Structural analysis across length scales of the scorpion pincer cuticle

Biological structures such as bone, nacre and exoskeletons are organized hierarchically, with the degree of isotropy correlating with the length-scale. In these structures, the basic components are nanofibers or nanoplatelets, which are strong and stiff but anisotropic, whereas at the macrolevel, is...

Full description

Saved in:
Bibliographic Details
Published inBioinspiration & biomimetics Vol. 16; no. 2; pp. 26013 - 26030
Main Authors Kellersztein, Israel, Greenfeld, Israel, Wagner, H Daniel
Format Journal Article
LanguageEnglish
Published England IOP Publishing 27.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biological structures such as bone, nacre and exoskeletons are organized hierarchically, with the degree of isotropy correlating with the length-scale. In these structures, the basic components are nanofibers or nanoplatelets, which are strong and stiff but anisotropic, whereas at the macrolevel, isotropy is preferred because the direction and magnitude of loads is unpredictable. The structural features and mechanisms, which drive the transition from anisotropy to isotropy across length scales, raise fundamental questions and are therefore the subject of the current study. Focusing on the tibia (fixed finger) of the scorpion pincer, bending tests of cuticle samples confirm the macroscale isotropy of the strength, stiffness, and toughness. Imaging analysis of the cuticle reveals an intricate multilayer laminated structure, with varying chitin-protein fiber orientations, arranged in eight hierarchical levels. We show that the cuticle flexural stiffness is increased by the existence of a thick intermediate layer, not seen before in the claws of crustaceans. Using laminate analysis to model the cuticle structure, we were able to correlate the nanostructure to the macro-mechanical properties, uncovering shear enhancing mechanisms at different length scales. These mechanisms, together with the hierarchical structure, are essential for achieving macro-scale isotropy. Interlaminar failure (ILF) analysis of the cuticle leads to an estimation of the protein matrix shear strength, previously not measured. A similar structural approach can be adopted to the design of future synthetic composites with balanced strength, stiffness, toughness, and isotropy.
AbstractList Biological structures such as bone, nacre and exoskeletons are organized hierarchically, with the degree of isotropy correlating with the length-scale. In these structures, the basic components are nanofibers or nanoplatelets, which are strong and stiff but anisotropic, whereas at the macrolevel, isotropy is preferred because the direction and magnitude of loads is unpredictable. The structural features and mechanisms, which drive the transition from anisotropy to isotropy across length scales, raise fundamental questions and are therefore the subject of the current study. Focusing on the tibia (fixed finger) of the scorpion pincer, bending tests of cuticle samples confirm the macroscale isotropy of the strength, stiffness, and toughness. Imaging analysis of the cuticle reveals an intricate multilayer laminated structure, with varying chitin-protein fiber orientations, arranged in eight hierarchical levels. We show that the cuticle flexural stiffness is increased by the existence of a thick intermediate layer, not seen before in the claws of crustaceans. Using laminate analysis to model the cuticle structure, we were able to correlate the nanostructure to the macro-mechanical properties, uncovering shear enhancing mechanisms at different length scales. These mechanisms, together with the hierarchical structure, are essential for achieving macro-scale isotropy. Interlaminar failure (ILF) analysis of the cuticle leads to an estimation of the protein matrix shear strength, previously not measured. A similar structural approach can be adopted to the design of future synthetic composites with balanced strength, stiffness, toughness, and isotropy.
Biological structures such as bone, nacre and exoskeletons are organized hierarchically, with the degree of isotropy correlating with the length-scale. In these structures, the basic components are nanofibers or nanoplatelets, which are strong and stiff but anisotropic, whereas at the macrolevel, isotropy is preferred because the direction and magnitude of loads is unpredictable. The structural features and mechanisms, which drive the transition from anisotropy to isotropy across length scales, raise fundamental questions and are therefore the subject of the current study. Focusing on the tibia (fixed finger) of the scorpion pincer, bending tests of cuticle samples confirm the macroscale isotropy of the strength, stiffness, and toughness. Imaging analysis of the cuticle reveals an intricate multilayer laminated structure, with varying chitin-protein fiber orientations, arranged in eight hierarchical levels. We show that the cuticle flexural stiffness is increased by the existence of a thick intermediate layer, not seen before in the claws of crustaceans. Using laminate analysis to model the cuticle structure, we were able to correlate the nanostructure to the macro-mechanical properties, uncovering shear enhancing mechanisms at different length scales. These mechanisms, together with the hierarchical structure, are essential for achieving macro-scale isotropy. Interlaminar failure (ILF) analysis of the cuticle leads to an estimation of the protein matrix shear strength, previously not measured. A similar structural approach can be adopted to the design of future synthetic composites with balanced strength, stiffness, toughness, and isotropy.Biological structures such as bone, nacre and exoskeletons are organized hierarchically, with the degree of isotropy correlating with the length-scale. In these structures, the basic components are nanofibers or nanoplatelets, which are strong and stiff but anisotropic, whereas at the macrolevel, isotropy is preferred because the direction and magnitude of loads is unpredictable. The structural features and mechanisms, which drive the transition from anisotropy to isotropy across length scales, raise fundamental questions and are therefore the subject of the current study. Focusing on the tibia (fixed finger) of the scorpion pincer, bending tests of cuticle samples confirm the macroscale isotropy of the strength, stiffness, and toughness. Imaging analysis of the cuticle reveals an intricate multilayer laminated structure, with varying chitin-protein fiber orientations, arranged in eight hierarchical levels. We show that the cuticle flexural stiffness is increased by the existence of a thick intermediate layer, not seen before in the claws of crustaceans. Using laminate analysis to model the cuticle structure, we were able to correlate the nanostructure to the macro-mechanical properties, uncovering shear enhancing mechanisms at different length scales. These mechanisms, together with the hierarchical structure, are essential for achieving macro-scale isotropy. Interlaminar failure (ILF) analysis of the cuticle leads to an estimation of the protein matrix shear strength, previously not measured. A similar structural approach can be adopted to the design of future synthetic composites with balanced strength, stiffness, toughness, and isotropy.
Author Wagner, H Daniel
Greenfeld, Israel
Kellersztein, Israel
Author_xml – sequence: 1
  givenname: Israel
  orcidid: 0000-0002-8838-818X
  surname: Kellersztein
  fullname: Kellersztein, Israel
  email: israel.kellersztein@weizmann.ac.il
  organization: Weizmann Institute of Science Department of Materials and Interfaces, Rehovot, 76100, Israel
– sequence: 2
  givenname: Israel
  orcidid: 0000-0001-9683-7267
  surname: Greenfeld
  fullname: Greenfeld, Israel
  organization: Weizmann Institute of Science Department of Materials and Interfaces, Rehovot, 76100, Israel
– sequence: 3
  givenname: H Daniel
  orcidid: 0000-0002-0741-2169
  surname: Wagner
  fullname: Wagner, H Daniel
  email: daniel.wagner@weizmann.ac.il
  organization: Weizmann Institute of Science Department of Materials and Interfaces, Rehovot, 76100, Israel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33307544$$D View this record in MEDLINE/PubMed
BookMark eNp9kDtPBCEUhYnR-O6tzFTGwlVeA0xpNrqamFioNWGAcdmwwwhMsf9e1lULo1b3XvKdE845ANt96C0AJwheIijEFeJUTAhq4JVqDTZ4C-x_P21_7wLvgYOUFhDWtBF4F-wRQiCvKd0Hs6ccR53HqHyleuVXyaVK6RhSqrztX_O8Slp5m6rQVXluyxXi4EJfDa7XNlZ6zE57ewR2OuWTPf6ch-Dl9uZ5ejd5eJzdT68fJpownie8Ubb8tLXWGG0QZG1DDG851w3lijJmOisg1aLGAnawLqNhNYWC6bo1hpNDcL7xHWJ4G23KcumStt6r3oYxSUwFoRhhhgt6-omO7dIaOUS3VHElv8IXgG2Aj7jRdlK7rHIJl6NyXiIo1y3LdY1yXanctFyE8Ifwy_sfydlG4sIgF2GMpesk21YiJrGEmEFE5GC6Al78Av7p-w6X_Zo2
CODEN BBIICI
CitedBy_id crossref_primary_10_1038_s41598_023_47574_y
crossref_primary_10_1016_j_actbio_2023_01_038
crossref_primary_10_1071_ZO23044
crossref_primary_10_1088_1748_3190_acc0ba
crossref_primary_10_1016_j_jmbbm_2024_106811
crossref_primary_10_1177_09506608241252498
crossref_primary_10_1016_j_abs_2024_09_001
crossref_primary_10_1088_1748_3190_ac9878
crossref_primary_10_3390_ma14226855
crossref_primary_10_1002_adma_202413618
crossref_primary_10_1016_j_actbio_2021_09_013
Cites_doi 10.1016/j.compositesa.2011.07.004
10.1016/0956-7151(92)90137-4
10.1016/j.asd.2016.08.001
10.1126/science.1218764
10.1016/0020-1790(77)90061-0
10.1016/0040-8166(79)90040-5
10.1016/j.actbio.2019.06.036
10.1177/002199837000400409
10.1007/bf02325100
10.1371/journal.pone.0078955
10.3389/fphys.2018.01410
10.1016/j.actbio.2011.04.004
10.1086/physzool.50.4.30155735
10.1016/j.cryogenics.2009.12.003
10.1177/002199839502901705
10.1016/j.actamat.2005.05.027
10.1111/j.1096-3642.1975.tb00267.x
10.1038/s41467-019-13978-6
10.1039/c9sm01687b
10.1557/jmr.2008.0375
10.1038/361511a0
10.1242/jeb.068221
10.1111/j.1469-7580.2012.01485.x
10.1007/s10853-009-3954-1
10.1111/j.1469-7998.2009.00628.x
10.1016/j.asd.2008.11.002
10.1016/j.msea.2005.09.115
10.1002/anie.201404272
10.1080/15376490490257657
ContentType Journal Article
Copyright 2021 IOP Publishing Ltd
2021 IOP Publishing Ltd.
Copyright_xml – notice: 2021 IOP Publishing Ltd
– notice: 2021 IOP Publishing Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1748-3190/abd2d2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
DocumentTitleAlternate Structural analysis across length scales of the scorpion pincer cuticle
EISSN 1748-3190
ExternalDocumentID 33307544
10_1088_1748_3190_abd2d2
bbabd2d2
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
1JI
4.4
53G
5B3
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
TN5
UCJ
W28
AAYXX
ADEQX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c367t-79aebd2beeddcd106b93d7b77c947a466dfe804c85280f055289654086c5bdd73
IEDL.DBID IOP
ISSN 1748-3182
1748-3190
IngestDate Fri Jul 11 11:12:35 EDT 2025
Mon Jul 21 06:08:10 EDT 2025
Thu Apr 24 23:07:58 EDT 2025
Tue Jul 01 04:32:47 EDT 2025
Wed Aug 21 03:34:08 EDT 2024
Wed Feb 24 05:40:50 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords laminate analysis
multiscale properties
arthropod exoskeleton
biological composites
hierarchical structures
Language English
License 2021 IOP Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-79aebd2beeddcd106b93d7b77c947a466dfe804c85280f055289654086c5bdd73
Notes BB-102421.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9683-7267
0000-0002-8838-818X
0000-0002-0741-2169
PMID 33307544
PQID 2483421262
PQPubID 23479
PageCount 18
ParticipantIDs pubmed_primary_33307544
crossref_citationtrail_10_1088_1748_3190_abd2d2
proquest_miscellaneous_2483421262
crossref_primary_10_1088_1748_3190_abd2d2
iop_journals_10_1088_1748_3190_abd2d2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-27
PublicationDateYYYYMMDD 2021-01-27
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-27
  day: 27
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinspiration & biomimetics
PublicationTitleAbbrev BB
PublicationTitleAlternate Bioinspir. Biomim
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References van der Meijden (bbabd2d2bib11) 2012; 220
van der Meijden (bbabd2d2bib1) 2010; 280
Politi (bbabd2d2bib29) 2019
Daniel (bbabd2d2bib28) 2006
Cribb (bbabd2d2bib6) 2009; 38
Kellersztein (bbabd2d2bib13) 2019; 94
Dirks (bbabd2d2bib24) 2012; 215
Dennell (bbabd2d2bib9) 1975; 56
Degtyar (bbabd2d2bib31) 2014; 53
Hull (bbabd2d2bib34) 1996
Chu (bbabd2d2bib22) 2010; 50
Van Der Meijden (bbabd2d2bib12) 2013; 8
Yilmaz (bbabd2d2bib23) 2010; 45
Weaver (bbabd2d2bib3) 2012; 336
Lokes (bbabd2d2bib21) 1993; 361
Whitney (bbabd2d2bib37) 1985; 25
Greenfeld (bbabd2d2bib16) 2020; 11
Pipes (bbabd2d2bib36) 1970; 4
Abisset (bbabd2d2bib27) 2011; 42
Klocke (bbabd2d2bib19) 2011; 7
Krishnan (bbabd2d2bib8) 1954; 95
Aberle (bbabd2d2bib20) 2017; 46
Gibson (bbabd2d2bib18) 1994
Hadley (bbabd2d2bib14) 1977; 7
Wang (bbabd2d2bib33) 2018; 9
Krishnan (bbabd2d2bib7) 1953; 94
Spearing (bbabd2d2bib25) 1992; 40
Raabe (bbabd2d2bib30) 2006; 421
Sierakowski (bbabd2d2bib17) 1995
Filshie (bbabd2d2bib26) 1979; 11
Raabe (bbabd2d2bib5) 2005; 53
Mutvei (bbabd2d2bib10) 1974; Vol 4
Tahani (bbabd2d2bib35) 2004; 11
Toolson (bbabd2d2bib15) 1977; 50
Wang (bbabd2d2bib38) 1995; 29
Polis (bbabd2d2bib2) 1990
Cheng (bbabd2d2bib4) 2008; 23
Wang (bbabd2d2bib32) 2019; 15
References_xml – volume: 42
  start-page: 1515
  year: 2011
  ident: bbabd2d2bib27
  article-title: On the validation of a damage mesomodel for laminated composites by means of open-hole tensile tests on quasi-isotropic laminates
  publication-title: Composites A
  doi: 10.1016/j.compositesa.2011.07.004
– volume: 40
  start-page: 2191
  year: 1992
  ident: bbabd2d2bib25
  article-title: The role of fiber bridging in the delamination resistance of fiber-reinforced composites
  publication-title: Acta Metall. Mater.
  doi: 10.1016/0956-7151(92)90137-4
– year: 2006
  ident: bbabd2d2bib28
– volume: 46
  start-page: 138
  year: 2017
  ident: bbabd2d2bib20
  article-title: Effect of sample treatment on biomechanical properties of insect cuticle
  publication-title: Arthropod Struct. Dev.
  doi: 10.1016/j.asd.2016.08.001
– volume: 336
  start-page: 1275
  year: 2012
  ident: bbabd2d2bib3
  article-title: The stomatopod dactyl club: a formidable damage-tolerant biological hammer
  publication-title: Science
  doi: 10.1126/science.1218764
– volume: 7
  start-page: 85
  year: 1977
  ident: bbabd2d2bib14
  article-title: Chemical composition of the epicuticular lipids of the scorpion, paruroctonus mesaensis
  publication-title: Insect Biochem.
  doi: 10.1016/0020-1790(77)90061-0
– volume: 11
  start-page: 249
  year: 1979
  ident: bbabd2d2bib26
  article-title: Fine structure of the cuticle of the desert scorpion, Hadrurus arizonensis
  publication-title: Tissue Cell
  doi: 10.1016/0040-8166(79)90040-5
– volume: 94
  start-page: 565
  year: 2019
  ident: bbabd2d2bib13
  article-title: The exoskeleton of scorpions pincers: structure and micro-mechanical properties
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.06.036
– year: 1995
  ident: bbabd2d2bib17
– year: 1990
  ident: bbabd2d2bib2
– volume: 4
  start-page: 538
  year: 1970
  ident: bbabd2d2bib36
  article-title: Interlaminar stresses in composite laminates under uniform axial extension
  publication-title: J. Compos. Mater.
  doi: 10.1177/002199837000400409
– start-page: 287
  year: 2019
  ident: bbabd2d2bib29
  article-title: Mechanics of arthropod cuticle-versatility by structural and compositional variation
– volume: 95
  start-page: 371
  year: 1954
  ident: bbabd2d2bib8
  article-title: The epicuticle of an arachnid, Palamneus
  publication-title: Q. J. Microsc. Sci.
– year: 1996
  ident: bbabd2d2bib34
– volume: 25
  start-page: 294
  year: 1985
  ident: bbabd2d2bib37
  article-title: On short-beam shear tests for composite materials
  publication-title: Exp. Mech.
  doi: 10.1007/bf02325100
– volume: 8
  year: 2013
  ident: bbabd2d2bib12
  article-title: Choose your weapon: defensive behavior is associated with morphology and performance in scorpions
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0078955
– volume: 9
  start-page: 1410
  year: 2018
  ident: bbabd2d2bib33
  article-title: Biomechanical strategies underlying the robust body armour of an aposematic weevil
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.01410
– volume: 7
  start-page: 2935
  year: 2011
  ident: bbabd2d2bib19
  article-title: Water as a major modulator of the mechanical properties of insect cuticle
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2011.04.004
– volume: 50
  start-page: 323
  year: 1977
  ident: bbabd2d2bib15
  article-title: Cuticular permeability and epicuticular lipid composition in two Arizona Vejovid scorpions
  publication-title: Physiol. Zool.
  doi: 10.1086/physzool.50.4.30155735
– volume: 50
  start-page: 84
  year: 2010
  ident: bbabd2d2bib22
  article-title: Mechanical and thermal expansion properties of glass fibers reinforced PEEK composites at cryogenic temperatures
  publication-title: Cryogenics
  doi: 10.1016/j.cryogenics.2009.12.003
– volume: 29
  start-page: 2317
  year: 1995
  ident: bbabd2d2bib38
  article-title: Properties of composite laminates reinforced with E-glass multiaxial non-crimp fabrics
  publication-title: J. Compos. Mater.
  doi: 10.1177/002199839502901705
– volume: 53
  start-page: 4281
  year: 2005
  ident: bbabd2d2bib5
  article-title: The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2005.05.027
– volume: 56
  start-page: 249
  year: 1975
  ident: bbabd2d2bib9
  article-title: The structure of the cuticle of the scorpion pandinus imperator (Koch)
  publication-title: Zool. J. Linn. Soc.
  doi: 10.1111/j.1096-3642.1975.tb00267.x
– volume: 11
  start-page: 1-12
  year: 2020
  ident: bbabd2d2bib16
  article-title: Nested helicoids in biological microstructures
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13978-6
– year: 1994
  ident: bbabd2d2bib18
– volume: 15
  start-page: 8272
  year: 2019
  ident: bbabd2d2bib32
  article-title: Endocuticle sclerotisation increases the mechanical stability of cuticle
  publication-title: Soft Matter
  doi: 10.1039/c9sm01687b
– volume: 23
  start-page: 2854
  year: 2008
  ident: bbabd2d2bib4
  article-title: Image analyses of two crustacean exoskeletons and implications of the exoskeletal microstructure on the mechanical behavior
  publication-title: J. Mater. Res.
  doi: 10.1557/jmr.2008.0375
– volume: Vol 4
  start-page: 73
  year: 1974
  ident: bbabd2d2bib10
  article-title: SEM studies on arthropod exoskeletons. Part I: Decapod crustaceans, Homarus gammarus (L) and Carcinus maenas (L)
– volume: 361
  start-page: 511
  year: 1993
  ident: bbabd2d2bib21
  article-title: Materials with structural hierarchy
  publication-title: Nature
  doi: 10.1038/361511a0
– volume: 94
  start-page: 11
  year: 1953
  ident: bbabd2d2bib7
  article-title: On the cuticle of the scorpion Palamneus Swammerdami
  publication-title: Q. J. Microsc. Sci.
– volume: 215
  start-page: 1502
  year: 2012
  ident: bbabd2d2bib24
  article-title: Fracture toughness of locust cuticle
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.068221
– volume: 220
  start-page: 423
  year: 2012
  ident: bbabd2d2bib11
  article-title: Packing a pinch: functional implications of chela shapes in scorpions using finite element analysis
  publication-title: J. Anat.
  doi: 10.1111/j.1469-7580.2012.01485.x
– volume: 45
  start-page: 399
  year: 2010
  ident: bbabd2d2bib23
  article-title: Effects of hydrothermal aging on glass-fiber/polyetherimide (PEI) composites
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-009-3954-1
– volume: 280
  start-page: 319
  year: 2010
  ident: bbabd2d2bib1
  article-title: Comparison of chela size and pincer force in scorpions; getting a first grip
  publication-title: J. Zool.
  doi: 10.1111/j.1469-7998.2009.00628.x
– volume: 38
  start-page: 173
  year: 2009
  ident: bbabd2d2bib6
  article-title: Structure, composition and properties of naturally occurring non-calcified crustacean cuticle
  publication-title: Arthropod Struct. Dev.
  doi: 10.1016/j.asd.2008.11.002
– volume: 421
  start-page: 143
  year: 2006
  ident: bbabd2d2bib30
  article-title: Microstructure and crystallographic texture of the chitin–protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2005.09.115
– volume: 53
  start-page: 12026
  year: 2014
  ident: bbabd2d2bib31
  article-title: The mechanical role of metal ions in biogenic protein-based materials
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201404272
– volume: 11
  start-page: 67
  year: 2004
  ident: bbabd2d2bib35
  article-title: Accurate determination of interlaminar stresses in general cross-ply laminates
  publication-title: Mech. Adv. Mater. Struct.
  doi: 10.1080/15376490490257657
SSID ssj0054982
Score 2.2957227
Snippet Biological structures such as bone, nacre and exoskeletons are organized hierarchically, with the degree of isotropy correlating with the length-scale. In...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 26013
SubjectTerms Animals
Anisotropy
arthropod exoskeleton
biological composites
Chitin - chemistry
hierarchical structures
laminate analysis
multiscale properties
Nacre
Scorpions
Shear Strength
Title Structural analysis across length scales of the scorpion pincer cuticle
URI https://iopscience.iop.org/article/10.1088/1748-3190/abd2d2
https://www.ncbi.nlm.nih.gov/pubmed/33307544
https://www.proquest.com/docview/2483421262
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6rXrz4fqzPCCp42N02bZMUTyI-8KCCCh6EkFcR1HbZx0F_vZM0u6DoIp7awjSZZJKZSTL5BqF9RiWhUoMEEhK7Y8YUphRxwQ4qs5EEAyh9tMU1vXxIrx6zxwY6Ht-FqbpB9bfhtQYKrrswBMTxDvjQbksvjzpSGWJA_84kHAynu713cztSw7Du8ZmiAjUn4YzypxK-2KQpqPd3d9ObnfN59DRiuI42eWkPB6qtP75hOf6zRQtoLrij-KQmXUQNWy6h5ZMSluJv7_gQ-wBRv_O-jC7uPNasw-nAMmCZYOmbhF0-lsEz7oPEbR9XBQa_Er6qXhfkjh0EhO1hPfS1rKCH87P708tWyMPQ0gllgxbLpQW-FJhTow2sIVWeGKYY03nKZEqpKSyPUs0zwqMiyuCRU_AEOdWZMoYlq2i6rEq7jnCcFxljNCeaklQRJguSc5MpZyYtjUwTdUaSEDqAlLtcGa_CH5ZzLlxfCddXou6rJjoa_9GtATom0B6ACESYpf0JdLtf6JQSMRVEePy1RHRN0UR7owEiYD66QxZZ2mrYF8TtzoI_QKGUtXrkjPlKEtCoWZpu_JGPTTRLXAhNFLcI20LTIGW7DT7QQO34sf4JeF38jA
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61RUJceJXH8qqRKBKH3c068SMHDhVlaSkqlaBSb65fEVJLsmqyQuVP8Vf4SYwd70pFUHHpgVMSyXbGnvHM2B5_A_BCcE25tsiBnE7CMWOBU4qGYAfDfKbRAOoYbbHPdw6L90fsaAV-LO_CNLOk-kf42gMF90OYAuLkGH3osKVXZmNtHHV0PHNViqrc8-ffcM3Wvt7dRgZvUjp9-_nNzjClFRjanItuKErtsaJB6-CswyWRKXMnjBC2LIQuOHeVl1lhJaMyqzKGj5KjYyO5ZcY5kWO7q3CN5Wirw43BjwcL1Y9rrZidKlEoaToX_RPVF-zgKvb17y5uNHXTW_BzMUh9hMvJaN6Zkf3-G37kfzSKt-FmcrvJVk_eHVjx9V1Y36p113w9Jy9JDISNJwzr8O5TxNQNeCREJ8wWouMwkpB3pvtCWpRs35KmIug_41dzNkP5JgHqwp8RO49_uQeHV9Kl-7BWN7V_CGRSVkwIXlLLaWGo0BUtpWMmuAOeZ24A4wX3lU1g7CEnyKmKQQFSqsAfFfijev4M4NWyxqwHIrmk7CayXSVt1F5SbuNCOWPUhCuqIs5crlAiBvB8IZQK9U44TNK1b-atomEXGv0ejq086KV1SVeeo-VgRfHoH-nYgOsH21P1YXd_7zHcoCFqKJsMqXgCa8hw_xTdvs48i1ONwPFVS-UvR05cyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+analysis+across+length+scales+of+the+scorpion+pincer+cuticle&rft.jtitle=Bioinspiration+%26+biomimetics&rft.au=Kellersztein%2C+Israel&rft.au=Greenfeld%2C+Israel&rft.au=Wagner%2C+H+Daniel&rft.date=2021-01-27&rft.issn=1748-3190&rft.eissn=1748-3190&rft.volume=16&rft.issue=2&rft_id=info:doi/10.1088%2F1748-3190%2Fabd2d2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3182&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3182&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3182&client=summon