Quiescent and flow-induced crystallization in polyamide 12/cellulose nanocrystal composites

[Display omitted] •Cellulose nanocrystals are efficient nucleating agents for PA12.•Fast scanning calorimetry of a sheared nanocomposite was evaluated.•Nanofiller nucleation dominates flow-induced nucleation.•AFM was used to characterize CNC dispersion and crystal microstructure.•Wide angle XRD was...

Full description

Saved in:
Bibliographic Details
Published inThermochimica acta Vol. 677; pp. 99 - 108
Main Authors Gohn, Anne M., Seo, Jiho, Ferris, Trapper, Venkatraman, Priya, Foster, E. Johan, Rhoades, Alicyn M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Cellulose nanocrystals are efficient nucleating agents for PA12.•Fast scanning calorimetry of a sheared nanocomposite was evaluated.•Nanofiller nucleation dominates flow-induced nucleation.•AFM was used to characterize CNC dispersion and crystal microstructure.•Wide angle XRD was used to characterize crystal polymorph. Understanding the crystallization kinetics and microstructure that result after an imposed shear flow in an additive-containing polymeric system is imperative for the development of robust polymer composites suitable for advanced engineering applications. Both nucleating agents and flow accelerate the crystallization kinetics as well as alter the ultimate polymer microstructure. During melt processing, polymers are subject to shear flow prior to the solidification of the melt. As an unsheared baseline in this study, the addition of 5 wt % cellulose nanocrystals (CNC) into quiescent polyamide 12 (PA 12) revealed that CNCs act as a natural nucleating agent to the quiescent PA 12 during slow cooling and at high temperatures, as measured by standard differential scanning calorimetry. To evaluate the role of shear work in promoting flow-induced crystallization, both neat and PA 12/CNC composite were subjected to known amounts of shear work. Then fast scanning calorimetry was used to differentiate the nucleation activity from both flow-induced precursors and CNC particles during isothermal crystallization across a wide temperature range. It was found that the addition of the CNC accelerated crystallization in the heterogeneous nucleation regime (T > 100 °C) in the quiescent material. With the addition of shear, the neat system displayed a reduced crystallization peak time with increasing shear history. In the nanocomposite system, the CNCs are an extremely efficient nucleating agent, achieving a saturating limit for nucleation of crystallization, such that shear was only a factor at low supercooling, specifically at temperatures greater than 140 °C.
AbstractList Understanding the crystallization kinetics and microstructure that result after an imposed shear flow in an additive-containing polymeric system is imperative for the development of robust polymer composites suitable for advanced engineering applications. Both nucleating agents and flow accelerate the crystallization kinetics as well as alter the ultimate polymer microstructure. During melt processing, polymers are subject to shear flow prior to the solidification of the melt. As an unsheared baseline in this study, the addition of 5 wt % cellulose nanocrystals (CNC) into quiescent polyamide 12 (PA 12) revealed that CNCs act as a natural nucleating agent to the quiescent PA 12 during slow cooling and at high temperatures, as measured by standard differential scanning calorimetry. To evaluate the role of shear work in promoting flow-induced crystallization, both neat and PA 12/CNC composite were subjected to known amounts of shear work. Then fast scanning calorimetry was used to differentiate the nucleation activity from both flow-induced precursors and CNC particles during isothermal crystallization across a wide temperature range. It was found that the addition of the CNC accelerated crystallization in the heterogeneous nucleation regime (T > 100 °C) in the quiescent material. With the addition of shear, the neat system displayed a reduced crystallization peak time with increasing shear history. In the nanocomposite system, the CNCs are an extremely efficient nucleating agent, achieving a saturating limit for nucleation of crystallization, such that shear was only a factor at low supercooling, specifically at temperatures greater than 140 °C.
[Display omitted] •Cellulose nanocrystals are efficient nucleating agents for PA12.•Fast scanning calorimetry of a sheared nanocomposite was evaluated.•Nanofiller nucleation dominates flow-induced nucleation.•AFM was used to characterize CNC dispersion and crystal microstructure.•Wide angle XRD was used to characterize crystal polymorph. Understanding the crystallization kinetics and microstructure that result after an imposed shear flow in an additive-containing polymeric system is imperative for the development of robust polymer composites suitable for advanced engineering applications. Both nucleating agents and flow accelerate the crystallization kinetics as well as alter the ultimate polymer microstructure. During melt processing, polymers are subject to shear flow prior to the solidification of the melt. As an unsheared baseline in this study, the addition of 5 wt % cellulose nanocrystals (CNC) into quiescent polyamide 12 (PA 12) revealed that CNCs act as a natural nucleating agent to the quiescent PA 12 during slow cooling and at high temperatures, as measured by standard differential scanning calorimetry. To evaluate the role of shear work in promoting flow-induced crystallization, both neat and PA 12/CNC composite were subjected to known amounts of shear work. Then fast scanning calorimetry was used to differentiate the nucleation activity from both flow-induced precursors and CNC particles during isothermal crystallization across a wide temperature range. It was found that the addition of the CNC accelerated crystallization in the heterogeneous nucleation regime (T > 100 °C) in the quiescent material. With the addition of shear, the neat system displayed a reduced crystallization peak time with increasing shear history. In the nanocomposite system, the CNCs are an extremely efficient nucleating agent, achieving a saturating limit for nucleation of crystallization, such that shear was only a factor at low supercooling, specifically at temperatures greater than 140 °C.
Author Seo, Jiho
Ferris, Trapper
Venkatraman, Priya
Foster, E. Johan
Gohn, Anne M.
Rhoades, Alicyn M.
Author_xml – sequence: 1
  givenname: Anne M.
  surname: Gohn
  fullname: Gohn, Anne M.
  organization: School of Engineering, Penn State Behrend, Erie, PA, 16563, United States
– sequence: 2
  givenname: Jiho
  surname: Seo
  fullname: Seo, Jiho
  organization: Department of Materials Science and Engineering, Penn State University, University Park, PA, 16802, United States
– sequence: 3
  givenname: Trapper
  surname: Ferris
  fullname: Ferris, Trapper
  organization: School of Engineering, Penn State Behrend, Erie, PA, 16563, United States
– sequence: 4
  givenname: Priya
  orcidid: 0000-0002-6298-3167
  surname: Venkatraman
  fullname: Venkatraman, Priya
  organization: Department of Materials Science and Engineering, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, United States
– sequence: 5
  givenname: E. Johan
  orcidid: 0000-0002-4103-8510
  surname: Foster
  fullname: Foster, E. Johan
  organization: Department of Materials Science and Engineering, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, United States
– sequence: 6
  givenname: Alicyn M.
  surname: Rhoades
  fullname: Rhoades, Alicyn M.
  email: amh234@psu.edu
  organization: School of Engineering, Penn State Behrend, Erie, PA, 16563, United States
BookMark eNp9kE1LAzEQhoMoWD9-gLc9etl2kmyTXTxJ8QsEERQEDyGbnYWUNKlJVqm_3q3tyYPwwlzeZ5h5TsihDx4JuaAwpUDFbDnNRk8Z0GYKfEx1QCa0lqyUgr0dkglABaUATo_JSUpLAKCshgl5fx4sJoM-F9p3Re_CV2l9NxjsChM3KWvn7LfONvjC-mId3EavbIcFZTODzg0uJCy89mHfLkxYrUOyGdMZOeq1S3i-n6fk9fbmZXFfPj7dPSyuH0vDhcxl03dYm3nNq6qnpmqEANQ414zWTcvbXnJmWo4Su5puG1L0gJ1k2GrRgkF-Si53e9cxfAyYslrZtD1OewxDUozVop6LRtKxKndVE0NKEXtlbP79LkdtnaKgtjrVUo061VanAj6mGkn6h1xHu9Jx8y9ztWNw_P7TYlTJWPSjWxvRZNUF-w_9A8nOkis
CitedBy_id crossref_primary_10_1007_s10965_022_03329_3
crossref_primary_10_1016_j_mtchem_2021_100590
crossref_primary_10_1039_D0RA07141B
crossref_primary_10_3390_ma15186286
crossref_primary_10_1002_pc_25717
crossref_primary_10_1021_acs_iecr_1c04141
crossref_primary_10_1021_acs_jpcb_2c03460
crossref_primary_10_1002_pol_20210813
crossref_primary_10_1002_marc_202200418
crossref_primary_10_1016_j_apsusc_2020_147350
crossref_primary_10_1021_acs_macromol_0c02477
crossref_primary_10_1002_adma_202000718
crossref_primary_10_1016_j_polymer_2020_122548
crossref_primary_10_3390_polym16172391
crossref_primary_10_1002_app_53424
crossref_primary_10_1002_pc_28663
crossref_primary_10_1002_pc_29334
crossref_primary_10_1021_acsmacrolett_1c00101
crossref_primary_10_1021_acssuschemeng_2c06808
Cites_doi 10.1002/jctb.2300
10.1021/acs.macromol.5b01408
10.1007/s00396-013-2977-y
10.1143/JJAP.22.335
10.1016/j.dental.2015.09.018
10.1108/RPJ-01-2013-0012
10.1016/j.eurpolymj.2013.12.015
10.1002/mame.201800148
10.1002/macp.1981.021820328
10.1021/ma990494o
10.1007/s00397-002-0247-x
10.1002/marc.200300268
10.1021/acs.macromol.8b00195
10.1007/s003960000425
10.1002/polb.22234
10.1016/j.polymdegradstab.2010.11.006
10.1007/s10924-005-5514-3
10.1021/ma802479c
10.1016/j.polymer.2014.11.017
10.1016/j.polymer.2004.01.023
10.1016/j.tca.2017.07.012
10.1088/0957-4484/22/27/275714
10.1016/j.tca.2014.10.020
10.1021/ma025732l
10.1016/j.polymer.2017.09.043
10.1016/j.polymer.2018.09.037
10.1016/j.indcrop.2017.09.039
10.1007/s10570-016-0914-1
10.1016/j.tca.2013.04.007
10.1002/pen.24441
10.1039/C3RA46390G
10.1016/j.polymer.2017.03.072
10.1007/BF01382456
10.1021/ma302238r
10.1002/anie.201001273
10.1021/ma702603v
10.1002/app.42752
10.1021/acs.macromol.8b00082
10.1088/1742-6596/429/1/012008
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.tca.2019.03.034
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Engineering
EISSN 1872-762X
EndPage 108
ExternalDocumentID 10_1016_j_tca_2019_03_034
S0040603118312085
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJQLL
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HMU
HVGLF
HZ~
IHE
J1W
KOM
M36
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCC
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSK
SSM
SSZ
T5K
T9H
WH7
WUQ
XPP
YK3
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c367t-9fde8c58344f1c49660eae5a2189b3bf732cb3e7ed814f1c76f0ed72eba6b0ce3
IEDL.DBID .~1
ISSN 0040-6031
IngestDate Fri Jul 11 00:08:06 EDT 2025
Tue Jul 01 00:46:32 EDT 2025
Thu Apr 24 22:57:55 EDT 2025
Fri Feb 23 02:30:08 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Polyamide 12
Cellulose nanocrystal
Fast scanning chip calorimetry
Crystallization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-9fde8c58344f1c49660eae5a2189b3bf732cb3e7ed814f1c76f0ed72eba6b0ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4103-8510
0000-0002-6298-3167
PQID 2286856971
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_2286856971
crossref_citationtrail_10_1016_j_tca_2019_03_034
crossref_primary_10_1016_j_tca_2019_03_034
elsevier_sciencedirect_doi_10_1016_j_tca_2019_03_034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Thermochimica acta
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gohn, Rhoades, Wonderling, Tighe, Androsch (bib0040) 2017; 655
Lecouvet, Gutierrez, Sclavons, Bailly (bib0065) 2011; 96
Janeschitz-Kriegl, Ratajski, Stadlbauer (bib0195) 2003; 42
Kolesov, Androsch, Mileva, Lebek, Benhamida, Kaci, Focke (bib0220) 2013; 291
Mykhaylyk, Chambon, Graham, Fairclough, Olmsted (bib0160) 2008; 41
Seo, Takahashi, Nazari, Rhoades, Schaake, Colby (bib0190) 2018; 51
Klemm, Kramer, Moritz, Lindstrom, Ankerfors, Gray, Dorris (bib0095) 2011; 50
Rhoades, Gohn, Seo, Androsch, Colby (bib0175) 2018; 51
Paolucci, Baeten, Roozemond, Goderis, Peters (bib0035) 2018; 155
Housmans, Steenbakkers, Roozemond, Peters, Meier (bib0145) 2009; 42
de Souza Lima, Borsali (bib0090) 2004; 25
Schawe, Pötschke, Alig (bib0120) 2017; 116
Turner, Strong, Gold (bib0135) 2014; 20
Gohn, Rhoades, Okonski, Androsch (bib0125) 2018; 303
Bagheriasl, Carreau, Riedl, Dubois, Hamad (bib0205) 2016; 23
Seo, Gohn, Dubin, Takahashi, Hasegawa, Sato, Rhoades, Schaake, Colby (bib0235) 2018
Ramesh (bib0030) 1999; 32
Mollova, Androsch, Mileva, Schick, Benhamida (bib0050) 2013; 46
Mueller, Weder, Foster (bib0085) 2014; 4
Okura, Chambon, Mykhaylyk, Fairclough, Ryan (bib0150) 2011; 49
Kohan (bib0005) 1995
Sani, Dahman (bib0115) 2009; 85
Rhoades, Williams, Androsch (bib0215) 2015; 603
Li, Koch, de Jeu (bib0240) 2003; 36
Stansbury, Idacavage (bib0010) 2016; 32
van Drongelen, Meijer-Vissers, Cavallo, Portale, Poel, Androsch (bib0045) 2013; 563
Fischer, Seefried, Drummer (bib0055) 2017
Rosato, Rosato, Rosato (bib0130) 2000
Chatterjee, N. F. A, C. B. T. T (bib0070) 2011; 22
Peters, Balzano, Steenbakkers (bib0140) 2013
Ishikawa, Nagai (bib0025) 1981; 182
Kargarzadeh, Mariano, Huang, Lin, Ahmad, Dufresne, Thomas (bib0105) 2017; 132
Marett, Aning, F. E. J (bib0080) 2017; 109
Sandler, Pegel, Cadek, Gojny, van Es, Lohmar, Blau, Schulte, Windle, Shaffer (bib0060) 2004; 5
Janeschitz-Kriegl, Ratajski, Stadlbauer (bib0155) 2003; 42
Iyer, Schueneman, Torkelson (bib0200) 2015; 56
Stratsys, 18 December 2018. [Online]. Available
Hamad, Colby, Milner (bib0165) 2015; 48
[Accessed 18 December 2018].
Gogolewski, Czerniawska, Gasiorek (bib0185) 1980; 258
Plummer, Bourban, Månson (bib0180) 2001; 279
Piorkowska, Rutledge (bib0210) 2013
Hiramatsu, Haraguchi, Hirakawa (bib0020) 1983; 22
Hamad, Colby, Milner (bib0170) 2015; 48
Zhuravlev, Wurm, Pötschke, Androsch, Schmelzer, Schick (bib0225) 2014; 52
Nicharat, Sapkota, Weder, F. E. J (bib0075) 2015; 132
Furushima, Kumazawa, Umetsu, Toka, Zhuravlev, Wurm, Schick (bib0230) 2016; 134
Orts, Shey, Imam, Glenn, Guttman, R. J. F (bib0100) 2005; 13
Endes, Muller, Schmid, Vanhecke, Foster, Petri-Fink, Rothen-Rutishauser, Weder, Clift (bib0110) 2013; 429
Iyer (10.1016/j.tca.2019.03.034_bib0200) 2015; 56
Rhoades (10.1016/j.tca.2019.03.034_bib0215) 2015; 603
Hamad (10.1016/j.tca.2019.03.034_bib0165) 2015; 48
Sandler (10.1016/j.tca.2019.03.034_bib0060) 2004; 5
Okura (10.1016/j.tca.2019.03.034_bib0150) 2011; 49
Mykhaylyk (10.1016/j.tca.2019.03.034_bib0160) 2008; 41
Janeschitz-Kriegl (10.1016/j.tca.2019.03.034_bib0155) 2003; 42
Kohan (10.1016/j.tca.2019.03.034_bib0005) 1995
Marett (10.1016/j.tca.2019.03.034_bib0080) 2017; 109
Housmans (10.1016/j.tca.2019.03.034_bib0145) 2009; 42
de Souza Lima (10.1016/j.tca.2019.03.034_bib0090) 2004; 25
Gohn (10.1016/j.tca.2019.03.034_bib0125) 2018; 303
Stansbury (10.1016/j.tca.2019.03.034_bib0010) 2016; 32
Nicharat (10.1016/j.tca.2019.03.034_bib0075) 2015; 132
Orts (10.1016/j.tca.2019.03.034_bib0100) 2005; 13
Peters (10.1016/j.tca.2019.03.034_bib0140) 2013
Piorkowska (10.1016/j.tca.2019.03.034_bib0210) 2013
Turner (10.1016/j.tca.2019.03.034_bib0135) 2014; 20
Zhuravlev (10.1016/j.tca.2019.03.034_bib0225) 2014; 52
Kargarzadeh (10.1016/j.tca.2019.03.034_bib0105) 2017; 132
Kolesov (10.1016/j.tca.2019.03.034_bib0220) 2013; 291
Li (10.1016/j.tca.2019.03.034_bib0240) 2003; 36
Plummer (10.1016/j.tca.2019.03.034_bib0180) 2001; 279
van Drongelen (10.1016/j.tca.2019.03.034_bib0045) 2013; 563
Ishikawa (10.1016/j.tca.2019.03.034_bib0025) 1981; 182
Ramesh (10.1016/j.tca.2019.03.034_bib0030) 1999; 32
Hamad (10.1016/j.tca.2019.03.034_bib0170) 2015; 48
Sani (10.1016/j.tca.2019.03.034_bib0115) 2009; 85
Seo (10.1016/j.tca.2019.03.034_bib0190) 2018; 51
Gohn (10.1016/j.tca.2019.03.034_bib0040) 2017; 655
Chatterjee (10.1016/j.tca.2019.03.034_bib0070) 2011; 22
Rhoades (10.1016/j.tca.2019.03.034_bib0175) 2018; 51
Janeschitz-Kriegl (10.1016/j.tca.2019.03.034_bib0195) 2003; 42
10.1016/j.tca.2019.03.034_bib0015
Mueller (10.1016/j.tca.2019.03.034_bib0085) 2014; 4
Furushima (10.1016/j.tca.2019.03.034_bib0230) 2016; 134
Rosato (10.1016/j.tca.2019.03.034_bib0130) 2000
Endes (10.1016/j.tca.2019.03.034_bib0110) 2013; 429
Paolucci (10.1016/j.tca.2019.03.034_bib0035) 2018; 155
Fischer (10.1016/j.tca.2019.03.034_bib0055) 2017
Lecouvet (10.1016/j.tca.2019.03.034_bib0065) 2011; 96
Klemm (10.1016/j.tca.2019.03.034_bib0095) 2011; 50
Bagheriasl (10.1016/j.tca.2019.03.034_bib0205) 2016; 23
Schawe (10.1016/j.tca.2019.03.034_bib0120) 2017; 116
Hiramatsu (10.1016/j.tca.2019.03.034_bib0020) 1983; 22
Mollova (10.1016/j.tca.2019.03.034_bib0050) 2013; 46
Gogolewski (10.1016/j.tca.2019.03.034_bib0185) 1980; 258
Seo (10.1016/j.tca.2019.03.034_bib0235) 2018
References_xml – volume: 155
  start-page: 187
  year: 2018
  end-page: 198
  ident: bib0035
  article-title: Quantification of isothermal crystallization of polyamide 12: modelling of crystallization kinetics and phase composition
  publication-title: Polymer
– volume: 42
  start-page: 355
  year: 2003
  end-page: 364
  ident: bib0155
  article-title: Flow as an effective promotor of nucleation in polymer melts: a  quantitative evaluation
  publication-title: Rheol. Acta
– volume: 49
  start-page: 621
  year: 2011
  end-page: 628
  ident: bib0150
  article-title: Using multimodal blends to elucidate the mechanism of flow‐induced crystallization in polymers
  publication-title: J. Polym. Sci. Part B: Polym. Phys.
– volume: 32
  start-page: 5704
  year: 1999
  end-page: 5706
  ident: bib0030
  article-title: Crystalline transitions in nylon 12
  publication-title: Macromol. Commu.
– volume: 51
  start-page: 4269
  year: 2018
  end-page: 4279
  ident: bib0190
  article-title: Isothermal flow-induced crystallization of polyamide 66 melts
  publication-title: Macromolecules
– volume: 36
  start-page: 1626
  year: 2003
  end-page: 1632
  ident: bib0240
  article-title: Crystalline structure and morphology in Nylon-12: a small- and wide-angle X-ray scattering study
  publication-title: Macromolecules
– volume: 46
  start-page: 828
  year: 2013
  end-page: 835
  ident: bib0050
  article-title: Effect of supercooling on crystallization of polyamide 11
  publication-title: Macromolecules
– volume: 429
  year: 2013
  ident: bib0110
  article-title: Risk assessment of released cellulose nanocrystals - mimicking inhalatory exposure
  publication-title: J. Phys. Conf. Ser.
– volume: 655
  start-page: 313
  year: 2017
  end-page: 318
  ident: bib0040
  article-title: The effect of supercooling of the melt on the semicrystalline morphology of PA 66
  publication-title: Thermochim. Acta
– volume: 25
  start-page: 771
  year: 2004
  end-page: 787
  ident: bib0090
  article-title: Rodlike cellulose microcrystals: structure, properties, and applications
  publication-title: Macromol. Rapid Commun.
– volume: 22
  year: 2011
  ident: bib0070
  article-title: Comparing carbon nanotubes and graphene nanoplatelets as reinforcements in polyamide 12 composites
  publication-title: Nanotechnology
– volume: 85
  start-page: 151
  year: 2009
  end-page: 164
  ident: bib0115
  article-title: Improvements in the production of bacterial synathesized biocellulose nanofibers using different culture methods
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 5
  start-page: 2001
  year: 2004
  end-page: 2015
  ident: bib0060
  article-title: A comparative study of melt spun polyamide-12 fibers reinforced with carbon nanotubes and nanofibers
  publication-title: Polymer
– volume: 279
  start-page: 312
  year: 2001
  end-page: 322
  ident: bib0180
  article-title: The crystallization kinetics of polyamide-12
  publication-title: Colloid Polym. Sci.
– volume: 41
  start-page: 1901
  year: 2008
  end-page: 1904
  ident: bib0160
  article-title: The specific work of flow as criterion for orientation in polymer crystallization
  publication-title: Macromolecules
– volume: 603
  start-page: 103
  year: 2015
  end-page: 109
  ident: bib0215
  article-title: Crystallization kinetics of polyamide 66 at processing-relevant cooling conditions and high supercooling
  publication-title: Thermochim. Acta
– volume: 303
  start-page: 1
  year: 2018
  end-page: 7
  ident: bib0125
  article-title: Effect of melt-memory on the crystal polymorphism in molded isotactic polypropylene
  publication-title: Macromol. Mater. Eng.
– volume: 50
  start-page: 5438
  year: 2011
  end-page: 5466
  ident: bib0095
  article-title: Nanocelluloses: a new family of nature-based materials
  publication-title: Angew. Chemia Int. Ed.
– volume: 4
  start-page: 907
  year: 2014
  end-page: 915
  ident: bib0085
  article-title: Isolation of cellulose nanocrystals from pseudostems of banana plants
  publication-title: RSC Adv.
– volume: 291
  start-page: 2541
  year: 2013
  end-page: 2549
  ident: bib0220
  article-title: Crystallization of a polyamide 11/organo-modified montmorillonite nanocomposite at rapid cooling
  publication-title: Colloid Polym. Sci.
– volume: 134
  start-page: 1
  year: 2016
  end-page: 11
  ident: bib0230
  article-title: Crystallization kinetics of poly(butylene terephthalate) and its talc composites
  publication-title: J. Appl. Polym. Sci.
– volume: 42
  start-page: 5728
  year: 2009
  end-page: 5740
  ident: bib0145
  article-title: Saturation of pointlike nuclei and the transition to oriented structures in flow-induced crystallization of isotactic polypropylene
  publication-title: Macromolecules
– start-page: 450
  year: 2017
  end-page: 457
  ident: bib0055
  article-title: Crystallization and component properties of polyamide 12 at processing-relevant cooling conditions
  publication-title: Polymer Eng. Sciencef
– volume: 32
  start-page: 54
  year: 2016
  end-page: 64
  ident: bib0010
  article-title: 3D printing with polymers: challenges among expanding options and opportunities
  publication-title: Dent. Mater.
– reference: . [Accessed 18 December 2018].
– start-page: 399
  year: 2013
  end-page: 433
  ident: bib0140
  article-title: "Flow induced crystallization"
  publication-title: Handbook of Polymer Crystallization
– volume: 20
  start-page: 192
  year: 2014
  end-page: 204
  ident: bib0135
  article-title: A review of melt extrusion additive manufacturing processes: I. process design and modeling
  publication-title: Rapid Prototyp. J.
– volume: 109
  start-page: 869
  year: 2017
  end-page: 874
  ident: bib0080
  article-title: The isolation of cellulose nanocrystals from pistachio shells via acid hydrolysis
  publication-title: Ind. Crops Prod.
– reference: Stratsys, 18 December 2018. [Online]. Available:
– volume: 52
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib0225
  article-title: Kinetics of nucleation and crystallization of poly(e-caprolactone) – multiwalled carbon nanotube composites
  publication-title: Eur. Polym. J.
– volume: 13
  start-page: 301
  year: 2005
  end-page: 306
  ident: bib0100
  article-title: Application of cellulose microfibrils in polymer nanocomposites
  publication-title: J. Polym. Enviconment
– volume: 132
  start-page: 368
  year: 2017
  end-page: 393
  ident: bib0105
  article-title: Recent developments on nanocellulose reinforced polymer nanocomposites: A review
  publication-title: Polymer
– volume: 56
  start-page: 464
  year: 2015
  end-page: 475
  ident: bib0200
  article-title: Cellulose nanocrystal/polyolefin biocomposites prepared by solid-state shear pulverization: superior dispersion leading to synergistic property enhancements
  publication-title: Polymer
– volume: 51
  start-page: 2785
  year: 2018
  end-page: 2795
  ident: bib0175
  article-title: Sensitivity of polymer crystallization to shear at low and high supercooling of the melt
  publication-title: Macromolecules
– year: 2000
  ident: bib0130
  article-title: Injection Molding Handbook
– year: 2013
  ident: bib0210
  article-title: Handbook of Polymer Crystallization
– volume: 182
  start-page: 977
  year: 1981
  end-page: 988
  ident: bib0025
  article-title: The gamma to alpha partial transformation in nylon 12 by drawing
  publication-title: Makromolecular Chem.
– volume: 132
  start-page: 42752
  year: 2015
  end-page: 42762
  ident: bib0075
  article-title: Melt processing of polyamide 12 and cellulose nanocrystals nanocomposites
  publication-title: J. Appl. Polym. Sci.
– volume: 116
  start-page: 160
  year: 2017
  end-page: 172
  ident: bib0120
  article-title: Nucleation efficiency of fillers in polymer crystallization studied by fast scanning calorimetry: carbon nanotubes in polypropylene
  publication-title: Polymer
– volume: 22
  start-page: 335
  year: 1983
  end-page: 339
  ident: bib0020
  article-title: Study of transformations among α, γ, and γ’ forms in nylon 12 by X-ray and DSC
  publication-title: J. Appl. Phys.
– volume: 563
  start-page: 33
  year: 2013
  end-page: 37
  ident: bib0045
  article-title: Microfocus wide-angle X-ray scattering of polymers crystallized in a fast scanning chip calorimeter
  publication-title: Thermochim. Acta
– volume: 23
  start-page: 1885
  year: 2016
  end-page: 1897
  ident: bib0205
  article-title: Shear rheology of polylactide (PLA)-cellulose nanocrystal (CNC) nanocomposites
  publication-title: Cellulose
– year: 1995
  ident: bib0005
  article-title: Nylon Plastics Handbook
– volume: 258
  start-page: 1130
  year: 1980
  end-page: 1136
  ident: bib0185
  article-title: Effect of annealing on thermal properties and crystalline structure of polyamides. Nylon 12 (polylaurolactam)
  publication-title: Colloid & Polymer Sci
– year: 2018
  ident: bib0235
  article-title: Isothermal crystallization of poly(ether ether ketone) with different molecular weights over a wide temperature range
  publication-title: Polym. Cryst.
– volume: 42
  start-page: 355
  year: 2003
  end-page: 364
  ident: bib0195
  article-title: Flow as an effective promotor of nucleation in polymer melts: a quantitative evaluation
  publication-title: Rheol. Acta
– volume: 96
  start-page: 226
  year: 2011
  end-page: 235
  ident: bib0065
  article-title: Structure-property relationships in polyamide 12/halloysite nanotube nanocomposites
  publication-title: Polym. Degrad. Stab.
– volume: 48
  start-page: 7286
  year: 2015
  end-page: 7299
  ident: bib0170
  article-title: Lifetime of flow-induced precursors in isotactic polypropylene
  publication-title: Macromolecules
– volume: 48
  year: 2015
  ident: bib0165
  article-title: Onset of flow-induced crystallization kinetics of highly isotactic polypropylene
  publication-title: Macromolecules
– volume: 85
  start-page: 151
  issue: 2
  year: 2009
  ident: 10.1016/j.tca.2019.03.034_bib0115
  article-title: Improvements in the production of bacterial synathesized biocellulose nanofibers using different culture methods
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.2300
– volume: 48
  start-page: 7286
  year: 2015
  ident: 10.1016/j.tca.2019.03.034_bib0170
  article-title: Lifetime of flow-induced precursors in isotactic polypropylene
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.5b01408
– volume: 291
  start-page: 2541
  year: 2013
  ident: 10.1016/j.tca.2019.03.034_bib0220
  article-title: Crystallization of a polyamide 11/organo-modified montmorillonite nanocomposite at rapid cooling
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/s00396-013-2977-y
– volume: 22
  start-page: 335
  issue: 2
  year: 1983
  ident: 10.1016/j.tca.2019.03.034_bib0020
  article-title: Study of transformations among α, γ, and γ’ forms in nylon 12 by X-ray and DSC
  publication-title: J. Appl. Phys.
  doi: 10.1143/JJAP.22.335
– volume: 32
  start-page: 54
  issue: 1
  year: 2016
  ident: 10.1016/j.tca.2019.03.034_bib0010
  article-title: 3D printing with polymers: challenges among expanding options and opportunities
  publication-title: Dent. Mater.
  doi: 10.1016/j.dental.2015.09.018
– volume: 20
  start-page: 192
  issue: 3
  year: 2014
  ident: 10.1016/j.tca.2019.03.034_bib0135
  article-title: A review of melt extrusion additive manufacturing processes: I. process design and modeling
  publication-title: Rapid Prototyp. J.
  doi: 10.1108/RPJ-01-2013-0012
– volume: 52
  start-page: 1
  year: 2014
  ident: 10.1016/j.tca.2019.03.034_bib0225
  article-title: Kinetics of nucleation and crystallization of poly(e-caprolactone) – multiwalled carbon nanotube composites
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2013.12.015
– volume: 303
  start-page: 1
  year: 2018
  ident: 10.1016/j.tca.2019.03.034_bib0125
  article-title: Effect of melt-memory on the crystal polymorphism in molded isotactic polypropylene
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201800148
– volume: 182
  start-page: 977
  year: 1981
  ident: 10.1016/j.tca.2019.03.034_bib0025
  article-title: The gamma to alpha partial transformation in nylon 12 by drawing
  publication-title: Makromolecular Chem.
  doi: 10.1002/macp.1981.021820328
– volume: 32
  start-page: 5704
  year: 1999
  ident: 10.1016/j.tca.2019.03.034_bib0030
  article-title: Crystalline transitions in nylon 12
  publication-title: Macromol. Commu.
  doi: 10.1021/ma990494o
– volume: 42
  start-page: 355
  issue: 4
  year: 2003
  ident: 10.1016/j.tca.2019.03.034_bib0155
  article-title: Flow as an effective promotor of nucleation in polymer melts: a  quantitative evaluation
  publication-title: Rheol. Acta
  doi: 10.1007/s00397-002-0247-x
– volume: 25
  start-page: 771
  issue: 7
  year: 2004
  ident: 10.1016/j.tca.2019.03.034_bib0090
  article-title: Rodlike cellulose microcrystals: structure, properties, and applications
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.200300268
– volume: 134
  start-page: 1
  issue: 16
  year: 2016
  ident: 10.1016/j.tca.2019.03.034_bib0230
  article-title: Crystallization kinetics of poly(butylene terephthalate) and its talc composites
  publication-title: J. Appl. Polym. Sci.
– volume: 51
  start-page: 2785
  year: 2018
  ident: 10.1016/j.tca.2019.03.034_bib0175
  article-title: Sensitivity of polymer crystallization to shear at low and high supercooling of the melt
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b00195
– volume: 279
  start-page: 312
  year: 2001
  ident: 10.1016/j.tca.2019.03.034_bib0180
  article-title: The crystallization kinetics of polyamide-12
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/s003960000425
– volume: 49
  start-page: 621
  issue: 9
  year: 2011
  ident: 10.1016/j.tca.2019.03.034_bib0150
  article-title: Using multimodal blends to elucidate the mechanism of flow‐induced crystallization in polymers
  publication-title: J. Polym. Sci. Part B: Polym. Phys.
  doi: 10.1002/polb.22234
– volume: 96
  start-page: 226
  year: 2011
  ident: 10.1016/j.tca.2019.03.034_bib0065
  article-title: Structure-property relationships in polyamide 12/halloysite nanotube nanocomposites
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2010.11.006
– volume: 13
  start-page: 301
  issue: 4
  year: 2005
  ident: 10.1016/j.tca.2019.03.034_bib0100
  article-title: Application of cellulose microfibrils in polymer nanocomposites
  publication-title: J. Polym. Enviconment
  doi: 10.1007/s10924-005-5514-3
– volume: 42
  start-page: 5728
  issue: 15
  year: 2009
  ident: 10.1016/j.tca.2019.03.034_bib0145
  article-title: Saturation of pointlike nuclei and the transition to oriented structures in flow-induced crystallization of isotactic polypropylene
  publication-title: Macromolecules
  doi: 10.1021/ma802479c
– volume: 56
  start-page: 464
  year: 2015
  ident: 10.1016/j.tca.2019.03.034_bib0200
  article-title: Cellulose nanocrystal/polyolefin biocomposites prepared by solid-state shear pulverization: superior dispersion leading to synergistic property enhancements
  publication-title: Polymer
  doi: 10.1016/j.polymer.2014.11.017
– volume: 5
  start-page: 2001
  year: 2004
  ident: 10.1016/j.tca.2019.03.034_bib0060
  article-title: A comparative study of melt spun polyamide-12 fibers reinforced with carbon nanotubes and nanofibers
  publication-title: Polymer
  doi: 10.1016/j.polymer.2004.01.023
– volume: 655
  start-page: 313
  year: 2017
  ident: 10.1016/j.tca.2019.03.034_bib0040
  article-title: The effect of supercooling of the melt on the semicrystalline morphology of PA 66
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2017.07.012
– volume: 22
  issue: 27
  year: 2011
  ident: 10.1016/j.tca.2019.03.034_bib0070
  article-title: Comparing carbon nanotubes and graphene nanoplatelets as reinforcements in polyamide 12 composites
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/22/27/275714
– volume: 603
  start-page: 103
  year: 2015
  ident: 10.1016/j.tca.2019.03.034_bib0215
  article-title: Crystallization kinetics of polyamide 66 at processing-relevant cooling conditions and high supercooling
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2014.10.020
– volume: 36
  start-page: 1626
  year: 2003
  ident: 10.1016/j.tca.2019.03.034_bib0240
  article-title: Crystalline structure and morphology in Nylon-12: a small- and wide-angle X-ray scattering study
  publication-title: Macromolecules
  doi: 10.1021/ma025732l
– ident: 10.1016/j.tca.2019.03.034_bib0015
– year: 1995
  ident: 10.1016/j.tca.2019.03.034_bib0005
– volume: 132
  start-page: 368
  year: 2017
  ident: 10.1016/j.tca.2019.03.034_bib0105
  article-title: Recent developments on nanocellulose reinforced polymer nanocomposites: A review
  publication-title: Polymer
  doi: 10.1016/j.polymer.2017.09.043
– volume: 155
  start-page: 187
  year: 2018
  ident: 10.1016/j.tca.2019.03.034_bib0035
  article-title: Quantification of isothermal crystallization of polyamide 12: modelling of crystallization kinetics and phase composition
  publication-title: Polymer
  doi: 10.1016/j.polymer.2018.09.037
– volume: 42
  start-page: 355
  issue: 4
  year: 2003
  ident: 10.1016/j.tca.2019.03.034_bib0195
  article-title: Flow as an effective promotor of nucleation in polymer melts: a quantitative evaluation
  publication-title: Rheol. Acta
  doi: 10.1007/s00397-002-0247-x
– year: 2018
  ident: 10.1016/j.tca.2019.03.034_bib0235
  article-title: Isothermal crystallization of poly(ether ether ketone) with different molecular weights over a wide temperature range
  publication-title: Polym. Cryst.
– volume: 109
  start-page: 869
  year: 2017
  ident: 10.1016/j.tca.2019.03.034_bib0080
  article-title: The isolation of cellulose nanocrystals from pistachio shells via acid hydrolysis
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2017.09.039
– volume: 23
  start-page: 1885
  issue: 3
  year: 2016
  ident: 10.1016/j.tca.2019.03.034_bib0205
  article-title: Shear rheology of polylactide (PLA)-cellulose nanocrystal (CNC) nanocomposites
  publication-title: Cellulose
  doi: 10.1007/s10570-016-0914-1
– volume: 563
  start-page: 33
  year: 2013
  ident: 10.1016/j.tca.2019.03.034_bib0045
  article-title: Microfocus wide-angle X-ray scattering of polymers crystallized in a fast scanning chip calorimeter
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2013.04.007
– start-page: 450
  year: 2017
  ident: 10.1016/j.tca.2019.03.034_bib0055
  article-title: Crystallization and component properties of polyamide 12 at processing-relevant cooling conditions
  publication-title: Polymer Eng. Sciencef
  doi: 10.1002/pen.24441
– volume: 4
  start-page: 907
  issue: 2
  year: 2014
  ident: 10.1016/j.tca.2019.03.034_bib0085
  article-title: Isolation of cellulose nanocrystals from pseudostems of banana plants
  publication-title: RSC Adv.
  doi: 10.1039/C3RA46390G
– volume: 116
  start-page: 160
  year: 2017
  ident: 10.1016/j.tca.2019.03.034_bib0120
  article-title: Nucleation efficiency of fillers in polymer crystallization studied by fast scanning calorimetry: carbon nanotubes in polypropylene
  publication-title: Polymer
  doi: 10.1016/j.polymer.2017.03.072
– volume: 258
  start-page: 1130
  year: 1980
  ident: 10.1016/j.tca.2019.03.034_bib0185
  article-title: Effect of annealing on thermal properties and crystalline structure of polyamides. Nylon 12 (polylaurolactam)
  publication-title: Colloid & Polymer Sci
  doi: 10.1007/BF01382456
– volume: 46
  start-page: 828
  issue: 3
  year: 2013
  ident: 10.1016/j.tca.2019.03.034_bib0050
  article-title: Effect of supercooling on crystallization of polyamide 11
  publication-title: Macromolecules
  doi: 10.1021/ma302238r
– volume: 50
  start-page: 5438
  year: 2011
  ident: 10.1016/j.tca.2019.03.034_bib0095
  article-title: Nanocelluloses: a new family of nature-based materials
  publication-title: Angew. Chemia Int. Ed.
  doi: 10.1002/anie.201001273
– volume: 41
  start-page: 1901
  issue: 6
  year: 2008
  ident: 10.1016/j.tca.2019.03.034_bib0160
  article-title: The specific work of flow as criterion for orientation in polymer crystallization
  publication-title: Macromolecules
  doi: 10.1021/ma702603v
– volume: 48
  year: 2015
  ident: 10.1016/j.tca.2019.03.034_bib0165
  article-title: Onset of flow-induced crystallization kinetics of highly isotactic polypropylene
  publication-title: Macromolecules
– volume: 132
  start-page: 42752
  issue: 45
  year: 2015
  ident: 10.1016/j.tca.2019.03.034_bib0075
  article-title: Melt processing of polyamide 12 and cellulose nanocrystals nanocomposites
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.42752
– start-page: 399
  year: 2013
  ident: 10.1016/j.tca.2019.03.034_bib0140
  article-title: "Flow induced crystallization"
– volume: 51
  start-page: 4269
  year: 2018
  ident: 10.1016/j.tca.2019.03.034_bib0190
  article-title: Isothermal flow-induced crystallization of polyamide 66 melts
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b00082
– volume: 429
  year: 2013
  ident: 10.1016/j.tca.2019.03.034_bib0110
  article-title: Risk assessment of released cellulose nanocrystals - mimicking inhalatory exposure
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/429/1/012008
– year: 2000
  ident: 10.1016/j.tca.2019.03.034_bib0130
– year: 2013
  ident: 10.1016/j.tca.2019.03.034_bib0210
SSID ssj0001280
Score 2.3697174
Snippet [Display omitted] •Cellulose nanocrystals are efficient nucleating agents for PA12.•Fast scanning calorimetry of a sheared nanocomposite was...
Understanding the crystallization kinetics and microstructure that result after an imposed shear flow in an additive-containing polymeric system is imperative...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 99
SubjectTerms cellulose
Cellulose nanocrystal
cooling
Crystallization
differential scanning calorimetry
engineering
Fast scanning chip calorimetry
melting
microstructure
nanocomposites
nanocrystals
Polyamide 12
polyamides
solidification
supercooling
temperature
Title Quiescent and flow-induced crystallization in polyamide 12/cellulose nanocrystal composites
URI https://dx.doi.org/10.1016/j.tca.2019.03.034
https://www.proquest.com/docview/2286856971
Volume 677
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEF9EH-xLqdrS0yor-FRIL1-3mzzK4XF6KCiVHvRh2Y9ZSInJ4eUovvRvd-aSWCx4D4VASJhdwswwH5vfzDB2piMrZaZtoL2k0ypAO5hbH1DVtbWgU-Godvj6Rkzv06v5aL7Fxn0tDMEqO9vf2vS1te7eDDtuDhdFQTW-6IxQJ1EpI5o0SRXsqSQt__bnL8wD7W_YI-eIuv-zucZ4NZZaD0Vtn9Mkfcs3_WOl165n8oG972JGft5-1h7bgmqf7Y77UW0H7OftqmjbMnFdOe7L-neAuTZKzXH7-IQBYFl29Za8qPiiLp_0Q-GAR_GQTu5XZb0EXumq7qg5Ic0JzgXLj-x-cvF9PA26qQmBTYRsgtw7yOyI5mf4yKbUfRM0jDT68twkxssktiYBCS6LiEIKH4KTMRgtTGgh-cS2q7qCz4xjaoIBZKy1xY2ENpnPUhNiUuuc8CaWAxb2_FK2aylOky1K1WPHfilksSIWqzDBKx2wry9LFm0_jU3EaS8E9UopFNr7TctOe4EpFATxUVdQr5YqjjORjUQuo8P_2_qIvaOnFq_7hW03jys4xqikMSdrtTthO-eXs-kN3Wd3P2bPFuzlGg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SzSG9lD5p2qZVoaeCWT8l7zEsDZsmWSgkEOhB6DECF8desruU_PvOrOVAC8mh4JMtCTMzfDOSvpkB-GIyp1RtXGKC4tMqJBycuZBw1rVzaErpOXf4YikXV-X36-p6D-ZjLgzTKiP2D5i-Q-v4ZhqlOV01Def4kjMimySjzLjT5BPY5-pU1QT2j0_PFst7QCYITkfyHE8YLzd3NK-N4-pD2VDqtCgfck__APXO-5w8h2cxbBTHw5-9gD3sXsLBfOzW9gp-_tg2Q2UmYTovQtv_Tmi7TYrzwt3eUQzYtjHlUjSdWPXtnblpPIosn_Lh_bbt1yg60_VxtGCyOTO6cP0ark6-Xc4XSWyckLhCqk0yCx5rV3ELjZC5kgtwosHKkDuf2cIGVeTOFqjQ1xmPUDKk6FWO1kibOizewKTrO3wLgnYnFEPmxjhaSBpbh7q0Ke1rvZfB5uoQ0lFe2sWq4tzcotUjfeyXJhFrFrFOC3rKQ_h6P2U1lNR4bHA5KkH_ZReaIP-xaZ9HhWlSBMvRdNhv1zrPa1lXcqayd_-39Cc4WFxenOvz0-XZe3jKXwb67geYbG63eERBysZ-jEb4B8Wk5ig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quiescent+and+flow-induced+crystallization+in+polyamide+12%2Fcellulose+nanocrystal+composites&rft.jtitle=Thermochimica+acta&rft.au=Gohn%2C+Anne+M.&rft.au=Seo%2C+Jiho&rft.au=Ferris%2C+Trapper&rft.au=Venkatraman%2C+Priya&rft.date=2019-07-01&rft.pub=Elsevier+B.V&rft.issn=0040-6031&rft.eissn=1872-762X&rft.volume=677&rft.spage=99&rft.epage=108&rft_id=info:doi/10.1016%2Fj.tca.2019.03.034&rft.externalDocID=S0040603118312085
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-6031&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-6031&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-6031&client=summon