Determination of vehicle working modes for global optimization energy management and evaluation of the economic performance for a certain control strategy
As the physical subject, determining vehicle operating modes is a prerequisite for implementing global optimization energy management. To avoid the case study of different vehicle configurations, a “kinetic/potential energy & onboard energy” conservation framework is proposed to determine vehicl...
Saved in:
Published in | Energy (Oxford) Vol. 251; p. 123825 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
15.07.2022
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As the physical subject, determining vehicle operating modes is a prerequisite for implementing global optimization energy management. To avoid the case study of different vehicle configurations, a “kinetic/potential energy & onboard energy” conservation framework is proposed to determine vehicle working modes. Firstly, typical topologies and existing work modes for hybrid vehicles with different architectures are summarized. As a numerical method, the state space is meshed, which is restricted by introducing trip information. Then, a “kinetic/potential energy & onboard energy” conservation framework is established to determine the work mode between any reachable state points. By combining external factors, internal factors and additional factors reasonably and feasibly, various trigger conditions are generated to realize the one-to-one mapping between work mode and driving condition, which standardizes the DP optimizing process. Correspondingly, the stage cost and control are determined to achieve the optimal energy distribution. Finally, regarding DP strategy as a benchmark, multiple evaluation indexes are proposed to evaluate the utilization ratio of a control strategy to global trip information. An example is given to evaluate the optimal rule-based strategy. The higher the index is, the higher the similarity with the DP strategy is, and the higher the economic performance of the vehicle is.
•An energy conservation framework is established to determine work modes.•An efficient global optimization algorithm is proposed.•Multiple indexes are proposed to evaluate the energy-saving potential. |
---|---|
AbstractList | As the physical subject, determining vehicle operating modes is a prerequisite for implementing global optimization energy management. To avoid the case study of different vehicle configurations, a "kinetic/potential energy & onboard energy" conservation framework is proposed to determine vehicle working modes. Firstly, typical topologies and existing work modes for hybrid vehicles with different architectures are summarized. As a numerical method, the state space is meshed, which is restricted by introducing trip information. Then, a "kinetic/potential energy & onboard energy" conservation framework is established to determine the work mode between any reachable state points. By combining external factors, internal factors and additional factors reasonably and feasibly, various trigger conditions are generated to realize the one-to-one mapping between work mode and driving condition, which standardizes the DP optimizing process. Correspondingly, the stage cost and control are determined to achieve the optimal energy distribution. Finally, regarding DP strategy as a benchmark, multiple evaluation indexes are proposed to evaluate the utilization ratio of a control strategy to global trip information. An example is given to evaluate the optimal rule-based strategy. The higher the index is, the higher the similarity with the DP strategy is, and the higher the economic performance of the vehicle is. As the physical subject, determining vehicle operating modes is a prerequisite for implementing global optimization energy management. To avoid the case study of different vehicle configurations, a “kinetic/potential energy & onboard energy” conservation framework is proposed to determine vehicle working modes. Firstly, typical topologies and existing work modes for hybrid vehicles with different architectures are summarized. As a numerical method, the state space is meshed, which is restricted by introducing trip information. Then, a “kinetic/potential energy & onboard energy” conservation framework is established to determine the work mode between any reachable state points. By combining external factors, internal factors and additional factors reasonably and feasibly, various trigger conditions are generated to realize the one-to-one mapping between work mode and driving condition, which standardizes the DP optimizing process. Correspondingly, the stage cost and control are determined to achieve the optimal energy distribution. Finally, regarding DP strategy as a benchmark, multiple evaluation indexes are proposed to evaluate the utilization ratio of a control strategy to global trip information. An example is given to evaluate the optimal rule-based strategy. The higher the index is, the higher the similarity with the DP strategy is, and the higher the economic performance of the vehicle is. •An energy conservation framework is established to determine work modes.•An efficient global optimization algorithm is proposed.•Multiple indexes are proposed to evaluate the energy-saving potential. |
ArticleNumber | 123825 |
Author | Xu, Zhe Zhang, Yuanjian Sui, Yan Yue, Fenglai Li, Xiaohan Xu, Nan Liu, Heng Kong, Yan |
Author_xml | – sequence: 1 givenname: Nan orcidid: 0000-0002-4154-4763 surname: Xu fullname: Xu, Nan email: nanxu@jlu.edu.cn organization: State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, 130022, China – sequence: 2 givenname: Yan surname: Kong fullname: Kong, Yan organization: State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, 130022, China – sequence: 3 givenname: Yuanjian surname: Zhang fullname: Zhang, Yuanjian organization: School of Mechanical and Aerospace Engineering, Queen's University of Belfast, Northern Ireland, Ireland – sequence: 4 givenname: Fenglai surname: Yue fullname: Yue, Fenglai organization: Vehicle Energy Efficiency and Carbon Emission Reduction Evaluation Laboratory, National New Energy Vehicle Technology Innovation Center, Beijing, 100176, China – sequence: 5 givenname: Yan orcidid: 0000-0002-7552-4111 surname: Sui fullname: Sui, Yan organization: State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, 130022, China – sequence: 6 givenname: Xiaohan surname: Li fullname: Li, Xiaohan organization: State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, 130022, China – sequence: 7 givenname: Heng orcidid: 0000-0002-8441-4395 surname: Liu fullname: Liu, Heng organization: State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, 130022, China – sequence: 8 givenname: Zhe surname: Xu fullname: Xu, Zhe organization: Research and Development Center, China FAW Group Corporation, Changchun, 130000, China |
BookMark | eNqFkb1uFDEUhS2USGx-3oDCEg3NLLZn_DMUSCgQQIqUJr3lte9MvMzYi-3daHkUnjZOBlGkgMrNd861vnOGTkIMgNAbStaUUPF-u4YAaTyuGWFsTVmrGH-FVlTJthFS8RO0Iq0gDe869hqd5bwlhHDV9yv0-zMUSLMPpvgYcBzwAe69nQA_xPTDhxHP0UHGQ0x4nOLGTDjuip_9ryWwHMazCWaEGULBJjgMBzPt_zaWe8BgY4izt3gHqXZV3sJzqcEWUjE-4EqUFCecSzIFxuMFOh3MlOHyz3uO7q6_3F19a25uv36_-nTT2FbI0kjppKVGcdtJ0TvhBq54R5ygTlnLO9ZuNq4lLe0HJaWhhIGwnRFUcTB9256jd0vtLsWfe8hFzz5bmCYTIO6zZqJTSlIiVUXfvkC3cZ9C_VylVM8o5UJWqlsom2LOCQa9S3426agp0U976a1etOmnvfSyV419eBGzvjw7rD789L_wxyUMVdTBQ9LZeqiOnU9gi3bR_7vgEQS_uNs |
CitedBy_id | crossref_primary_10_1016_j_energy_2022_126306 crossref_primary_10_1155_2022_4265125 crossref_primary_10_1016_j_enconman_2023_117154 crossref_primary_10_1109_ACCESS_2023_3292791 crossref_primary_10_1177_09544070241257556 crossref_primary_10_1016_j_energy_2024_130809 crossref_primary_10_1109_TIV_2023_3331268 crossref_primary_10_3390_s23167149 crossref_primary_10_1016_j_energy_2022_124619 crossref_primary_10_1016_j_seta_2024_104138 crossref_primary_10_1088_1742_6596_2785_1_012083 |
Cites_doi | 10.1016/j.apenergy.2015.08.129 10.1109/TCST.2010.2061232 10.1109/TVT.2019.2903119 10.1109/TVT.2019.2927751 10.1016/j.energy.2012.01.009 10.1016/j.apenergy.2016.08.085 10.1016/j.apenergy.2015.12.031 10.1504/IJVD.2015.073116 10.1016/j.apenergy.2013.11.002 10.1016/j.apenergy.2016.02.026 10.1016/j.apenergy.2019.113762 10.1016/j.apenergy.2016.02.023 10.1016/j.apenergy.2022.118668 10.1016/j.enconman.2017.10.073 10.1109/TIE.2013.2263774 10.1109/TITS.2011.2158001 10.1109/TIE.2020.2965463 10.1109/TVT.2008.919988 10.1016/j.jclepro.2019.119627 10.1016/j.jfranklin.2014.07.009 10.1016/j.energy.2021.121423 10.3390/en8043225 10.1016/j.simpat.2012.02.010 10.1016/j.jpowsour.2018.10.047 10.1016/j.energy.2018.10.149 10.3390/en10091284 10.1109/TVT.2016.2582721 10.1016/j.energy.2019.116409 10.1109/TPEL.2019.2933664 10.1109/TITS.2018.2877389 10.1088/1755-1315/121/5/052077 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Jul 15, 2022 |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Jul 15, 2022 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
DOI | 10.1016/j.energy.2022.123825 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 1873-6785 |
ExternalDocumentID | 10_1016_j_energy_2022_123825 S0360544222007289 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ 7SP 7ST 7TB 8FD C1K EFKBS F28 FR3 KR7 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c367t-77d7c1a85c4769d6df58540d61d8cc5423bbd30319f877a102e6c4a6185ea933 |
IEDL.DBID | .~1 |
ISSN | 0360-5442 |
IngestDate | Wed Jul 02 02:59:29 EDT 2025 Wed Aug 13 04:40:49 EDT 2025 Tue Jul 01 04:19:33 EDT 2025 Thu Apr 24 23:13:18 EDT 2025 Sat Apr 27 15:44:45 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Work modes Identification factor Energy conservation framework Energy management Economic performance evaluation Powertrain topology |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-77d7c1a85c4769d6df58540d61d8cc5423bbd30319f877a102e6c4a6185ea933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7552-4111 0000-0002-4154-4763 0000-0002-8441-4395 |
PQID | 2689211567 |
PQPubID | 2045484 |
ParticipantIDs | proquest_miscellaneous_2648871078 proquest_journals_2689211567 crossref_primary_10_1016_j_energy_2022_123825 crossref_citationtrail_10_1016_j_energy_2022_123825 elsevier_sciencedirect_doi_10_1016_j_energy_2022_123825 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-15 |
PublicationDateYYYYMMDD | 2022-07-15 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Sun, Shi, Lei, Guo, Zhu (bib23) 2019; 68 Xu, Kong, Yan, Zhang, Sui, Ju, Liu, Xu (bib19) 2022; 312 Lei, Qin, Hou, Peng, Liu, Chen (bib12) 2020; 190 Wang, Bao, Shi (bib29) 2017; 10 Li, Gorges (bib14) 2019; 68 Peng, He, Xiong (bib1) 2017; 185 Yang, Pei, Hu, Liu, Hou, Cao (bib9) 2019; 166 Wang, He, Sun, Zhang (bib21) 2015; 8 Liu, Peng (bib25) 2008; 6 Solouk, Shakiba-Herfeh, Arora, Shahbakhti (bib15) 2018; 155 Bertsekas (bib2) 1995 Zhang, Xiong, Zhang (bib28) 2015; 159 Sun, Sun, He (bib26) 2017; 185 Zhou, Yang, Cai, Ying (bib4) 2018; 406 He, Zhang, Xiong, Xu, Guo (bib32) 2012; 39 Rahimi-Eichi, Baronti, Chow (bib33) 2014; 61 Martinez, Hu, Cao, Velenis, Gao, Wellers (bib30) 2017; 66 Hou, Ouyang, Xu, Wang (bib35) 2014; 115 Kessels, Koot, van den Bosch, Kok (bib6) 2008; 57 Bellman (bib3) 1957 Wang, Zhang, Yin, Zhang, Wang (bib8) 2012; 25 Peng, Yang, Liu (bib7) 2018; 121 Liu, Chen, Zhan, Shang (bib13) 2019; 68 Wang, Huang, Khajepour, Song (bib18) 2016; 182 Hou, Xu, Wang, Ouyang, Peng (bib34) 2015; 352 Zhang, Wang, Wang, Lin, Xu, Chen (bib11) 2011; 12 Ehsani, Gao, Emadi (bib16) 2010 Kim, Cha, Peng (bib31) 2011; 19 Zhang, Guo, Li, Liu, Chen (bib10) 2020; 251 Li, Gorges (bib22) 2019; 20 Zhou, Zhang, Li (bib5) 2015; 69 Kong, Xu, Zhang, Sui, Ju, Liu, Xu (bib20) 2021; 236 Sun, Diao, Lei, Guo, Zhu (bib27) 2020; 35 Yang, Hu, Pei, Peng (bib24) 2016; 168 Li, He, Khajepour, Wang, Peng (bib17) 2019; 255 Zhou (10.1016/j.energy.2022.123825_bib4) 2018; 406 Li (10.1016/j.energy.2022.123825_bib14) 2019; 68 Wang (10.1016/j.energy.2022.123825_bib29) 2017; 10 Hou (10.1016/j.energy.2022.123825_bib35) 2014; 115 Liu (10.1016/j.energy.2022.123825_bib13) 2019; 68 He (10.1016/j.energy.2022.123825_bib32) 2012; 39 Ehsani (10.1016/j.energy.2022.123825_bib16) 2010 Kong (10.1016/j.energy.2022.123825_bib20) 2021; 236 Kim (10.1016/j.energy.2022.123825_bib31) 2011; 19 Peng (10.1016/j.energy.2022.123825_bib7) 2018; 121 Hou (10.1016/j.energy.2022.123825_bib34) 2015; 352 Sun (10.1016/j.energy.2022.123825_bib23) 2019; 68 Zhang (10.1016/j.energy.2022.123825_bib28) 2015; 159 Bertsekas (10.1016/j.energy.2022.123825_bib2) 1995 Bellman (10.1016/j.energy.2022.123825_bib3) 1957 Zhang (10.1016/j.energy.2022.123825_bib10) 2020; 251 Wang (10.1016/j.energy.2022.123825_bib18) 2016; 182 Sun (10.1016/j.energy.2022.123825_bib27) 2020; 35 Yang (10.1016/j.energy.2022.123825_bib24) 2016; 168 Zhou (10.1016/j.energy.2022.123825_bib5) 2015; 69 Martinez (10.1016/j.energy.2022.123825_bib30) 2017; 66 Li (10.1016/j.energy.2022.123825_bib17) 2019; 255 Wang (10.1016/j.energy.2022.123825_bib21) 2015; 8 Liu (10.1016/j.energy.2022.123825_bib25) 2008; 6 Solouk (10.1016/j.energy.2022.123825_bib15) 2018; 155 Yang (10.1016/j.energy.2022.123825_bib9) 2019; 166 Li (10.1016/j.energy.2022.123825_bib22) 2019; 20 Peng (10.1016/j.energy.2022.123825_bib1) 2017; 185 Kessels (10.1016/j.energy.2022.123825_bib6) 2008; 57 Zhang (10.1016/j.energy.2022.123825_bib11) 2011; 12 Sun (10.1016/j.energy.2022.123825_bib26) 2017; 185 Wang (10.1016/j.energy.2022.123825_bib8) 2012; 25 Xu (10.1016/j.energy.2022.123825_bib19) 2022; 312 Lei (10.1016/j.energy.2022.123825_bib12) 2020; 190 Rahimi-Eichi (10.1016/j.energy.2022.123825_bib33) 2014; 61 |
References_xml | – volume: 115 start-page: 174 year: 2014 end-page: 189 ident: bib35 article-title: Approximate Pontryagin’s minimum principle applied to the energy management of plug-in hybrid electric vehicles publication-title: Appl Energy – volume: 155 start-page: 100 year: 2018 end-page: 115 ident: bib15 article-title: Fuel consumption assessment of an electrified powertrain with a multi-mode high-efficiency engine in various levels of hybridization publication-title: Energy Convers Manag – volume: 8 start-page: 3225 year: 2015 end-page: 3244 ident: bib21 article-title: Application study on the dynamic programming algorithm for energy management of plug-in hybrid electric vehicles publication-title: Energies – volume: 25 start-page: 148 year: 2012 end-page: 162 ident: bib8 article-title: Hardware-in-the loop simulation for the design and verification of the control system of a series-parallel hybrid electric city-bus publication-title: Simulat Model Pract Theor – volume: 57 start-page: 3428 year: 2008 end-page: 3440 ident: bib6 article-title: Online energy management for hybrid electric vehicles publication-title: IEEE Trans Veh Technol – volume: 255 start-page: 113762 year: 2019 ident: bib17 article-title: Energy management for a power-split hybrid electric bus via deep reinforcement learning with terrain information publication-title: Appl Energy – volume: 12 start-page: 1624 year: 2011 end-page: 1639 ident: bib11 article-title: Data-driven intelligent transportation systems: a survey publication-title: IEEE Trans Intell Transport Syst – volume: 69 start-page: 113 year: 2015 end-page: 131 ident: bib5 article-title: Analysis and comparison of optimal power management strategies for a series plug-in hybrid school bus via dynamic programming publication-title: Int. J. Vehicle Design – year: 1995 ident: bib2 article-title: Dynamic programming and optimal control – volume: 182 start-page: 105 year: 2016 end-page: 114 ident: bib18 article-title: Model predictive control-based energy management strategy for a series hybrid electric tracked vehicle publication-title: Appl Energy – year: 1957 ident: bib3 article-title: Dynamic programming – volume: 236 start-page: 121423 year: 2021 ident: bib20 article-title: Acquisition of full-factor trip information for global optimization energy management in multi-energy source vehicles and the measure of the amount of information to be transmitted publication-title: Energy – volume: 6 start-page: 1242 year: 2008 end-page: 1251 ident: bib25 article-title: Modeling and control of a power-split hybrid vehicle publication-title: IEEE Trans Control Syst Technol – volume: 68 start-page: 9519 year: 2019 end-page: 9528 ident: bib14 article-title: Fuel-efficient gear shift and power split strategy for parallel HEVs based on heuristic dynamic programming and neural networks publication-title: IEEE Trans Veh Technol – volume: 68 start-page: 139 year: 2019 end-page: 148 ident: bib23 article-title: Multi-objective design optimization of an IPMSM based on multilevel strategy publication-title: IEEE Trans Ind Electron – volume: 121 year: 2018 ident: bib7 article-title: An energy management for series hybrid electric vehicle using improved dynamic programming publication-title: IOP Conf Ser Earth Environ Sci – volume: 168 start-page: 683 year: 2016 end-page: 690 ident: bib24 article-title: Comparison of power-split and parallel hybrid powertrain architectures with a single electric machine: Dynamic programming approach publication-title: Appl Energy – volume: 185 start-page: 1644 year: 2017 end-page: 1653 ident: bib26 article-title: Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles publication-title: Appl Energy – volume: 66 start-page: 4534 year: 2017 end-page: 4549 ident: bib30 article-title: Energy management in plug-in hybrid electric vehicles: recent progress and a connected vehicles perspective publication-title: IEEE Trans Veh Technol – volume: 251 start-page: 119627 year: 2020 ident: bib10 article-title: Cooperative control strategy for plug-in hybrid electric vehicles based on a hierarchical framework with fast calculation publication-title: J Clean Prod – volume: 20 start-page: 3526 year: 2019 end-page: 3535 ident: bib22 article-title: Ecological adaptive cruise control and energy management strategy for hybrid electric vehicles based on heuristic dynamic programming publication-title: IEEE Trans Intell Transport Syst – volume: 352 start-page: 500 year: 2015 end-page: 518 ident: bib34 article-title: Energy management of plug-in hybrid electric vehicles with unknown trip length publication-title: J Franklin Inst – volume: 190 start-page: 116409 year: 2020 ident: bib12 article-title: An adaptive equivalent consumption minimization strategy for plugin hybrid electric vehicles based on traffic information publication-title: Energy – volume: 185 start-page: 1633 year: 2017 end-page: 1643 ident: bib1 article-title: Rule based energy management strategy for a series-parallel plug-in hybrid electric bus optimized by dynamic programming publication-title: Appl Energy – volume: 35 start-page: 3841 year: 2020 end-page: 3849 ident: bib27 article-title: Real-time HIL emulation for a segmented-rotor switched reluctance motor using a new magnetic equivalent circuit publication-title: IEEE Trans Power Electron – volume: 61 start-page: 2053 year: 2014 end-page: 2061 ident: bib33 article-title: Online adaptive parameter identification and state-of-charge coestimation for lithium-polymer battery cells publication-title: IEEE Trans Ind Electron – volume: 406 start-page: 151 year: 2018 end-page: 166 ident: bib4 article-title: Dynamic programming for new energy vehicle based on their work modes part I: electric vehicles and hybrid electric vehicles publication-title: J Power Sources – volume: 312 start-page: 118668 year: 2022 ident: bib19 article-title: Global optimization energy management for multi-energy source vehicles based on “Information layer - physical layer - energy layer - dynamic programming” (IPE-DP) publication-title: Appl Energy – volume: 19 start-page: 1279 year: 2011 end-page: 1287 ident: bib31 article-title: Optimal control of hybrid electric vehicles based on Pontryagin's minimum principle publication-title: IEEE Trans Control Syst Technol – volume: 68 start-page: 4479 year: 2019 end-page: 4493 ident: bib13 article-title: Heuristic dynamic programming based online energy management strategy for plug-in hybrid electric vehicles publication-title: IEEE Trans Veh Technol – volume: 159 start-page: 370 year: 2015 end-page: 380 ident: bib28 article-title: Pontryagin's minimum principle based power management of a dual-motor-driven electric bus publication-title: Appl Energy – volume: 39 start-page: 310 year: 2012 end-page: 318 ident: bib32 article-title: Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles publication-title: Energy – volume: 10 start-page: 1284 year: 2017 ident: bib29 article-title: Online lithium-ion battery internal resistance measurement application in state-of-charge estimation using the extended kalman filter publication-title: Energies – start-page: 123 year: 2010 end-page: 144 ident: bib16 article-title: Modern electric, hybrid electric and fuel cell vehicles: fundamentals, theory, and design – volume: 166 start-page: 929 year: 2019 end-page: 938 ident: bib9 article-title: Fuel economy optimization of power split hybrid vehicles: a rapid dynamic programming approach publication-title: Energy – volume: 159 start-page: 370 year: 2015 ident: 10.1016/j.energy.2022.123825_bib28 article-title: Pontryagin's minimum principle based power management of a dual-motor-driven electric bus publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.08.129 – volume: 19 start-page: 1279 issue: 5 year: 2011 ident: 10.1016/j.energy.2022.123825_bib31 article-title: Optimal control of hybrid electric vehicles based on Pontryagin's minimum principle publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2010.2061232 – volume: 68 start-page: 4479 issue: 5 year: 2019 ident: 10.1016/j.energy.2022.123825_bib13 article-title: Heuristic dynamic programming based online energy management strategy for plug-in hybrid electric vehicles publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2019.2903119 – volume: 68 start-page: 9519 issue: 10 year: 2019 ident: 10.1016/j.energy.2022.123825_bib14 article-title: Fuel-efficient gear shift and power split strategy for parallel HEVs based on heuristic dynamic programming and neural networks publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2019.2927751 – volume: 39 start-page: 310 issue: 1 year: 2012 ident: 10.1016/j.energy.2022.123825_bib32 article-title: Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles publication-title: Energy doi: 10.1016/j.energy.2012.01.009 – volume: 182 start-page: 105 year: 2016 ident: 10.1016/j.energy.2022.123825_bib18 article-title: Model predictive control-based energy management strategy for a series hybrid electric tracked vehicle publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.08.085 – volume: 185 start-page: 1633 issue: 2 year: 2017 ident: 10.1016/j.energy.2022.123825_bib1 article-title: Rule based energy management strategy for a series-parallel plug-in hybrid electric bus optimized by dynamic programming publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.12.031 – volume: 69 start-page: 113 issue: 1–4 year: 2015 ident: 10.1016/j.energy.2022.123825_bib5 article-title: Analysis and comparison of optimal power management strategies for a series plug-in hybrid school bus via dynamic programming publication-title: Int. J. Vehicle Design doi: 10.1504/IJVD.2015.073116 – volume: 115 start-page: 174 year: 2014 ident: 10.1016/j.energy.2022.123825_bib35 article-title: Approximate Pontryagin’s minimum principle applied to the energy management of plug-in hybrid electric vehicles publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.11.002 – year: 1995 ident: 10.1016/j.energy.2022.123825_bib2 – start-page: 123 year: 2010 ident: 10.1016/j.energy.2022.123825_bib16 – volume: 185 start-page: 1644 issue: 2 year: 2017 ident: 10.1016/j.energy.2022.123825_bib26 article-title: Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.02.026 – volume: 255 start-page: 113762 year: 2019 ident: 10.1016/j.energy.2022.123825_bib17 article-title: Energy management for a power-split hybrid electric bus via deep reinforcement learning with terrain information publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113762 – year: 1957 ident: 10.1016/j.energy.2022.123825_bib3 – volume: 168 start-page: 683 year: 2016 ident: 10.1016/j.energy.2022.123825_bib24 article-title: Comparison of power-split and parallel hybrid powertrain architectures with a single electric machine: Dynamic programming approach publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.02.023 – volume: 312 start-page: 118668 year: 2022 ident: 10.1016/j.energy.2022.123825_bib19 article-title: Global optimization energy management for multi-energy source vehicles based on “Information layer - physical layer - energy layer - dynamic programming” (IPE-DP) publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.118668 – volume: 6 start-page: 1242 issue: 16 year: 2008 ident: 10.1016/j.energy.2022.123825_bib25 article-title: Modeling and control of a power-split hybrid vehicle publication-title: IEEE Trans Control Syst Technol – volume: 155 start-page: 100 year: 2018 ident: 10.1016/j.energy.2022.123825_bib15 article-title: Fuel consumption assessment of an electrified powertrain with a multi-mode high-efficiency engine in various levels of hybridization publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2017.10.073 – volume: 61 start-page: 2053 issue: 4 year: 2014 ident: 10.1016/j.energy.2022.123825_bib33 article-title: Online adaptive parameter identification and state-of-charge coestimation for lithium-polymer battery cells publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2013.2263774 – volume: 12 start-page: 1624 issue: 4 year: 2011 ident: 10.1016/j.energy.2022.123825_bib11 article-title: Data-driven intelligent transportation systems: a survey publication-title: IEEE Trans Intell Transport Syst doi: 10.1109/TITS.2011.2158001 – volume: 68 start-page: 139 issue: 1 year: 2019 ident: 10.1016/j.energy.2022.123825_bib23 article-title: Multi-objective design optimization of an IPMSM based on multilevel strategy publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2020.2965463 – volume: 57 start-page: 3428 issue: 6 year: 2008 ident: 10.1016/j.energy.2022.123825_bib6 article-title: Online energy management for hybrid electric vehicles publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2008.919988 – volume: 251 start-page: 119627 year: 2020 ident: 10.1016/j.energy.2022.123825_bib10 article-title: Cooperative control strategy for plug-in hybrid electric vehicles based on a hierarchical framework with fast calculation publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.119627 – volume: 352 start-page: 500 issue: 2 year: 2015 ident: 10.1016/j.energy.2022.123825_bib34 article-title: Energy management of plug-in hybrid electric vehicles with unknown trip length publication-title: J Franklin Inst doi: 10.1016/j.jfranklin.2014.07.009 – volume: 236 start-page: 121423 year: 2021 ident: 10.1016/j.energy.2022.123825_bib20 article-title: Acquisition of full-factor trip information for global optimization energy management in multi-energy source vehicles and the measure of the amount of information to be transmitted publication-title: Energy doi: 10.1016/j.energy.2021.121423 – volume: 8 start-page: 3225 issue: 4 year: 2015 ident: 10.1016/j.energy.2022.123825_bib21 article-title: Application study on the dynamic programming algorithm for energy management of plug-in hybrid electric vehicles publication-title: Energies doi: 10.3390/en8043225 – volume: 25 start-page: 148 year: 2012 ident: 10.1016/j.energy.2022.123825_bib8 article-title: Hardware-in-the loop simulation for the design and verification of the control system of a series-parallel hybrid electric city-bus publication-title: Simulat Model Pract Theor doi: 10.1016/j.simpat.2012.02.010 – volume: 406 start-page: 151 year: 2018 ident: 10.1016/j.energy.2022.123825_bib4 article-title: Dynamic programming for new energy vehicle based on their work modes part I: electric vehicles and hybrid electric vehicles publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.10.047 – volume: 166 start-page: 929 year: 2019 ident: 10.1016/j.energy.2022.123825_bib9 article-title: Fuel economy optimization of power split hybrid vehicles: a rapid dynamic programming approach publication-title: Energy doi: 10.1016/j.energy.2018.10.149 – volume: 10 start-page: 1284 issue: 9 year: 2017 ident: 10.1016/j.energy.2022.123825_bib29 article-title: Online lithium-ion battery internal resistance measurement application in state-of-charge estimation using the extended kalman filter publication-title: Energies doi: 10.3390/en10091284 – volume: 66 start-page: 4534 issue: 6 year: 2017 ident: 10.1016/j.energy.2022.123825_bib30 article-title: Energy management in plug-in hybrid electric vehicles: recent progress and a connected vehicles perspective publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2016.2582721 – volume: 190 start-page: 116409 year: 2020 ident: 10.1016/j.energy.2022.123825_bib12 article-title: An adaptive equivalent consumption minimization strategy for plugin hybrid electric vehicles based on traffic information publication-title: Energy doi: 10.1016/j.energy.2019.116409 – volume: 35 start-page: 3841 issue: 4 year: 2020 ident: 10.1016/j.energy.2022.123825_bib27 article-title: Real-time HIL emulation for a segmented-rotor switched reluctance motor using a new magnetic equivalent circuit publication-title: IEEE Trans Power Electron doi: 10.1109/TPEL.2019.2933664 – volume: 20 start-page: 3526 issue: 9 year: 2019 ident: 10.1016/j.energy.2022.123825_bib22 article-title: Ecological adaptive cruise control and energy management strategy for hybrid electric vehicles based on heuristic dynamic programming publication-title: IEEE Trans Intell Transport Syst doi: 10.1109/TITS.2018.2877389 – volume: 121 year: 2018 ident: 10.1016/j.energy.2022.123825_bib7 article-title: An energy management for series hybrid electric vehicle using improved dynamic programming publication-title: IOP Conf Ser Earth Environ Sci doi: 10.1088/1755-1315/121/5/052077 |
SSID | ssj0005899 |
Score | 2.4597242 |
Snippet | As the physical subject, determining vehicle operating modes is a prerequisite for implementing global optimization energy management. To avoid the case study... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 123825 |
SubjectTerms | case studies Conservation Driving conditions economic performance Economic performance evaluation Economics Energy conservation Energy conservation framework Energy distribution Energy management Global optimization Hybrid vehicles Identification factor Mathematical models Numerical methods Performance indices Potential energy Powertrain topology Topology Work modes |
Title | Determination of vehicle working modes for global optimization energy management and evaluation of the economic performance for a certain control strategy |
URI | https://dx.doi.org/10.1016/j.energy.2022.123825 https://www.proquest.com/docview/2689211567 https://www.proquest.com/docview/2648871078 |
Volume | 251 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB1V5QAXBIWKhVINEtd0SezY3mNVWi0geqFIvVmO7Ygiml01W6pe-BC-lpnY2QWEVInjZideb8Z-fnbmzQC8LlvVRF21BS2eqpBe0JyrZ7JoBdERL-jCkOz546maf5bvz-vzLTgatTAcVpmxP2H6gNb5yjQ_zeny4mL6ibCX-AYfYXD6a8MiPik1j_KDH7-FeZihhiQbF2w9yueGGK846Otol1hVBwThhgtm_3t5-guoh9Xn5BE8zLQRD1PPHsNW7Hbg_qgq7ndg93ijWCPDPGX7J_Dz7Rjwwi7ARYvf4xduBG_SOTlyMZweibxiyg6CC4KRy6zPxNR5vFyHyaDrAm6ShHOLRCIx5r7gciNFGBp16FPYAeaweOxTRtzbp3B2cnx2NC9yQYbCC6VXxMSD9qUztafnPAsqtLTZkG-CKoPxviZm1jRBsC6qNVo74i5ReekUcYLoZkLswna36OIzQNoDh9ZJ7ZzxsnXBMdIEVwrl6sb5agJidIP1OVk518z4ZseotK82_X_LzrPJeRMo1nctU7KOO-z16GH7x6CztJ7ccefeOCBsnvS9rZSZ0X66VnoCr9Zf03TldzCui4trtiHEJFanzfP__vEX8IA_8QlzWe_B9urqOr4karRq9oexvw_3Dt99mJ_-AiFSEdM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7aFcEBQqthQYJK5hyct2jlVptaXtXlik3izHdkQRza6aLah_pb-WmdjZFQipEle_4mQ8nz878wB4nzai9jJrEto8RVLYnHSurIqkyYmO2JwK-mDPFzMx_Vp8viwvt-Bo8IVhs8qI_QHTe7SOJZP4NSfLq6vJF8Je4ht8hcHhr1X1CLY5OlU5gu3D07PpbGPpofo0ktw-4Q6DB11v5uV7Fzs6KGbZB0JxxTmz_71D_YXV_QZ08hSeROaIh2Fyz2DLt7uwMzgWd7uwd7xxWqOGUWu753D_abB5YSngosGf_hsPgr_CVTlyPpwOib9iCBCCC0KS6-iiiWHyeL22lEHTOtzECecRiUeij3PB5cYboR_UoA2WBxgt47ELQXHvXsD85Hh-NE1iTobE5kKuiIw7aVOjSltIUTnhGjpvFB-dSJ2ytiRyVtcuZ9eoRklpiL54YQsjiBZ4U-X5HozaRetfAtIx2DWmkMYoWzTGGQYbZ9JcmLI2NhtDPohB2xivnNNm_NCDYdp3Hd5fs_B0EN4YknWvZYjX8UB7OUhY_7HuNG0pD_Q8GBaEjnrf6Uyoio7UpZBjeLeuJo3l3zCm9YtbbkOgScROqv3_fvhb2JnOL871-ens7BU85hq-cE7LAxitbm79a2JKq_pN1ITfahsUhA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determination+of+vehicle+working+modes+for+global+optimization+energy+management+and+evaluation+of+the+economic+performance+for+a+certain+control+strategy&rft.jtitle=Energy+%28Oxford%29&rft.au=Xu%2C+Nan&rft.au=Kong%2C+Yan&rft.au=Zhang%2C+Yuanjian&rft.au=Yue%2C+Fenglai&rft.date=2022-07-15&rft.issn=0360-5442&rft.volume=251+p.123825-&rft_id=info:doi/10.1016%2Fj.energy.2022.123825&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |