Quiescent and flow-induced crystallization in polyamide 12/cellulose nanocrystal composites
[Display omitted] •Cellulose nanocrystals are efficient nucleating agents for PA12.•Fast scanning calorimetry of a sheared nanocomposite was evaluated.•Nanofiller nucleation dominates flow-induced nucleation.•AFM was used to characterize CNC dispersion and crystal microstructure.•Wide angle XRD was...
Saved in:
Published in | Thermochimica acta Vol. 677; pp. 99 - 108 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Cellulose nanocrystals are efficient nucleating agents for PA12.•Fast scanning calorimetry of a sheared nanocomposite was evaluated.•Nanofiller nucleation dominates flow-induced nucleation.•AFM was used to characterize CNC dispersion and crystal microstructure.•Wide angle XRD was used to characterize crystal polymorph.
Understanding the crystallization kinetics and microstructure that result after an imposed shear flow in an additive-containing polymeric system is imperative for the development of robust polymer composites suitable for advanced engineering applications. Both nucleating agents and flow accelerate the crystallization kinetics as well as alter the ultimate polymer microstructure. During melt processing, polymers are subject to shear flow prior to the solidification of the melt. As an unsheared baseline in this study, the addition of 5 wt % cellulose nanocrystals (CNC) into quiescent polyamide 12 (PA 12) revealed that CNCs act as a natural nucleating agent to the quiescent PA 12 during slow cooling and at high temperatures, as measured by standard differential scanning calorimetry. To evaluate the role of shear work in promoting flow-induced crystallization, both neat and PA 12/CNC composite were subjected to known amounts of shear work. Then fast scanning calorimetry was used to differentiate the nucleation activity from both flow-induced precursors and CNC particles during isothermal crystallization across a wide temperature range. It was found that the addition of the CNC accelerated crystallization in the heterogeneous nucleation regime (T > 100 °C) in the quiescent material. With the addition of shear, the neat system displayed a reduced crystallization peak time with increasing shear history. In the nanocomposite system, the CNCs are an extremely efficient nucleating agent, achieving a saturating limit for nucleation of crystallization, such that shear was only a factor at low supercooling, specifically at temperatures greater than 140 °C. |
---|---|
AbstractList | Understanding the crystallization kinetics and microstructure that result after an imposed shear flow in an additive-containing polymeric system is imperative for the development of robust polymer composites suitable for advanced engineering applications. Both nucleating agents and flow accelerate the crystallization kinetics as well as alter the ultimate polymer microstructure. During melt processing, polymers are subject to shear flow prior to the solidification of the melt. As an unsheared baseline in this study, the addition of 5 wt % cellulose nanocrystals (CNC) into quiescent polyamide 12 (PA 12) revealed that CNCs act as a natural nucleating agent to the quiescent PA 12 during slow cooling and at high temperatures, as measured by standard differential scanning calorimetry. To evaluate the role of shear work in promoting flow-induced crystallization, both neat and PA 12/CNC composite were subjected to known amounts of shear work. Then fast scanning calorimetry was used to differentiate the nucleation activity from both flow-induced precursors and CNC particles during isothermal crystallization across a wide temperature range. It was found that the addition of the CNC accelerated crystallization in the heterogeneous nucleation regime (T > 100 °C) in the quiescent material. With the addition of shear, the neat system displayed a reduced crystallization peak time with increasing shear history. In the nanocomposite system, the CNCs are an extremely efficient nucleating agent, achieving a saturating limit for nucleation of crystallization, such that shear was only a factor at low supercooling, specifically at temperatures greater than 140 °C. [Display omitted] •Cellulose nanocrystals are efficient nucleating agents for PA12.•Fast scanning calorimetry of a sheared nanocomposite was evaluated.•Nanofiller nucleation dominates flow-induced nucleation.•AFM was used to characterize CNC dispersion and crystal microstructure.•Wide angle XRD was used to characterize crystal polymorph. Understanding the crystallization kinetics and microstructure that result after an imposed shear flow in an additive-containing polymeric system is imperative for the development of robust polymer composites suitable for advanced engineering applications. Both nucleating agents and flow accelerate the crystallization kinetics as well as alter the ultimate polymer microstructure. During melt processing, polymers are subject to shear flow prior to the solidification of the melt. As an unsheared baseline in this study, the addition of 5 wt % cellulose nanocrystals (CNC) into quiescent polyamide 12 (PA 12) revealed that CNCs act as a natural nucleating agent to the quiescent PA 12 during slow cooling and at high temperatures, as measured by standard differential scanning calorimetry. To evaluate the role of shear work in promoting flow-induced crystallization, both neat and PA 12/CNC composite were subjected to known amounts of shear work. Then fast scanning calorimetry was used to differentiate the nucleation activity from both flow-induced precursors and CNC particles during isothermal crystallization across a wide temperature range. It was found that the addition of the CNC accelerated crystallization in the heterogeneous nucleation regime (T > 100 °C) in the quiescent material. With the addition of shear, the neat system displayed a reduced crystallization peak time with increasing shear history. In the nanocomposite system, the CNCs are an extremely efficient nucleating agent, achieving a saturating limit for nucleation of crystallization, such that shear was only a factor at low supercooling, specifically at temperatures greater than 140 °C. |
Author | Seo, Jiho Ferris, Trapper Venkatraman, Priya Foster, E. Johan Gohn, Anne M. Rhoades, Alicyn M. |
Author_xml | – sequence: 1 givenname: Anne M. surname: Gohn fullname: Gohn, Anne M. organization: School of Engineering, Penn State Behrend, Erie, PA, 16563, United States – sequence: 2 givenname: Jiho surname: Seo fullname: Seo, Jiho organization: Department of Materials Science and Engineering, Penn State University, University Park, PA, 16802, United States – sequence: 3 givenname: Trapper surname: Ferris fullname: Ferris, Trapper organization: School of Engineering, Penn State Behrend, Erie, PA, 16563, United States – sequence: 4 givenname: Priya orcidid: 0000-0002-6298-3167 surname: Venkatraman fullname: Venkatraman, Priya organization: Department of Materials Science and Engineering, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, United States – sequence: 5 givenname: E. Johan orcidid: 0000-0002-4103-8510 surname: Foster fullname: Foster, E. Johan organization: Department of Materials Science and Engineering, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, United States – sequence: 6 givenname: Alicyn M. surname: Rhoades fullname: Rhoades, Alicyn M. email: amh234@psu.edu organization: School of Engineering, Penn State Behrend, Erie, PA, 16563, United States |
BookMark | eNp9kE1LAzEQhoMoWD9-gLc9etl2kmyTXTxJ8QsEERQEDyGbnYWUNKlJVqm_3q3tyYPwwlzeZ5h5TsihDx4JuaAwpUDFbDnNRk8Z0GYKfEx1QCa0lqyUgr0dkglABaUATo_JSUpLAKCshgl5fx4sJoM-F9p3Re_CV2l9NxjsChM3KWvn7LfONvjC-mId3EavbIcFZTODzg0uJCy89mHfLkxYrUOyGdMZOeq1S3i-n6fk9fbmZXFfPj7dPSyuH0vDhcxl03dYm3nNq6qnpmqEANQ414zWTcvbXnJmWo4Su5puG1L0gJ1k2GrRgkF-Si53e9cxfAyYslrZtD1OewxDUozVop6LRtKxKndVE0NKEXtlbP79LkdtnaKgtjrVUo061VanAj6mGkn6h1xHu9Jx8y9ztWNw_P7TYlTJWPSjWxvRZNUF-w_9A8nOkis |
CitedBy_id | crossref_primary_10_1007_s10965_022_03329_3 crossref_primary_10_1016_j_mtchem_2021_100590 crossref_primary_10_1039_D0RA07141B crossref_primary_10_3390_ma15186286 crossref_primary_10_1002_pc_25717 crossref_primary_10_1021_acs_iecr_1c04141 crossref_primary_10_1021_acs_jpcb_2c03460 crossref_primary_10_1002_pol_20210813 crossref_primary_10_1002_marc_202200418 crossref_primary_10_1016_j_apsusc_2020_147350 crossref_primary_10_1021_acs_macromol_0c02477 crossref_primary_10_1002_adma_202000718 crossref_primary_10_1016_j_polymer_2020_122548 crossref_primary_10_3390_polym16172391 crossref_primary_10_1002_app_53424 crossref_primary_10_1002_pc_28663 crossref_primary_10_1002_pc_29334 crossref_primary_10_1021_acsmacrolett_1c00101 crossref_primary_10_1021_acssuschemeng_2c06808 |
Cites_doi | 10.1002/jctb.2300 10.1021/acs.macromol.5b01408 10.1007/s00396-013-2977-y 10.1143/JJAP.22.335 10.1016/j.dental.2015.09.018 10.1108/RPJ-01-2013-0012 10.1016/j.eurpolymj.2013.12.015 10.1002/mame.201800148 10.1002/macp.1981.021820328 10.1021/ma990494o 10.1007/s00397-002-0247-x 10.1002/marc.200300268 10.1021/acs.macromol.8b00195 10.1007/s003960000425 10.1002/polb.22234 10.1016/j.polymdegradstab.2010.11.006 10.1007/s10924-005-5514-3 10.1021/ma802479c 10.1016/j.polymer.2014.11.017 10.1016/j.polymer.2004.01.023 10.1016/j.tca.2017.07.012 10.1088/0957-4484/22/27/275714 10.1016/j.tca.2014.10.020 10.1021/ma025732l 10.1016/j.polymer.2017.09.043 10.1016/j.polymer.2018.09.037 10.1016/j.indcrop.2017.09.039 10.1007/s10570-016-0914-1 10.1016/j.tca.2013.04.007 10.1002/pen.24441 10.1039/C3RA46390G 10.1016/j.polymer.2017.03.072 10.1007/BF01382456 10.1021/ma302238r 10.1002/anie.201001273 10.1021/ma702603v 10.1002/app.42752 10.1021/acs.macromol.8b00082 10.1088/1742-6596/429/1/012008 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. |
Copyright_xml | – notice: 2019 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.tca.2019.03.034 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Engineering |
EISSN | 1872-762X |
EndPage | 108 |
ExternalDocumentID | 10_1016_j_tca_2019_03_034 S0040603118312085 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 6TJ 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABEFU ABFNM ABJNI ABMAC ABNUV ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNCT ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJQLL AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HMU HVGLF HZ~ IHE J1W KOM M36 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SCH SDF SDG SDP SES SEW SPC SPCBC SSG SSK SSM SSZ T5K T9H WH7 WUQ XPP YK3 ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c367t-9fde8c58344f1c49660eae5a2189b3bf732cb3e7ed814f1c76f0ed72eba6b0ce3 |
IEDL.DBID | .~1 |
ISSN | 0040-6031 |
IngestDate | Fri Jul 11 00:08:06 EDT 2025 Tue Jul 01 00:46:32 EDT 2025 Thu Apr 24 22:57:55 EDT 2025 Fri Feb 23 02:30:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Polyamide 12 Cellulose nanocrystal Fast scanning chip calorimetry Crystallization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-9fde8c58344f1c49660eae5a2189b3bf732cb3e7ed814f1c76f0ed72eba6b0ce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4103-8510 0000-0002-6298-3167 |
PQID | 2286856971 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2286856971 crossref_citationtrail_10_1016_j_tca_2019_03_034 crossref_primary_10_1016_j_tca_2019_03_034 elsevier_sciencedirect_doi_10_1016_j_tca_2019_03_034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-01 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Thermochimica acta |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gohn, Rhoades, Wonderling, Tighe, Androsch (bib0040) 2017; 655 Lecouvet, Gutierrez, Sclavons, Bailly (bib0065) 2011; 96 Janeschitz-Kriegl, Ratajski, Stadlbauer (bib0195) 2003; 42 Kolesov, Androsch, Mileva, Lebek, Benhamida, Kaci, Focke (bib0220) 2013; 291 Mykhaylyk, Chambon, Graham, Fairclough, Olmsted (bib0160) 2008; 41 Seo, Takahashi, Nazari, Rhoades, Schaake, Colby (bib0190) 2018; 51 Klemm, Kramer, Moritz, Lindstrom, Ankerfors, Gray, Dorris (bib0095) 2011; 50 Rhoades, Gohn, Seo, Androsch, Colby (bib0175) 2018; 51 Paolucci, Baeten, Roozemond, Goderis, Peters (bib0035) 2018; 155 Housmans, Steenbakkers, Roozemond, Peters, Meier (bib0145) 2009; 42 de Souza Lima, Borsali (bib0090) 2004; 25 Schawe, Pötschke, Alig (bib0120) 2017; 116 Turner, Strong, Gold (bib0135) 2014; 20 Gohn, Rhoades, Okonski, Androsch (bib0125) 2018; 303 Bagheriasl, Carreau, Riedl, Dubois, Hamad (bib0205) 2016; 23 Seo, Gohn, Dubin, Takahashi, Hasegawa, Sato, Rhoades, Schaake, Colby (bib0235) 2018 Ramesh (bib0030) 1999; 32 Mollova, Androsch, Mileva, Schick, Benhamida (bib0050) 2013; 46 Mueller, Weder, Foster (bib0085) 2014; 4 Okura, Chambon, Mykhaylyk, Fairclough, Ryan (bib0150) 2011; 49 Kohan (bib0005) 1995 Sani, Dahman (bib0115) 2009; 85 Rhoades, Williams, Androsch (bib0215) 2015; 603 Li, Koch, de Jeu (bib0240) 2003; 36 Stansbury, Idacavage (bib0010) 2016; 32 van Drongelen, Meijer-Vissers, Cavallo, Portale, Poel, Androsch (bib0045) 2013; 563 Fischer, Seefried, Drummer (bib0055) 2017 Rosato, Rosato, Rosato (bib0130) 2000 Chatterjee, N. F. A, C. B. T. T (bib0070) 2011; 22 Peters, Balzano, Steenbakkers (bib0140) 2013 Ishikawa, Nagai (bib0025) 1981; 182 Kargarzadeh, Mariano, Huang, Lin, Ahmad, Dufresne, Thomas (bib0105) 2017; 132 Marett, Aning, F. E. J (bib0080) 2017; 109 Sandler, Pegel, Cadek, Gojny, van Es, Lohmar, Blau, Schulte, Windle, Shaffer (bib0060) 2004; 5 Janeschitz-Kriegl, Ratajski, Stadlbauer (bib0155) 2003; 42 Iyer, Schueneman, Torkelson (bib0200) 2015; 56 Stratsys, 18 December 2018. [Online]. Available Hamad, Colby, Milner (bib0165) 2015; 48 [Accessed 18 December 2018]. Gogolewski, Czerniawska, Gasiorek (bib0185) 1980; 258 Plummer, Bourban, Månson (bib0180) 2001; 279 Piorkowska, Rutledge (bib0210) 2013 Hiramatsu, Haraguchi, Hirakawa (bib0020) 1983; 22 Hamad, Colby, Milner (bib0170) 2015; 48 Zhuravlev, Wurm, Pötschke, Androsch, Schmelzer, Schick (bib0225) 2014; 52 Nicharat, Sapkota, Weder, F. E. J (bib0075) 2015; 132 Furushima, Kumazawa, Umetsu, Toka, Zhuravlev, Wurm, Schick (bib0230) 2016; 134 Orts, Shey, Imam, Glenn, Guttman, R. J. F (bib0100) 2005; 13 Endes, Muller, Schmid, Vanhecke, Foster, Petri-Fink, Rothen-Rutishauser, Weder, Clift (bib0110) 2013; 429 Iyer (10.1016/j.tca.2019.03.034_bib0200) 2015; 56 Rhoades (10.1016/j.tca.2019.03.034_bib0215) 2015; 603 Hamad (10.1016/j.tca.2019.03.034_bib0165) 2015; 48 Sandler (10.1016/j.tca.2019.03.034_bib0060) 2004; 5 Okura (10.1016/j.tca.2019.03.034_bib0150) 2011; 49 Mykhaylyk (10.1016/j.tca.2019.03.034_bib0160) 2008; 41 Janeschitz-Kriegl (10.1016/j.tca.2019.03.034_bib0155) 2003; 42 Kohan (10.1016/j.tca.2019.03.034_bib0005) 1995 Marett (10.1016/j.tca.2019.03.034_bib0080) 2017; 109 Housmans (10.1016/j.tca.2019.03.034_bib0145) 2009; 42 de Souza Lima (10.1016/j.tca.2019.03.034_bib0090) 2004; 25 Gohn (10.1016/j.tca.2019.03.034_bib0125) 2018; 303 Stansbury (10.1016/j.tca.2019.03.034_bib0010) 2016; 32 Nicharat (10.1016/j.tca.2019.03.034_bib0075) 2015; 132 Orts (10.1016/j.tca.2019.03.034_bib0100) 2005; 13 Peters (10.1016/j.tca.2019.03.034_bib0140) 2013 Piorkowska (10.1016/j.tca.2019.03.034_bib0210) 2013 Turner (10.1016/j.tca.2019.03.034_bib0135) 2014; 20 Zhuravlev (10.1016/j.tca.2019.03.034_bib0225) 2014; 52 Kargarzadeh (10.1016/j.tca.2019.03.034_bib0105) 2017; 132 Kolesov (10.1016/j.tca.2019.03.034_bib0220) 2013; 291 Li (10.1016/j.tca.2019.03.034_bib0240) 2003; 36 Plummer (10.1016/j.tca.2019.03.034_bib0180) 2001; 279 van Drongelen (10.1016/j.tca.2019.03.034_bib0045) 2013; 563 Ishikawa (10.1016/j.tca.2019.03.034_bib0025) 1981; 182 Ramesh (10.1016/j.tca.2019.03.034_bib0030) 1999; 32 Hamad (10.1016/j.tca.2019.03.034_bib0170) 2015; 48 Sani (10.1016/j.tca.2019.03.034_bib0115) 2009; 85 Seo (10.1016/j.tca.2019.03.034_bib0190) 2018; 51 Gohn (10.1016/j.tca.2019.03.034_bib0040) 2017; 655 Chatterjee (10.1016/j.tca.2019.03.034_bib0070) 2011; 22 Rhoades (10.1016/j.tca.2019.03.034_bib0175) 2018; 51 Janeschitz-Kriegl (10.1016/j.tca.2019.03.034_bib0195) 2003; 42 10.1016/j.tca.2019.03.034_bib0015 Mueller (10.1016/j.tca.2019.03.034_bib0085) 2014; 4 Furushima (10.1016/j.tca.2019.03.034_bib0230) 2016; 134 Rosato (10.1016/j.tca.2019.03.034_bib0130) 2000 Endes (10.1016/j.tca.2019.03.034_bib0110) 2013; 429 Paolucci (10.1016/j.tca.2019.03.034_bib0035) 2018; 155 Fischer (10.1016/j.tca.2019.03.034_bib0055) 2017 Lecouvet (10.1016/j.tca.2019.03.034_bib0065) 2011; 96 Klemm (10.1016/j.tca.2019.03.034_bib0095) 2011; 50 Bagheriasl (10.1016/j.tca.2019.03.034_bib0205) 2016; 23 Schawe (10.1016/j.tca.2019.03.034_bib0120) 2017; 116 Hiramatsu (10.1016/j.tca.2019.03.034_bib0020) 1983; 22 Mollova (10.1016/j.tca.2019.03.034_bib0050) 2013; 46 Gogolewski (10.1016/j.tca.2019.03.034_bib0185) 1980; 258 Seo (10.1016/j.tca.2019.03.034_bib0235) 2018 |
References_xml | – volume: 155 start-page: 187 year: 2018 end-page: 198 ident: bib0035 article-title: Quantification of isothermal crystallization of polyamide 12: modelling of crystallization kinetics and phase composition publication-title: Polymer – volume: 42 start-page: 355 year: 2003 end-page: 364 ident: bib0155 article-title: Flow as an effective promotor of nucleation in polymer melts: a quantitative evaluation publication-title: Rheol. Acta – volume: 49 start-page: 621 year: 2011 end-page: 628 ident: bib0150 article-title: Using multimodal blends to elucidate the mechanism of flow‐induced crystallization in polymers publication-title: J. Polym. Sci. Part B: Polym. Phys. – volume: 32 start-page: 5704 year: 1999 end-page: 5706 ident: bib0030 article-title: Crystalline transitions in nylon 12 publication-title: Macromol. Commu. – volume: 51 start-page: 4269 year: 2018 end-page: 4279 ident: bib0190 article-title: Isothermal flow-induced crystallization of polyamide 66 melts publication-title: Macromolecules – volume: 36 start-page: 1626 year: 2003 end-page: 1632 ident: bib0240 article-title: Crystalline structure and morphology in Nylon-12: a small- and wide-angle X-ray scattering study publication-title: Macromolecules – volume: 46 start-page: 828 year: 2013 end-page: 835 ident: bib0050 article-title: Effect of supercooling on crystallization of polyamide 11 publication-title: Macromolecules – volume: 429 year: 2013 ident: bib0110 article-title: Risk assessment of released cellulose nanocrystals - mimicking inhalatory exposure publication-title: J. Phys. Conf. Ser. – volume: 655 start-page: 313 year: 2017 end-page: 318 ident: bib0040 article-title: The effect of supercooling of the melt on the semicrystalline morphology of PA 66 publication-title: Thermochim. Acta – volume: 25 start-page: 771 year: 2004 end-page: 787 ident: bib0090 article-title: Rodlike cellulose microcrystals: structure, properties, and applications publication-title: Macromol. Rapid Commun. – volume: 22 year: 2011 ident: bib0070 article-title: Comparing carbon nanotubes and graphene nanoplatelets as reinforcements in polyamide 12 composites publication-title: Nanotechnology – volume: 85 start-page: 151 year: 2009 end-page: 164 ident: bib0115 article-title: Improvements in the production of bacterial synathesized biocellulose nanofibers using different culture methods publication-title: J. Chem. Technol. Biotechnol. – volume: 5 start-page: 2001 year: 2004 end-page: 2015 ident: bib0060 article-title: A comparative study of melt spun polyamide-12 fibers reinforced with carbon nanotubes and nanofibers publication-title: Polymer – volume: 279 start-page: 312 year: 2001 end-page: 322 ident: bib0180 article-title: The crystallization kinetics of polyamide-12 publication-title: Colloid Polym. Sci. – volume: 41 start-page: 1901 year: 2008 end-page: 1904 ident: bib0160 article-title: The specific work of flow as criterion for orientation in polymer crystallization publication-title: Macromolecules – volume: 603 start-page: 103 year: 2015 end-page: 109 ident: bib0215 article-title: Crystallization kinetics of polyamide 66 at processing-relevant cooling conditions and high supercooling publication-title: Thermochim. Acta – volume: 303 start-page: 1 year: 2018 end-page: 7 ident: bib0125 article-title: Effect of melt-memory on the crystal polymorphism in molded isotactic polypropylene publication-title: Macromol. Mater. Eng. – volume: 50 start-page: 5438 year: 2011 end-page: 5466 ident: bib0095 article-title: Nanocelluloses: a new family of nature-based materials publication-title: Angew. Chemia Int. Ed. – volume: 4 start-page: 907 year: 2014 end-page: 915 ident: bib0085 article-title: Isolation of cellulose nanocrystals from pseudostems of banana plants publication-title: RSC Adv. – volume: 291 start-page: 2541 year: 2013 end-page: 2549 ident: bib0220 article-title: Crystallization of a polyamide 11/organo-modified montmorillonite nanocomposite at rapid cooling publication-title: Colloid Polym. Sci. – volume: 134 start-page: 1 year: 2016 end-page: 11 ident: bib0230 article-title: Crystallization kinetics of poly(butylene terephthalate) and its talc composites publication-title: J. Appl. Polym. Sci. – volume: 42 start-page: 5728 year: 2009 end-page: 5740 ident: bib0145 article-title: Saturation of pointlike nuclei and the transition to oriented structures in flow-induced crystallization of isotactic polypropylene publication-title: Macromolecules – start-page: 450 year: 2017 end-page: 457 ident: bib0055 article-title: Crystallization and component properties of polyamide 12 at processing-relevant cooling conditions publication-title: Polymer Eng. Sciencef – volume: 32 start-page: 54 year: 2016 end-page: 64 ident: bib0010 article-title: 3D printing with polymers: challenges among expanding options and opportunities publication-title: Dent. Mater. – reference: . [Accessed 18 December 2018]. – start-page: 399 year: 2013 end-page: 433 ident: bib0140 article-title: "Flow induced crystallization" publication-title: Handbook of Polymer Crystallization – volume: 20 start-page: 192 year: 2014 end-page: 204 ident: bib0135 article-title: A review of melt extrusion additive manufacturing processes: I. process design and modeling publication-title: Rapid Prototyp. J. – volume: 109 start-page: 869 year: 2017 end-page: 874 ident: bib0080 article-title: The isolation of cellulose nanocrystals from pistachio shells via acid hydrolysis publication-title: Ind. Crops Prod. – reference: Stratsys, 18 December 2018. [Online]. Available: – volume: 52 start-page: 1 year: 2014 end-page: 11 ident: bib0225 article-title: Kinetics of nucleation and crystallization of poly(e-caprolactone) – multiwalled carbon nanotube composites publication-title: Eur. Polym. J. – volume: 13 start-page: 301 year: 2005 end-page: 306 ident: bib0100 article-title: Application of cellulose microfibrils in polymer nanocomposites publication-title: J. Polym. Enviconment – volume: 132 start-page: 368 year: 2017 end-page: 393 ident: bib0105 article-title: Recent developments on nanocellulose reinforced polymer nanocomposites: A review publication-title: Polymer – volume: 56 start-page: 464 year: 2015 end-page: 475 ident: bib0200 article-title: Cellulose nanocrystal/polyolefin biocomposites prepared by solid-state shear pulverization: superior dispersion leading to synergistic property enhancements publication-title: Polymer – volume: 51 start-page: 2785 year: 2018 end-page: 2795 ident: bib0175 article-title: Sensitivity of polymer crystallization to shear at low and high supercooling of the melt publication-title: Macromolecules – year: 2000 ident: bib0130 article-title: Injection Molding Handbook – year: 2013 ident: bib0210 article-title: Handbook of Polymer Crystallization – volume: 182 start-page: 977 year: 1981 end-page: 988 ident: bib0025 article-title: The gamma to alpha partial transformation in nylon 12 by drawing publication-title: Makromolecular Chem. – volume: 132 start-page: 42752 year: 2015 end-page: 42762 ident: bib0075 article-title: Melt processing of polyamide 12 and cellulose nanocrystals nanocomposites publication-title: J. Appl. Polym. Sci. – volume: 116 start-page: 160 year: 2017 end-page: 172 ident: bib0120 article-title: Nucleation efficiency of fillers in polymer crystallization studied by fast scanning calorimetry: carbon nanotubes in polypropylene publication-title: Polymer – volume: 22 start-page: 335 year: 1983 end-page: 339 ident: bib0020 article-title: Study of transformations among α, γ, and γ’ forms in nylon 12 by X-ray and DSC publication-title: J. Appl. Phys. – volume: 563 start-page: 33 year: 2013 end-page: 37 ident: bib0045 article-title: Microfocus wide-angle X-ray scattering of polymers crystallized in a fast scanning chip calorimeter publication-title: Thermochim. Acta – volume: 23 start-page: 1885 year: 2016 end-page: 1897 ident: bib0205 article-title: Shear rheology of polylactide (PLA)-cellulose nanocrystal (CNC) nanocomposites publication-title: Cellulose – year: 1995 ident: bib0005 article-title: Nylon Plastics Handbook – volume: 258 start-page: 1130 year: 1980 end-page: 1136 ident: bib0185 article-title: Effect of annealing on thermal properties and crystalline structure of polyamides. Nylon 12 (polylaurolactam) publication-title: Colloid & Polymer Sci – year: 2018 ident: bib0235 article-title: Isothermal crystallization of poly(ether ether ketone) with different molecular weights over a wide temperature range publication-title: Polym. Cryst. – volume: 42 start-page: 355 year: 2003 end-page: 364 ident: bib0195 article-title: Flow as an effective promotor of nucleation in polymer melts: a quantitative evaluation publication-title: Rheol. Acta – volume: 96 start-page: 226 year: 2011 end-page: 235 ident: bib0065 article-title: Structure-property relationships in polyamide 12/halloysite nanotube nanocomposites publication-title: Polym. Degrad. Stab. – volume: 48 start-page: 7286 year: 2015 end-page: 7299 ident: bib0170 article-title: Lifetime of flow-induced precursors in isotactic polypropylene publication-title: Macromolecules – volume: 48 year: 2015 ident: bib0165 article-title: Onset of flow-induced crystallization kinetics of highly isotactic polypropylene publication-title: Macromolecules – volume: 85 start-page: 151 issue: 2 year: 2009 ident: 10.1016/j.tca.2019.03.034_bib0115 article-title: Improvements in the production of bacterial synathesized biocellulose nanofibers using different culture methods publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.2300 – volume: 48 start-page: 7286 year: 2015 ident: 10.1016/j.tca.2019.03.034_bib0170 article-title: Lifetime of flow-induced precursors in isotactic polypropylene publication-title: Macromolecules doi: 10.1021/acs.macromol.5b01408 – volume: 291 start-page: 2541 year: 2013 ident: 10.1016/j.tca.2019.03.034_bib0220 article-title: Crystallization of a polyamide 11/organo-modified montmorillonite nanocomposite at rapid cooling publication-title: Colloid Polym. Sci. doi: 10.1007/s00396-013-2977-y – volume: 22 start-page: 335 issue: 2 year: 1983 ident: 10.1016/j.tca.2019.03.034_bib0020 article-title: Study of transformations among α, γ, and γ’ forms in nylon 12 by X-ray and DSC publication-title: J. Appl. Phys. doi: 10.1143/JJAP.22.335 – volume: 32 start-page: 54 issue: 1 year: 2016 ident: 10.1016/j.tca.2019.03.034_bib0010 article-title: 3D printing with polymers: challenges among expanding options and opportunities publication-title: Dent. Mater. doi: 10.1016/j.dental.2015.09.018 – volume: 20 start-page: 192 issue: 3 year: 2014 ident: 10.1016/j.tca.2019.03.034_bib0135 article-title: A review of melt extrusion additive manufacturing processes: I. process design and modeling publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-01-2013-0012 – volume: 52 start-page: 1 year: 2014 ident: 10.1016/j.tca.2019.03.034_bib0225 article-title: Kinetics of nucleation and crystallization of poly(e-caprolactone) – multiwalled carbon nanotube composites publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2013.12.015 – volume: 303 start-page: 1 year: 2018 ident: 10.1016/j.tca.2019.03.034_bib0125 article-title: Effect of melt-memory on the crystal polymorphism in molded isotactic polypropylene publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201800148 – volume: 182 start-page: 977 year: 1981 ident: 10.1016/j.tca.2019.03.034_bib0025 article-title: The gamma to alpha partial transformation in nylon 12 by drawing publication-title: Makromolecular Chem. doi: 10.1002/macp.1981.021820328 – volume: 32 start-page: 5704 year: 1999 ident: 10.1016/j.tca.2019.03.034_bib0030 article-title: Crystalline transitions in nylon 12 publication-title: Macromol. Commu. doi: 10.1021/ma990494o – volume: 42 start-page: 355 issue: 4 year: 2003 ident: 10.1016/j.tca.2019.03.034_bib0155 article-title: Flow as an effective promotor of nucleation in polymer melts: a quantitative evaluation publication-title: Rheol. Acta doi: 10.1007/s00397-002-0247-x – volume: 25 start-page: 771 issue: 7 year: 2004 ident: 10.1016/j.tca.2019.03.034_bib0090 article-title: Rodlike cellulose microcrystals: structure, properties, and applications publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.200300268 – volume: 134 start-page: 1 issue: 16 year: 2016 ident: 10.1016/j.tca.2019.03.034_bib0230 article-title: Crystallization kinetics of poly(butylene terephthalate) and its talc composites publication-title: J. Appl. Polym. Sci. – volume: 51 start-page: 2785 year: 2018 ident: 10.1016/j.tca.2019.03.034_bib0175 article-title: Sensitivity of polymer crystallization to shear at low and high supercooling of the melt publication-title: Macromolecules doi: 10.1021/acs.macromol.8b00195 – volume: 279 start-page: 312 year: 2001 ident: 10.1016/j.tca.2019.03.034_bib0180 article-title: The crystallization kinetics of polyamide-12 publication-title: Colloid Polym. Sci. doi: 10.1007/s003960000425 – volume: 49 start-page: 621 issue: 9 year: 2011 ident: 10.1016/j.tca.2019.03.034_bib0150 article-title: Using multimodal blends to elucidate the mechanism of flow‐induced crystallization in polymers publication-title: J. Polym. Sci. Part B: Polym. Phys. doi: 10.1002/polb.22234 – volume: 96 start-page: 226 year: 2011 ident: 10.1016/j.tca.2019.03.034_bib0065 article-title: Structure-property relationships in polyamide 12/halloysite nanotube nanocomposites publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2010.11.006 – volume: 13 start-page: 301 issue: 4 year: 2005 ident: 10.1016/j.tca.2019.03.034_bib0100 article-title: Application of cellulose microfibrils in polymer nanocomposites publication-title: J. Polym. Enviconment doi: 10.1007/s10924-005-5514-3 – volume: 42 start-page: 5728 issue: 15 year: 2009 ident: 10.1016/j.tca.2019.03.034_bib0145 article-title: Saturation of pointlike nuclei and the transition to oriented structures in flow-induced crystallization of isotactic polypropylene publication-title: Macromolecules doi: 10.1021/ma802479c – volume: 56 start-page: 464 year: 2015 ident: 10.1016/j.tca.2019.03.034_bib0200 article-title: Cellulose nanocrystal/polyolefin biocomposites prepared by solid-state shear pulverization: superior dispersion leading to synergistic property enhancements publication-title: Polymer doi: 10.1016/j.polymer.2014.11.017 – volume: 5 start-page: 2001 year: 2004 ident: 10.1016/j.tca.2019.03.034_bib0060 article-title: A comparative study of melt spun polyamide-12 fibers reinforced with carbon nanotubes and nanofibers publication-title: Polymer doi: 10.1016/j.polymer.2004.01.023 – volume: 655 start-page: 313 year: 2017 ident: 10.1016/j.tca.2019.03.034_bib0040 article-title: The effect of supercooling of the melt on the semicrystalline morphology of PA 66 publication-title: Thermochim. Acta doi: 10.1016/j.tca.2017.07.012 – volume: 22 issue: 27 year: 2011 ident: 10.1016/j.tca.2019.03.034_bib0070 article-title: Comparing carbon nanotubes and graphene nanoplatelets as reinforcements in polyamide 12 composites publication-title: Nanotechnology doi: 10.1088/0957-4484/22/27/275714 – volume: 603 start-page: 103 year: 2015 ident: 10.1016/j.tca.2019.03.034_bib0215 article-title: Crystallization kinetics of polyamide 66 at processing-relevant cooling conditions and high supercooling publication-title: Thermochim. Acta doi: 10.1016/j.tca.2014.10.020 – volume: 36 start-page: 1626 year: 2003 ident: 10.1016/j.tca.2019.03.034_bib0240 article-title: Crystalline structure and morphology in Nylon-12: a small- and wide-angle X-ray scattering study publication-title: Macromolecules doi: 10.1021/ma025732l – ident: 10.1016/j.tca.2019.03.034_bib0015 – year: 1995 ident: 10.1016/j.tca.2019.03.034_bib0005 – volume: 132 start-page: 368 year: 2017 ident: 10.1016/j.tca.2019.03.034_bib0105 article-title: Recent developments on nanocellulose reinforced polymer nanocomposites: A review publication-title: Polymer doi: 10.1016/j.polymer.2017.09.043 – volume: 155 start-page: 187 year: 2018 ident: 10.1016/j.tca.2019.03.034_bib0035 article-title: Quantification of isothermal crystallization of polyamide 12: modelling of crystallization kinetics and phase composition publication-title: Polymer doi: 10.1016/j.polymer.2018.09.037 – volume: 42 start-page: 355 issue: 4 year: 2003 ident: 10.1016/j.tca.2019.03.034_bib0195 article-title: Flow as an effective promotor of nucleation in polymer melts: a quantitative evaluation publication-title: Rheol. Acta doi: 10.1007/s00397-002-0247-x – year: 2018 ident: 10.1016/j.tca.2019.03.034_bib0235 article-title: Isothermal crystallization of poly(ether ether ketone) with different molecular weights over a wide temperature range publication-title: Polym. Cryst. – volume: 109 start-page: 869 year: 2017 ident: 10.1016/j.tca.2019.03.034_bib0080 article-title: The isolation of cellulose nanocrystals from pistachio shells via acid hydrolysis publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2017.09.039 – volume: 23 start-page: 1885 issue: 3 year: 2016 ident: 10.1016/j.tca.2019.03.034_bib0205 article-title: Shear rheology of polylactide (PLA)-cellulose nanocrystal (CNC) nanocomposites publication-title: Cellulose doi: 10.1007/s10570-016-0914-1 – volume: 563 start-page: 33 year: 2013 ident: 10.1016/j.tca.2019.03.034_bib0045 article-title: Microfocus wide-angle X-ray scattering of polymers crystallized in a fast scanning chip calorimeter publication-title: Thermochim. Acta doi: 10.1016/j.tca.2013.04.007 – start-page: 450 year: 2017 ident: 10.1016/j.tca.2019.03.034_bib0055 article-title: Crystallization and component properties of polyamide 12 at processing-relevant cooling conditions publication-title: Polymer Eng. Sciencef doi: 10.1002/pen.24441 – volume: 4 start-page: 907 issue: 2 year: 2014 ident: 10.1016/j.tca.2019.03.034_bib0085 article-title: Isolation of cellulose nanocrystals from pseudostems of banana plants publication-title: RSC Adv. doi: 10.1039/C3RA46390G – volume: 116 start-page: 160 year: 2017 ident: 10.1016/j.tca.2019.03.034_bib0120 article-title: Nucleation efficiency of fillers in polymer crystallization studied by fast scanning calorimetry: carbon nanotubes in polypropylene publication-title: Polymer doi: 10.1016/j.polymer.2017.03.072 – volume: 258 start-page: 1130 year: 1980 ident: 10.1016/j.tca.2019.03.034_bib0185 article-title: Effect of annealing on thermal properties and crystalline structure of polyamides. Nylon 12 (polylaurolactam) publication-title: Colloid & Polymer Sci doi: 10.1007/BF01382456 – volume: 46 start-page: 828 issue: 3 year: 2013 ident: 10.1016/j.tca.2019.03.034_bib0050 article-title: Effect of supercooling on crystallization of polyamide 11 publication-title: Macromolecules doi: 10.1021/ma302238r – volume: 50 start-page: 5438 year: 2011 ident: 10.1016/j.tca.2019.03.034_bib0095 article-title: Nanocelluloses: a new family of nature-based materials publication-title: Angew. Chemia Int. Ed. doi: 10.1002/anie.201001273 – volume: 41 start-page: 1901 issue: 6 year: 2008 ident: 10.1016/j.tca.2019.03.034_bib0160 article-title: The specific work of flow as criterion for orientation in polymer crystallization publication-title: Macromolecules doi: 10.1021/ma702603v – volume: 48 year: 2015 ident: 10.1016/j.tca.2019.03.034_bib0165 article-title: Onset of flow-induced crystallization kinetics of highly isotactic polypropylene publication-title: Macromolecules – volume: 132 start-page: 42752 issue: 45 year: 2015 ident: 10.1016/j.tca.2019.03.034_bib0075 article-title: Melt processing of polyamide 12 and cellulose nanocrystals nanocomposites publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.42752 – start-page: 399 year: 2013 ident: 10.1016/j.tca.2019.03.034_bib0140 article-title: "Flow induced crystallization" – volume: 51 start-page: 4269 year: 2018 ident: 10.1016/j.tca.2019.03.034_bib0190 article-title: Isothermal flow-induced crystallization of polyamide 66 melts publication-title: Macromolecules doi: 10.1021/acs.macromol.8b00082 – volume: 429 year: 2013 ident: 10.1016/j.tca.2019.03.034_bib0110 article-title: Risk assessment of released cellulose nanocrystals - mimicking inhalatory exposure publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/429/1/012008 – year: 2000 ident: 10.1016/j.tca.2019.03.034_bib0130 – year: 2013 ident: 10.1016/j.tca.2019.03.034_bib0210 |
SSID | ssj0001280 |
Score | 2.3697174 |
Snippet | [Display omitted]
•Cellulose nanocrystals are efficient nucleating agents for PA12.•Fast scanning calorimetry of a sheared nanocomposite was... Understanding the crystallization kinetics and microstructure that result after an imposed shear flow in an additive-containing polymeric system is imperative... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 99 |
SubjectTerms | cellulose Cellulose nanocrystal cooling Crystallization differential scanning calorimetry engineering Fast scanning chip calorimetry melting microstructure nanocomposites nanocrystals Polyamide 12 polyamides solidification supercooling temperature |
Title | Quiescent and flow-induced crystallization in polyamide 12/cellulose nanocrystal composites |
URI | https://dx.doi.org/10.1016/j.tca.2019.03.034 https://www.proquest.com/docview/2286856971 |
Volume | 677 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEF9EH-xLqdrS0yor-FRIL1-3mzzK4XF6KCiVHvRh2Y9ZSInJ4eUovvRvd-aSWCx4D4VASJhdwswwH5vfzDB2piMrZaZtoL2k0ypAO5hbH1DVtbWgU-Godvj6Rkzv06v5aL7Fxn0tDMEqO9vf2vS1te7eDDtuDhdFQTW-6IxQJ1EpI5o0SRXsqSQt__bnL8wD7W_YI-eIuv-zucZ4NZZaD0Vtn9Mkfcs3_WOl165n8oG972JGft5-1h7bgmqf7Y77UW0H7OftqmjbMnFdOe7L-neAuTZKzXH7-IQBYFl29Za8qPiiLp_0Q-GAR_GQTu5XZb0EXumq7qg5Ic0JzgXLj-x-cvF9PA26qQmBTYRsgtw7yOyI5mf4yKbUfRM0jDT68twkxssktiYBCS6LiEIKH4KTMRgtTGgh-cS2q7qCz4xjaoIBZKy1xY2ENpnPUhNiUuuc8CaWAxb2_FK2aylOky1K1WPHfilksSIWqzDBKx2wry9LFm0_jU3EaS8E9UopFNr7TctOe4EpFATxUVdQr5YqjjORjUQuo8P_2_qIvaOnFq_7hW03jys4xqikMSdrtTthO-eXs-kN3Wd3P2bPFuzlGg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SzSG9lD5p2qZVoaeCWT8l7zEsDZsmWSgkEOhB6DECF8desruU_PvOrOVAC8mh4JMtCTMzfDOSvpkB-GIyp1RtXGKC4tMqJBycuZBw1rVzaErpOXf4YikXV-X36-p6D-ZjLgzTKiP2D5i-Q-v4ZhqlOV01Def4kjMimySjzLjT5BPY5-pU1QT2j0_PFst7QCYITkfyHE8YLzd3NK-N4-pD2VDqtCgfck__APXO-5w8h2cxbBTHw5-9gD3sXsLBfOzW9gp-_tg2Q2UmYTovQtv_Tmi7TYrzwt3eUQzYtjHlUjSdWPXtnblpPIosn_Lh_bbt1yg60_VxtGCyOTO6cP0ark6-Xc4XSWyckLhCqk0yCx5rV3ELjZC5kgtwosHKkDuf2cIGVeTOFqjQ1xmPUDKk6FWO1kibOizewKTrO3wLgnYnFEPmxjhaSBpbh7q0Ke1rvZfB5uoQ0lFe2sWq4tzcotUjfeyXJhFrFrFOC3rKQ_h6P2U1lNR4bHA5KkH_ZReaIP-xaZ9HhWlSBMvRdNhv1zrPa1lXcqayd_-39Cc4WFxenOvz0-XZe3jKXwb67geYbG63eERBysZ-jEb4B8Wk5ig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quiescent+and+flow-induced+crystallization+in+polyamide+12%2Fcellulose+nanocrystal+composites&rft.jtitle=Thermochimica+acta&rft.au=Gohn%2C+Anne+M.&rft.au=Seo%2C+Jiho&rft.au=Ferris%2C+Trapper&rft.au=Venkatraman%2C+Priya&rft.date=2019-07-01&rft.pub=Elsevier+B.V&rft.issn=0040-6031&rft.eissn=1872-762X&rft.volume=677&rft.spage=99&rft.epage=108&rft_id=info:doi/10.1016%2Fj.tca.2019.03.034&rft.externalDocID=S0040603118312085 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-6031&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-6031&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-6031&client=summon |