Structural analysis across length scales of the scorpion pincer cuticle
Biological structures such as bone, nacre and exoskeletons are organized hierarchically, with the degree of isotropy correlating with the length-scale. In these structures, the basic components are nanofibers or nanoplatelets, which are strong and stiff but anisotropic, whereas at the macrolevel, is...
Saved in:
Published in | Bioinspiration & biomimetics Vol. 16; no. 2; pp. 26013 - 26030 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
27.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biological structures such as bone, nacre and exoskeletons are organized hierarchically, with the degree of isotropy correlating with the length-scale. In these structures, the basic components are nanofibers or nanoplatelets, which are strong and stiff but anisotropic, whereas at the macrolevel, isotropy is preferred because the direction and magnitude of loads is unpredictable. The structural features and mechanisms, which drive the transition from anisotropy to isotropy across length scales, raise fundamental questions and are therefore the subject of the current study. Focusing on the tibia (fixed finger) of the scorpion pincer, bending tests of cuticle samples confirm the macroscale isotropy of the strength, stiffness, and toughness. Imaging analysis of the cuticle reveals an intricate multilayer laminated structure, with varying chitin-protein fiber orientations, arranged in eight hierarchical levels. We show that the cuticle flexural stiffness is increased by the existence of a thick intermediate layer, not seen before in the claws of crustaceans. Using laminate analysis to model the cuticle structure, we were able to correlate the nanostructure to the macro-mechanical properties, uncovering shear enhancing mechanisms at different length scales. These mechanisms, together with the hierarchical structure, are essential for achieving macro-scale isotropy. Interlaminar failure (ILF) analysis of the cuticle leads to an estimation of the protein matrix shear strength, previously not measured. A similar structural approach can be adopted to the design of future synthetic composites with balanced strength, stiffness, toughness, and isotropy. |
---|---|
AbstractList | Biological structures such as bone, nacre and exoskeletons are organized hierarchically, with the degree of isotropy correlating with the length-scale. In these structures, the basic components are nanofibers or nanoplatelets, which are strong and stiff but anisotropic, whereas at the macrolevel, isotropy is preferred because the direction and magnitude of loads is unpredictable. The structural features and mechanisms, which drive the transition from anisotropy to isotropy across length scales, raise fundamental questions and are therefore the subject of the current study. Focusing on the tibia (fixed finger) of the scorpion pincer, bending tests of cuticle samples confirm the macroscale isotropy of the strength, stiffness, and toughness. Imaging analysis of the cuticle reveals an intricate multilayer laminated structure, with varying chitin-protein fiber orientations, arranged in eight hierarchical levels. We show that the cuticle flexural stiffness is increased by the existence of a thick intermediate layer, not seen before in the claws of crustaceans. Using laminate analysis to model the cuticle structure, we were able to correlate the nanostructure to the macro-mechanical properties, uncovering shear enhancing mechanisms at different length scales. These mechanisms, together with the hierarchical structure, are essential for achieving macro-scale isotropy. Interlaminar failure (ILF) analysis of the cuticle leads to an estimation of the protein matrix shear strength, previously not measured. A similar structural approach can be adopted to the design of future synthetic composites with balanced strength, stiffness, toughness, and isotropy. Biological structures such as bone, nacre and exoskeletons are organized hierarchically, with the degree of isotropy correlating with the length-scale. In these structures, the basic components are nanofibers or nanoplatelets, which are strong and stiff but anisotropic, whereas at the macrolevel, isotropy is preferred because the direction and magnitude of loads is unpredictable. The structural features and mechanisms, which drive the transition from anisotropy to isotropy across length scales, raise fundamental questions and are therefore the subject of the current study. Focusing on the tibia (fixed finger) of the scorpion pincer, bending tests of cuticle samples confirm the macroscale isotropy of the strength, stiffness, and toughness. Imaging analysis of the cuticle reveals an intricate multilayer laminated structure, with varying chitin-protein fiber orientations, arranged in eight hierarchical levels. We show that the cuticle flexural stiffness is increased by the existence of a thick intermediate layer, not seen before in the claws of crustaceans. Using laminate analysis to model the cuticle structure, we were able to correlate the nanostructure to the macro-mechanical properties, uncovering shear enhancing mechanisms at different length scales. These mechanisms, together with the hierarchical structure, are essential for achieving macro-scale isotropy. Interlaminar failure (ILF) analysis of the cuticle leads to an estimation of the protein matrix shear strength, previously not measured. A similar structural approach can be adopted to the design of future synthetic composites with balanced strength, stiffness, toughness, and isotropy.Biological structures such as bone, nacre and exoskeletons are organized hierarchically, with the degree of isotropy correlating with the length-scale. In these structures, the basic components are nanofibers or nanoplatelets, which are strong and stiff but anisotropic, whereas at the macrolevel, isotropy is preferred because the direction and magnitude of loads is unpredictable. The structural features and mechanisms, which drive the transition from anisotropy to isotropy across length scales, raise fundamental questions and are therefore the subject of the current study. Focusing on the tibia (fixed finger) of the scorpion pincer, bending tests of cuticle samples confirm the macroscale isotropy of the strength, stiffness, and toughness. Imaging analysis of the cuticle reveals an intricate multilayer laminated structure, with varying chitin-protein fiber orientations, arranged in eight hierarchical levels. We show that the cuticle flexural stiffness is increased by the existence of a thick intermediate layer, not seen before in the claws of crustaceans. Using laminate analysis to model the cuticle structure, we were able to correlate the nanostructure to the macro-mechanical properties, uncovering shear enhancing mechanisms at different length scales. These mechanisms, together with the hierarchical structure, are essential for achieving macro-scale isotropy. Interlaminar failure (ILF) analysis of the cuticle leads to an estimation of the protein matrix shear strength, previously not measured. A similar structural approach can be adopted to the design of future synthetic composites with balanced strength, stiffness, toughness, and isotropy. |
Author | Wagner, H Daniel Greenfeld, Israel Kellersztein, Israel |
Author_xml | – sequence: 1 givenname: Israel orcidid: 0000-0002-8838-818X surname: Kellersztein fullname: Kellersztein, Israel email: israel.kellersztein@weizmann.ac.il organization: Weizmann Institute of Science Department of Materials and Interfaces, Rehovot, 76100, Israel – sequence: 2 givenname: Israel orcidid: 0000-0001-9683-7267 surname: Greenfeld fullname: Greenfeld, Israel organization: Weizmann Institute of Science Department of Materials and Interfaces, Rehovot, 76100, Israel – sequence: 3 givenname: H Daniel orcidid: 0000-0002-0741-2169 surname: Wagner fullname: Wagner, H Daniel email: daniel.wagner@weizmann.ac.il organization: Weizmann Institute of Science Department of Materials and Interfaces, Rehovot, 76100, Israel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33307544$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kDtPBCEUhYnR-O6tzFTGwlVeA0xpNrqamFioNWGAcdmwwwhMsf9e1lULo1b3XvKdE845ANt96C0AJwheIijEFeJUTAhq4JVqDTZ4C-x_P21_7wLvgYOUFhDWtBF4F-wRQiCvKd0Hs6ccR53HqHyleuVXyaVK6RhSqrztX_O8Slp5m6rQVXluyxXi4EJfDa7XNlZ6zE57ewR2OuWTPf6ch-Dl9uZ5ejd5eJzdT68fJpownie8Ubb8tLXWGG0QZG1DDG851w3lijJmOisg1aLGAnawLqNhNYWC6bo1hpNDcL7xHWJ4G23KcumStt6r3oYxSUwFoRhhhgt6-omO7dIaOUS3VHElv8IXgG2Aj7jRdlK7rHIJl6NyXiIo1y3LdY1yXanctFyE8Ifwy_sfydlG4sIgF2GMpesk21YiJrGEmEFE5GC6Al78Av7p-w6X_Zo2 |
CODEN | BBIICI |
CitedBy_id | crossref_primary_10_1038_s41598_023_47574_y crossref_primary_10_1016_j_actbio_2023_01_038 crossref_primary_10_1071_ZO23044 crossref_primary_10_1088_1748_3190_acc0ba crossref_primary_10_1016_j_jmbbm_2024_106811 crossref_primary_10_1177_09506608241252498 crossref_primary_10_1016_j_abs_2024_09_001 crossref_primary_10_1088_1748_3190_ac9878 crossref_primary_10_3390_ma14226855 crossref_primary_10_1002_adma_202413618 crossref_primary_10_1016_j_actbio_2021_09_013 |
Cites_doi | 10.1016/j.compositesa.2011.07.004 10.1016/0956-7151(92)90137-4 10.1016/j.asd.2016.08.001 10.1126/science.1218764 10.1016/0020-1790(77)90061-0 10.1016/0040-8166(79)90040-5 10.1016/j.actbio.2019.06.036 10.1177/002199837000400409 10.1007/bf02325100 10.1371/journal.pone.0078955 10.3389/fphys.2018.01410 10.1016/j.actbio.2011.04.004 10.1086/physzool.50.4.30155735 10.1016/j.cryogenics.2009.12.003 10.1177/002199839502901705 10.1016/j.actamat.2005.05.027 10.1111/j.1096-3642.1975.tb00267.x 10.1038/s41467-019-13978-6 10.1039/c9sm01687b 10.1557/jmr.2008.0375 10.1038/361511a0 10.1242/jeb.068221 10.1111/j.1469-7580.2012.01485.x 10.1007/s10853-009-3954-1 10.1111/j.1469-7998.2009.00628.x 10.1016/j.asd.2008.11.002 10.1016/j.msea.2005.09.115 10.1002/anie.201404272 10.1080/15376490490257657 |
ContentType | Journal Article |
Copyright | 2021 IOP Publishing Ltd 2021 IOP Publishing Ltd. |
Copyright_xml | – notice: 2021 IOP Publishing Ltd – notice: 2021 IOP Publishing Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1088/1748-3190/abd2d2 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
DocumentTitleAlternate | Structural analysis across length scales of the scorpion pincer cuticle |
EISSN | 1748-3190 |
ExternalDocumentID | 33307544 10_1088_1748_3190_abd2d2 bbabd2d2 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 1JI 4.4 53G 5B3 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE RIN RO9 ROL RPA SY9 TN5 UCJ W28 AAYXX ADEQX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c367t-79aebd2beeddcd106b93d7b77c947a466dfe804c85280f055289654086c5bdd73 |
IEDL.DBID | IOP |
ISSN | 1748-3182 1748-3190 |
IngestDate | Fri Jul 11 11:12:35 EDT 2025 Mon Jul 21 06:08:10 EDT 2025 Thu Apr 24 23:07:58 EDT 2025 Tue Jul 01 04:32:47 EDT 2025 Wed Aug 21 03:34:08 EDT 2024 Wed Feb 24 05:40:50 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | laminate analysis multiscale properties arthropod exoskeleton biological composites hierarchical structures |
Language | English |
License | 2021 IOP Publishing Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-79aebd2beeddcd106b93d7b77c947a466dfe804c85280f055289654086c5bdd73 |
Notes | BB-102421.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9683-7267 0000-0002-8838-818X 0000-0002-0741-2169 |
PMID | 33307544 |
PQID | 2483421262 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | pubmed_primary_33307544 crossref_citationtrail_10_1088_1748_3190_abd2d2 proquest_miscellaneous_2483421262 crossref_primary_10_1088_1748_3190_abd2d2 iop_journals_10_1088_1748_3190_abd2d2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-27 |
PublicationDateYYYYMMDD | 2021-01-27 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioinspiration & biomimetics |
PublicationTitleAbbrev | BB |
PublicationTitleAlternate | Bioinspir. Biomim |
PublicationYear | 2021 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | van der Meijden (bbabd2d2bib11) 2012; 220 van der Meijden (bbabd2d2bib1) 2010; 280 Politi (bbabd2d2bib29) 2019 Daniel (bbabd2d2bib28) 2006 Cribb (bbabd2d2bib6) 2009; 38 Kellersztein (bbabd2d2bib13) 2019; 94 Dirks (bbabd2d2bib24) 2012; 215 Dennell (bbabd2d2bib9) 1975; 56 Degtyar (bbabd2d2bib31) 2014; 53 Hull (bbabd2d2bib34) 1996 Chu (bbabd2d2bib22) 2010; 50 Van Der Meijden (bbabd2d2bib12) 2013; 8 Yilmaz (bbabd2d2bib23) 2010; 45 Weaver (bbabd2d2bib3) 2012; 336 Lokes (bbabd2d2bib21) 1993; 361 Whitney (bbabd2d2bib37) 1985; 25 Greenfeld (bbabd2d2bib16) 2020; 11 Pipes (bbabd2d2bib36) 1970; 4 Abisset (bbabd2d2bib27) 2011; 42 Klocke (bbabd2d2bib19) 2011; 7 Krishnan (bbabd2d2bib8) 1954; 95 Aberle (bbabd2d2bib20) 2017; 46 Gibson (bbabd2d2bib18) 1994 Hadley (bbabd2d2bib14) 1977; 7 Wang (bbabd2d2bib33) 2018; 9 Krishnan (bbabd2d2bib7) 1953; 94 Spearing (bbabd2d2bib25) 1992; 40 Raabe (bbabd2d2bib30) 2006; 421 Sierakowski (bbabd2d2bib17) 1995 Filshie (bbabd2d2bib26) 1979; 11 Raabe (bbabd2d2bib5) 2005; 53 Mutvei (bbabd2d2bib10) 1974; Vol 4 Tahani (bbabd2d2bib35) 2004; 11 Toolson (bbabd2d2bib15) 1977; 50 Wang (bbabd2d2bib38) 1995; 29 Polis (bbabd2d2bib2) 1990 Cheng (bbabd2d2bib4) 2008; 23 Wang (bbabd2d2bib32) 2019; 15 |
References_xml | – volume: 42 start-page: 1515 year: 2011 ident: bbabd2d2bib27 article-title: On the validation of a damage mesomodel for laminated composites by means of open-hole tensile tests on quasi-isotropic laminates publication-title: Composites A doi: 10.1016/j.compositesa.2011.07.004 – volume: 40 start-page: 2191 year: 1992 ident: bbabd2d2bib25 article-title: The role of fiber bridging in the delamination resistance of fiber-reinforced composites publication-title: Acta Metall. Mater. doi: 10.1016/0956-7151(92)90137-4 – year: 2006 ident: bbabd2d2bib28 – volume: 46 start-page: 138 year: 2017 ident: bbabd2d2bib20 article-title: Effect of sample treatment on biomechanical properties of insect cuticle publication-title: Arthropod Struct. Dev. doi: 10.1016/j.asd.2016.08.001 – volume: 336 start-page: 1275 year: 2012 ident: bbabd2d2bib3 article-title: The stomatopod dactyl club: a formidable damage-tolerant biological hammer publication-title: Science doi: 10.1126/science.1218764 – volume: 7 start-page: 85 year: 1977 ident: bbabd2d2bib14 article-title: Chemical composition of the epicuticular lipids of the scorpion, paruroctonus mesaensis publication-title: Insect Biochem. doi: 10.1016/0020-1790(77)90061-0 – volume: 11 start-page: 249 year: 1979 ident: bbabd2d2bib26 article-title: Fine structure of the cuticle of the desert scorpion, Hadrurus arizonensis publication-title: Tissue Cell doi: 10.1016/0040-8166(79)90040-5 – volume: 94 start-page: 565 year: 2019 ident: bbabd2d2bib13 article-title: The exoskeleton of scorpions pincers: structure and micro-mechanical properties publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.06.036 – year: 1995 ident: bbabd2d2bib17 – year: 1990 ident: bbabd2d2bib2 – volume: 4 start-page: 538 year: 1970 ident: bbabd2d2bib36 article-title: Interlaminar stresses in composite laminates under uniform axial extension publication-title: J. Compos. Mater. doi: 10.1177/002199837000400409 – start-page: 287 year: 2019 ident: bbabd2d2bib29 article-title: Mechanics of arthropod cuticle-versatility by structural and compositional variation – volume: 95 start-page: 371 year: 1954 ident: bbabd2d2bib8 article-title: The epicuticle of an arachnid, Palamneus publication-title: Q. J. Microsc. Sci. – year: 1996 ident: bbabd2d2bib34 – volume: 25 start-page: 294 year: 1985 ident: bbabd2d2bib37 article-title: On short-beam shear tests for composite materials publication-title: Exp. Mech. doi: 10.1007/bf02325100 – volume: 8 year: 2013 ident: bbabd2d2bib12 article-title: Choose your weapon: defensive behavior is associated with morphology and performance in scorpions publication-title: PLoS One doi: 10.1371/journal.pone.0078955 – volume: 9 start-page: 1410 year: 2018 ident: bbabd2d2bib33 article-title: Biomechanical strategies underlying the robust body armour of an aposematic weevil publication-title: Front. Physiol. doi: 10.3389/fphys.2018.01410 – volume: 7 start-page: 2935 year: 2011 ident: bbabd2d2bib19 article-title: Water as a major modulator of the mechanical properties of insect cuticle publication-title: Acta Biomater. doi: 10.1016/j.actbio.2011.04.004 – volume: 50 start-page: 323 year: 1977 ident: bbabd2d2bib15 article-title: Cuticular permeability and epicuticular lipid composition in two Arizona Vejovid scorpions publication-title: Physiol. Zool. doi: 10.1086/physzool.50.4.30155735 – volume: 50 start-page: 84 year: 2010 ident: bbabd2d2bib22 article-title: Mechanical and thermal expansion properties of glass fibers reinforced PEEK composites at cryogenic temperatures publication-title: Cryogenics doi: 10.1016/j.cryogenics.2009.12.003 – volume: 29 start-page: 2317 year: 1995 ident: bbabd2d2bib38 article-title: Properties of composite laminates reinforced with E-glass multiaxial non-crimp fabrics publication-title: J. Compos. Mater. doi: 10.1177/002199839502901705 – volume: 53 start-page: 4281 year: 2005 ident: bbabd2d2bib5 article-title: The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material publication-title: Acta Mater. doi: 10.1016/j.actamat.2005.05.027 – volume: 56 start-page: 249 year: 1975 ident: bbabd2d2bib9 article-title: The structure of the cuticle of the scorpion pandinus imperator (Koch) publication-title: Zool. J. Linn. Soc. doi: 10.1111/j.1096-3642.1975.tb00267.x – volume: 11 start-page: 1-12 year: 2020 ident: bbabd2d2bib16 article-title: Nested helicoids in biological microstructures publication-title: Nat. Commun. doi: 10.1038/s41467-019-13978-6 – year: 1994 ident: bbabd2d2bib18 – volume: 15 start-page: 8272 year: 2019 ident: bbabd2d2bib32 article-title: Endocuticle sclerotisation increases the mechanical stability of cuticle publication-title: Soft Matter doi: 10.1039/c9sm01687b – volume: 23 start-page: 2854 year: 2008 ident: bbabd2d2bib4 article-title: Image analyses of two crustacean exoskeletons and implications of the exoskeletal microstructure on the mechanical behavior publication-title: J. Mater. Res. doi: 10.1557/jmr.2008.0375 – volume: Vol 4 start-page: 73 year: 1974 ident: bbabd2d2bib10 article-title: SEM studies on arthropod exoskeletons. Part I: Decapod crustaceans, Homarus gammarus (L) and Carcinus maenas (L) – volume: 361 start-page: 511 year: 1993 ident: bbabd2d2bib21 article-title: Materials with structural hierarchy publication-title: Nature doi: 10.1038/361511a0 – volume: 94 start-page: 11 year: 1953 ident: bbabd2d2bib7 article-title: On the cuticle of the scorpion Palamneus Swammerdami publication-title: Q. J. Microsc. Sci. – volume: 215 start-page: 1502 year: 2012 ident: bbabd2d2bib24 article-title: Fracture toughness of locust cuticle publication-title: J. Exp. Biol. doi: 10.1242/jeb.068221 – volume: 220 start-page: 423 year: 2012 ident: bbabd2d2bib11 article-title: Packing a pinch: functional implications of chela shapes in scorpions using finite element analysis publication-title: J. Anat. doi: 10.1111/j.1469-7580.2012.01485.x – volume: 45 start-page: 399 year: 2010 ident: bbabd2d2bib23 article-title: Effects of hydrothermal aging on glass-fiber/polyetherimide (PEI) composites publication-title: J. Mater. Sci. doi: 10.1007/s10853-009-3954-1 – volume: 280 start-page: 319 year: 2010 ident: bbabd2d2bib1 article-title: Comparison of chela size and pincer force in scorpions; getting a first grip publication-title: J. Zool. doi: 10.1111/j.1469-7998.2009.00628.x – volume: 38 start-page: 173 year: 2009 ident: bbabd2d2bib6 article-title: Structure, composition and properties of naturally occurring non-calcified crustacean cuticle publication-title: Arthropod Struct. Dev. doi: 10.1016/j.asd.2008.11.002 – volume: 421 start-page: 143 year: 2006 ident: bbabd2d2bib30 article-title: Microstructure and crystallographic texture of the chitin–protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2005.09.115 – volume: 53 start-page: 12026 year: 2014 ident: bbabd2d2bib31 article-title: The mechanical role of metal ions in biogenic protein-based materials publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201404272 – volume: 11 start-page: 67 year: 2004 ident: bbabd2d2bib35 article-title: Accurate determination of interlaminar stresses in general cross-ply laminates publication-title: Mech. Adv. Mater. Struct. doi: 10.1080/15376490490257657 |
SSID | ssj0054982 |
Score | 2.2957227 |
Snippet | Biological structures such as bone, nacre and exoskeletons are organized hierarchically, with the degree of isotropy correlating with the length-scale. In... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 26013 |
SubjectTerms | Animals Anisotropy arthropod exoskeleton biological composites Chitin - chemistry hierarchical structures laminate analysis multiscale properties Nacre Scorpions Shear Strength |
Title | Structural analysis across length scales of the scorpion pincer cuticle |
URI | https://iopscience.iop.org/article/10.1088/1748-3190/abd2d2 https://www.ncbi.nlm.nih.gov/pubmed/33307544 https://www.proquest.com/docview/2483421262 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6rXrz4fqzPCCp42N02bZMUTyI-8KCCCh6EkFcR1HbZx0F_vZM0u6DoIp7awjSZZJKZSTL5BqF9RiWhUoMEEhK7Y8YUphRxwQ4qs5EEAyh9tMU1vXxIrx6zxwY6Ht-FqbpB9bfhtQYKrrswBMTxDvjQbksvjzpSGWJA_84kHAynu713cztSw7Du8ZmiAjUn4YzypxK-2KQpqPd3d9ObnfN59DRiuI42eWkPB6qtP75hOf6zRQtoLrij-KQmXUQNWy6h5ZMSluJv7_gQ-wBRv_O-jC7uPNasw-nAMmCZYOmbhF0-lsEz7oPEbR9XBQa_Er6qXhfkjh0EhO1hPfS1rKCH87P708tWyMPQ0gllgxbLpQW-FJhTow2sIVWeGKYY03nKZEqpKSyPUs0zwqMiyuCRU_AEOdWZMoYlq2i6rEq7jnCcFxljNCeaklQRJguSc5MpZyYtjUwTdUaSEDqAlLtcGa_CH5ZzLlxfCddXou6rJjoa_9GtATom0B6ACESYpf0JdLtf6JQSMRVEePy1RHRN0UR7owEiYD66QxZZ2mrYF8TtzoI_QKGUtXrkjPlKEtCoWZpu_JGPTTRLXAhNFLcI20LTIGW7DT7QQO34sf4JeF38jA |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61RUJceJXH8qqRKBKH3c068SMHDhVlaSkqlaBSb65fEVJLsmqyQuVP8Vf4SYwd70pFUHHpgVMSyXbGnvHM2B5_A_BCcE25tsiBnE7CMWOBU4qGYAfDfKbRAOoYbbHPdw6L90fsaAV-LO_CNLOk-kf42gMF90OYAuLkGH3osKVXZmNtHHV0PHNViqrc8-ffcM3Wvt7dRgZvUjp9-_nNzjClFRjanItuKErtsaJB6-CswyWRKXMnjBC2LIQuOHeVl1lhJaMyqzKGj5KjYyO5ZcY5kWO7q3CN5Wirw43BjwcL1Y9rrZidKlEoaToX_RPVF-zgKvb17y5uNHXTW_BzMUh9hMvJaN6Zkf3-G37kfzSKt-FmcrvJVk_eHVjx9V1Y36p113w9Jy9JDISNJwzr8O5TxNQNeCREJ8wWouMwkpB3pvtCWpRs35KmIug_41dzNkP5JgHqwp8RO49_uQeHV9Kl-7BWN7V_CGRSVkwIXlLLaWGo0BUtpWMmuAOeZ24A4wX3lU1g7CEnyKmKQQFSqsAfFfijev4M4NWyxqwHIrmk7CayXSVt1F5SbuNCOWPUhCuqIs5crlAiBvB8IZQK9U44TNK1b-atomEXGv0ejq086KV1SVeeo-VgRfHoH-nYgOsH21P1YXd_7zHcoCFqKJsMqXgCa8hw_xTdvs48i1ONwPFVS-UvR05cyg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+analysis+across+length+scales+of+the+scorpion+pincer+cuticle&rft.jtitle=Bioinspiration+%26+biomimetics&rft.au=Kellersztein%2C+Israel&rft.au=Greenfeld%2C+Israel&rft.au=Wagner%2C+H+Daniel&rft.date=2021-01-27&rft.issn=1748-3190&rft.eissn=1748-3190&rft.volume=16&rft.issue=2&rft_id=info:doi/10.1088%2F1748-3190%2Fabd2d2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3182&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3182&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3182&client=summon |