Improving the performance of SSVEP-BCI contaminated by physiological noise via adversarial training

Brain-computer interface (BCI) based on Steady-State Visual Evoked Potentials (SSVEP) provides an effective method for human-computer communication. In practical application scenarios, SSVEP-BCI systems are easily interfered by physiological noises such as electromyography (EMG) and electrooculograp...

Full description

Saved in:
Bibliographic Details
Published inMedicine in novel technology and devices Vol. 18; p. 100213
Main Authors Wang, Dai, Liu, Aiping, Xue, Bo, Wu, Le, Chen, Xun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Brain-computer interface (BCI) based on Steady-State Visual Evoked Potentials (SSVEP) provides an effective method for human-computer communication. In practical application scenarios, SSVEP-BCI systems are easily interfered by physiological noises such as electromyography (EMG) and electrooculography (EOG). The performance of traditional SSVEP recognition methods will degrade in such a noisy environment, which limits their real-world applications. To alleviate the interference of noise, existing works either require additional reference electrodes or are designed for removing background noise such as trend terms rather than physiological noises. In this study, we utilize adversarial training (AT) and neural networks (NNs) to construct a robust recognition method for SSVEP contaminated by physiological noise. During model training, we generate adversarial noises which are most harmful to the current model according to gradients and enforce the model to overcome them. In this way, we strengthen the robustness of the model to potential noises, such as physiological noises. In this study, we recorded a real-world speaking SSVEP dataset and simulated various noisy datasets to conducted comparison experiments on two benchmark models named EEGNet and DeepConvNet. The experimental results demonstrated that AT strategies can help the neural networks get better performance on SSVEP data contaminated by EMG and EOG. We also verified that introducing AT can slightly improve the performance of models under a cross-subject scenario. Our method can be integrated into existing deep learning methods efficiently and will contribute to the real-world applications of SSVEP. •A robust recognition method for SSVEP contaminated by physiological noise.•Adversarial training helps the model extract robust features to overcome the noise.•Our method was robust on real-world and simulated datasets contaminated by noise.•The proposed method will contribute to the real-world applications of SSVEP-BCI.
AbstractList Brain-computer interface (BCI) based on Steady-State Visual Evoked Potentials (SSVEP) provides an effective method for human-computer communication. In practical application scenarios, SSVEP-BCI systems are easily interfered by physiological noises such as electromyography (EMG) and electrooculography (EOG). The performance of traditional SSVEP recognition methods will degrade in such a noisy environment, which limits their real-world applications. To alleviate the interference of noise, existing works either require additional reference electrodes or are designed for removing background noise such as trend terms rather than physiological noises. In this study, we utilize adversarial training (AT) and neural networks (NNs) to construct a robust recognition method for SSVEP contaminated by physiological noise. During model training, we generate adversarial noises which are most harmful to the current model according to gradients and enforce the model to overcome them. In this way, we strengthen the robustness of the model to potential noises, such as physiological noises. In this study, we recorded a real-world speaking SSVEP dataset and simulated various noisy datasets to conducted comparison experiments on two benchmark models named EEGNet and DeepConvNet. The experimental results demonstrated that AT strategies can help the neural networks get better performance on SSVEP data contaminated by EMG and EOG. We also verified that introducing AT can slightly improve the performance of models under a cross-subject scenario. Our method can be integrated into existing deep learning methods efficiently and will contribute to the real-world applications of SSVEP. •A robust recognition method for SSVEP contaminated by physiological noise.•Adversarial training helps the model extract robust features to overcome the noise.•Our method was robust on real-world and simulated datasets contaminated by noise.•The proposed method will contribute to the real-world applications of SSVEP-BCI.
Brain-computer interface (BCI) based on Steady-State Visual Evoked Potentials (SSVEP) provides an effective method for human-computer communication. In practical application scenarios, SSVEP-BCI systems are easily interfered by physiological noises such as electromyography (EMG) and electrooculography (EOG). The performance of traditional SSVEP recognition methods will degrade in such a noisy environment, which limits their real-world applications. To alleviate the interference of noise, existing works either require additional reference electrodes or are designed for removing background noise such as trend terms rather than physiological noises. In this study, we utilize adversarial training (AT) and neural networks (NNs) to construct a robust recognition method for SSVEP contaminated by physiological noise. During model training, we generate adversarial noises which are most harmful to the current model according to gradients and enforce the model to overcome them. In this way, we strengthen the robustness of the model to potential noises, such as physiological noises. In this study, we recorded a real-world speaking SSVEP dataset and simulated various noisy datasets to conducted comparison experiments on two benchmark models named EEGNet and DeepConvNet. The experimental results demonstrated that AT strategies can help the neural networks get better performance on SSVEP data contaminated by EMG and EOG. We also verified that introducing AT can slightly improve the performance of models under a cross-subject scenario. Our method can be integrated into existing deep learning methods efficiently and will contribute to the real-world applications of SSVEP.
ArticleNumber 100213
Author Wu, Le
Wang, Dai
Liu, Aiping
Xue, Bo
Chen, Xun
Author_xml – sequence: 1
  givenname: Dai
  surname: Wang
  fullname: Wang, Dai
  organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China
– sequence: 2
  givenname: Aiping
  surname: Liu
  fullname: Liu, Aiping
  organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China
– sequence: 3
  givenname: Bo
  surname: Xue
  fullname: Xue, Bo
  organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China
– sequence: 4
  givenname: Le
  surname: Wu
  fullname: Wu, Le
  organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China
– sequence: 5
  givenname: Xun
  surname: Chen
  fullname: Chen, Xun
  email: xunchen@ustc.edu.cn
  organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China
BookMark eNp9kMtKAzEUhoMoqNU3cJEXmJpMMreNoMVLQVDwsg1nkpOa0klKMhT69kZHxJWrhD_5P875TsmhDx4JueBszhmvL9fzAY0fzbxkpcgRK7k4ICdl1bGCdaI6_HM_JucprVn-U3HOa3lC9HLYxrBzfkXHD6RbjDbEAbxGGix9eXm_fS5uFkuqgx9hcB5GNLTf0-3HPrmwCSunYUN9cAnpzgEFs8OYILqcjhGcz-QzcmRhk_D855yRt7vb18VD8fh0v1xcPxZa1M1YNK01pcDamsYIWdlGg-WGmZJjx2zVSdNaBFmJTgC0XLSNZD1n-a3VtjYoZmQ5cU2AtdpGN0DcqwBOfQchrhTE0ekNKtn2FRcGSy2Z7Oq-s5KzykqoW9mXss0sObF0DClFtL88ztSXd7VWk3f15V1N3nPtaqph3nPnMKqkHWabxkXUYx7E_Q_4BMIjj3A
Cites_doi 10.1016/j.jneumeth.2022.109722
10.1088/1741-2552/aae5d8
10.1088/1741-2552/ab0ab5
10.1109/TBME.2017.2694818
10.1109/TNSRE.2021.3132162
10.1088/1741-2552/ab4dc6
10.1109/JBHI.2020.2971610
10.1109/JBHI.2021.3131104
10.1073/pnas.1508080112
10.1002/hbm.23730
10.1088/1741-2560/12/4/046008
10.1088/1741-2552/ab260c
10.1109/TBME.2006.886577
10.1109/TNSRE.2021.3114340
10.1109/TNSRE.2021.3073918
10.1088/1741-2552/ac2bf8
10.1016/j.jneumeth.2022.109688
10.1088/1741-2552/ac1ed2
10.1088/1741-2560/12/5/056009
10.1371/journal.pone.0140703
10.1080/2326263X.2017.1292721
10.1109/TNSRE.2021.3104825
10.1109/TNSRE.2022.3150007
10.1093/gigascience/giz002
10.1109/LSP.2019.2906826
10.1109/TIM.2021.3118090
10.1016/j.jneumeth.2022.109674
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.medntd.2023.100213
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Directory of Open Access Journals(OpenAccess)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2590-0935
ExternalDocumentID oai_doaj_org_article_48b513de2c40496b9f4105f4a684b248
10_1016_j_medntd_2023_100213
S2590093523000085
GroupedDBID 0SF
6I.
AAEDW
AAFTH
AALRI
AAXUO
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
0R~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c367t-78fd23e6fd7d345f7caf1d0d21e90f594d8fea45393aa8138740b1090f8cf6de3
IEDL.DBID DOA
ISSN 2590-0935
IngestDate Wed Aug 27 01:09:04 EDT 2025
Tue Jul 01 03:19:19 EDT 2025
Tue Jul 25 20:56:07 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Electroencephalography
Physiological artifacts
Steady-state visual evoked potentials
Adversarial training
Neural networks
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-78fd23e6fd7d345f7caf1d0d21e90f594d8fea45393aa8138740b1090f8cf6de3
OpenAccessLink https://doaj.org/article/48b513de2c40496b9f4105f4a684b248
ParticipantIDs doaj_primary_oai_doaj_org_article_48b513de2c40496b9f4105f4a684b248
crossref_primary_10_1016_j_medntd_2023_100213
elsevier_sciencedirect_doi_10_1016_j_medntd_2023_100213
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationTitle Medicine in novel technology and devices
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Chen, Wang, Gao, Jung, Gao (bib6) 2015; 12
Blanco-Díaz, Guerrero-Méndez, Bastos-Filho, Jaramillo-Isaza, Ruiz-Olaya (bib3) 2022; 382
Nakanishi, Wang, Wang, Jung (bib24) 2015; 10
Du, Yin, Jiao (bib20) 2020
Liu, Liu, Zhang, Chen, Chen (bib16) 2021; 70
Xu, Xu, Ma, Wang, Jung, Ming (bib33) 2021; 18
Lee, Kwon, Kim, Kim, Lee, Williamson (bib25) 2019; 8
Shao, Wu, Zhou (bib1) 2021; 12
Nakanishi, Wang, Chen, Wang, Gao, Jung (bib7) 2018; 65
Zhang, Zhao, Wei, Mantini, Li, Liu (bib26) 2021; 18
Zhang, Wu, Ding, Luo, Lin, Jung (bib13) 2020; 8
Ke, Liu, An, Song, Ming (bib10) 2020; 17
Zhou, Liu, Wu, Chen (bib4) 2022; 380
Yang, Ma, Qiu, Zhu, Meng (bib2) 2022; 13
Ding, Shan, Fang, Wang, Sun, Li (bib21) 2021; 29
Liu, Chen, Shi, Wang, Gao, Gao (bib8) 2021; 29
Craik, He, Contreras-Vidal (bib17) 2019; 16
Yan, Du, Wu, Zheng, Xu (bib14) 2021; 29
Yao, Liu, Deng, Tang, Fb-Eegnet (bib22) 2022; 379
Zhang, Wei, Zhao, Liu, Wu (bib28) 2021
Zhang, Xu, Du, Wu, Zheng, Zhang (bib15) 2021; 29
Roy, Banville, Albuquerque, Gramfort, Falk, Faubert (bib18) 2019; 16
Chen, Wang, Nakanishi, Gao, Jung, Gao (bib9) 2015; 112
Meriño, Nayak, Kolar, Hall, Mao, Pack (bib11) 2017; 4
Goodfellow, Shlens, Szegedy (bib23) 2015
Zhang, Yao, Dong, Liu, Zhang, Li (bib30) 2020; 24
Özdenizci, Wang, Koike-Akino, Erdoğmuş (bib31) 2019; 26
Ni, Xu, Wu, Li, Xu, Xu (bib32) 2022; 30
Lin, Zhang, Wu, Gao (bib5) 2006; 53
Sawangjai, Trakulruangroj, Boonnag, Piriyajitakonkij, Tripathy, Sudhawiyangkul (bib27) 2022; 26
Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann (bib29) 2017; 38
Waytowich, Lawhern, Garcia, Cummings, Faller, Sajda (bib19) 2018; 15
Kwak, Müller, Lee (bib12) 2015; 12
Craik (10.1016/j.medntd.2023.100213_bib17) 2019; 16
Lin (10.1016/j.medntd.2023.100213_bib5) 2006; 53
Sawangjai (10.1016/j.medntd.2023.100213_bib27) 2022; 26
Chen (10.1016/j.medntd.2023.100213_bib9) 2015; 112
Schirrmeister (10.1016/j.medntd.2023.100213_bib29) 2017; 38
Yan (10.1016/j.medntd.2023.100213_bib14) 2021; 29
Lee (10.1016/j.medntd.2023.100213_bib25) 2019; 8
Blanco-Díaz (10.1016/j.medntd.2023.100213_bib3) 2022; 382
Ni (10.1016/j.medntd.2023.100213_bib32) 2022; 30
Shao (10.1016/j.medntd.2023.100213_bib1) 2021; 12
Liu (10.1016/j.medntd.2023.100213_bib16) 2021; 70
Yao (10.1016/j.medntd.2023.100213_bib22) 2022; 379
Ke (10.1016/j.medntd.2023.100213_bib10) 2020; 17
Zhang (10.1016/j.medntd.2023.100213_bib15) 2021; 29
Xu (10.1016/j.medntd.2023.100213_bib33) 2021; 18
Chen (10.1016/j.medntd.2023.100213_bib6) 2015; 12
Kwak (10.1016/j.medntd.2023.100213_bib12) 2015; 12
Zhang (10.1016/j.medntd.2023.100213_bib13) 2020; 8
Nakanishi (10.1016/j.medntd.2023.100213_bib24) 2015; 10
Zhang (10.1016/j.medntd.2023.100213_bib26) 2021; 18
Özdenizci (10.1016/j.medntd.2023.100213_bib31) 2019; 26
Ding (10.1016/j.medntd.2023.100213_bib21) 2021; 29
Roy (10.1016/j.medntd.2023.100213_bib18) 2019; 16
Zhang (10.1016/j.medntd.2023.100213_bib30) 2020; 24
Zhou (10.1016/j.medntd.2023.100213_bib4) 2022; 380
Liu (10.1016/j.medntd.2023.100213_bib8) 2021; 29
Nakanishi (10.1016/j.medntd.2023.100213_bib7) 2018; 65
Goodfellow (10.1016/j.medntd.2023.100213_bib23) 2015
Waytowich (10.1016/j.medntd.2023.100213_bib19) 2018; 15
Yang (10.1016/j.medntd.2023.100213_bib2) 2022; 13
Du (10.1016/j.medntd.2023.100213_bib20) 2020
Zhang (10.1016/j.medntd.2023.100213_bib28) 2021
Meriño (10.1016/j.medntd.2023.100213_bib11) 2017; 4
References_xml – volume: 8
  year: 2019
  ident: bib25
  article-title: EEG dataset and openbmi toolbox for three BCI paradigms: an investigation into BCI illiteracy
  publication-title: GigaScience
– volume: 12
  year: 2015
  ident: bib6
  article-title: Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface
  publication-title: J Neural Eng
– volume: 379
  year: 2022
  ident: bib22
  article-title: A fusion neural network across multi-stimulus for SSVEP target detection
  publication-title: J Neurosci Methods
– volume: 10
  year: 2015
  ident: bib24
  article-title: A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials
  publication-title: PLoS One
– volume: 53
  start-page: 2610
  year: 2006
  end-page: 2614
  ident: bib5
  article-title: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs
  publication-title: IEEE Trans Biomed Eng
– volume: 18
  year: 2021
  ident: bib33
  article-title: Enhancing transfer performance across datasets for brain-computer interfaces using a combination of alignment strategies and adaptive batch normalization
  publication-title: J Neural Eng
– volume: 4
  start-page: 122
  year: 2017
  end-page: 135
  ident: bib11
  article-title: Asynchronous control of unmanned aerial vehicles using a steady-state visual evoked potential-based brain computer interface
  publication-title: Brain-Comput Interfa
– volume: 29
  start-page: 862
  year: 2021
  end-page: 871
  ident: bib15
  article-title: Weak feature extraction and strong noise suppression for SSVEP-EEG based on chaotic detection technology
  publication-title: IEEE Trans Neur Sys Reh
– volume: 65
  start-page: 104
  year: 2018
  end-page: 112
  ident: bib7
  article-title: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis
  publication-title: IEEE Trans Biomed Eng
– start-page: 1265
  year: 2021
  end-page: 1269
  ident: bib28
  article-title: A novel convolutional neural network model to remove muscle artifacts from EEG
  publication-title: ICASSP 2021 -2021 IEEE international conference on acoustics, speech and signal processing
– volume: 12
  year: 2021
  ident: bib1
  article-title: Developments and challenges in human performance enhancement technology
  publication-title: Med Nov Technol Dev
– volume: 17
  year: 2020
  ident: bib10
  article-title: An online SSVEP-BCI system in an optical see-through augmented reality environment
  publication-title: J Neural Eng
– volume: 16
  year: 2019
  ident: bib17
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review
  publication-title: J Neural Eng
– volume: 18
  year: 2021
  ident: bib26
  article-title: EEGdenoiseNet: a benchmark dataset for deep learning solutions of EEG denoising
  publication-title: J Neural Eng
– volume: 382
  year: 2022
  ident: bib3
  article-title: Effects of the concentration level, eye fatigue and coffee consumption on the performance of a BCI system based on visual erp-p300
  publication-title: J Neurosci Methods
– volume: 70
  start-page: 1
  year: 2021
  end-page: 12
  ident: bib16
  article-title: Muscle artifact removal toward mobile SSVEP-based BCI: a comparative study
  publication-title: IEEE Trans Instrum Meas
– volume: 380
  year: 2022
  ident: bib4
  article-title: A l1 normalization enhanced dynamic window method for SSVEP-based BCIs
  publication-title: J Neurosci Methods
– volume: 13
  year: 2022
  ident: bib2
  article-title: A new 2-class unilateral upper limb motor imagery tasks for stroke rehabilitation training
  publication-title: Med Nov Technol Dev
– volume: 16
  year: 2019
  ident: bib18
  article-title: Deep learning-based electroencephalography analysis: a systematic review
  publication-title: J Neural Eng
– volume: 29
  start-page: 1998
  year: 2021
  ident: bib8
  article-title: Improving the performance of individually calibrated SSVEP-BCI by task-discriminant component analysis
  publication-title: IEEE Trans Neur Sys Reh
– volume: 112
  start-page: E6058
  year: 2015
  end-page: E6067
  ident: bib9
  article-title: High-speed spelling with a noninvasive brain–computer interface
  publication-title: P Natl Acad Sci Usa
– volume: 15
  year: 2018
  ident: bib19
  article-title: Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials
  publication-title: J Neural Eng
– volume: 26
  start-page: 4913
  year: 2022
  end-page: 4924
  ident: bib27
  article-title: EEGanet: removal of ocular artifact from the EEG signal using generative adversarial networks
  publication-title: IEEE J Biomed Health
– start-page: 2080
  year: 2020
  end-page: 2085
  ident: bib20
  article-title: InceptionSSVEP: a multi-scale convolutional neural network for steady-state visual evoked potential classification
  publication-title: 2020 IEEE 6th international conference on computer and communications (ICCC)
– year: 2015
  ident: bib23
  article-title: Explaining and harnessing adversarial examples
  publication-title: 3rd international conference on learning representations, ICLR 2015
– volume: 29
  start-page: 1634
  year: 2021
  end-page: 1643
  ident: bib14
  article-title: SSVEP-EEG denoising via image filtering methods
  publication-title: IEEE Trans Neur Sys Reh
– volume: 12
  year: 2015
  ident: bib12
  article-title: A lower limb exoskeleton control system based on steady state visual evoked potentials
  publication-title: J Neural Eng
– volume: 29
  start-page: 2615
  year: 2021
  end-page: 2624
  ident: bib21
  article-title: Filter bank convolutional neural network for short time-window steady-state visual evoked potential classification
  publication-title: IEEE Trans Neur Sys Reh
– volume: 26
  start-page: 710
  year: 2019
  end-page: 714
  ident: bib31
  article-title: Adversarial deep learning in EEG biometrics
  publication-title: IEEE Signal Process Lett
– volume: 8
  year: 2020
  ident: bib13
  article-title: Tiny noise, big mistakes: adversarial perturbations induce errors in brain-computer interface spellers
  publication-title: Natl Sci Rev
– volume: 24
  start-page: 2852
  year: 2020
  end-page: 2859
  ident: bib30
  article-title: Adversarial representation learning for robust patient-independent epileptic seizure detection
  publication-title: IEEE J Biomed Health
– volume: 30
  start-page: 369
  year: 2022
  end-page: 379
  ident: bib32
  article-title: Improving cross-state and cross-subject visual ERP-based BCI with temporal modeling and adversarial training
  publication-title: IEEE Trans Neur Sys Reh
– volume: 38
  start-page: 5391
  year: 2017
  end-page: 5420
  ident: bib29
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum Brain Mapp
– volume: 382
  year: 2022
  ident: 10.1016/j.medntd.2023.100213_bib3
  article-title: Effects of the concentration level, eye fatigue and coffee consumption on the performance of a BCI system based on visual erp-p300
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2022.109722
– year: 2015
  ident: 10.1016/j.medntd.2023.100213_bib23
  article-title: Explaining and harnessing adversarial examples
– volume: 13
  year: 2022
  ident: 10.1016/j.medntd.2023.100213_bib2
  article-title: A new 2-class unilateral upper limb motor imagery tasks for stroke rehabilitation training
  publication-title: Med Nov Technol Dev
– volume: 15
  issue: 6
  year: 2018
  ident: 10.1016/j.medntd.2023.100213_bib19
  article-title: Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/aae5d8
– volume: 16
  issue: 3
  year: 2019
  ident: 10.1016/j.medntd.2023.100213_bib17
  article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/ab0ab5
– volume: 65
  start-page: 104
  issue: 1
  year: 2018
  ident: 10.1016/j.medntd.2023.100213_bib7
  article-title: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2017.2694818
– volume: 29
  start-page: 2615
  year: 2021
  ident: 10.1016/j.medntd.2023.100213_bib21
  article-title: Filter bank convolutional neural network for short time-window steady-state visual evoked potential classification
  publication-title: IEEE Trans Neur Sys Reh
  doi: 10.1109/TNSRE.2021.3132162
– volume: 17
  issue: 1
  year: 2020
  ident: 10.1016/j.medntd.2023.100213_bib10
  article-title: An online SSVEP-BCI system in an optical see-through augmented reality environment
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/ab4dc6
– volume: 24
  start-page: 2852
  issue: 10
  year: 2020
  ident: 10.1016/j.medntd.2023.100213_bib30
  article-title: Adversarial representation learning for robust patient-independent epileptic seizure detection
  publication-title: IEEE J Biomed Health
  doi: 10.1109/JBHI.2020.2971610
– volume: 26
  start-page: 4913
  issue: 10
  year: 2022
  ident: 10.1016/j.medntd.2023.100213_bib27
  article-title: EEGanet: removal of ocular artifact from the EEG signal using generative adversarial networks
  publication-title: IEEE J Biomed Health
  doi: 10.1109/JBHI.2021.3131104
– volume: 112
  start-page: E6058
  issue: 44
  year: 2015
  ident: 10.1016/j.medntd.2023.100213_bib9
  article-title: High-speed spelling with a noninvasive brain–computer interface
  publication-title: P Natl Acad Sci Usa
  doi: 10.1073/pnas.1508080112
– volume: 38
  start-page: 5391
  issue: 11
  year: 2017
  ident: 10.1016/j.medntd.2023.100213_bib29
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.23730
– volume: 12
  issue: 4
  year: 2015
  ident: 10.1016/j.medntd.2023.100213_bib6
  article-title: Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/12/4/046008
– volume: 8
  year: 2020
  ident: 10.1016/j.medntd.2023.100213_bib13
  article-title: Tiny noise, big mistakes: adversarial perturbations induce errors in brain-computer interface spellers
  publication-title: Natl Sci Rev
– volume: 16
  issue: 5
  year: 2019
  ident: 10.1016/j.medntd.2023.100213_bib18
  article-title: Deep learning-based electroencephalography analysis: a systematic review
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/ab260c
– volume: 53
  start-page: 2610
  issue: 12
  year: 2006
  ident: 10.1016/j.medntd.2023.100213_bib5
  article-title: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2006.886577
– volume: 29
  start-page: 1998
  year: 2021
  ident: 10.1016/j.medntd.2023.100213_bib8
  article-title: Improving the performance of individually calibrated SSVEP-BCI by task-discriminant component analysis
  publication-title: IEEE Trans Neur Sys Reh
  doi: 10.1109/TNSRE.2021.3114340
– start-page: 2080
  year: 2020
  ident: 10.1016/j.medntd.2023.100213_bib20
  article-title: InceptionSSVEP: a multi-scale convolutional neural network for steady-state visual evoked potential classification
– volume: 29
  start-page: 862
  year: 2021
  ident: 10.1016/j.medntd.2023.100213_bib15
  article-title: Weak feature extraction and strong noise suppression for SSVEP-EEG based on chaotic detection technology
  publication-title: IEEE Trans Neur Sys Reh
  doi: 10.1109/TNSRE.2021.3073918
– volume: 18
  issue: 5
  year: 2021
  ident: 10.1016/j.medntd.2023.100213_bib26
  article-title: EEGdenoiseNet: a benchmark dataset for deep learning solutions of EEG denoising
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/ac2bf8
– volume: 380
  year: 2022
  ident: 10.1016/j.medntd.2023.100213_bib4
  article-title: A l1 normalization enhanced dynamic window method for SSVEP-based BCIs
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2022.109688
– volume: 18
  issue: 4
  year: 2021
  ident: 10.1016/j.medntd.2023.100213_bib33
  article-title: Enhancing transfer performance across datasets for brain-computer interfaces using a combination of alignment strategies and adaptive batch normalization
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/ac1ed2
– volume: 12
  year: 2021
  ident: 10.1016/j.medntd.2023.100213_bib1
  article-title: Developments and challenges in human performance enhancement technology
  publication-title: Med Nov Technol Dev
– volume: 12
  issue: 5
  year: 2015
  ident: 10.1016/j.medntd.2023.100213_bib12
  article-title: A lower limb exoskeleton control system based on steady state visual evoked potentials
  publication-title: J Neural Eng
  doi: 10.1088/1741-2560/12/5/056009
– volume: 10
  year: 2015
  ident: 10.1016/j.medntd.2023.100213_bib24
  article-title: A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0140703
– volume: 4
  start-page: 122
  issue: 1–2
  year: 2017
  ident: 10.1016/j.medntd.2023.100213_bib11
  article-title: Asynchronous control of unmanned aerial vehicles using a steady-state visual evoked potential-based brain computer interface
  publication-title: Brain-Comput Interfa
  doi: 10.1080/2326263X.2017.1292721
– volume: 29
  start-page: 1634
  year: 2021
  ident: 10.1016/j.medntd.2023.100213_bib14
  article-title: SSVEP-EEG denoising via image filtering methods
  publication-title: IEEE Trans Neur Sys Reh
  doi: 10.1109/TNSRE.2021.3104825
– volume: 30
  start-page: 369
  year: 2022
  ident: 10.1016/j.medntd.2023.100213_bib32
  article-title: Improving cross-state and cross-subject visual ERP-based BCI with temporal modeling and adversarial training
  publication-title: IEEE Trans Neur Sys Reh
  doi: 10.1109/TNSRE.2022.3150007
– volume: 8
  year: 2019
  ident: 10.1016/j.medntd.2023.100213_bib25
  article-title: EEG dataset and openbmi toolbox for three BCI paradigms: an investigation into BCI illiteracy
  publication-title: GigaScience
  doi: 10.1093/gigascience/giz002
– start-page: 1265
  year: 2021
  ident: 10.1016/j.medntd.2023.100213_bib28
  article-title: A novel convolutional neural network model to remove muscle artifacts from EEG
– volume: 26
  start-page: 710
  issue: 5
  year: 2019
  ident: 10.1016/j.medntd.2023.100213_bib31
  article-title: Adversarial deep learning in EEG biometrics
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2019.2906826
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.medntd.2023.100213_bib16
  article-title: Muscle artifact removal toward mobile SSVEP-based BCI: a comparative study
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2021.3118090
– volume: 379
  year: 2022
  ident: 10.1016/j.medntd.2023.100213_bib22
  article-title: A fusion neural network across multi-stimulus for SSVEP target detection
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2022.109674
SSID ssj0002511164
Score 2.2217443
Snippet Brain-computer interface (BCI) based on Steady-State Visual Evoked Potentials (SSVEP) provides an effective method for human-computer communication. In...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 100213
SubjectTerms Adversarial training
Electroencephalography
Neural networks
Physiological artifacts
Steady-state visual evoked potentials
Title Improving the performance of SSVEP-BCI contaminated by physiological noise via adversarial training
URI https://dx.doi.org/10.1016/j.medntd.2023.100213
https://doaj.org/article/48b513de2c40496b9f4105f4a684b248
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQA2JBPEV5yQOrRRI7iT3SqlVBKkIqRd0iP6UypBUNSCz8dnxxUsICC0uGKLKjO8v3nf3ddwhdS0UNSxNFnI00YYZLwlNFiRFKR1wzxetEcfKQjWfsfp7OO62-gBMW5IGD4W4YV2lMjU0082A2U8IBMdExmXGmElaX-fqY10mmYA8G4By0ozy8jwjc9rV1czW5y0easgKh0ITWIqQx_RGXavn-TnjqhJzRPtprsCK-Df94gLZseYh2Js1t-BHSmxMB7GEcXn3XAOClw9Pp8_CR9Ad3GOjoEigvHl1i9YHr04x208PlcrG2-H0hsYTmzGsJSxK3rSOO0Ww0fBqMSdM0gWia5RXJuTMJtZkzuaEsdbmWLjaRSWIrIpcK7w5nJUupoFLymEJLPgXsTMe1y4ylJ2i7XJb2FGFhqZARKM5TwajMpNY-P-LKGGk8DFA9RFqTFaugjVG0pLGXIpi4ABMXwcQ91Ae7br4FZev6hfd30fi7-MvfPZS3XikakBCCvx9q8ev0Z_8x_TnahSEDWewCbVevb_bSw5JKXdUr0D8nn8MvdF7e0g
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+performance+of+SSVEP-BCI+contaminated+by+physiological+noise+via+adversarial+training&rft.jtitle=Medicine+in+novel+technology+and+devices&rft.au=Dai+Wang&rft.au=Aiping+Liu&rft.au=Bo+Xue&rft.au=Le+Wu&rft.date=2023-06-01&rft.pub=Elsevier&rft.issn=2590-0935&rft.eissn=2590-0935&rft.volume=18&rft.spage=100213&rft_id=info:doi/10.1016%2Fj.medntd.2023.100213&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_48b513de2c40496b9f4105f4a684b248
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-0935&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-0935&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-0935&client=summon