Intrinsic Conductance of Ferroelectric Charged Domain Walls

Ferroelectric charged domain walls offer a revolutionary path for next-generation ferroelectric devices due to their exceptional conductivity within an otherwise insulating matrix. However, quantitative understanding of this “giant conductivity” has remained elusive due to the lack of robust models...

Full description

Saved in:
Bibliographic Details
Published inPhysics (Online) Vol. 6; no. 3; pp. 1083 - 1097
Main Author Yang, Feng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ferroelectric charged domain walls offer a revolutionary path for next-generation ferroelectric devices due to their exceptional conductivity within an otherwise insulating matrix. However, quantitative understanding of this “giant conductivity” has remained elusive due to the lack of robust models describing carrier behavior within CDWs. The current paper bridges this critical knowledge gap by employing a first-principles approach that incorporates Boltzmann transport theory and the relaxation time approximation. This strategy enables the calculation of carrier concentration, mobility, and conductivity for both head-to-head and tail-to-tail domain wall configurations within a stabilized periodic structure. The comprehensive transport analysis given here reveals that the accumulation of charge carriers, particularly their concentration, is the dominant factor governing domain wall conductance. Interestingly, observed conductance differences between head-to-head and tail-to-tail walls primarily arise from variations in carrier mobility. Additionally, this study demonstrates a significantly reduced domain wall width compared to previous reports. This miniaturization is attributed to the presence of compressive strain, which lowers the energy barrier for electron–hole pair generation. Furthermore, the findings here suggest that reducing the band gap presents a viable strategy for stabilizing charged domain walls. These results pave the way for the optimization and development of domain wall devices across a spectrum of ferroelectric materials.
AbstractList Ferroelectric charged domain walls offer a revolutionary path for next-generation ferroelectric devices due to their exceptional conductivity within an otherwise insulating matrix. However, quantitative understanding of this “giant conductivity” has remained elusive due to the lack of robust models describing carrier behavior within CDWs. The current paper bridges this critical knowledge gap by employing a first-principles approach that incorporates Boltzmann transport theory and the relaxation time approximation. This strategy enables the calculation of carrier concentration, mobility, and conductivity for both head-to-head and tail-to-tail domain wall configurations within a stabilized periodic structure. The comprehensive transport analysis given here reveals that the accumulation of charge carriers, particularly their concentration, is the dominant factor governing domain wall conductance. Interestingly, observed conductance differences between head-to-head and tail-to-tail walls primarily arise from variations in carrier mobility. Additionally, this study demonstrates a significantly reduced domain wall width compared to previous reports. This miniaturization is attributed to the presence of compressive strain, which lowers the energy barrier for electron–hole pair generation. Furthermore, the findings here suggest that reducing the band gap presents a viable strategy for stabilizing charged domain walls. These results pave the way for the optimization and development of domain wall devices across a spectrum of ferroelectric materials.
Author Yang, Feng
Author_xml – sequence: 1
  givenname: Feng
  orcidid: 0000-0001-7937-6833
  surname: Yang
  fullname: Yang, Feng
BookMark eNpVkM1LAzEQxYNUsNZePS943jr52GSDJ6lWCwUviseQzUe7ZZvUZHvof-9qRfQ0w7w3vxneJRqFGBxC1xhmlEq43W-OuTWZAwXg4gyNCSesrLFgoz_9BZrmvAUAUkElSTVGd8vQpzYMu8U8BnswvQ7GFdEXC5dSdJ0zgz6IG53WzhYPcafbULzrrstX6NzrLrvpT52gt8Xj6_y5XL08Lef3q9JQLvpSMGN8Q4xpuGVgSSMYZxS4xrUWGAjwmoHwTnrBGa4oZkY6LQy3hBpLGZ2g5Ylro96qfWp3Oh1V1K36HsS0Vjr1remc0l42NWCpjaHMatxw533TWOnqiktdD6ybE2uf4sfB5V5t4yGF4X1FMQYONZV4cM1OLpNizsn536sY1Ffe6n_e9BN8UXVQ
Cites_doi 10.1103/PhysRevApplied.20.064043
10.1016/j.apsusc.2022.156202
10.1103/PhysRevApplied.17.044011
10.1126/science.285.5433.1540
10.1166/jctn.2008.1101
10.1038/natrevmats.2016.87
10.1038/ncomms1751
10.1038/s41567-023-02333-8
10.1038/nmat2632
10.1103/PhysRevLett.107.126805
10.1021/acsaelm.3c00928
10.1103/PhysRevB.80.104110
10.1080/00150197308237691
10.1002/adma.201400557
10.1038/nmat3249
10.1021/acs.nanolett.8b02742
10.1103/PhysRevB.83.235112
10.1080/14786435.2020.1799101
10.1038/srep15819
10.1021/acsami.3c02710
10.1016/0927-0256(96)00008-0
10.1103/PhysRevB.83.184104
10.1002/adma.201004143
10.1021/acs.nanolett.3c02966
10.1103/PhysRevLett.77.3865
10.1103/PhysRevLett.101.237601
10.1002/apxr.202200095
10.1038/s41563-024-01856-6
10.1039/c2nr30585b
10.1080/01411590902936138
10.1103/PhysRevB.101.060103
10.1126/science.aan2433
10.1038/nnano.2014.320
10.1103/PhysRevB.65.104111
10.1021/nl302382k
10.1103/PhysRevB.54.11169
10.1103/PhysRevLett.105.197603
10.1038/nmat4799
10.1038/s42254-020-0235-z
10.1038/s41467-021-22440-5
10.1038/nmat3754
10.1103/RevModPhys.84.119
10.1103/PhysRevB.47.558
10.1103/PhysRevLett.95.196804
10.1103/PhysRevLett.45.566
10.1038/nmat2373
10.1016/j.cpc.2018.05.010
10.1021/nn102472s
10.1038/s41578-021-00375-z
10.1088/1361-6633/ab6a43
10.1021/acsnano.7b01199
10.1103/PhysRev.136.B864
10.1038/ncomms2839
10.1002/adma.202204298
10.1038/nnano.2015.114
10.1080/00150190701515881
10.1038/ncomms13764
10.1021/jz502666j
10.1063/1.3292587
10.1103/PhysRevB.101.174114
10.1103/PhysRev.140.A1133
10.1021/nl104363x
10.1021/acsanm.2c01919
10.1002/adma.201102254
10.1103/PhysRev.104.1281
10.1002/adfm.201201174
10.1103/PhysRevLett.107.127601
ContentType Journal Article
Copyright 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/physics6030067
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2624-8174
EndPage 1097
ExternalDocumentID oai_doaj_org_article_af9b8019acc34da1b6effbbd9e8569a8
10_3390_physics6030067
GroupedDBID AAFWJ
AAYXX
ABDBF
ADMLS
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
MODMG
PHGZM
PHGZT
PIMPY
8FE
8FG
ABUWG
AZQEC
DWQXO
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c367t-74ccfb2ccb6d40d2b7464306a18a7102068407fe9f76415314c9ea7c6d23cd343
IEDL.DBID BENPR
ISSN 2624-8174
IngestDate Wed Aug 27 01:00:16 EDT 2025
Sat Jul 26 01:17:23 EDT 2025
Tue Jul 01 02:31:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-74ccfb2ccb6d40d2b7464306a18a7102068407fe9f76415314c9ea7c6d23cd343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7937-6833
OpenAccessLink https://www.proquest.com/docview/3110608391?pq-origsite=%requestingapplication%
PQID 3110608391
PQPubID 5046871
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_af9b8019acc34da1b6effbbd9e8569a8
proquest_journals_3110608391
crossref_primary_10_3390_physics6030067
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Physics (Online)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Beccard (ref_13) 2023; 20
Guyonnet (ref_9) 2011; 23
ref_12
Kresse (ref_38) 1996; 54
Junquera (ref_56) 2008; 5
Qian (ref_18) 2022; 17
Lubk (ref_22) 2009; 80
Xi (ref_46) 2012; 4
Campbell (ref_31) 2016; 7
Wada (ref_70) 2007; 355
Kresse (ref_39) 1996; 6
Vul (ref_59) 1973; 6
Seidel (ref_14) 2011; 107
McCluskey (ref_33) 2022; 34
Ceperley (ref_41) 1980; 45
Gureev (ref_61) 2011; 83
Guechi (ref_51) 2020; 100
Thiessen (ref_8) 2012; 22
Bardeen (ref_49) 1950; 80
Peng (ref_66) 2024; 20
Seidel (ref_2) 2009; 8
Kim (ref_10) 2010; 96
Vasudevan (ref_25) 2012; 12
Rojac (ref_29) 2017; 16
Meier (ref_30) 2022; 7
McGilly (ref_15) 2015; 10
Meyer (ref_54) 2002; 65
Zhang (ref_67) 2024; 23
ref_68
Meier (ref_24) 2012; 11
Janolin (ref_58) 2008; 101
Martin (ref_1) 2016; 2
Chen (ref_35) 2023; 15
Madsen (ref_44) 2018; 231
Sun (ref_50) 2023; 614
Hohenberg (ref_36) 1964; 136
Crassous (ref_6) 2015; 10
Stengel (ref_60) 2011; 83
Catalan (ref_16) 2012; 84
Godau (ref_26) 2017; 11
Shi (ref_65) 2013; 12
Maksymovych (ref_11) 2011; 11
Kornev (ref_57) 2005; 95
Kohn (ref_37) 1965; 140
Zhang (ref_62) 2020; 101
Liu (ref_69) 2015; 6
Nataf (ref_21) 2020; 2
Sifuna (ref_53) 2020; 101
Beccard (ref_34) 2022; 5
Sluka (ref_7) 2013; 4
Li (ref_45) 2020; 83
Turner (ref_32) 2018; 18
Ganose (ref_43) 2021; 12
Harrison (ref_48) 1956; 104
Kresse (ref_40) 1993; 47
Perdew (ref_42) 1996; 77
Sluka (ref_64) 2012; 3
Seidel (ref_5) 2014; 26
Suna (ref_20) 2023; 2
Zhang (ref_55) 2018; 361
Farokhipoor (ref_27) 2011; 107
Maguire (ref_17) 2023; 23
ref_47
Sun (ref_19) 2023; 5
Choi (ref_63) 2010; 9
Chiu (ref_23) 2011; 23
Seidel (ref_28) 2010; 105
Freisem (ref_4) 1999; 285
Long (ref_52) 2011; 5
Salje (ref_3) 2009; 82
References_xml – volume: 20
  start-page: 064043
  year: 2023
  ident: ref_13
  article-title: Hall mobilities and sheet carrier densities in a single LiNbO3 conductive ferroelectric domain wall
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.20.064043
– volume: 614
  start-page: 156202
  year: 2023
  ident: ref_50
  article-title: First-principles calculations to investigate doping effects on electrical conductivity and interfacial contact resistance of TiO2
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.156202
– volume: 17
  start-page: 044011
  year: 2022
  ident: ref_18
  article-title: Domain-wall p-n junction in lithium niobate thin film on an insulator
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.17.044011
– volume: 285
  start-page: 1540
  year: 1999
  ident: ref_4
  article-title: Spatially inhomogeneous metal-insulator transition in doped manganites
  publication-title: Science
  doi: 10.1126/science.285.5433.1540
– ident: ref_68
– volume: 5
  start-page: 2071
  year: 2008
  ident: ref_56
  article-title: First-principles study of ferroelectric oxide epitaxial thin films and superlattices: Role of the mechanical and electrical boundary conditions
  publication-title: J. Comput. Theor. Nanosci.
  doi: 10.1166/jctn.2008.1101
– volume: 2
  start-page: 16087
  year: 2016
  ident: ref_1
  article-title: Thin-film ferroelectric materials and their applications
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.87
– volume: 3
  start-page: 748
  year: 2012
  ident: ref_64
  article-title: Enhanced electromechanical response of ferroelectrics due to charged domain walls
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1751
– volume: 20
  start-page: 450
  year: 2024
  ident: ref_66
  article-title: Flexoelectric polarizing and control of a ferromagnetic metal
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-023-02333-8
– volume: 9
  start-page: 253
  year: 2010
  ident: ref_63
  article-title: Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2632
– volume: 107
  start-page: 126805
  year: 2011
  ident: ref_14
  article-title: Efficient photovoltaic current generation at ferroelectric domain walls
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.126805
– volume: 5
  start-page: 4692
  year: 2023
  ident: ref_19
  article-title: Ferroelectric domain wall memory and logic
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.3c00928
– volume: 80
  start-page: 104110
  year: 2009
  ident: ref_22
  article-title: First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.104110
– volume: 6
  start-page: 29
  year: 1973
  ident: ref_59
  article-title: Encountering domains in ferroelectrics
  publication-title: Ferroelectrics
  doi: 10.1080/00150197308237691
– volume: 26
  start-page: 4376
  year: 2014
  ident: ref_5
  article-title: Electronic properties of isosymmetric phase boundaries in highly strained Ca-doped BiFeO3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400557
– volume: 11
  start-page: 284
  year: 2012
  ident: ref_24
  article-title: Anisotropic conductance at improper ferroelectric domain walls
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3249
– volume: 18
  start-page: 6381
  year: 2018
  ident: ref_32
  article-title: Large carrier mobilities in ErMnO3 conducting domain walls revealed by quantitative Hall-effect measurements
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b02742
– volume: 83
  start-page: 235112
  year: 2011
  ident: ref_60
  article-title: Band alignment at metal/ferroelectric interfaces: Insights and artifacts from first principles
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.235112
– volume: 100
  start-page: 3023
  year: 2020
  ident: ref_51
  article-title: Electronic and thermoelectric properties of the layered Zintl phase CaIn2P2: First-principles calculations
  publication-title: Philos. Mag.
  doi: 10.1080/14786435.2020.1799101
– ident: ref_12
  doi: 10.1038/srep15819
– volume: 15
  start-page: 25041
  year: 2023
  ident: ref_35
  article-title: Erasable domain wall current-dominated resistive switching in BiFeO3 devices with an oxide–metal interface
  publication-title: ACS Appl. Mater. Inter.
  doi: 10.1021/acsami.3c02710
– volume: 6
  start-page: 15
  year: 1996
  ident: ref_39
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comp. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 83
  start-page: 184104
  year: 2011
  ident: ref_61
  article-title: Head-to-head and tail-to-tail 180° domain walls in an isolated ferroelectric
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.184104
– volume: 23
  start-page: 1530
  year: 2011
  ident: ref_23
  article-title: Atomic-scale evolution of local electronic structure across multiferroic domain walls
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201004143
– volume: 23
  start-page: 10360
  year: 2023
  ident: ref_17
  article-title: Ferroelectric Domain wall p–n j unctions
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.3c02966
– volume: 77
  start-page: 3865
  year: 1996
  ident: ref_42
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 101
  start-page: 237601
  year: 2008
  ident: ref_58
  article-title: High-pressure effect on PbTiO3: An investigation by Raman and X-ray scattering up to 63 GPa
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.237601
– volume: 2
  start-page: 2200095
  year: 2023
  ident: ref_20
  article-title: Tuning local conductance to enable demonstrator ferroelectric domain wall diodes and logic gates
  publication-title: Adv. Phys. Res.
  doi: 10.1002/apxr.202200095
– volume: 23
  start-page: 912
  year: 2024
  ident: ref_67
  article-title: A correlated ferromagnetic polar metal by design
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-024-01856-6
– volume: 4
  start-page: 4348
  year: 2012
  ident: ref_46
  article-title: First-principles prediction of charge mobility in carbon and organic nanomaterials
  publication-title: Nanoscale
  doi: 10.1039/c2nr30585b
– volume: 82
  start-page: 452
  year: 2009
  ident: ref_3
  article-title: Domain boundary engineering
  publication-title: Phase Transit.
  doi: 10.1080/01411590902936138
– volume: 101
  start-page: 060103
  year: 2020
  ident: ref_62
  article-title: Origin of sawtooth domain walls in ferroelectrics
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.060103
– volume: 361
  start-page: 494
  year: 2018
  ident: ref_55
  article-title: Giant polarization in super-tetragonal thin films through interphase strain
  publication-title: Science
  doi: 10.1126/science.aan2433
– volume: 10
  start-page: 145
  year: 2015
  ident: ref_15
  article-title: Controlling domain wall motion in ferroelectric thin films
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.320
– volume: 65
  start-page: 104111
  year: 2002
  ident: ref_54
  article-title: Ab initio study of ferroelectric domain walls in PbTiO3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.104111
– volume: 80
  start-page: 72
  year: 1950
  ident: ref_49
  article-title: Deformation potentials and mobilities in non-polar crystals
  publication-title: Phys. Rev. Appl.
– volume: 12
  start-page: 5524
  year: 2012
  ident: ref_25
  article-title: Domain wall geometry controls conduction in ferroelectrics
  publication-title: Nano Lett.
  doi: 10.1021/nl302382k
– volume: 54
  start-page: 11169
  year: 1996
  ident: ref_38
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 105
  start-page: 197603
  year: 2010
  ident: ref_28
  article-title: Domain wall conductivity in La-Doped BiFeO3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.197603
– ident: ref_47
– volume: 16
  start-page: 322
  year: 2017
  ident: ref_29
  article-title: Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4799
– volume: 2
  start-page: 634
  year: 2020
  ident: ref_21
  article-title: Domain-wall engineering and topological defects in ferroelectric and ferroelastic materials
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-020-0235-z
– volume: 12
  start-page: 2222
  year: 2021
  ident: ref_43
  article-title: Efficient calculation of carrier scattering rates from first principles
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22440-5
– volume: 12
  start-page: 1024
  year: 2013
  ident: ref_65
  article-title: A ferroelectric-like structural transition in a metal
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3754
– volume: 84
  start-page: 119
  year: 2012
  ident: ref_16
  article-title: Domain wall nanoelectronics
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.84.119
– volume: 47
  start-page: 558
  year: 1993
  ident: ref_40
  article-title: Ab initio molecular dynamics for liquid metals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 95
  start-page: 196804
  year: 2005
  ident: ref_57
  article-title: Ferroelectricity of perovskites under pressure
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.196804
– volume: 45
  start-page: 566
  year: 1980
  ident: ref_41
  article-title: Ground state of the electron gas by a stochastic method
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.566
– volume: 8
  start-page: 229
  year: 2009
  ident: ref_2
  article-title: Conduction at domain walls in oxide multiferroics
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2373
– volume: 231
  start-page: 140
  year: 2018
  ident: ref_44
  article-title: BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2018.05.010
– volume: 5
  start-page: 2593
  year: 2011
  ident: ref_52
  article-title: Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions
  publication-title: ACS Nano
  doi: 10.1021/nn102472s
– volume: 7
  start-page: 157
  year: 2022
  ident: ref_30
  article-title: Ferroelectric domain walls for nanotechnology
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-021-00375-z
– volume: 83
  start-page: 036501
  year: 2020
  ident: ref_45
  article-title: First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/ab6a43
– volume: 11
  start-page: 4816
  year: 2017
  ident: ref_26
  article-title: Enhancing the domain wall conductivity in lithium niobate single crystals
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01199
– volume: 136
  start-page: 864
  year: 1964
  ident: ref_36
  article-title: Inhomogeneous electron gas
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRev.136.B864
– volume: 4
  start-page: 1808
  year: 2013
  ident: ref_7
  article-title: Free-electron gas at charged domain walls in insulating BaTiO3
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2839
– volume: 34
  start-page: 2204298
  year: 2022
  ident: ref_33
  article-title: Ultrahigh carrier mobilities in ferroelectric domain wall corbino cones at room temperature
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202204298
– volume: 10
  start-page: 614
  year: 2015
  ident: ref_6
  article-title: Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.114
– volume: 355
  start-page: 37
  year: 2007
  ident: ref_70
  article-title: Domain wall engineering in lead-free piezoelectric crystals
  publication-title: Ferroelectrics
  doi: 10.1080/00150190701515881
– volume: 7
  start-page: 13764
  year: 2016
  ident: ref_31
  article-title: Hall effect in charged conducting ferroelectric domain walls
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13764
– volume: 6
  start-page: 693
  year: 2015
  ident: ref_69
  article-title: Ferroelectric domain wall induced band gap reduction and charge separation in organometal halide perovskites
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz502666j
– volume: 96
  start-page: 032904
  year: 2010
  ident: ref_10
  article-title: Nanoscale properties of thin twin walls and surface layers in piezoelectric WO3−x
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3292587
– volume: 101
  start-page: 174114
  year: 2020
  ident: ref_53
  article-title: First-principles study of two-dimensional electron and hole gases at the head-to-head and tail-to-tail 180° domain walls in PbTiO3 ferroelectric thin films
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.174114
– volume: 140
  start-page: A1133
  year: 1965
  ident: ref_37
  article-title: Self-consistent equations including exchange and correlation effects
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 11
  start-page: 1906
  year: 2011
  ident: ref_11
  article-title: Dynamic conductivity of ferroelectric domain walls in BiFeO3
  publication-title: Nano Lett.
  doi: 10.1021/nl104363x
– volume: 5
  start-page: 8717
  year: 2022
  ident: ref_34
  article-title: Nanoscale conductive sheets in ferroelectric BaTiO3: Large Hall electron mobilities at head-to-head domain walls
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.2c01919
– volume: 23
  start-page: 5377
  year: 2011
  ident: ref_9
  article-title: Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201102254
– volume: 104
  start-page: 1281
  year: 1956
  ident: ref_48
  article-title: Scattering of electrons by lattice vibrations in nonpolar crystals
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.104.1281
– volume: 22
  start-page: 3936
  year: 2012
  ident: ref_8
  article-title: Conducting domain walls in lithium niobate single crystals
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201201174
– volume: 107
  start-page: 127601
  year: 2011
  ident: ref_27
  article-title: Conduction through 71° domain walls in BiFeO3 thin films
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.127601
SSID ssj0002505925
Score 2.2670977
Snippet Ferroelectric charged domain walls offer a revolutionary path for next-generation ferroelectric devices due to their exceptional conductivity within an...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 1083
SubjectTerms Approximation
Carrier density
Carrier mobility
charged domain wall
Compressive properties
conductance
Current carriers
Domain walls
Electric fields
Electrons
Ferroelectric materials
Ferroelectricity
ferroelectrics
First principles
Periodic structures
Point defects
Relaxation time
Semiconductors
Thin films
Transport theory
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iCF7ET1xdpQfBU9m2SacNnnR1WQXFgwt7K8kkAQ-2slv_v5mmqysevHjsB215k8y8Cel7jF3wRJsy5RDnOZKFmbRxaSxNd3QAOnFZZ53w-ATTmXiY5_M1qy_aExbkgQNwI-Wk9llUKkQujEo1WOe0NtKWOUjV_ebra95aM0U5mAq7zPKg0sh9Xz8KCwVL8IM66Uzlv6tQJ9b_Kxd3BWayy3Z6Zhhdhy_aYxu23mdbz-GBB-zqvm4Xr7U_iMZNTSqtFK-ocdHELhZNsLOhiyR9ZE1027z5pj-ihfLlIZtN7l7G07h3PoiRQ9HGhUB0OkPUYERiMl0IzxwSUGmpiBIkJNFSOCtdAb4C81SgtKpAMBlHwwU_Ypt1U9tjFhmjETgZQMhUZDbVpRQSZKGMFQkqHLDLFRLVexC4qHxjQJhVPzEbsBsC6usuEqbuTvhwVX24qr_CNWDDFcxVP1uWFfccBDwXlOnJf7zjlG1nnnqEnWBDttkuPuyZpw6tPu9GySf5asPl
  priority: 102
  providerName: Directory of Open Access Journals
Title Intrinsic Conductance of Ferroelectric Charged Domain Walls
URI https://www.proquest.com/docview/3110608391
https://doaj.org/article/af9b8019acc34da1b6effbbd9e8569a8
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60RfAiPrFaSw6Cp2CS3Wx28SD1UR-oFB_gLexTPJjUtP5_d5K0IoLHZJccZmbnm5ks3wdwSCJleExYmKYaJcyEDbmxeNy1Y0xFLqmlE-4f2PULvX1NX9uB27S9VjnPiXWiNqXGGfkx8TjFfL0g4tPJZ4iqUfh3tZXQWIauT8Gcd6B7dvkwflxMWRDgRZI2bI3E9_fHzcBgynxwR7W4_A8a1aT9f3JyDTSjdVhrK8Rg2Lh0A5ZssQkr4-aDW3ByU8yq98I_BOdlgWyt6LegdMHIVlXZyNrgIlIgWRNclB---Q9wYD7dhpfR5fP5ddgqIISasGwWZlRrpxKtFTM0MonKqK8gIiZjLrE0iJCqJXNWuIx5JCYx1cLKTDOTEG0IJTvQKcrC7kJgjNKMoBCEiGliY8UFFUxk0lgaaal7cDS3RD5piC5y3yCgzfLfNuvBGRpqsQsJqusXZfWWt_GeSyeUBz8htSbUyFgx65xSRlieMiF5D_pzM-ftqZnmPz7e-395H1YTX1w0d7360JlVX_bAFwczNYBlProaQHd4cX_3NGjjYVC32t_Hyr4a
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3RrapyQS0UdWGhOYA4RSS248RCCNHdbneBRT2AxC34s-JAAtlFiD_Fb8STbBZVSL1xTMbyYTLjN57Y7wHs0EiZLKY8TBKNEmbChpmxmO7aca4iR2rphMk5H12yk6vkagme27sweKyyXRPrhdqUGnvk-9TjFPf1goiP7u5DVI3Cv6uthEYTFqf26dFv2aaH44H_vruEDH9d9EfhXFUg1JSnszBlWjtFtFbcsMgQlTKPyhGXcSYRbiOkP0mdFS7lHt1ozLSwMtXcEKoNZdTP-wE-MuqRHG-mD38vejpYTgiSNNyQ3h7tN-2JKfepFNVS9q_YV0sEvEGAGtaGX2BlXo8Gx00AfYUlW6zCpz_NhGtwMC5m1U3hH4J-WSA3LEZJULpgaKuqbER00IiES9YEg_JW3hQBtuen3-DyXTyzDp2iLOx3CIxRmlOUnRAxIzZWmWCCi1QayyItdRf2Wk_kdw2tRu63I-iz_F-fdeEnOmoxCumw6xdl9TefZ1cunVAeaoXUmjIjY8Wtc0oZYbOEC5l1ode6OZ_n6DR_jaiN_5t_wOfRxeQsPxufn27CMvFlTXPKrAedWfVgt3xZMlPbdSwEcP3ewfcCpwr1HQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3BoqJeUCkgtlDIAcQp2sR2nFioqgrLioWyWlUgcQv-RBxIaHYrxF_j19WTDxCq1BvHxJEPkzd-M5PJPIA9GimTxZSHSaJRwkzYMDMW3V07zlXkSC2dcDHhp1fs7Dq5XoDn7l8YbKvszsT6oDalxhr5gHqe4j5eEPHAtW0R0-Ho-8PvEBWk8EtrJ6fRQOTcPj369G32bTz073qfkNHJ5fFp2CoMhJrydB6mTGuniNaKGxYZolLmGTriMs4kUm-Eo1BSZ4VLuWc6GjMtrEw1N4RqQxn1-y7CUopZUQ-Wjk4m018vFR4MLgRJmkmRlIpo0BQrZtw7VlQL278yYS0Y8A8f1CQ3-gQrbXQa_GjgtAoLtvgMH6bNhmtwOC7m1V3hL4LjssBJsYiZoHTByFZV2Ujq4CKOX7ImGJb38q4IsFg_W4erd7HNBvSKsrCbEBijNKcoQiFiRmysMsEEF6k0lkVa6j4cdJbIH5ohG7lPTtBm-Vub9eEIDfXyFA7Hrm-U1W3e-lounVCeeIXUmjIjY8Wtc0oZYbOEC5n1Ybszc9567Cx_xdeX_y_vwrIHXv5zPDnfgo_ExzhNy9k29ObVH_vVxyhztdOCIYCb98bfX-1L-q8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsic+Conductance+of+Ferroelectric+Charged+Domain+Walls&rft.jtitle=Physics+%28Online%29&rft.au=Yang%2C+Feng&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.eissn=2624-8174&rft.volume=6&rft.issue=3&rft.spage=1083&rft_id=info:doi/10.3390%2Fphysics6030067&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-8174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-8174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-8174&client=summon