Determination of vehicle working modes for global optimization energy management and evaluation of the economic performance for a certain control strategy

As the physical subject, determining vehicle operating modes is a prerequisite for implementing global optimization energy management. To avoid the case study of different vehicle configurations, a “kinetic/potential energy & onboard energy” conservation framework is proposed to determine vehicl...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 251; p. 123825
Main Authors Xu, Nan, Kong, Yan, Zhang, Yuanjian, Yue, Fenglai, Sui, Yan, Li, Xiaohan, Liu, Heng, Xu, Zhe
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.07.2022
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As the physical subject, determining vehicle operating modes is a prerequisite for implementing global optimization energy management. To avoid the case study of different vehicle configurations, a “kinetic/potential energy & onboard energy” conservation framework is proposed to determine vehicle working modes. Firstly, typical topologies and existing work modes for hybrid vehicles with different architectures are summarized. As a numerical method, the state space is meshed, which is restricted by introducing trip information. Then, a “kinetic/potential energy & onboard energy” conservation framework is established to determine the work mode between any reachable state points. By combining external factors, internal factors and additional factors reasonably and feasibly, various trigger conditions are generated to realize the one-to-one mapping between work mode and driving condition, which standardizes the DP optimizing process. Correspondingly, the stage cost and control are determined to achieve the optimal energy distribution. Finally, regarding DP strategy as a benchmark, multiple evaluation indexes are proposed to evaluate the utilization ratio of a control strategy to global trip information. An example is given to evaluate the optimal rule-based strategy. The higher the index is, the higher the similarity with the DP strategy is, and the higher the economic performance of the vehicle is. •An energy conservation framework is established to determine work modes.•An efficient global optimization algorithm is proposed.•Multiple indexes are proposed to evaluate the energy-saving potential.
AbstractList As the physical subject, determining vehicle operating modes is a prerequisite for implementing global optimization energy management. To avoid the case study of different vehicle configurations, a "kinetic/potential energy & onboard energy" conservation framework is proposed to determine vehicle working modes. Firstly, typical topologies and existing work modes for hybrid vehicles with different architectures are summarized. As a numerical method, the state space is meshed, which is restricted by introducing trip information. Then, a "kinetic/potential energy & onboard energy" conservation framework is established to determine the work mode between any reachable state points. By combining external factors, internal factors and additional factors reasonably and feasibly, various trigger conditions are generated to realize the one-to-one mapping between work mode and driving condition, which standardizes the DP optimizing process. Correspondingly, the stage cost and control are determined to achieve the optimal energy distribution. Finally, regarding DP strategy as a benchmark, multiple evaluation indexes are proposed to evaluate the utilization ratio of a control strategy to global trip information. An example is given to evaluate the optimal rule-based strategy. The higher the index is, the higher the similarity with the DP strategy is, and the higher the economic performance of the vehicle is.
As the physical subject, determining vehicle operating modes is a prerequisite for implementing global optimization energy management. To avoid the case study of different vehicle configurations, a “kinetic/potential energy & onboard energy” conservation framework is proposed to determine vehicle working modes. Firstly, typical topologies and existing work modes for hybrid vehicles with different architectures are summarized. As a numerical method, the state space is meshed, which is restricted by introducing trip information. Then, a “kinetic/potential energy & onboard energy” conservation framework is established to determine the work mode between any reachable state points. By combining external factors, internal factors and additional factors reasonably and feasibly, various trigger conditions are generated to realize the one-to-one mapping between work mode and driving condition, which standardizes the DP optimizing process. Correspondingly, the stage cost and control are determined to achieve the optimal energy distribution. Finally, regarding DP strategy as a benchmark, multiple evaluation indexes are proposed to evaluate the utilization ratio of a control strategy to global trip information. An example is given to evaluate the optimal rule-based strategy. The higher the index is, the higher the similarity with the DP strategy is, and the higher the economic performance of the vehicle is. •An energy conservation framework is established to determine work modes.•An efficient global optimization algorithm is proposed.•Multiple indexes are proposed to evaluate the energy-saving potential.
ArticleNumber 123825
Author Xu, Zhe
Zhang, Yuanjian
Sui, Yan
Yue, Fenglai
Li, Xiaohan
Xu, Nan
Liu, Heng
Kong, Yan
Author_xml – sequence: 1
  givenname: Nan
  orcidid: 0000-0002-4154-4763
  surname: Xu
  fullname: Xu, Nan
  email: nanxu@jlu.edu.cn
  organization: State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, 130022, China
– sequence: 2
  givenname: Yan
  surname: Kong
  fullname: Kong, Yan
  organization: State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, 130022, China
– sequence: 3
  givenname: Yuanjian
  surname: Zhang
  fullname: Zhang, Yuanjian
  organization: School of Mechanical and Aerospace Engineering, Queen's University of Belfast, Northern Ireland, Ireland
– sequence: 4
  givenname: Fenglai
  surname: Yue
  fullname: Yue, Fenglai
  organization: Vehicle Energy Efficiency and Carbon Emission Reduction Evaluation Laboratory, National New Energy Vehicle Technology Innovation Center, Beijing, 100176, China
– sequence: 5
  givenname: Yan
  orcidid: 0000-0002-7552-4111
  surname: Sui
  fullname: Sui, Yan
  organization: State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, 130022, China
– sequence: 6
  givenname: Xiaohan
  surname: Li
  fullname: Li, Xiaohan
  organization: State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, 130022, China
– sequence: 7
  givenname: Heng
  orcidid: 0000-0002-8441-4395
  surname: Liu
  fullname: Liu, Heng
  organization: State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, 130022, China
– sequence: 8
  givenname: Zhe
  surname: Xu
  fullname: Xu, Zhe
  organization: Research and Development Center, China FAW Group Corporation, Changchun, 130000, China
BookMark eNqFkb1uFDEUhS2USGx-3oDCEg3NLLZn_DMUSCgQQIqUJr3lte9MvMzYi-3daHkUnjZOBlGkgMrNd861vnOGTkIMgNAbStaUUPF-u4YAaTyuGWFsTVmrGH-FVlTJthFS8RO0Iq0gDe869hqd5bwlhHDV9yv0-zMUSLMPpvgYcBzwAe69nQA_xPTDhxHP0UHGQ0x4nOLGTDjuip_9ryWwHMazCWaEGULBJjgMBzPt_zaWe8BgY4izt3gHqXZV3sJzqcEWUjE-4EqUFCecSzIFxuMFOh3MlOHyz3uO7q6_3F19a25uv36_-nTT2FbI0kjppKVGcdtJ0TvhBq54R5ygTlnLO9ZuNq4lLe0HJaWhhIGwnRFUcTB9256jd0vtLsWfe8hFzz5bmCYTIO6zZqJTSlIiVUXfvkC3cZ9C_VylVM8o5UJWqlsom2LOCQa9S3426agp0U976a1etOmnvfSyV419eBGzvjw7rD789L_wxyUMVdTBQ9LZeqiOnU9gi3bR_7vgEQS_uNs
CitedBy_id crossref_primary_10_1016_j_energy_2022_126306
crossref_primary_10_1155_2022_4265125
crossref_primary_10_1016_j_enconman_2023_117154
crossref_primary_10_1109_ACCESS_2023_3292791
crossref_primary_10_1177_09544070241257556
crossref_primary_10_1016_j_energy_2024_130809
crossref_primary_10_1109_TIV_2023_3331268
crossref_primary_10_3390_s23167149
crossref_primary_10_1016_j_energy_2022_124619
crossref_primary_10_1016_j_seta_2024_104138
crossref_primary_10_1088_1742_6596_2785_1_012083
Cites_doi 10.1016/j.apenergy.2015.08.129
10.1109/TCST.2010.2061232
10.1109/TVT.2019.2903119
10.1109/TVT.2019.2927751
10.1016/j.energy.2012.01.009
10.1016/j.apenergy.2016.08.085
10.1016/j.apenergy.2015.12.031
10.1504/IJVD.2015.073116
10.1016/j.apenergy.2013.11.002
10.1016/j.apenergy.2016.02.026
10.1016/j.apenergy.2019.113762
10.1016/j.apenergy.2016.02.023
10.1016/j.apenergy.2022.118668
10.1016/j.enconman.2017.10.073
10.1109/TIE.2013.2263774
10.1109/TITS.2011.2158001
10.1109/TIE.2020.2965463
10.1109/TVT.2008.919988
10.1016/j.jclepro.2019.119627
10.1016/j.jfranklin.2014.07.009
10.1016/j.energy.2021.121423
10.3390/en8043225
10.1016/j.simpat.2012.02.010
10.1016/j.jpowsour.2018.10.047
10.1016/j.energy.2018.10.149
10.3390/en10091284
10.1109/TVT.2016.2582721
10.1016/j.energy.2019.116409
10.1109/TPEL.2019.2933664
10.1109/TITS.2018.2877389
10.1088/1755-1315/121/5/052077
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Jul 15, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 15, 2022
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2022.123825
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
ExternalDocumentID 10_1016_j_energy_2022_123825
S0360544222007289
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
7SP
7ST
7TB
8FD
C1K
EFKBS
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c367t-77d7c1a85c4769d6df58540d61d8cc5423bbd30319f877a102e6c4a6185ea933
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Wed Jul 02 02:59:29 EDT 2025
Wed Aug 13 04:40:49 EDT 2025
Tue Jul 01 04:19:33 EDT 2025
Thu Apr 24 23:13:18 EDT 2025
Sat Apr 27 15:44:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Work modes
Identification factor
Energy conservation framework
Energy management
Economic performance evaluation
Powertrain topology
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-77d7c1a85c4769d6df58540d61d8cc5423bbd30319f877a102e6c4a6185ea933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7552-4111
0000-0002-4154-4763
0000-0002-8441-4395
PQID 2689211567
PQPubID 2045484
ParticipantIDs proquest_miscellaneous_2648871078
proquest_journals_2689211567
crossref_primary_10_1016_j_energy_2022_123825
crossref_citationtrail_10_1016_j_energy_2022_123825
elsevier_sciencedirect_doi_10_1016_j_energy_2022_123825
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-15
PublicationDateYYYYMMDD 2022-07-15
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-15
  day: 15
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Sun, Shi, Lei, Guo, Zhu (bib23) 2019; 68
Xu, Kong, Yan, Zhang, Sui, Ju, Liu, Xu (bib19) 2022; 312
Lei, Qin, Hou, Peng, Liu, Chen (bib12) 2020; 190
Wang, Bao, Shi (bib29) 2017; 10
Li, Gorges (bib14) 2019; 68
Peng, He, Xiong (bib1) 2017; 185
Yang, Pei, Hu, Liu, Hou, Cao (bib9) 2019; 166
Wang, He, Sun, Zhang (bib21) 2015; 8
Liu, Peng (bib25) 2008; 6
Solouk, Shakiba-Herfeh, Arora, Shahbakhti (bib15) 2018; 155
Bertsekas (bib2) 1995
Zhang, Xiong, Zhang (bib28) 2015; 159
Sun, Sun, He (bib26) 2017; 185
Zhou, Yang, Cai, Ying (bib4) 2018; 406
He, Zhang, Xiong, Xu, Guo (bib32) 2012; 39
Rahimi-Eichi, Baronti, Chow (bib33) 2014; 61
Martinez, Hu, Cao, Velenis, Gao, Wellers (bib30) 2017; 66
Hou, Ouyang, Xu, Wang (bib35) 2014; 115
Kessels, Koot, van den Bosch, Kok (bib6) 2008; 57
Bellman (bib3) 1957
Wang, Zhang, Yin, Zhang, Wang (bib8) 2012; 25
Peng, Yang, Liu (bib7) 2018; 121
Liu, Chen, Zhan, Shang (bib13) 2019; 68
Wang, Huang, Khajepour, Song (bib18) 2016; 182
Hou, Xu, Wang, Ouyang, Peng (bib34) 2015; 352
Zhang, Wang, Wang, Lin, Xu, Chen (bib11) 2011; 12
Ehsani, Gao, Emadi (bib16) 2010
Kim, Cha, Peng (bib31) 2011; 19
Zhang, Guo, Li, Liu, Chen (bib10) 2020; 251
Li, Gorges (bib22) 2019; 20
Zhou, Zhang, Li (bib5) 2015; 69
Kong, Xu, Zhang, Sui, Ju, Liu, Xu (bib20) 2021; 236
Sun, Diao, Lei, Guo, Zhu (bib27) 2020; 35
Yang, Hu, Pei, Peng (bib24) 2016; 168
Li, He, Khajepour, Wang, Peng (bib17) 2019; 255
Zhou (10.1016/j.energy.2022.123825_bib4) 2018; 406
Li (10.1016/j.energy.2022.123825_bib14) 2019; 68
Wang (10.1016/j.energy.2022.123825_bib29) 2017; 10
Hou (10.1016/j.energy.2022.123825_bib35) 2014; 115
Liu (10.1016/j.energy.2022.123825_bib13) 2019; 68
He (10.1016/j.energy.2022.123825_bib32) 2012; 39
Ehsani (10.1016/j.energy.2022.123825_bib16) 2010
Kong (10.1016/j.energy.2022.123825_bib20) 2021; 236
Kim (10.1016/j.energy.2022.123825_bib31) 2011; 19
Peng (10.1016/j.energy.2022.123825_bib7) 2018; 121
Hou (10.1016/j.energy.2022.123825_bib34) 2015; 352
Sun (10.1016/j.energy.2022.123825_bib23) 2019; 68
Zhang (10.1016/j.energy.2022.123825_bib28) 2015; 159
Bertsekas (10.1016/j.energy.2022.123825_bib2) 1995
Bellman (10.1016/j.energy.2022.123825_bib3) 1957
Zhang (10.1016/j.energy.2022.123825_bib10) 2020; 251
Wang (10.1016/j.energy.2022.123825_bib18) 2016; 182
Sun (10.1016/j.energy.2022.123825_bib27) 2020; 35
Yang (10.1016/j.energy.2022.123825_bib24) 2016; 168
Zhou (10.1016/j.energy.2022.123825_bib5) 2015; 69
Martinez (10.1016/j.energy.2022.123825_bib30) 2017; 66
Li (10.1016/j.energy.2022.123825_bib17) 2019; 255
Wang (10.1016/j.energy.2022.123825_bib21) 2015; 8
Liu (10.1016/j.energy.2022.123825_bib25) 2008; 6
Solouk (10.1016/j.energy.2022.123825_bib15) 2018; 155
Yang (10.1016/j.energy.2022.123825_bib9) 2019; 166
Li (10.1016/j.energy.2022.123825_bib22) 2019; 20
Peng (10.1016/j.energy.2022.123825_bib1) 2017; 185
Kessels (10.1016/j.energy.2022.123825_bib6) 2008; 57
Zhang (10.1016/j.energy.2022.123825_bib11) 2011; 12
Sun (10.1016/j.energy.2022.123825_bib26) 2017; 185
Wang (10.1016/j.energy.2022.123825_bib8) 2012; 25
Xu (10.1016/j.energy.2022.123825_bib19) 2022; 312
Lei (10.1016/j.energy.2022.123825_bib12) 2020; 190
Rahimi-Eichi (10.1016/j.energy.2022.123825_bib33) 2014; 61
References_xml – volume: 115
  start-page: 174
  year: 2014
  end-page: 189
  ident: bib35
  article-title: Approximate Pontryagin’s minimum principle applied to the energy management of plug-in hybrid electric vehicles
  publication-title: Appl Energy
– volume: 155
  start-page: 100
  year: 2018
  end-page: 115
  ident: bib15
  article-title: Fuel consumption assessment of an electrified powertrain with a multi-mode high-efficiency engine in various levels of hybridization
  publication-title: Energy Convers Manag
– volume: 8
  start-page: 3225
  year: 2015
  end-page: 3244
  ident: bib21
  article-title: Application study on the dynamic programming algorithm for energy management of plug-in hybrid electric vehicles
  publication-title: Energies
– volume: 25
  start-page: 148
  year: 2012
  end-page: 162
  ident: bib8
  article-title: Hardware-in-the loop simulation for the design and verification of the control system of a series-parallel hybrid electric city-bus
  publication-title: Simulat Model Pract Theor
– volume: 57
  start-page: 3428
  year: 2008
  end-page: 3440
  ident: bib6
  article-title: Online energy management for hybrid electric vehicles
  publication-title: IEEE Trans Veh Technol
– volume: 255
  start-page: 113762
  year: 2019
  ident: bib17
  article-title: Energy management for a power-split hybrid electric bus via deep reinforcement learning with terrain information
  publication-title: Appl Energy
– volume: 12
  start-page: 1624
  year: 2011
  end-page: 1639
  ident: bib11
  article-title: Data-driven intelligent transportation systems: a survey
  publication-title: IEEE Trans Intell Transport Syst
– volume: 69
  start-page: 113
  year: 2015
  end-page: 131
  ident: bib5
  article-title: Analysis and comparison of optimal power management strategies for a series plug-in hybrid school bus via dynamic programming
  publication-title: Int. J. Vehicle Design
– year: 1995
  ident: bib2
  article-title: Dynamic programming and optimal control
– volume: 182
  start-page: 105
  year: 2016
  end-page: 114
  ident: bib18
  article-title: Model predictive control-based energy management strategy for a series hybrid electric tracked vehicle
  publication-title: Appl Energy
– year: 1957
  ident: bib3
  article-title: Dynamic programming
– volume: 236
  start-page: 121423
  year: 2021
  ident: bib20
  article-title: Acquisition of full-factor trip information for global optimization energy management in multi-energy source vehicles and the measure of the amount of information to be transmitted
  publication-title: Energy
– volume: 6
  start-page: 1242
  year: 2008
  end-page: 1251
  ident: bib25
  article-title: Modeling and control of a power-split hybrid vehicle
  publication-title: IEEE Trans Control Syst Technol
– volume: 68
  start-page: 9519
  year: 2019
  end-page: 9528
  ident: bib14
  article-title: Fuel-efficient gear shift and power split strategy for parallel HEVs based on heuristic dynamic programming and neural networks
  publication-title: IEEE Trans Veh Technol
– volume: 68
  start-page: 139
  year: 2019
  end-page: 148
  ident: bib23
  article-title: Multi-objective design optimization of an IPMSM based on multilevel strategy
  publication-title: IEEE Trans Ind Electron
– volume: 121
  year: 2018
  ident: bib7
  article-title: An energy management for series hybrid electric vehicle using improved dynamic programming
  publication-title: IOP Conf Ser Earth Environ Sci
– volume: 168
  start-page: 683
  year: 2016
  end-page: 690
  ident: bib24
  article-title: Comparison of power-split and parallel hybrid powertrain architectures with a single electric machine: Dynamic programming approach
  publication-title: Appl Energy
– volume: 185
  start-page: 1644
  year: 2017
  end-page: 1653
  ident: bib26
  article-title: Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles
  publication-title: Appl Energy
– volume: 66
  start-page: 4534
  year: 2017
  end-page: 4549
  ident: bib30
  article-title: Energy management in plug-in hybrid electric vehicles: recent progress and a connected vehicles perspective
  publication-title: IEEE Trans Veh Technol
– volume: 251
  start-page: 119627
  year: 2020
  ident: bib10
  article-title: Cooperative control strategy for plug-in hybrid electric vehicles based on a hierarchical framework with fast calculation
  publication-title: J Clean Prod
– volume: 20
  start-page: 3526
  year: 2019
  end-page: 3535
  ident: bib22
  article-title: Ecological adaptive cruise control and energy management strategy for hybrid electric vehicles based on heuristic dynamic programming
  publication-title: IEEE Trans Intell Transport Syst
– volume: 352
  start-page: 500
  year: 2015
  end-page: 518
  ident: bib34
  article-title: Energy management of plug-in hybrid electric vehicles with unknown trip length
  publication-title: J Franklin Inst
– volume: 190
  start-page: 116409
  year: 2020
  ident: bib12
  article-title: An adaptive equivalent consumption minimization strategy for plugin hybrid electric vehicles based on traffic information
  publication-title: Energy
– volume: 185
  start-page: 1633
  year: 2017
  end-page: 1643
  ident: bib1
  article-title: Rule based energy management strategy for a series-parallel plug-in hybrid electric bus optimized by dynamic programming
  publication-title: Appl Energy
– volume: 35
  start-page: 3841
  year: 2020
  end-page: 3849
  ident: bib27
  article-title: Real-time HIL emulation for a segmented-rotor switched reluctance motor using a new magnetic equivalent circuit
  publication-title: IEEE Trans Power Electron
– volume: 61
  start-page: 2053
  year: 2014
  end-page: 2061
  ident: bib33
  article-title: Online adaptive parameter identification and state-of-charge coestimation for lithium-polymer battery cells
  publication-title: IEEE Trans Ind Electron
– volume: 406
  start-page: 151
  year: 2018
  end-page: 166
  ident: bib4
  article-title: Dynamic programming for new energy vehicle based on their work modes part I: electric vehicles and hybrid electric vehicles
  publication-title: J Power Sources
– volume: 312
  start-page: 118668
  year: 2022
  ident: bib19
  article-title: Global optimization energy management for multi-energy source vehicles based on “Information layer - physical layer - energy layer - dynamic programming” (IPE-DP)
  publication-title: Appl Energy
– volume: 19
  start-page: 1279
  year: 2011
  end-page: 1287
  ident: bib31
  article-title: Optimal control of hybrid electric vehicles based on Pontryagin's minimum principle
  publication-title: IEEE Trans Control Syst Technol
– volume: 68
  start-page: 4479
  year: 2019
  end-page: 4493
  ident: bib13
  article-title: Heuristic dynamic programming based online energy management strategy for plug-in hybrid electric vehicles
  publication-title: IEEE Trans Veh Technol
– volume: 159
  start-page: 370
  year: 2015
  end-page: 380
  ident: bib28
  article-title: Pontryagin's minimum principle based power management of a dual-motor-driven electric bus
  publication-title: Appl Energy
– volume: 39
  start-page: 310
  year: 2012
  end-page: 318
  ident: bib32
  article-title: Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles
  publication-title: Energy
– volume: 10
  start-page: 1284
  year: 2017
  ident: bib29
  article-title: Online lithium-ion battery internal resistance measurement application in state-of-charge estimation using the extended kalman filter
  publication-title: Energies
– start-page: 123
  year: 2010
  end-page: 144
  ident: bib16
  article-title: Modern electric, hybrid electric and fuel cell vehicles: fundamentals, theory, and design
– volume: 166
  start-page: 929
  year: 2019
  end-page: 938
  ident: bib9
  article-title: Fuel economy optimization of power split hybrid vehicles: a rapid dynamic programming approach
  publication-title: Energy
– volume: 159
  start-page: 370
  year: 2015
  ident: 10.1016/j.energy.2022.123825_bib28
  article-title: Pontryagin's minimum principle based power management of a dual-motor-driven electric bus
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.08.129
– volume: 19
  start-page: 1279
  issue: 5
  year: 2011
  ident: 10.1016/j.energy.2022.123825_bib31
  article-title: Optimal control of hybrid electric vehicles based on Pontryagin's minimum principle
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2010.2061232
– volume: 68
  start-page: 4479
  issue: 5
  year: 2019
  ident: 10.1016/j.energy.2022.123825_bib13
  article-title: Heuristic dynamic programming based online energy management strategy for plug-in hybrid electric vehicles
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2019.2903119
– volume: 68
  start-page: 9519
  issue: 10
  year: 2019
  ident: 10.1016/j.energy.2022.123825_bib14
  article-title: Fuel-efficient gear shift and power split strategy for parallel HEVs based on heuristic dynamic programming and neural networks
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2019.2927751
– volume: 39
  start-page: 310
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2022.123825_bib32
  article-title: Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles
  publication-title: Energy
  doi: 10.1016/j.energy.2012.01.009
– volume: 182
  start-page: 105
  year: 2016
  ident: 10.1016/j.energy.2022.123825_bib18
  article-title: Model predictive control-based energy management strategy for a series hybrid electric tracked vehicle
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.08.085
– volume: 185
  start-page: 1633
  issue: 2
  year: 2017
  ident: 10.1016/j.energy.2022.123825_bib1
  article-title: Rule based energy management strategy for a series-parallel plug-in hybrid electric bus optimized by dynamic programming
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.12.031
– volume: 69
  start-page: 113
  issue: 1–4
  year: 2015
  ident: 10.1016/j.energy.2022.123825_bib5
  article-title: Analysis and comparison of optimal power management strategies for a series plug-in hybrid school bus via dynamic programming
  publication-title: Int. J. Vehicle Design
  doi: 10.1504/IJVD.2015.073116
– volume: 115
  start-page: 174
  year: 2014
  ident: 10.1016/j.energy.2022.123825_bib35
  article-title: Approximate Pontryagin’s minimum principle applied to the energy management of plug-in hybrid electric vehicles
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.11.002
– year: 1995
  ident: 10.1016/j.energy.2022.123825_bib2
– start-page: 123
  year: 2010
  ident: 10.1016/j.energy.2022.123825_bib16
– volume: 185
  start-page: 1644
  issue: 2
  year: 2017
  ident: 10.1016/j.energy.2022.123825_bib26
  article-title: Investigating adaptive-ECMS with velocity forecast ability for hybrid electric vehicles
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.02.026
– volume: 255
  start-page: 113762
  year: 2019
  ident: 10.1016/j.energy.2022.123825_bib17
  article-title: Energy management for a power-split hybrid electric bus via deep reinforcement learning with terrain information
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.113762
– year: 1957
  ident: 10.1016/j.energy.2022.123825_bib3
– volume: 168
  start-page: 683
  year: 2016
  ident: 10.1016/j.energy.2022.123825_bib24
  article-title: Comparison of power-split and parallel hybrid powertrain architectures with a single electric machine: Dynamic programming approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.02.023
– volume: 312
  start-page: 118668
  year: 2022
  ident: 10.1016/j.energy.2022.123825_bib19
  article-title: Global optimization energy management for multi-energy source vehicles based on “Information layer - physical layer - energy layer - dynamic programming” (IPE-DP)
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.118668
– volume: 6
  start-page: 1242
  issue: 16
  year: 2008
  ident: 10.1016/j.energy.2022.123825_bib25
  article-title: Modeling and control of a power-split hybrid vehicle
  publication-title: IEEE Trans Control Syst Technol
– volume: 155
  start-page: 100
  year: 2018
  ident: 10.1016/j.energy.2022.123825_bib15
  article-title: Fuel consumption assessment of an electrified powertrain with a multi-mode high-efficiency engine in various levels of hybridization
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.10.073
– volume: 61
  start-page: 2053
  issue: 4
  year: 2014
  ident: 10.1016/j.energy.2022.123825_bib33
  article-title: Online adaptive parameter identification and state-of-charge coestimation for lithium-polymer battery cells
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2013.2263774
– volume: 12
  start-page: 1624
  issue: 4
  year: 2011
  ident: 10.1016/j.energy.2022.123825_bib11
  article-title: Data-driven intelligent transportation systems: a survey
  publication-title: IEEE Trans Intell Transport Syst
  doi: 10.1109/TITS.2011.2158001
– volume: 68
  start-page: 139
  issue: 1
  year: 2019
  ident: 10.1016/j.energy.2022.123825_bib23
  article-title: Multi-objective design optimization of an IPMSM based on multilevel strategy
  publication-title: IEEE Trans Ind Electron
  doi: 10.1109/TIE.2020.2965463
– volume: 57
  start-page: 3428
  issue: 6
  year: 2008
  ident: 10.1016/j.energy.2022.123825_bib6
  article-title: Online energy management for hybrid electric vehicles
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2008.919988
– volume: 251
  start-page: 119627
  year: 2020
  ident: 10.1016/j.energy.2022.123825_bib10
  article-title: Cooperative control strategy for plug-in hybrid electric vehicles based on a hierarchical framework with fast calculation
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.119627
– volume: 352
  start-page: 500
  issue: 2
  year: 2015
  ident: 10.1016/j.energy.2022.123825_bib34
  article-title: Energy management of plug-in hybrid electric vehicles with unknown trip length
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2014.07.009
– volume: 236
  start-page: 121423
  year: 2021
  ident: 10.1016/j.energy.2022.123825_bib20
  article-title: Acquisition of full-factor trip information for global optimization energy management in multi-energy source vehicles and the measure of the amount of information to be transmitted
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121423
– volume: 8
  start-page: 3225
  issue: 4
  year: 2015
  ident: 10.1016/j.energy.2022.123825_bib21
  article-title: Application study on the dynamic programming algorithm for energy management of plug-in hybrid electric vehicles
  publication-title: Energies
  doi: 10.3390/en8043225
– volume: 25
  start-page: 148
  year: 2012
  ident: 10.1016/j.energy.2022.123825_bib8
  article-title: Hardware-in-the loop simulation for the design and verification of the control system of a series-parallel hybrid electric city-bus
  publication-title: Simulat Model Pract Theor
  doi: 10.1016/j.simpat.2012.02.010
– volume: 406
  start-page: 151
  year: 2018
  ident: 10.1016/j.energy.2022.123825_bib4
  article-title: Dynamic programming for new energy vehicle based on their work modes part I: electric vehicles and hybrid electric vehicles
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2018.10.047
– volume: 166
  start-page: 929
  year: 2019
  ident: 10.1016/j.energy.2022.123825_bib9
  article-title: Fuel economy optimization of power split hybrid vehicles: a rapid dynamic programming approach
  publication-title: Energy
  doi: 10.1016/j.energy.2018.10.149
– volume: 10
  start-page: 1284
  issue: 9
  year: 2017
  ident: 10.1016/j.energy.2022.123825_bib29
  article-title: Online lithium-ion battery internal resistance measurement application in state-of-charge estimation using the extended kalman filter
  publication-title: Energies
  doi: 10.3390/en10091284
– volume: 66
  start-page: 4534
  issue: 6
  year: 2017
  ident: 10.1016/j.energy.2022.123825_bib30
  article-title: Energy management in plug-in hybrid electric vehicles: recent progress and a connected vehicles perspective
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2016.2582721
– volume: 190
  start-page: 116409
  year: 2020
  ident: 10.1016/j.energy.2022.123825_bib12
  article-title: An adaptive equivalent consumption minimization strategy for plugin hybrid electric vehicles based on traffic information
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116409
– volume: 35
  start-page: 3841
  issue: 4
  year: 2020
  ident: 10.1016/j.energy.2022.123825_bib27
  article-title: Real-time HIL emulation for a segmented-rotor switched reluctance motor using a new magnetic equivalent circuit
  publication-title: IEEE Trans Power Electron
  doi: 10.1109/TPEL.2019.2933664
– volume: 20
  start-page: 3526
  issue: 9
  year: 2019
  ident: 10.1016/j.energy.2022.123825_bib22
  article-title: Ecological adaptive cruise control and energy management strategy for hybrid electric vehicles based on heuristic dynamic programming
  publication-title: IEEE Trans Intell Transport Syst
  doi: 10.1109/TITS.2018.2877389
– volume: 121
  year: 2018
  ident: 10.1016/j.energy.2022.123825_bib7
  article-title: An energy management for series hybrid electric vehicle using improved dynamic programming
  publication-title: IOP Conf Ser Earth Environ Sci
  doi: 10.1088/1755-1315/121/5/052077
SSID ssj0005899
Score 2.4597242
Snippet As the physical subject, determining vehicle operating modes is a prerequisite for implementing global optimization energy management. To avoid the case study...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 123825
SubjectTerms case studies
Conservation
Driving conditions
economic performance
Economic performance evaluation
Economics
Energy conservation
Energy conservation framework
Energy distribution
Energy management
Global optimization
Hybrid vehicles
Identification factor
Mathematical models
Numerical methods
Performance indices
Potential energy
Powertrain topology
Topology
Work modes
Title Determination of vehicle working modes for global optimization energy management and evaluation of the economic performance for a certain control strategy
URI https://dx.doi.org/10.1016/j.energy.2022.123825
https://www.proquest.com/docview/2689211567
https://www.proquest.com/docview/2648871078
Volume 251
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB1V5QAXBIWKhVINEtd0SezY3mNVWi0geqFIvVmO7Ygiml01W6pe-BC-lpnY2QWEVInjZideb8Z-fnbmzQC8LlvVRF21BS2eqpBe0JyrZ7JoBdERL-jCkOz546maf5bvz-vzLTgatTAcVpmxP2H6gNb5yjQ_zeny4mL6ibCX-AYfYXD6a8MiPik1j_KDH7-FeZihhiQbF2w9yueGGK846Otol1hVBwThhgtm_3t5-guoh9Xn5BE8zLQRD1PPHsNW7Hbg_qgq7ndg93ijWCPDPGX7J_Dz7Rjwwi7ARYvf4xduBG_SOTlyMZweibxiyg6CC4KRy6zPxNR5vFyHyaDrAm6ShHOLRCIx5r7gciNFGBp16FPYAeaweOxTRtzbp3B2cnx2NC9yQYbCC6VXxMSD9qUztafnPAsqtLTZkG-CKoPxviZm1jRBsC6qNVo74i5ReekUcYLoZkLswna36OIzQNoDh9ZJ7ZzxsnXBMdIEVwrl6sb5agJidIP1OVk518z4ZseotK82_X_LzrPJeRMo1nctU7KOO-z16GH7x6CztJ7ccefeOCBsnvS9rZSZ0X66VnoCr9Zf03TldzCui4trtiHEJFanzfP__vEX8IA_8QlzWe_B9urqOr4karRq9oexvw_3Dt99mJ_-AiFSEdM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7aFcEBQqthQYJK5hyct2jlVptaXtXlik3izHdkQRza6aLah_pb-WmdjZFQipEle_4mQ8nz878wB4nzai9jJrEto8RVLYnHSurIqkyYmO2JwK-mDPFzMx_Vp8viwvt-Bo8IVhs8qI_QHTe7SOJZP4NSfLq6vJF8Je4ht8hcHhr1X1CLY5OlU5gu3D07PpbGPpofo0ktw-4Q6DB11v5uV7Fzs6KGbZB0JxxTmz_71D_YXV_QZ08hSeROaIh2Fyz2DLt7uwMzgWd7uwd7xxWqOGUWu753D_abB5YSngosGf_hsPgr_CVTlyPpwOib9iCBCCC0KS6-iiiWHyeL22lEHTOtzECecRiUeij3PB5cYboR_UoA2WBxgt47ELQXHvXsD85Hh-NE1iTobE5kKuiIw7aVOjSltIUTnhGjpvFB-dSJ2ytiRyVtcuZ9eoRklpiL54YQsjiBZ4U-X5HozaRetfAtIx2DWmkMYoWzTGGQYbZ9JcmLI2NhtDPohB2xivnNNm_NCDYdp3Hd5fs_B0EN4YknWvZYjX8UB7OUhY_7HuNG0pD_Q8GBaEjnrf6Uyoio7UpZBjeLeuJo3l3zCm9YtbbkOgScROqv3_fvhb2JnOL871-ens7BU85hq-cE7LAxitbm79a2JKq_pN1ITfahsUhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determination+of+vehicle+working+modes+for+global+optimization+energy+management+and+evaluation+of+the+economic+performance+for+a+certain+control+strategy&rft.jtitle=Energy+%28Oxford%29&rft.au=Xu%2C+Nan&rft.au=Kong%2C+Yan&rft.au=Zhang%2C+Yuanjian&rft.au=Yue%2C+Fenglai&rft.date=2022-07-15&rft.issn=0360-5442&rft.volume=251+p.123825-&rft_id=info:doi/10.1016%2Fj.energy.2022.123825&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon