The decay limit of the Hugoniot elastic limit
The Hugoniot elastic limit (HEL) precursor decay in shock loaded solids has been the subject of considerable experimental and theoretical investigation. Comparative evidence is presented to show that the elastic precursor wave particle velocity, Up HEL for certain materials decays asymptotically wit...
Saved in:
Published in | International journal of impact engineering Vol. 21; no. 4; pp. 267 - 281 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.04.1998
Elsevier Science |
Subjects | |
Online Access | Get full text |
ISSN | 0734-743X 1879-3509 |
DOI | 10.1016/S0734-743X(97)00064-X |
Cover
Abstract | The Hugoniot elastic limit (HEL) precursor decay in shock loaded solids has been the subject of considerable experimental and theoretical investigation. Comparative evidence is presented to show that the elastic precursor wave particle velocity,
Up
HEL for certain materials decays asymptotically with propagation distance to the DeBroglie velocity,
V
1, level. This is demonstrated for the following materials: iron, aluminum alloy 6061-T6, plexiglas (PMMA), nickel alloy (MAR-M200), and lithium fluoride (LiF).
The DeBroglie velocity is
V
1=
h
2md
1
, where
h is Planck’s Constant,
m is the mass of one atom, and
d
1 is the closest distance between the atoms. For macroscopic particle velocities,
Up, equal to
V
1, the corresponding elastic pressure is
Pv
1=
ρ
0
C
L
V
1, where
ρ
0 is the material density and
C
L is the elastic wave front velocity. This relates the microscopic domain to macroscopic observable quantities. |
---|---|
AbstractList | The Hugoniot elastic limit (HEL) precursor decay in shock loaded solids has been the subject of considerable experimental and theoretical investigation. Comparative evidence is presented to show that the elastic precursor wave particle velocity,
Up
HEL for certain materials decays asymptotically with propagation distance to the DeBroglie velocity,
V
1, level. This is demonstrated for the following materials: iron, aluminum alloy 6061-T6, plexiglas (PMMA), nickel alloy (MAR-M200), and lithium fluoride (LiF).
The DeBroglie velocity is
V
1=
h
2md
1
, where
h is Planck’s Constant,
m is the mass of one atom, and
d
1 is the closest distance between the atoms. For macroscopic particle velocities,
Up, equal to
V
1, the corresponding elastic pressure is
Pv
1=
ρ
0
C
L
V
1, where
ρ
0 is the material density and
C
L is the elastic wave front velocity. This relates the microscopic domain to macroscopic observable quantities. The Hugoniot elastic limit (EHL) precursor decay in shock loaded solids has been the subject of considerable experimental and theoretical investigation. Comparative evidence is presented to show that the elastic precursor wave particle velocity, Up sub HEL for certain materials decays asymptotically with propagation distance to the DeBroglie velocity, V sub 1 , level. This is demonstrated for the following materials: iron, aluminum alloy 6061-T6, plexiglas (PMMA), nickel alloy (MAR-M200), and lithium fluoride (LiF) The DeBroglie velocity is V sub 1 =h/2md sub 1 , where h is Planck's Constant, m is the mass of one atom, and d sub 1 is the closest distance between the atoms. For macroscopic particle velocities, Up, equal to V sub 1 , the corresponding elastic pressure is Pv sub 1 = rho sub 0 C sub L V sub 1 , where rho sub 0 is the material density and C sub L is the elastic wave front velocity. This relates the microscopic domain to macroscopic observable quantities. |
Author | Billingsley, James P |
Author_xml | – sequence: 1 givenname: James P surname: Billingsley fullname: Billingsley, James P organization: U.S. Army Missile Command, AMSMI-RD-SS-AA, ATTN: J. P. Billingsley, Bldg. 5400, Room C-214B, Redstone Arsenal, AL 35898, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2264170$$DView record in Pascal Francis |
BookMark | eNqFkE1LAzEURYNUsK3-BGEWIroYzcfMZIILkaJWKLiwQnchTV40Mp3UJBX6751-6MKNq8DLuZf3zgD1Wt8CQqcEXxFMqusXzFmR84LNLgS_xBhXRT47QH1Sc5GzEose6v8iR2gQ4wfGhOMS91E-fYfMgFbrrHELlzJvs9SNxqs33zqfMmhUTE7vfo_RoVVNhJP9O0SvD_fT0TifPD8-je4muWYVTzkvK2Y0UMDCUEE1JwVlICpizdzaWnEoS02pqDklhrDa6m6fks0rajQt5pQN0fmudxn85wpikgsXNTSNasGvoqRVzTjnpAPP9qCKWjU2qFa7KJfBLVRYS0qroju0w252mA4-xgBWapdUcr5NQblGEiw3JuXWpNxokoLLrUk569Lln_RP_3-5210OOlVfDoKM2kGrwbgAOknj3T8N3xyKjCA |
CODEN | IJIED4 |
CitedBy_id | crossref_primary_10_1016_j_matchemphys_2023_128840 crossref_primary_10_1007_s10409_021_09036_x crossref_primary_10_1134_S106378421203005X crossref_primary_10_1016_j_ijsolstr_2004_08_009 crossref_primary_10_1016_j_ijimpeng_2021_103983 crossref_primary_10_1016_S0020_7683_00_00286_9 crossref_primary_10_1016_j_optlastec_2012_06_019 crossref_primary_10_1134_S1027451008040253 crossref_primary_10_1016_j_msea_2019_02_001 crossref_primary_10_1016_j_scriptamat_2014_08_014 |
Cites_doi | 10.1063/1.1722359 10.1063/1.1658439 10.1016/0020-7683(67)90062-5 10.1007/BF02477332 10.1063/1.327450 10.1016/0025-5416(72)90032-8 10.1063/1.1736060 10.1088/0022-3735/16/3/006 10.1016/0022-5096(70)90008-6 10.1016/0022-3697(69)90051-1 10.1063/1.322244 10.1016/0020-7683(73)90114-5 10.1063/1.330573 10.1121/1.1907894 10.1016/0031-9163(64)90564-5 10.1063/1.1729733 10.1007/978-1-4613-3219-0_34 10.1063/1.1657194 10.1063/1.1663148 10.1063/1.96906 10.1063/1.323221 10.1063/1.1702614 10.1063/1.1661464 10.1007/BF02477331 10.1063/1.321678 10.1063/1.323041 |
ContentType | Journal Article |
Copyright | 1998 1998 INIST-CNRS |
Copyright_xml | – notice: 1998 – notice: 1998 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7QF 7SR 8BQ 8FD JG9 |
DOI | 10.1016/S0734-743X(97)00064-X |
DatabaseName | CrossRef Pascal-Francis Aluminium Industry Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Aluminium Industry Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-3509 |
EndPage | 281 |
ExternalDocumentID | 2264170 10_1016_S0734_743X_97_00064_X S0734743X9700064X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7QF 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c367t-7563dce2e09d292c71423e961fdbff8a7e55c2298721d138fc00153b62dc24b23 |
IEDL.DBID | .~1 |
ISSN | 0734-743X |
IngestDate | Thu Sep 04 21:30:13 EDT 2025 Mon Jul 21 09:16:04 EDT 2025 Tue Jul 01 03:11:03 EDT 2025 Thu Apr 24 22:52:08 EDT 2025 Fri Feb 23 02:27:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Nickel alloys Ruptures Stress wave Lithium fluorides Experimental study Shock waves Wave front Aluminium alloys Elastoplasticity De Broglie wavelength PMMA Yield strength Mechanical shock |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-7563dce2e09d292c71423e961fdbff8a7e55c2298721d138fc00153b62dc24b23 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 26837771 |
PQPubID | 23500 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_26837771 pascalfrancis_primary_2264170 crossref_citationtrail_10_1016_S0734_743X_97_00064_X crossref_primary_10_1016_S0734_743X_97_00064_X elsevier_sciencedirect_doi_10_1016_S0734_743X_97_00064_X |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 1900 |
PublicationDate | 1998-04-01 |
PublicationDateYYYYMMDD | 1998-04-01 |
PublicationDate_xml | – month: 04 year: 1998 text: 1998-04-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of impact engineering |
PublicationYear | 1998 |
Publisher | Elsevier Ltd Elsevier Science |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science |
References | Bancroft, Peterson, Minshall (BIB21) 1956; 27 Asay, Fowles, Duvall, Miles, Tinder (BIB30) 1972; 43 Fitzgerald (BIB6) 1966 Duvall (BIB2) 1961 Billingsley (BIB18) 1993 D. P. Dandekar, A. G. Martin and J. V. Kelly, Deformation of MAR-M200 (a nickel based super alloy) to shock loading to 8.5 GPa at room temperature. In Proc. the Army Symp. Solid Mechanics, 1980—Designing for Extremes: Environment, Loading, and Structural Behavior, AMMRC MS 80-4, 317–329, Army Materials and Mechanics Research Center, Watertown, Massachusetts, 02172, September (1980). Chartagnac (BIB41) 1982; 53 Schuler, Nunziato, Walsh (BIB43) 1973; 9 Barker, Hollenbach (BIB24) 1974; 45 Li Xiaolan (BIB38) 1986 Fitzgerald (BIB9) 1960; 32 Wark (BIB13) 1977 D. P. Dandekar and A. G. Martin, Response of polycrystalline MAR-M200 (a nickel based super alloy) to shock loading. Chapter 34 in Shock Waves and High-Strain Rate Phenomena in Metals, Concepts and Applications (Edited by M. A. Myers and L. E. Murr), Pelnum Press, New York, pp. 573–587 (1981). Barker, Hollenbach (BIB37) 1970; 41 Fitzgerald (BIB15) 1969; 30 Fitzgerald, James Tasi (BIB14) 1967; 3 Fitzgerald (BIB7) 1964; 10 J. W. Pugh, and G. C. Steiner, Relationship between the structure and mechanical resonance spectra in cancellous bone. Med. Biol. Engng, September (1975) 714–716. Steverding (BIB16) 1972; 9 Schuler (BIB42) 1970; 18 Rosenburg, Erez, Partom (BIB25) 1983; 16 J. W. Pugh, R. M. Rose, I. L. Paul and E. L. Radin, Mechanical resonance spectra in human cancellous bone. Science 181 (4096), 271–272 (1973). Also comments on this article by J. Black immediately following on p. 273. Gupta (BIB40) 1980; 51 Daniels, Alberty (BIB5) 1966 Schuler, Nunziato (BIB39) 1976; 47 Gupta (BIB32) 1975; 46 Johnson, Barker (BIB27) 1969; 40 T. P. Liddiard, The compression of polymethyl methacrylate by low amplitude shock waves. In Fourth Symp. (Int.) on Detonation, Published as ACR-126 by the Office of Naval Research, Dept. of the Navy, pp. 214–221, 12–15 October (1965). Moore (BIB4) 1962 E. R. Fitzgerald, Calcium-isotope effects in mechanical spectra of cancellous bone. Med. Biol. Eng. September (1975) 717–719. Lundergan, Herrman (BIB26) 1963; 34 Minshall (BIB1) 1961 Billingsley, Oliver (BIB20) 1991 Dick, Duvall, Vorthman (BIB33) 1976; 47 Wyckoff (BIB35) 1963; I Billingsley, Oliver (BIB17) 1990 Johnson (BIB3) 1993 E. R. Fitzgerald, Particle waves and audio frequency modes in crystals. J. Acoust. Soc. Amer. Part 1, 1856–1869 (1966). Gupta, Duvall, Fowles (BIB31) 1975; 46 Hughes, Gourley, Gourley (BIB22) 1961; 32 Taylor, Rice (BIB23) 1963; 34 Billingsley (BIB19) 1994 Tunison, Gupta (BIB34) 1986; 48 Wark (10.1016/S0734-743X(97)00064-X_BIB13) 1977 10.1016/S0734-743X(97)00064-X_BIB36 Fitzgerald (10.1016/S0734-743X(97)00064-X_BIB15) 1969; 30 Billingsley (10.1016/S0734-743X(97)00064-X_BIB19) 1994 Lundergan (10.1016/S0734-743X(97)00064-X_BIB26) 1963; 34 10.1016/S0734-743X(97)00064-X_BIB10 Dick (10.1016/S0734-743X(97)00064-X_BIB33) 1976; 47 Gupta (10.1016/S0734-743X(97)00064-X_BIB40) 1980; 51 Johnson (10.1016/S0734-743X(97)00064-X_BIB3) 1993 10.1016/S0734-743X(97)00064-X_BIB12 Hughes (10.1016/S0734-743X(97)00064-X_BIB22) 1961; 32 10.1016/S0734-743X(97)00064-X_BIB11 Billingsley (10.1016/S0734-743X(97)00064-X_BIB20) 1991 Fitzgerald (10.1016/S0734-743X(97)00064-X_BIB6) 1966 Wyckoff (10.1016/S0734-743X(97)00064-X_BIB35) 1963; I Taylor (10.1016/S0734-743X(97)00064-X_BIB23) 1963; 34 Barker (10.1016/S0734-743X(97)00064-X_BIB37) 1970; 41 Asay (10.1016/S0734-743X(97)00064-X_BIB30) 1972; 43 Gupta (10.1016/S0734-743X(97)00064-X_BIB31) 1975; 46 Fitzgerald (10.1016/S0734-743X(97)00064-X_BIB7) 1964; 10 Tunison (10.1016/S0734-743X(97)00064-X_BIB34) 1986; 48 Schuler (10.1016/S0734-743X(97)00064-X_BIB39) 1976; 47 Daniels (10.1016/S0734-743X(97)00064-X_BIB5) 1966 10.1016/S0734-743X(97)00064-X_BIB8 Steverding (10.1016/S0734-743X(97)00064-X_BIB16) 1972; 9 Fitzgerald (10.1016/S0734-743X(97)00064-X_BIB14) 1967; 3 Billingsley (10.1016/S0734-743X(97)00064-X_BIB17) 1990 Fitzgerald (10.1016/S0734-743X(97)00064-X_BIB9) 1960; 32 Barker (10.1016/S0734-743X(97)00064-X_BIB24) 1974; 45 10.1016/S0734-743X(97)00064-X_BIB29 10.1016/S0734-743X(97)00064-X_BIB28 Li Xiaolan (10.1016/S0734-743X(97)00064-X_BIB38) 1986 Minshall (10.1016/S0734-743X(97)00064-X_BIB1) 1961 Billingsley (10.1016/S0734-743X(97)00064-X_BIB18) 1993 Rosenburg (10.1016/S0734-743X(97)00064-X_BIB25) 1983; 16 Schuler (10.1016/S0734-743X(97)00064-X_BIB42) 1970; 18 Bancroft (10.1016/S0734-743X(97)00064-X_BIB21) 1956; 27 Duvall (10.1016/S0734-743X(97)00064-X_BIB2) 1961 Gupta (10.1016/S0734-743X(97)00064-X_BIB32) 1975; 46 Moore (10.1016/S0734-743X(97)00064-X_BIB4) 1962 Schuler (10.1016/S0734-743X(97)00064-X_BIB43) 1973; 9 Chartagnac (10.1016/S0734-743X(97)00064-X_BIB41) 1982; 53 Johnson (10.1016/S0734-743X(97)00064-X_BIB27) 1969; 40 |
References_xml | – volume: 47 start-page: 3987 year: 1976 end-page: 3991 ident: BIB33 article-title: Stress threshold for precursor decay in LiF publication-title: J. Appl. Phys. – volume: 51 start-page: 5352 year: 1980 end-page: 5361 ident: BIB40 article-title: Determination of the impact response of PMMA using combined compression and shear loading publication-title: J. Appl. Phys. – reference: J. W. Pugh, and G. C. Steiner, Relationship between the structure and mechanical resonance spectra in cancellous bone. Med. Biol. Engng, September (1975) 714–716. – volume: 46 start-page: 532 year: 1975 end-page: 546 ident: BIB31 article-title: Dislocation mechanisms for stress relaxation in shocked LiF publication-title: J. Appl. Phys. – volume: 3 start-page: 927 year: 1967 end-page: 933 ident: BIB14 article-title: The Schroedinger equation and momentum transfer in crystals publication-title: Int. J. Solid Struct. – volume: 30 start-page: 2771 year: 1969 end-page: 2787 ident: BIB15 article-title: Detonation in crystalline solids publication-title: J. Phys. Chem. Solids. – year: 1966 ident: BIB6 publication-title: Particle Waves and Deformation of Crystalline Solids – reference: T. P. Liddiard, The compression of polymethyl methacrylate by low amplitude shock waves. In Fourth Symp. (Int.) on Detonation, Published as ACR-126 by the Office of Naval Research, Dept. of the Navy, pp. 214–221, 12–15 October (1965). – year: 1990 ident: BIB17 article-title: The relevance of the DeBroglie relation to the Hugoniot elastic limit (HEL) of shock loaded solid materials – volume: 10 start-page: 42 year: 1964 end-page: 43 ident: BIB7 article-title: Particle waves and phonon fission in crystals publication-title: Phys. Lett. – reference: D. P. Dandekar, A. G. Martin and J. V. Kelly, Deformation of MAR-M200 (a nickel based super alloy) to shock loading to 8.5 GPa at room temperature. In Proc. the Army Symp. Solid Mechanics, 1980—Designing for Extremes: Environment, Loading, and Structural Behavior, AMMRC MS 80-4, 317–329, Army Materials and Mechanics Research Center, Watertown, Massachusetts, 02172, September (1980). – reference: D. P. Dandekar and A. G. Martin, Response of polycrystalline MAR-M200 (a nickel based super alloy) to shock loading. Chapter 34 in Shock Waves and High-Strain Rate Phenomena in Metals, Concepts and Applications (Edited by M. A. Myers and L. E. Murr), Pelnum Press, New York, pp. 573–587 (1981). – volume: 18 start-page: 277 year: 1970 end-page: 293 ident: BIB42 article-title: Propagation of steady shock waves in polymethyl methacrylate publication-title: J. Mech. Phys. Solids – start-page: 714 year: 1986 end-page: 719 ident: BIB38 article-title: Experimental studies on the dynamic behaviour for polymethyl methacrylate and glass fibre reinforced plastic in high stress publication-title: Proc. Int. Symp. on Intense Dynamic Loading and Its Effects – start-page: 165 year: 1961 end-page: 203 ident: BIB2 article-title: Some properties and applications of shock waves publication-title: Response of Metals to High Velocity Deformation. Proceedings of a Technical Conference – year: 1993 ident: BIB18 article-title: The LDP ‘ – volume: 45 start-page: 4872 year: 1974 end-page: 4887 ident: BIB24 article-title: Shock study of the publication-title: J. Appl. Phys. – volume: 16 start-page: 198 year: 1983 end-page: 200 ident: BIB25 article-title: Recording the shock structure in iron with commercial manganin guages publication-title: J. Phys. E – volume: 48 start-page: 1351 year: 1986 end-page: 1353 ident: BIB34 article-title: Effect of surface preparation of elastic precursor decay in shocked pure lithium fluoride publication-title: Appl. Phys. Lett. – volume: 40 start-page: 4321 year: 1969 end-page: 4334 ident: BIB27 article-title: Dislocation dynamics and steady plastic wave profiles in 6061-T6 Aluminum publication-title: J. Appl. Phys. – reference: E. R. Fitzgerald, Calcium-isotope effects in mechanical spectra of cancellous bone. Med. Biol. Eng. September (1975) 717–719. – volume: 34 start-page: 364 year: 1963 end-page: 371 ident: BIB23 article-title: Elastic–plastic properties of iron publication-title: J. Appl. Phys. – volume: 43 start-page: 2132 year: 1972 end-page: 2145 ident: BIB30 article-title: Effects of point defects on elastic precursor decay in LiF publication-title: J. Appl. Phys. – volume: 9 start-page: 1237 year: 1973 end-page: 1281 ident: BIB43 article-title: Recent results in non linear visco elastic wave propagation publication-title: Int. J. Solids Struct. – reference: J. W. Pugh, R. M. Rose, I. L. Paul and E. L. Radin, Mechanical resonance spectra in human cancellous bone. Science 181 (4096), 271–272 (1973). Also comments on this article by J. Black immediately following on p. 273. – year: 1966 ident: BIB5 publication-title: Physical Chemistry – year: 1994 ident: BIB19 article-title: Possible ‘ – volume: 27 start-page: 291 year: 1956 end-page: 298 ident: BIB21 article-title: Polymorphism of iron at high pressure publication-title: J. Appl. Phys. – start-page: 249 year: 1961 end-page: 274 ident: BIB1 article-title: The dynamic response of iron and iron alloys to shock waves publication-title: Response of Metals to High Velocity Deformation. Proceedings of a Technical Conference – volume: 46 start-page: 3395 year: 1975 end-page: 3401 ident: BIB32 article-title: Stress dependence of elastic wave attenuation in LiF publication-title: J. Appl. Phys. – reference: E. R. Fitzgerald, Particle waves and audio frequency modes in crystals. J. Acoust. Soc. Amer. Part 1, 1856–1869 (1966). – volume: 32 start-page: 624 year: 1961 end-page: 629 ident: BIB22 article-title: Shock wave compression of iron and bismuth publication-title: J. Appl. Phys. – start-page: 217 year: 1993 end-page: 264 ident: BIB3 article-title: Micromechanical considerations in shock compression of solids publication-title: High Presure Shock Compression of Solids – volume: I year: 1963 ident: BIB35 publication-title: Crystal Structures – volume: 53 start-page: 948 year: 1982 end-page: 953 ident: BIB41 article-title: Determination of mean and deviatoric stress in shock loaded solids publication-title: J. Appl. Phys. – volume: 32 start-page: 1270 year: 1960 end-page: 1289 ident: BIB9 article-title: Mechanical resonance dispersion and plastic flow in crystalline solids publication-title: J. Acoust. Soc. Amer. – year: 1977 ident: BIB13 publication-title: Thermodynamics – volume: 34 start-page: 2046 year: 1963 end-page: 2052 ident: BIB26 article-title: Equation of state of 6061-T6 aluminum at low pressures publication-title: J. Appl. Phys. – year: 1962 ident: BIB4 publication-title: Physical Chemistry – volume: 9 start-page: 185 year: 1972 end-page: 189 ident: BIB16 article-title: Quantization of stress waves and fracture publication-title: Mat. Sci. Engng – volume: 41 start-page: 4208 year: 1970 end-page: 4226 ident: BIB37 article-title: Shockwave studies of PMMA, fused silica, and saphire publication-title: J. Appl. Phys. – year: 1991 ident: BIB20 article-title: The relevance of the DeBroglie velocity – volume: 47 start-page: 2995 year: 1976 end-page: 2998 ident: BIB39 article-title: The unloading and reloading behavior of shock-compressed polymethyl-methacrylate publication-title: J. Appl. Phys. – start-page: 249 year: 1961 ident: 10.1016/S0734-743X(97)00064-X_BIB1 article-title: The dynamic response of iron and iron alloys to shock waves – volume: 27 start-page: 291 year: 1956 ident: 10.1016/S0734-743X(97)00064-X_BIB21 article-title: Polymorphism of iron at high pressure publication-title: J. Appl. Phys. doi: 10.1063/1.1722359 – volume: 41 start-page: 4208 year: 1970 ident: 10.1016/S0734-743X(97)00064-X_BIB37 article-title: Shockwave studies of PMMA, fused silica, and saphire publication-title: J. Appl. Phys. doi: 10.1063/1.1658439 – volume: 3 start-page: 927 year: 1967 ident: 10.1016/S0734-743X(97)00064-X_BIB14 article-title: The Schroedinger equation and momentum transfer in crystals publication-title: Int. J. Solid Struct. doi: 10.1016/0020-7683(67)90062-5 – year: 1966 ident: 10.1016/S0734-743X(97)00064-X_BIB5 – ident: 10.1016/S0734-743X(97)00064-X_BIB11 doi: 10.1007/BF02477332 – ident: 10.1016/S0734-743X(97)00064-X_BIB8 – year: 1991 ident: 10.1016/S0734-743X(97)00064-X_BIB20 – volume: I year: 1963 ident: 10.1016/S0734-743X(97)00064-X_BIB35 – volume: 51 start-page: 5352 year: 1980 ident: 10.1016/S0734-743X(97)00064-X_BIB40 article-title: Determination of the impact response of PMMA using combined compression and shear loading publication-title: J. Appl. Phys. doi: 10.1063/1.327450 – volume: 9 start-page: 185 year: 1972 ident: 10.1016/S0734-743X(97)00064-X_BIB16 article-title: Quantization of stress waves and fracture publication-title: Mat. Sci. Engng doi: 10.1016/0025-5416(72)90032-8 – volume: 32 start-page: 624 year: 1961 ident: 10.1016/S0734-743X(97)00064-X_BIB22 article-title: Shock wave compression of iron and bismuth publication-title: J. Appl. Phys. doi: 10.1063/1.1736060 – volume: 16 start-page: 198 year: 1983 ident: 10.1016/S0734-743X(97)00064-X_BIB25 article-title: Recording the shock structure in iron with commercial manganin guages publication-title: J. Phys. E doi: 10.1088/0022-3735/16/3/006 – year: 1994 ident: 10.1016/S0734-743X(97)00064-X_BIB19 – year: 1962 ident: 10.1016/S0734-743X(97)00064-X_BIB4 – ident: 10.1016/S0734-743X(97)00064-X_BIB36 – volume: 18 start-page: 277 year: 1970 ident: 10.1016/S0734-743X(97)00064-X_BIB42 article-title: Propagation of steady shock waves in polymethyl methacrylate publication-title: J. Mech. Phys. Solids doi: 10.1016/0022-5096(70)90008-6 – volume: 30 start-page: 2771 year: 1969 ident: 10.1016/S0734-743X(97)00064-X_BIB15 article-title: Detonation in crystalline solids publication-title: J. Phys. Chem. Solids. doi: 10.1016/0022-3697(69)90051-1 – volume: 46 start-page: 3395 year: 1975 ident: 10.1016/S0734-743X(97)00064-X_BIB32 article-title: Stress dependence of elastic wave attenuation in LiF publication-title: J. Appl. Phys. doi: 10.1063/1.322244 – volume: 9 start-page: 1237 year: 1973 ident: 10.1016/S0734-743X(97)00064-X_BIB43 article-title: Recent results in non linear visco elastic wave propagation publication-title: Int. J. Solids Struct. doi: 10.1016/0020-7683(73)90114-5 – volume: 53 start-page: 948 year: 1982 ident: 10.1016/S0734-743X(97)00064-X_BIB41 article-title: Determination of mean and deviatoric stress in shock loaded solids publication-title: J. Appl. Phys. doi: 10.1063/1.330573 – volume: 32 start-page: 1270 issue: 10 year: 1960 ident: 10.1016/S0734-743X(97)00064-X_BIB9 article-title: Mechanical resonance dispersion and plastic flow in crystalline solids publication-title: J. Acoust. Soc. Amer. doi: 10.1121/1.1907894 – volume: 10 start-page: 42 year: 1964 ident: 10.1016/S0734-743X(97)00064-X_BIB7 article-title: Particle waves and phonon fission in crystals publication-title: Phys. Lett. doi: 10.1016/0031-9163(64)90564-5 – start-page: 714 year: 1986 ident: 10.1016/S0734-743X(97)00064-X_BIB38 article-title: Experimental studies on the dynamic behaviour for polymethyl methacrylate and glass fibre reinforced plastic in high stress – year: 1993 ident: 10.1016/S0734-743X(97)00064-X_BIB18 – volume: 34 start-page: 2046 year: 1963 ident: 10.1016/S0734-743X(97)00064-X_BIB26 article-title: Equation of state of 6061-T6 aluminum at low pressures publication-title: J. Appl. Phys. doi: 10.1063/1.1729733 – ident: 10.1016/S0734-743X(97)00064-X_BIB29 doi: 10.1007/978-1-4613-3219-0_34 – start-page: 217 year: 1993 ident: 10.1016/S0734-743X(97)00064-X_BIB3 article-title: Micromechanical considerations in shock compression of solids – volume: 40 start-page: 4321 year: 1969 ident: 10.1016/S0734-743X(97)00064-X_BIB27 article-title: Dislocation dynamics and steady plastic wave profiles in 6061-T6 Aluminum publication-title: J. Appl. Phys. doi: 10.1063/1.1657194 – year: 1990 ident: 10.1016/S0734-743X(97)00064-X_BIB17 – volume: 45 start-page: 4872 year: 1974 ident: 10.1016/S0734-743X(97)00064-X_BIB24 article-title: Shock study of the α⇒ε phase transition in Iron publication-title: J. Appl. Phys. doi: 10.1063/1.1663148 – volume: 48 start-page: 1351 year: 1986 ident: 10.1016/S0734-743X(97)00064-X_BIB34 article-title: Effect of surface preparation of elastic precursor decay in shocked pure lithium fluoride publication-title: Appl. Phys. Lett. doi: 10.1063/1.96906 – volume: 47 start-page: 3987 year: 1976 ident: 10.1016/S0734-743X(97)00064-X_BIB33 article-title: Stress threshold for precursor decay in LiF publication-title: J. Appl. Phys. doi: 10.1063/1.323221 – volume: 34 start-page: 364 year: 1963 ident: 10.1016/S0734-743X(97)00064-X_BIB23 article-title: Elastic–plastic properties of iron publication-title: J. Appl. Phys. doi: 10.1063/1.1702614 – start-page: 165 year: 1961 ident: 10.1016/S0734-743X(97)00064-X_BIB2 article-title: Some properties and applications of shock waves – ident: 10.1016/S0734-743X(97)00064-X_BIB10 – volume: 43 start-page: 2132 year: 1972 ident: 10.1016/S0734-743X(97)00064-X_BIB30 article-title: Effects of point defects on elastic precursor decay in LiF publication-title: J. Appl. Phys. doi: 10.1063/1.1661464 – ident: 10.1016/S0734-743X(97)00064-X_BIB12 doi: 10.1007/BF02477331 – ident: 10.1016/S0734-743X(97)00064-X_BIB28 – volume: 46 start-page: 532 year: 1975 ident: 10.1016/S0734-743X(97)00064-X_BIB31 article-title: Dislocation mechanisms for stress relaxation in shocked LiF publication-title: J. Appl. Phys. doi: 10.1063/1.321678 – year: 1966 ident: 10.1016/S0734-743X(97)00064-X_BIB6 – year: 1977 ident: 10.1016/S0734-743X(97)00064-X_BIB13 – volume: 47 start-page: 2995 year: 1976 ident: 10.1016/S0734-743X(97)00064-X_BIB39 article-title: The unloading and reloading behavior of shock-compressed polymethyl-methacrylate publication-title: J. Appl. Phys. doi: 10.1063/1.323041 |
SSID | ssj0017050 |
Score | 1.5692682 |
Snippet | The Hugoniot elastic limit (HEL) precursor decay in shock loaded solids has been the subject of considerable experimental and theoretical investigation.... The Hugoniot elastic limit (EHL) precursor decay in shock loaded solids has been the subject of considerable experimental and theoretical investigation.... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 267 |
SubjectTerms | Condensed matter: structure, mechanical and thermal properties Exact sciences and technology High-pressure and shock-wave effects in solids and liquids Mechanical and acoustical properties of condensed matter Mechanical and elastic waves, vibrations Physics |
Title | The decay limit of the Hugoniot elastic limit |
URI | https://dx.doi.org/10.1016/S0734-743X(97)00064-X https://www.proquest.com/docview/26837771 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IXjTG-BlRwR086KHA2q7djoRIUCMXJdmtWbvOkBhGZBy8-Lf7ug6QGEPidetrl9fX935vfR8I3YRd7Se6a7DgimBmqI9Vyhn4PIKoCAw-LZvBPI_4cMwe4yCuof4yF8aGVVa63-n0UltXTzoVNzuzyaTzAsLJwP7FkSgNa2wz2Jmwst7-WoV52Gox5X8WGIzt6HUWj5uhfHgbibtyEhz_ZZ_2Z8kcuJa5dhe_NHdpjgaH6KDCkV7PfeoRqpnpMdr7UV3wBGEQAS81Ovn03m0ak5dnHsA9b7h4g4OcF54B5Azk7u0pGg_uX_tDXHVHwJpyUWARcJpqQ0w3SklEtPABGZmI-1mqsixMhAkCTUgUgo-X-jTMtMVHVHGSasIUoWeoPs2n5hx5WvEgIIwrLTgTXa6ooRkLgpAk4N5ltIHYkidSV6XDbQeLd7mOEQNWSstK6S60OZNxA7VXZDNXO2MbQbhkuNwQAgn6fRtpc2ODVgvaRGEQgga6Xm6YhANkb0WSqckXc0k4-OhC-Bf_X_wS7bpURRvQc4XqxcfCNAGrFKpVCmML7fQenoajbzw84Ps |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgBCiKcozwwMMJgmfiYjQqDw6gJI2azYcVAl1FbQDvx7zknaghBCYrVzdvT5fA_dnQ_gJA5tlNvQESUNJdyxiJhCcvR5FDUJKnxWNYN56Mn0md9mImvB5bQWxqdVNrK_lumVtG5Gug2a3VG_331E5uSo_7JEVYo1W4BFLtDba8Pixc1d2psFE1RYNWr13xNPMC_kqRepBk8TdVatQ7LfVNTqKH9H4Mq648UP4V1ppOt1WGtMyeCi_tsNaLnBJqx8eWBwCwhyQVA4m38Er76SKRiWAVp8QTp5wbs8HAcOjWckr2e34fn66ukyJU2DBGKZVGOihGSFddSFSUETalWExpFLZFQWpizjXDkhLKVJjG5eEbG4tN5EYkbSwlJuKNuB9mA4cLsQWCOFoFwaqyRXoTTMsZILEdMcPbySdYBPMdG2eT3cN7F41fM0MYRSeyh1HdOWXGcdOJ-RjernM_4iiKeA6298oFHE_0V6-O2AZhv6WmFkgg4cTw9M4x3ygZF84IaTd00luulKRXv_3_wYltKnh3t9f9O724flunLR5_ccQHv8NnGHaLqMzVHDmp8bJ-Oy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+decay+limit+of+the+Hugoniot+elastic+limit&rft.jtitle=International+journal+of+impact+engineering&rft.au=Billingsley%2C+J+P&rft.date=1998-04-01&rft.issn=0734-743X&rft.volume=21&rft.issue=4&rft.spage=267&rft.epage=281&rft_id=info:doi/10.1016%2FS0734-743X%2897%2900064-X&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon |