E – volume: 290 start-page: 91 year: 2017 ident: 10.1016/j.compag.2021.106549_b0115 article-title: Digital soil mapping of soil carbon at the farm scale: A spatial downscaling approach in consideration of measured and uncertain data publication-title: Geoderma doi: 10.1016/j.geoderma.2016.12.008 – volume: 216 start-page: 622 year: 2015 ident: 10.1016/j.compag.2021.106549_b0110 article-title: Optimal variable selection for Fourier transform infrared spectroscopic analysis of starch-adulterated garlic powder publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2015.04.060 – volume: 83 start-page: 331 issue: 3-4 year: 1998 ident: 10.1016/j.compag.2021.106549_b0060 article-title: Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR spectroscopy publication-title: Geoderma doi: 10.1016/S0016-7061(98)00008-1 – volume: 26 start-page: 130 year: 2016 ident: 10.1016/j.compag.2021.106549_b0235 article-title: Estimation of organic matter content in coastal soil using reflectance spectroscopy publication-title: Pedosphere doi: 10.1016/S1002-0160(15)60029-7 |
SSID | ssj0016987 |
Score | 2.566709 |
Snippet | [Display omitted]
•Combination of Raman and ATR spectroscopies to predict the content of SOM.•Reduction of RMSEP of prediction model with the application of... Determination of soil organic matter (SOM) is extremely important for diagnosing the fertility status of agricultural soils. Thus, fast and efficient... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106549 |
SubjectTerms | Adaptive sampling agriculture Algorithms CARS algorithm Chemical analysis Data integration electronics Fourier transforms FTIR-ATR spectroscopy Infrared reflection Infrared spectroscopy Least squares method Organic matter Performance prediction prediction Prediction models Raman spectra Raman spectroscopy Soil fertility Soil improvement soil organic matter Soil properties SOM prediction Spectrum analysis Variable selection |
Title | A method combining FTIR-ATR and Raman spectroscopy to determine soil organic matter: Improvement of prediction accuracy using competitive adaptive reweighted sampling (CARS) |
URI | https://dx.doi.org/10.1016/j.compag.2021.106549 https://www.proquest.com/docview/2619667252 https://www.proquest.com/docview/2636496538 |
Volume | 191 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF5CemkPpemDuk3CFHpoD6olrbS76k2YGqelOTgO5CbWq5VxSCQh25Rc-o_6HzuzKxkSCoHe9BixkmY0s7P65hvGPlo0o7Q0VUD9rShByQLNhaXSJ6ME53ielgZ-novZZfL9Kr06YJOhFoZglb3v9z7deev-yLh_m-N2vR5f4GRFRSLLMGnBKC6IEzRJJFn5l997mAcKKF8yLTBbQumhfM5hvBzOe4VZYhzhIZESo-a_w9MDR-2iz_QFe95PGyH3d3bEDmz9kj3LV11PnWFfsT85-HbQgOMtXd8HmC7O5kG-mIOuS5jrW12DK60kCsumvYNtA2WPh7GwadY34Ls8Gbh1vJtfwS86uDVEaCpoO_qxQ8oEbcyu0-YOCDq_okFbqlhD7wm61K3b6Owvt_RqS9howq6j4KdJPr_4_JpdTr8tJrOgb8YQGC7kNtDKYM6qVWZUmCpHaojh3iZhGYlKSwz10iaJjo3khpdRZUITSxVmOtRCVbHlb9hh3dT2LQNMioSMK60zYZLSJnpZcamiqpSVTG3ER4wPOihMz1RODTNuigGSdl14zRWkucJrbsSC_VWtZ-p4RF4O6i3uWVyBweSRK48Hayj6L35TUCYq8LHSeMQ-7E_jt0o_YHRtmx3JcEH8_Fy9--_B37OntOcRNcfscNvt7AnOi7bLU2f4p-xJfvZjdv4XYRgOTA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBddeth2GPtk2bpNgx22g4lt2ZK8mwkLydrmkKbQm1BkOWS0tnESSv-o_o97T7IDG4PCbkYfyPaT3tOTfu_3CPliYRqlhSkDzG-FDkoWaMYthj4ZyRmDejwaOJ_z6WXy8yq9OiLjPhYGYZWd7vc63WnrrmTU_c1Rs9mMLmCzIiOeZeC0gBXnySNyjOxU6YAc57PT6fxwmcAz6aOmOThM0KGPoHMwLwf1XoOjGEdQxFMk1fy3hfpLVzsDNHlOnnU7R5r7l3tBjmz1kjzN123HnmFfkfuc-ozQFMZbudQPdLKcLYJ8uaC6KuhC3-iKuuhKZLGsmzu6q2nRQWIs3daba-oTPRl646g3v1N_7uCOEWld0qbFux2UJ9XG7Ftt7iii59c4aINBa6BAqS504x5ae-tOX21Btxrh69Dw6zhfXHx7TS4nP5bjadDlYwgM42IXaGnAbdUyMzJMpeM1BItvk7CIeKkFWHthk0THRjDDiqg0oYmFDDMdai7L2LI3ZFDVlX1LKPhFXMSl1hk3SWETvSqZkFFZiFKkNmJDwnoZKNORlWPOjGvVo9J-KS85hZJTXnJDEhx6NZ6s44H2ohev-mPSKbAnD_Q86WeD6hb9VqEzyuGz0nhIPh-qYbniHYyubL3HNowjRT-T7_578E_k8XR5fqbOZvPT9-QJ1niAzQkZ7Nq9_QDbpN3qY7cMfgOSvBD9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+method+combining+FTIR-ATR+and+Raman+spectroscopy+to+determine+soil+organic+matter%3A+Improvement+of+prediction+accuracy+using+competitive+adaptive+reweighted+sampling+%28CARS%29&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Xing%2C+Zhe&rft.au=Du%2C+Changwen&rft.au=Shen%2C+Yazhen&rft.au=Ma%2C+Fei&rft.date=2021-12-01&rft.pub=Elsevier+BV&rft.issn=0168-1699&rft.eissn=1872-7107&rft.volume=191&rft.spage=1&rft_id=info:doi/10.1016%2Fj.compag.2021.106549&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |