Improving the performance of SSVEP-BCI contaminated by physiological noise via adversarial training
Brain-computer interface (BCI) based on Steady-State Visual Evoked Potentials (SSVEP) provides an effective method for human-computer communication. In practical application scenarios, SSVEP-BCI systems are easily interfered by physiological noises such as electromyography (EMG) and electrooculograp...
Saved in:
Published in | Medicine in novel technology and devices Vol. 18; p. 100213 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Brain-computer interface (BCI) based on Steady-State Visual Evoked Potentials (SSVEP) provides an effective method for human-computer communication. In practical application scenarios, SSVEP-BCI systems are easily interfered by physiological noises such as electromyography (EMG) and electrooculography (EOG). The performance of traditional SSVEP recognition methods will degrade in such a noisy environment, which limits their real-world applications. To alleviate the interference of noise, existing works either require additional reference electrodes or are designed for removing background noise such as trend terms rather than physiological noises. In this study, we utilize adversarial training (AT) and neural networks (NNs) to construct a robust recognition method for SSVEP contaminated by physiological noise. During model training, we generate adversarial noises which are most harmful to the current model according to gradients and enforce the model to overcome them. In this way, we strengthen the robustness of the model to potential noises, such as physiological noises. In this study, we recorded a real-world speaking SSVEP dataset and simulated various noisy datasets to conducted comparison experiments on two benchmark models named EEGNet and DeepConvNet. The experimental results demonstrated that AT strategies can help the neural networks get better performance on SSVEP data contaminated by EMG and EOG. We also verified that introducing AT can slightly improve the performance of models under a cross-subject scenario. Our method can be integrated into existing deep learning methods efficiently and will contribute to the real-world applications of SSVEP.
•A robust recognition method for SSVEP contaminated by physiological noise.•Adversarial training helps the model extract robust features to overcome the noise.•Our method was robust on real-world and simulated datasets contaminated by noise.•The proposed method will contribute to the real-world applications of SSVEP-BCI. |
---|---|
AbstractList | Brain-computer interface (BCI) based on Steady-State Visual Evoked Potentials (SSVEP) provides an effective method for human-computer communication. In practical application scenarios, SSVEP-BCI systems are easily interfered by physiological noises such as electromyography (EMG) and electrooculography (EOG). The performance of traditional SSVEP recognition methods will degrade in such a noisy environment, which limits their real-world applications. To alleviate the interference of noise, existing works either require additional reference electrodes or are designed for removing background noise such as trend terms rather than physiological noises. In this study, we utilize adversarial training (AT) and neural networks (NNs) to construct a robust recognition method for SSVEP contaminated by physiological noise. During model training, we generate adversarial noises which are most harmful to the current model according to gradients and enforce the model to overcome them. In this way, we strengthen the robustness of the model to potential noises, such as physiological noises. In this study, we recorded a real-world speaking SSVEP dataset and simulated various noisy datasets to conducted comparison experiments on two benchmark models named EEGNet and DeepConvNet. The experimental results demonstrated that AT strategies can help the neural networks get better performance on SSVEP data contaminated by EMG and EOG. We also verified that introducing AT can slightly improve the performance of models under a cross-subject scenario. Our method can be integrated into existing deep learning methods efficiently and will contribute to the real-world applications of SSVEP.
•A robust recognition method for SSVEP contaminated by physiological noise.•Adversarial training helps the model extract robust features to overcome the noise.•Our method was robust on real-world and simulated datasets contaminated by noise.•The proposed method will contribute to the real-world applications of SSVEP-BCI. Brain-computer interface (BCI) based on Steady-State Visual Evoked Potentials (SSVEP) provides an effective method for human-computer communication. In practical application scenarios, SSVEP-BCI systems are easily interfered by physiological noises such as electromyography (EMG) and electrooculography (EOG). The performance of traditional SSVEP recognition methods will degrade in such a noisy environment, which limits their real-world applications. To alleviate the interference of noise, existing works either require additional reference electrodes or are designed for removing background noise such as trend terms rather than physiological noises. In this study, we utilize adversarial training (AT) and neural networks (NNs) to construct a robust recognition method for SSVEP contaminated by physiological noise. During model training, we generate adversarial noises which are most harmful to the current model according to gradients and enforce the model to overcome them. In this way, we strengthen the robustness of the model to potential noises, such as physiological noises. In this study, we recorded a real-world speaking SSVEP dataset and simulated various noisy datasets to conducted comparison experiments on two benchmark models named EEGNet and DeepConvNet. The experimental results demonstrated that AT strategies can help the neural networks get better performance on SSVEP data contaminated by EMG and EOG. We also verified that introducing AT can slightly improve the performance of models under a cross-subject scenario. Our method can be integrated into existing deep learning methods efficiently and will contribute to the real-world applications of SSVEP. |
ArticleNumber | 100213 |
Author | Wu, Le Wang, Dai Liu, Aiping Xue, Bo Chen, Xun |
Author_xml | – sequence: 1 givenname: Dai surname: Wang fullname: Wang, Dai organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China – sequence: 2 givenname: Aiping surname: Liu fullname: Liu, Aiping organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China – sequence: 3 givenname: Bo surname: Xue fullname: Xue, Bo organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China – sequence: 4 givenname: Le surname: Wu fullname: Wu, Le organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China – sequence: 5 givenname: Xun surname: Chen fullname: Chen, Xun email: xunchen@ustc.edu.cn organization: School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China |
BookMark | eNp9kMtKAzEUhoMoqNU3cJEXmJpMMreNoMVLQVDwsg1nkpOa0klKMhT69kZHxJWrhD_5P875TsmhDx4JueBszhmvL9fzAY0fzbxkpcgRK7k4ICdl1bGCdaI6_HM_JucprVn-U3HOa3lC9HLYxrBzfkXHD6RbjDbEAbxGGix9eXm_fS5uFkuqgx9hcB5GNLTf0-3HPrmwCSunYUN9cAnpzgEFs8OYILqcjhGcz-QzcmRhk_D855yRt7vb18VD8fh0v1xcPxZa1M1YNK01pcDamsYIWdlGg-WGmZJjx2zVSdNaBFmJTgC0XLSNZD1n-a3VtjYoZmQ5cU2AtdpGN0DcqwBOfQchrhTE0ekNKtn2FRcGSy2Z7Oq-s5KzykqoW9mXss0sObF0DClFtL88ztSXd7VWk3f15V1N3nPtaqph3nPnMKqkHWabxkXUYx7E_Q_4BMIjj3A |
Cites_doi | 10.1016/j.jneumeth.2022.109722 10.1088/1741-2552/aae5d8 10.1088/1741-2552/ab0ab5 10.1109/TBME.2017.2694818 10.1109/TNSRE.2021.3132162 10.1088/1741-2552/ab4dc6 10.1109/JBHI.2020.2971610 10.1109/JBHI.2021.3131104 10.1073/pnas.1508080112 10.1002/hbm.23730 10.1088/1741-2560/12/4/046008 10.1088/1741-2552/ab260c 10.1109/TBME.2006.886577 10.1109/TNSRE.2021.3114340 10.1109/TNSRE.2021.3073918 10.1088/1741-2552/ac2bf8 10.1016/j.jneumeth.2022.109688 10.1088/1741-2552/ac1ed2 10.1088/1741-2560/12/5/056009 10.1371/journal.pone.0140703 10.1080/2326263X.2017.1292721 10.1109/TNSRE.2021.3104825 10.1109/TNSRE.2022.3150007 10.1093/gigascience/giz002 10.1109/LSP.2019.2906826 10.1109/TIM.2021.3118090 10.1016/j.jneumeth.2022.109674 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.medntd.2023.100213 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Directory of Open Access Journals(OpenAccess) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2590-0935 |
ExternalDocumentID | oai_doaj_org_article_48b513de2c40496b9f4105f4a684b248 10_1016_j_medntd_2023_100213 S2590093523000085 |
GroupedDBID | 0SF 6I. AAEDW AAFTH AALRI AAXUO AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS EJD FDB GROUPED_DOAJ M41 M~E NCXOZ OK1 ROL 0R~ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c367t-78fd23e6fd7d345f7caf1d0d21e90f594d8fea45393aa8138740b1090f8cf6de3 |
IEDL.DBID | DOA |
ISSN | 2590-0935 |
IngestDate | Wed Aug 27 01:09:04 EDT 2025 Tue Jul 01 03:19:19 EDT 2025 Tue Jul 25 20:56:07 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Electroencephalography Physiological artifacts Steady-state visual evoked potentials Adversarial training Neural networks |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-78fd23e6fd7d345f7caf1d0d21e90f594d8fea45393aa8138740b1090f8cf6de3 |
OpenAccessLink | https://doaj.org/article/48b513de2c40496b9f4105f4a684b248 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_48b513de2c40496b9f4105f4a684b248 crossref_primary_10_1016_j_medntd_2023_100213 elsevier_sciencedirect_doi_10_1016_j_medntd_2023_100213 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2023 2023-06-00 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
PublicationDecade | 2020 |
PublicationTitle | Medicine in novel technology and devices |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Chen, Wang, Gao, Jung, Gao (bib6) 2015; 12 Blanco-Díaz, Guerrero-Méndez, Bastos-Filho, Jaramillo-Isaza, Ruiz-Olaya (bib3) 2022; 382 Nakanishi, Wang, Wang, Jung (bib24) 2015; 10 Du, Yin, Jiao (bib20) 2020 Liu, Liu, Zhang, Chen, Chen (bib16) 2021; 70 Xu, Xu, Ma, Wang, Jung, Ming (bib33) 2021; 18 Lee, Kwon, Kim, Kim, Lee, Williamson (bib25) 2019; 8 Shao, Wu, Zhou (bib1) 2021; 12 Nakanishi, Wang, Chen, Wang, Gao, Jung (bib7) 2018; 65 Zhang, Zhao, Wei, Mantini, Li, Liu (bib26) 2021; 18 Zhang, Wu, Ding, Luo, Lin, Jung (bib13) 2020; 8 Ke, Liu, An, Song, Ming (bib10) 2020; 17 Zhou, Liu, Wu, Chen (bib4) 2022; 380 Yang, Ma, Qiu, Zhu, Meng (bib2) 2022; 13 Ding, Shan, Fang, Wang, Sun, Li (bib21) 2021; 29 Liu, Chen, Shi, Wang, Gao, Gao (bib8) 2021; 29 Craik, He, Contreras-Vidal (bib17) 2019; 16 Yan, Du, Wu, Zheng, Xu (bib14) 2021; 29 Yao, Liu, Deng, Tang, Fb-Eegnet (bib22) 2022; 379 Zhang, Wei, Zhao, Liu, Wu (bib28) 2021 Zhang, Xu, Du, Wu, Zheng, Zhang (bib15) 2021; 29 Roy, Banville, Albuquerque, Gramfort, Falk, Faubert (bib18) 2019; 16 Chen, Wang, Nakanishi, Gao, Jung, Gao (bib9) 2015; 112 Meriño, Nayak, Kolar, Hall, Mao, Pack (bib11) 2017; 4 Goodfellow, Shlens, Szegedy (bib23) 2015 Zhang, Yao, Dong, Liu, Zhang, Li (bib30) 2020; 24 Özdenizci, Wang, Koike-Akino, Erdoğmuş (bib31) 2019; 26 Ni, Xu, Wu, Li, Xu, Xu (bib32) 2022; 30 Lin, Zhang, Wu, Gao (bib5) 2006; 53 Sawangjai, Trakulruangroj, Boonnag, Piriyajitakonkij, Tripathy, Sudhawiyangkul (bib27) 2022; 26 Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann (bib29) 2017; 38 Waytowich, Lawhern, Garcia, Cummings, Faller, Sajda (bib19) 2018; 15 Kwak, Müller, Lee (bib12) 2015; 12 Craik (10.1016/j.medntd.2023.100213_bib17) 2019; 16 Lin (10.1016/j.medntd.2023.100213_bib5) 2006; 53 Sawangjai (10.1016/j.medntd.2023.100213_bib27) 2022; 26 Chen (10.1016/j.medntd.2023.100213_bib9) 2015; 112 Schirrmeister (10.1016/j.medntd.2023.100213_bib29) 2017; 38 Yan (10.1016/j.medntd.2023.100213_bib14) 2021; 29 Lee (10.1016/j.medntd.2023.100213_bib25) 2019; 8 Blanco-Díaz (10.1016/j.medntd.2023.100213_bib3) 2022; 382 Ni (10.1016/j.medntd.2023.100213_bib32) 2022; 30 Shao (10.1016/j.medntd.2023.100213_bib1) 2021; 12 Liu (10.1016/j.medntd.2023.100213_bib16) 2021; 70 Yao (10.1016/j.medntd.2023.100213_bib22) 2022; 379 Ke (10.1016/j.medntd.2023.100213_bib10) 2020; 17 Zhang (10.1016/j.medntd.2023.100213_bib15) 2021; 29 Xu (10.1016/j.medntd.2023.100213_bib33) 2021; 18 Chen (10.1016/j.medntd.2023.100213_bib6) 2015; 12 Kwak (10.1016/j.medntd.2023.100213_bib12) 2015; 12 Zhang (10.1016/j.medntd.2023.100213_bib13) 2020; 8 Nakanishi (10.1016/j.medntd.2023.100213_bib24) 2015; 10 Zhang (10.1016/j.medntd.2023.100213_bib26) 2021; 18 Özdenizci (10.1016/j.medntd.2023.100213_bib31) 2019; 26 Ding (10.1016/j.medntd.2023.100213_bib21) 2021; 29 Roy (10.1016/j.medntd.2023.100213_bib18) 2019; 16 Zhang (10.1016/j.medntd.2023.100213_bib30) 2020; 24 Zhou (10.1016/j.medntd.2023.100213_bib4) 2022; 380 Liu (10.1016/j.medntd.2023.100213_bib8) 2021; 29 Nakanishi (10.1016/j.medntd.2023.100213_bib7) 2018; 65 Goodfellow (10.1016/j.medntd.2023.100213_bib23) 2015 Waytowich (10.1016/j.medntd.2023.100213_bib19) 2018; 15 Yang (10.1016/j.medntd.2023.100213_bib2) 2022; 13 Du (10.1016/j.medntd.2023.100213_bib20) 2020 Zhang (10.1016/j.medntd.2023.100213_bib28) 2021 Meriño (10.1016/j.medntd.2023.100213_bib11) 2017; 4 |
References_xml | – volume: 8 year: 2019 ident: bib25 article-title: EEG dataset and openbmi toolbox for three BCI paradigms: an investigation into BCI illiteracy publication-title: GigaScience – volume: 12 year: 2015 ident: bib6 article-title: Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface publication-title: J Neural Eng – volume: 379 year: 2022 ident: bib22 article-title: A fusion neural network across multi-stimulus for SSVEP target detection publication-title: J Neurosci Methods – volume: 10 year: 2015 ident: bib24 article-title: A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials publication-title: PLoS One – volume: 53 start-page: 2610 year: 2006 end-page: 2614 ident: bib5 article-title: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs publication-title: IEEE Trans Biomed Eng – volume: 18 year: 2021 ident: bib33 article-title: Enhancing transfer performance across datasets for brain-computer interfaces using a combination of alignment strategies and adaptive batch normalization publication-title: J Neural Eng – volume: 4 start-page: 122 year: 2017 end-page: 135 ident: bib11 article-title: Asynchronous control of unmanned aerial vehicles using a steady-state visual evoked potential-based brain computer interface publication-title: Brain-Comput Interfa – volume: 29 start-page: 862 year: 2021 end-page: 871 ident: bib15 article-title: Weak feature extraction and strong noise suppression for SSVEP-EEG based on chaotic detection technology publication-title: IEEE Trans Neur Sys Reh – volume: 65 start-page: 104 year: 2018 end-page: 112 ident: bib7 article-title: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis publication-title: IEEE Trans Biomed Eng – start-page: 1265 year: 2021 end-page: 1269 ident: bib28 article-title: A novel convolutional neural network model to remove muscle artifacts from EEG publication-title: ICASSP 2021 -2021 IEEE international conference on acoustics, speech and signal processing – volume: 12 year: 2021 ident: bib1 article-title: Developments and challenges in human performance enhancement technology publication-title: Med Nov Technol Dev – volume: 17 year: 2020 ident: bib10 article-title: An online SSVEP-BCI system in an optical see-through augmented reality environment publication-title: J Neural Eng – volume: 16 year: 2019 ident: bib17 article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review publication-title: J Neural Eng – volume: 18 year: 2021 ident: bib26 article-title: EEGdenoiseNet: a benchmark dataset for deep learning solutions of EEG denoising publication-title: J Neural Eng – volume: 382 year: 2022 ident: bib3 article-title: Effects of the concentration level, eye fatigue and coffee consumption on the performance of a BCI system based on visual erp-p300 publication-title: J Neurosci Methods – volume: 70 start-page: 1 year: 2021 end-page: 12 ident: bib16 article-title: Muscle artifact removal toward mobile SSVEP-based BCI: a comparative study publication-title: IEEE Trans Instrum Meas – volume: 380 year: 2022 ident: bib4 article-title: A l1 normalization enhanced dynamic window method for SSVEP-based BCIs publication-title: J Neurosci Methods – volume: 13 year: 2022 ident: bib2 article-title: A new 2-class unilateral upper limb motor imagery tasks for stroke rehabilitation training publication-title: Med Nov Technol Dev – volume: 16 year: 2019 ident: bib18 article-title: Deep learning-based electroencephalography analysis: a systematic review publication-title: J Neural Eng – volume: 29 start-page: 1998 year: 2021 ident: bib8 article-title: Improving the performance of individually calibrated SSVEP-BCI by task-discriminant component analysis publication-title: IEEE Trans Neur Sys Reh – volume: 112 start-page: E6058 year: 2015 end-page: E6067 ident: bib9 article-title: High-speed spelling with a noninvasive brain–computer interface publication-title: P Natl Acad Sci Usa – volume: 15 year: 2018 ident: bib19 article-title: Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials publication-title: J Neural Eng – volume: 26 start-page: 4913 year: 2022 end-page: 4924 ident: bib27 article-title: EEGanet: removal of ocular artifact from the EEG signal using generative adversarial networks publication-title: IEEE J Biomed Health – start-page: 2080 year: 2020 end-page: 2085 ident: bib20 article-title: InceptionSSVEP: a multi-scale convolutional neural network for steady-state visual evoked potential classification publication-title: 2020 IEEE 6th international conference on computer and communications (ICCC) – year: 2015 ident: bib23 article-title: Explaining and harnessing adversarial examples publication-title: 3rd international conference on learning representations, ICLR 2015 – volume: 29 start-page: 1634 year: 2021 end-page: 1643 ident: bib14 article-title: SSVEP-EEG denoising via image filtering methods publication-title: IEEE Trans Neur Sys Reh – volume: 12 year: 2015 ident: bib12 article-title: A lower limb exoskeleton control system based on steady state visual evoked potentials publication-title: J Neural Eng – volume: 29 start-page: 2615 year: 2021 end-page: 2624 ident: bib21 article-title: Filter bank convolutional neural network for short time-window steady-state visual evoked potential classification publication-title: IEEE Trans Neur Sys Reh – volume: 26 start-page: 710 year: 2019 end-page: 714 ident: bib31 article-title: Adversarial deep learning in EEG biometrics publication-title: IEEE Signal Process Lett – volume: 8 year: 2020 ident: bib13 article-title: Tiny noise, big mistakes: adversarial perturbations induce errors in brain-computer interface spellers publication-title: Natl Sci Rev – volume: 24 start-page: 2852 year: 2020 end-page: 2859 ident: bib30 article-title: Adversarial representation learning for robust patient-independent epileptic seizure detection publication-title: IEEE J Biomed Health – volume: 30 start-page: 369 year: 2022 end-page: 379 ident: bib32 article-title: Improving cross-state and cross-subject visual ERP-based BCI with temporal modeling and adversarial training publication-title: IEEE Trans Neur Sys Reh – volume: 38 start-page: 5391 year: 2017 end-page: 5420 ident: bib29 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum Brain Mapp – volume: 382 year: 2022 ident: 10.1016/j.medntd.2023.100213_bib3 article-title: Effects of the concentration level, eye fatigue and coffee consumption on the performance of a BCI system based on visual erp-p300 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2022.109722 – year: 2015 ident: 10.1016/j.medntd.2023.100213_bib23 article-title: Explaining and harnessing adversarial examples – volume: 13 year: 2022 ident: 10.1016/j.medntd.2023.100213_bib2 article-title: A new 2-class unilateral upper limb motor imagery tasks for stroke rehabilitation training publication-title: Med Nov Technol Dev – volume: 15 issue: 6 year: 2018 ident: 10.1016/j.medntd.2023.100213_bib19 article-title: Compact convolutional neural networks for classification of asynchronous steady-state visual evoked potentials publication-title: J Neural Eng doi: 10.1088/1741-2552/aae5d8 – volume: 16 issue: 3 year: 2019 ident: 10.1016/j.medntd.2023.100213_bib17 article-title: Deep learning for electroencephalogram (EEG) classification tasks: a review publication-title: J Neural Eng doi: 10.1088/1741-2552/ab0ab5 – volume: 65 start-page: 104 issue: 1 year: 2018 ident: 10.1016/j.medntd.2023.100213_bib7 article-title: Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2017.2694818 – volume: 29 start-page: 2615 year: 2021 ident: 10.1016/j.medntd.2023.100213_bib21 article-title: Filter bank convolutional neural network for short time-window steady-state visual evoked potential classification publication-title: IEEE Trans Neur Sys Reh doi: 10.1109/TNSRE.2021.3132162 – volume: 17 issue: 1 year: 2020 ident: 10.1016/j.medntd.2023.100213_bib10 article-title: An online SSVEP-BCI system in an optical see-through augmented reality environment publication-title: J Neural Eng doi: 10.1088/1741-2552/ab4dc6 – volume: 24 start-page: 2852 issue: 10 year: 2020 ident: 10.1016/j.medntd.2023.100213_bib30 article-title: Adversarial representation learning for robust patient-independent epileptic seizure detection publication-title: IEEE J Biomed Health doi: 10.1109/JBHI.2020.2971610 – volume: 26 start-page: 4913 issue: 10 year: 2022 ident: 10.1016/j.medntd.2023.100213_bib27 article-title: EEGanet: removal of ocular artifact from the EEG signal using generative adversarial networks publication-title: IEEE J Biomed Health doi: 10.1109/JBHI.2021.3131104 – volume: 112 start-page: E6058 issue: 44 year: 2015 ident: 10.1016/j.medntd.2023.100213_bib9 article-title: High-speed spelling with a noninvasive brain–computer interface publication-title: P Natl Acad Sci Usa doi: 10.1073/pnas.1508080112 – volume: 38 start-page: 5391 issue: 11 year: 2017 ident: 10.1016/j.medntd.2023.100213_bib29 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum Brain Mapp doi: 10.1002/hbm.23730 – volume: 12 issue: 4 year: 2015 ident: 10.1016/j.medntd.2023.100213_bib6 article-title: Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain–computer interface publication-title: J Neural Eng doi: 10.1088/1741-2560/12/4/046008 – volume: 8 year: 2020 ident: 10.1016/j.medntd.2023.100213_bib13 article-title: Tiny noise, big mistakes: adversarial perturbations induce errors in brain-computer interface spellers publication-title: Natl Sci Rev – volume: 16 issue: 5 year: 2019 ident: 10.1016/j.medntd.2023.100213_bib18 article-title: Deep learning-based electroencephalography analysis: a systematic review publication-title: J Neural Eng doi: 10.1088/1741-2552/ab260c – volume: 53 start-page: 2610 issue: 12 year: 2006 ident: 10.1016/j.medntd.2023.100213_bib5 article-title: Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2006.886577 – volume: 29 start-page: 1998 year: 2021 ident: 10.1016/j.medntd.2023.100213_bib8 article-title: Improving the performance of individually calibrated SSVEP-BCI by task-discriminant component analysis publication-title: IEEE Trans Neur Sys Reh doi: 10.1109/TNSRE.2021.3114340 – start-page: 2080 year: 2020 ident: 10.1016/j.medntd.2023.100213_bib20 article-title: InceptionSSVEP: a multi-scale convolutional neural network for steady-state visual evoked potential classification – volume: 29 start-page: 862 year: 2021 ident: 10.1016/j.medntd.2023.100213_bib15 article-title: Weak feature extraction and strong noise suppression for SSVEP-EEG based on chaotic detection technology publication-title: IEEE Trans Neur Sys Reh doi: 10.1109/TNSRE.2021.3073918 – volume: 18 issue: 5 year: 2021 ident: 10.1016/j.medntd.2023.100213_bib26 article-title: EEGdenoiseNet: a benchmark dataset for deep learning solutions of EEG denoising publication-title: J Neural Eng doi: 10.1088/1741-2552/ac2bf8 – volume: 380 year: 2022 ident: 10.1016/j.medntd.2023.100213_bib4 article-title: A l1 normalization enhanced dynamic window method for SSVEP-based BCIs publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2022.109688 – volume: 18 issue: 4 year: 2021 ident: 10.1016/j.medntd.2023.100213_bib33 article-title: Enhancing transfer performance across datasets for brain-computer interfaces using a combination of alignment strategies and adaptive batch normalization publication-title: J Neural Eng doi: 10.1088/1741-2552/ac1ed2 – volume: 12 year: 2021 ident: 10.1016/j.medntd.2023.100213_bib1 article-title: Developments and challenges in human performance enhancement technology publication-title: Med Nov Technol Dev – volume: 12 issue: 5 year: 2015 ident: 10.1016/j.medntd.2023.100213_bib12 article-title: A lower limb exoskeleton control system based on steady state visual evoked potentials publication-title: J Neural Eng doi: 10.1088/1741-2560/12/5/056009 – volume: 10 year: 2015 ident: 10.1016/j.medntd.2023.100213_bib24 article-title: A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials publication-title: PLoS One doi: 10.1371/journal.pone.0140703 – volume: 4 start-page: 122 issue: 1–2 year: 2017 ident: 10.1016/j.medntd.2023.100213_bib11 article-title: Asynchronous control of unmanned aerial vehicles using a steady-state visual evoked potential-based brain computer interface publication-title: Brain-Comput Interfa doi: 10.1080/2326263X.2017.1292721 – volume: 29 start-page: 1634 year: 2021 ident: 10.1016/j.medntd.2023.100213_bib14 article-title: SSVEP-EEG denoising via image filtering methods publication-title: IEEE Trans Neur Sys Reh doi: 10.1109/TNSRE.2021.3104825 – volume: 30 start-page: 369 year: 2022 ident: 10.1016/j.medntd.2023.100213_bib32 article-title: Improving cross-state and cross-subject visual ERP-based BCI with temporal modeling and adversarial training publication-title: IEEE Trans Neur Sys Reh doi: 10.1109/TNSRE.2022.3150007 – volume: 8 year: 2019 ident: 10.1016/j.medntd.2023.100213_bib25 article-title: EEG dataset and openbmi toolbox for three BCI paradigms: an investigation into BCI illiteracy publication-title: GigaScience doi: 10.1093/gigascience/giz002 – start-page: 1265 year: 2021 ident: 10.1016/j.medntd.2023.100213_bib28 article-title: A novel convolutional neural network model to remove muscle artifacts from EEG – volume: 26 start-page: 710 issue: 5 year: 2019 ident: 10.1016/j.medntd.2023.100213_bib31 article-title: Adversarial deep learning in EEG biometrics publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2019.2906826 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.medntd.2023.100213_bib16 article-title: Muscle artifact removal toward mobile SSVEP-based BCI: a comparative study publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2021.3118090 – volume: 379 year: 2022 ident: 10.1016/j.medntd.2023.100213_bib22 article-title: A fusion neural network across multi-stimulus for SSVEP target detection publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2022.109674 |
SSID | ssj0002511164 |
Score | 2.2217443 |
Snippet | Brain-computer interface (BCI) based on Steady-State Visual Evoked Potentials (SSVEP) provides an effective method for human-computer communication. In... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 100213 |
SubjectTerms | Adversarial training Electroencephalography Neural networks Physiological artifacts Steady-state visual evoked potentials |
Title | Improving the performance of SSVEP-BCI contaminated by physiological noise via adversarial training |
URI | https://dx.doi.org/10.1016/j.medntd.2023.100213 https://doaj.org/article/48b513de2c40496b9f4105f4a684b248 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQA2JBPEV5yQOrRRI7iT3SqlVBKkIqRd0iP6UypBUNSCz8dnxxUsICC0uGKLKjO8v3nf3ddwhdS0UNSxNFnI00YYZLwlNFiRFKR1wzxetEcfKQjWfsfp7OO62-gBMW5IGD4W4YV2lMjU0082A2U8IBMdExmXGmElaX-fqY10mmYA8G4By0ozy8jwjc9rV1czW5y0easgKh0ITWIqQx_RGXavn-TnjqhJzRPtprsCK-Df94gLZseYh2Js1t-BHSmxMB7GEcXn3XAOClw9Pp8_CR9Ad3GOjoEigvHl1i9YHr04x208PlcrG2-H0hsYTmzGsJSxK3rSOO0Ww0fBqMSdM0gWia5RXJuTMJtZkzuaEsdbmWLjaRSWIrIpcK7w5nJUupoFLymEJLPgXsTMe1y4ylJ2i7XJb2FGFhqZARKM5TwajMpNY-P-LKGGk8DFA9RFqTFaugjVG0pLGXIpi4ABMXwcQ91Ae7br4FZev6hfd30fi7-MvfPZS3XikakBCCvx9q8ev0Z_8x_TnahSEDWewCbVevb_bSw5JKXdUr0D8nn8MvdF7e0g |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+performance+of+SSVEP-BCI+contaminated+by+physiological+noise+via+adversarial+training&rft.jtitle=Medicine+in+novel+technology+and+devices&rft.au=Dai+Wang&rft.au=Aiping+Liu&rft.au=Bo+Xue&rft.au=Le+Wu&rft.date=2023-06-01&rft.pub=Elsevier&rft.issn=2590-0935&rft.eissn=2590-0935&rft.volume=18&rft.spage=100213&rft_id=info:doi/10.1016%2Fj.medntd.2023.100213&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_48b513de2c40496b9f4105f4a684b248 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-0935&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-0935&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-0935&client=summon |