Intrinsic Conductance of Ferroelectric Charged Domain Walls
Ferroelectric charged domain walls offer a revolutionary path for next-generation ferroelectric devices due to their exceptional conductivity within an otherwise insulating matrix. However, quantitative understanding of this “giant conductivity” has remained elusive due to the lack of robust models...
Saved in:
Published in | Physics (Online) Vol. 6; no. 3; pp. 1083 - 1097 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ferroelectric charged domain walls offer a revolutionary path for next-generation ferroelectric devices due to their exceptional conductivity within an otherwise insulating matrix. However, quantitative understanding of this “giant conductivity” has remained elusive due to the lack of robust models describing carrier behavior within CDWs. The current paper bridges this critical knowledge gap by employing a first-principles approach that incorporates Boltzmann transport theory and the relaxation time approximation. This strategy enables the calculation of carrier concentration, mobility, and conductivity for both head-to-head and tail-to-tail domain wall configurations within a stabilized periodic structure. The comprehensive transport analysis given here reveals that the accumulation of charge carriers, particularly their concentration, is the dominant factor governing domain wall conductance. Interestingly, observed conductance differences between head-to-head and tail-to-tail walls primarily arise from variations in carrier mobility. Additionally, this study demonstrates a significantly reduced domain wall width compared to previous reports. This miniaturization is attributed to the presence of compressive strain, which lowers the energy barrier for electron–hole pair generation. Furthermore, the findings here suggest that reducing the band gap presents a viable strategy for stabilizing charged domain walls. These results pave the way for the optimization and development of domain wall devices across a spectrum of ferroelectric materials. |
---|---|
AbstractList | Ferroelectric charged domain walls offer a revolutionary path for next-generation ferroelectric devices due to their exceptional conductivity within an otherwise insulating matrix. However, quantitative understanding of this “giant conductivity” has remained elusive due to the lack of robust models describing carrier behavior within CDWs. The current paper bridges this critical knowledge gap by employing a first-principles approach that incorporates Boltzmann transport theory and the relaxation time approximation. This strategy enables the calculation of carrier concentration, mobility, and conductivity for both head-to-head and tail-to-tail domain wall configurations within a stabilized periodic structure. The comprehensive transport analysis given here reveals that the accumulation of charge carriers, particularly their concentration, is the dominant factor governing domain wall conductance. Interestingly, observed conductance differences between head-to-head and tail-to-tail walls primarily arise from variations in carrier mobility. Additionally, this study demonstrates a significantly reduced domain wall width compared to previous reports. This miniaturization is attributed to the presence of compressive strain, which lowers the energy barrier for electron–hole pair generation. Furthermore, the findings here suggest that reducing the band gap presents a viable strategy for stabilizing charged domain walls. These results pave the way for the optimization and development of domain wall devices across a spectrum of ferroelectric materials. |
Author | Yang, Feng |
Author_xml | – sequence: 1 givenname: Feng orcidid: 0000-0001-7937-6833 surname: Yang fullname: Yang, Feng |
BookMark | eNpVkM1LAzEQxYNUsNZePS943jr52GSDJ6lWCwUviseQzUe7ZZvUZHvof-9qRfQ0w7w3vxneJRqFGBxC1xhmlEq43W-OuTWZAwXg4gyNCSesrLFgoz_9BZrmvAUAUkElSTVGd8vQpzYMu8U8BnswvQ7GFdEXC5dSdJ0zgz6IG53WzhYPcafbULzrrstX6NzrLrvpT52gt8Xj6_y5XL08Lef3q9JQLvpSMGN8Q4xpuGVgSSMYZxS4xrUWGAjwmoHwTnrBGa4oZkY6LQy3hBpLGZ2g5Ylro96qfWp3Oh1V1K36HsS0Vjr1remc0l42NWCpjaHMatxw533TWOnqiktdD6ybE2uf4sfB5V5t4yGF4X1FMQYONZV4cM1OLpNizsn536sY1Ffe6n_e9BN8UXVQ |
Cites_doi | 10.1103/PhysRevApplied.20.064043 10.1016/j.apsusc.2022.156202 10.1103/PhysRevApplied.17.044011 10.1126/science.285.5433.1540 10.1166/jctn.2008.1101 10.1038/natrevmats.2016.87 10.1038/ncomms1751 10.1038/s41567-023-02333-8 10.1038/nmat2632 10.1103/PhysRevLett.107.126805 10.1021/acsaelm.3c00928 10.1103/PhysRevB.80.104110 10.1080/00150197308237691 10.1002/adma.201400557 10.1038/nmat3249 10.1021/acs.nanolett.8b02742 10.1103/PhysRevB.83.235112 10.1080/14786435.2020.1799101 10.1038/srep15819 10.1021/acsami.3c02710 10.1016/0927-0256(96)00008-0 10.1103/PhysRevB.83.184104 10.1002/adma.201004143 10.1021/acs.nanolett.3c02966 10.1103/PhysRevLett.77.3865 10.1103/PhysRevLett.101.237601 10.1002/apxr.202200095 10.1038/s41563-024-01856-6 10.1039/c2nr30585b 10.1080/01411590902936138 10.1103/PhysRevB.101.060103 10.1126/science.aan2433 10.1038/nnano.2014.320 10.1103/PhysRevB.65.104111 10.1021/nl302382k 10.1103/PhysRevB.54.11169 10.1103/PhysRevLett.105.197603 10.1038/nmat4799 10.1038/s42254-020-0235-z 10.1038/s41467-021-22440-5 10.1038/nmat3754 10.1103/RevModPhys.84.119 10.1103/PhysRevB.47.558 10.1103/PhysRevLett.95.196804 10.1103/PhysRevLett.45.566 10.1038/nmat2373 10.1016/j.cpc.2018.05.010 10.1021/nn102472s 10.1038/s41578-021-00375-z 10.1088/1361-6633/ab6a43 10.1021/acsnano.7b01199 10.1103/PhysRev.136.B864 10.1038/ncomms2839 10.1002/adma.202204298 10.1038/nnano.2015.114 10.1080/00150190701515881 10.1038/ncomms13764 10.1021/jz502666j 10.1063/1.3292587 10.1103/PhysRevB.101.174114 10.1103/PhysRev.140.A1133 10.1021/nl104363x 10.1021/acsanm.2c01919 10.1002/adma.201102254 10.1103/PhysRev.104.1281 10.1002/adfm.201201174 10.1103/PhysRevLett.107.127601 |
ContentType | Journal Article |
Copyright | 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.3390/physics6030067 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2624-8174 |
EndPage | 1097 |
ExternalDocumentID | oai_doaj_org_article_af9b8019acc34da1b6effbbd9e8569a8 10_3390_physics6030067 |
GroupedDBID | AAFWJ AAYXX ABDBF ADMLS AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO IGS ITC MODMG PHGZM PHGZT PIMPY 8FE 8FG ABUWG AZQEC DWQXO P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c367t-74ccfb2ccb6d40d2b7464306a18a7102068407fe9f76415314c9ea7c6d23cd343 |
IEDL.DBID | BENPR |
ISSN | 2624-8174 |
IngestDate | Wed Aug 27 01:00:16 EDT 2025 Sat Jul 26 01:17:23 EDT 2025 Tue Jul 01 02:31:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-74ccfb2ccb6d40d2b7464306a18a7102068407fe9f76415314c9ea7c6d23cd343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7937-6833 |
OpenAccessLink | https://www.proquest.com/docview/3110608391?pq-origsite=%requestingapplication% |
PQID | 3110608391 |
PQPubID | 5046871 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_af9b8019acc34da1b6effbbd9e8569a8 proquest_journals_3110608391 crossref_primary_10_3390_physics6030067 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Physics (Online) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Beccard (ref_13) 2023; 20 Guyonnet (ref_9) 2011; 23 ref_12 Kresse (ref_38) 1996; 54 Junquera (ref_56) 2008; 5 Qian (ref_18) 2022; 17 Lubk (ref_22) 2009; 80 Xi (ref_46) 2012; 4 Campbell (ref_31) 2016; 7 Wada (ref_70) 2007; 355 Kresse (ref_39) 1996; 6 Vul (ref_59) 1973; 6 Seidel (ref_14) 2011; 107 McCluskey (ref_33) 2022; 34 Ceperley (ref_41) 1980; 45 Gureev (ref_61) 2011; 83 Guechi (ref_51) 2020; 100 Thiessen (ref_8) 2012; 22 Bardeen (ref_49) 1950; 80 Peng (ref_66) 2024; 20 Seidel (ref_2) 2009; 8 Kim (ref_10) 2010; 96 Vasudevan (ref_25) 2012; 12 Rojac (ref_29) 2017; 16 Meier (ref_30) 2022; 7 McGilly (ref_15) 2015; 10 Meyer (ref_54) 2002; 65 Zhang (ref_67) 2024; 23 ref_68 Meier (ref_24) 2012; 11 Janolin (ref_58) 2008; 101 Martin (ref_1) 2016; 2 Chen (ref_35) 2023; 15 Madsen (ref_44) 2018; 231 Sun (ref_50) 2023; 614 Hohenberg (ref_36) 1964; 136 Crassous (ref_6) 2015; 10 Stengel (ref_60) 2011; 83 Catalan (ref_16) 2012; 84 Godau (ref_26) 2017; 11 Shi (ref_65) 2013; 12 Maksymovych (ref_11) 2011; 11 Kornev (ref_57) 2005; 95 Kohn (ref_37) 1965; 140 Zhang (ref_62) 2020; 101 Liu (ref_69) 2015; 6 Nataf (ref_21) 2020; 2 Sifuna (ref_53) 2020; 101 Beccard (ref_34) 2022; 5 Sluka (ref_7) 2013; 4 Li (ref_45) 2020; 83 Turner (ref_32) 2018; 18 Ganose (ref_43) 2021; 12 Harrison (ref_48) 1956; 104 Kresse (ref_40) 1993; 47 Perdew (ref_42) 1996; 77 Sluka (ref_64) 2012; 3 Seidel (ref_5) 2014; 26 Suna (ref_20) 2023; 2 Zhang (ref_55) 2018; 361 Farokhipoor (ref_27) 2011; 107 Maguire (ref_17) 2023; 23 ref_47 Sun (ref_19) 2023; 5 Choi (ref_63) 2010; 9 Chiu (ref_23) 2011; 23 Seidel (ref_28) 2010; 105 Freisem (ref_4) 1999; 285 Long (ref_52) 2011; 5 Salje (ref_3) 2009; 82 |
References_xml | – volume: 20 start-page: 064043 year: 2023 ident: ref_13 article-title: Hall mobilities and sheet carrier densities in a single LiNbO3 conductive ferroelectric domain wall publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.20.064043 – volume: 614 start-page: 156202 year: 2023 ident: ref_50 article-title: First-principles calculations to investigate doping effects on electrical conductivity and interfacial contact resistance of TiO2 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.156202 – volume: 17 start-page: 044011 year: 2022 ident: ref_18 article-title: Domain-wall p-n junction in lithium niobate thin film on an insulator publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.17.044011 – volume: 285 start-page: 1540 year: 1999 ident: ref_4 article-title: Spatially inhomogeneous metal-insulator transition in doped manganites publication-title: Science doi: 10.1126/science.285.5433.1540 – ident: ref_68 – volume: 5 start-page: 2071 year: 2008 ident: ref_56 article-title: First-principles study of ferroelectric oxide epitaxial thin films and superlattices: Role of the mechanical and electrical boundary conditions publication-title: J. Comput. Theor. Nanosci. doi: 10.1166/jctn.2008.1101 – volume: 2 start-page: 16087 year: 2016 ident: ref_1 article-title: Thin-film ferroelectric materials and their applications publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.87 – volume: 3 start-page: 748 year: 2012 ident: ref_64 article-title: Enhanced electromechanical response of ferroelectrics due to charged domain walls publication-title: Nat. Commun. doi: 10.1038/ncomms1751 – volume: 20 start-page: 450 year: 2024 ident: ref_66 article-title: Flexoelectric polarizing and control of a ferromagnetic metal publication-title: Nat. Phys. doi: 10.1038/s41567-023-02333-8 – volume: 9 start-page: 253 year: 2010 ident: ref_63 article-title: Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3 publication-title: Nat. Mater. doi: 10.1038/nmat2632 – volume: 107 start-page: 126805 year: 2011 ident: ref_14 article-title: Efficient photovoltaic current generation at ferroelectric domain walls publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.126805 – volume: 5 start-page: 4692 year: 2023 ident: ref_19 article-title: Ferroelectric domain wall memory and logic publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.3c00928 – volume: 80 start-page: 104110 year: 2009 ident: ref_22 article-title: First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.104110 – volume: 6 start-page: 29 year: 1973 ident: ref_59 article-title: Encountering domains in ferroelectrics publication-title: Ferroelectrics doi: 10.1080/00150197308237691 – volume: 26 start-page: 4376 year: 2014 ident: ref_5 article-title: Electronic properties of isosymmetric phase boundaries in highly strained Ca-doped BiFeO3 publication-title: Adv. Mater. doi: 10.1002/adma.201400557 – volume: 11 start-page: 284 year: 2012 ident: ref_24 article-title: Anisotropic conductance at improper ferroelectric domain walls publication-title: Nat. Mater. doi: 10.1038/nmat3249 – volume: 18 start-page: 6381 year: 2018 ident: ref_32 article-title: Large carrier mobilities in ErMnO3 conducting domain walls revealed by quantitative Hall-effect measurements publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b02742 – volume: 83 start-page: 235112 year: 2011 ident: ref_60 article-title: Band alignment at metal/ferroelectric interfaces: Insights and artifacts from first principles publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.235112 – volume: 100 start-page: 3023 year: 2020 ident: ref_51 article-title: Electronic and thermoelectric properties of the layered Zintl phase CaIn2P2: First-principles calculations publication-title: Philos. Mag. doi: 10.1080/14786435.2020.1799101 – ident: ref_12 doi: 10.1038/srep15819 – volume: 15 start-page: 25041 year: 2023 ident: ref_35 article-title: Erasable domain wall current-dominated resistive switching in BiFeO3 devices with an oxide–metal interface publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.3c02710 – volume: 6 start-page: 15 year: 1996 ident: ref_39 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comp. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 83 start-page: 184104 year: 2011 ident: ref_61 article-title: Head-to-head and tail-to-tail 180° domain walls in an isolated ferroelectric publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.83.184104 – volume: 23 start-page: 1530 year: 2011 ident: ref_23 article-title: Atomic-scale evolution of local electronic structure across multiferroic domain walls publication-title: Adv. Mater. doi: 10.1002/adma.201004143 – volume: 23 start-page: 10360 year: 2023 ident: ref_17 article-title: Ferroelectric Domain wall p–n j unctions publication-title: Nano Lett. doi: 10.1021/acs.nanolett.3c02966 – volume: 77 start-page: 3865 year: 1996 ident: ref_42 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 101 start-page: 237601 year: 2008 ident: ref_58 article-title: High-pressure effect on PbTiO3: An investigation by Raman and X-ray scattering up to 63 GPa publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.237601 – volume: 2 start-page: 2200095 year: 2023 ident: ref_20 article-title: Tuning local conductance to enable demonstrator ferroelectric domain wall diodes and logic gates publication-title: Adv. Phys. Res. doi: 10.1002/apxr.202200095 – volume: 23 start-page: 912 year: 2024 ident: ref_67 article-title: A correlated ferromagnetic polar metal by design publication-title: Nat. Mater. doi: 10.1038/s41563-024-01856-6 – volume: 4 start-page: 4348 year: 2012 ident: ref_46 article-title: First-principles prediction of charge mobility in carbon and organic nanomaterials publication-title: Nanoscale doi: 10.1039/c2nr30585b – volume: 82 start-page: 452 year: 2009 ident: ref_3 article-title: Domain boundary engineering publication-title: Phase Transit. doi: 10.1080/01411590902936138 – volume: 101 start-page: 060103 year: 2020 ident: ref_62 article-title: Origin of sawtooth domain walls in ferroelectrics publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.060103 – volume: 361 start-page: 494 year: 2018 ident: ref_55 article-title: Giant polarization in super-tetragonal thin films through interphase strain publication-title: Science doi: 10.1126/science.aan2433 – volume: 10 start-page: 145 year: 2015 ident: ref_15 article-title: Controlling domain wall motion in ferroelectric thin films publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.320 – volume: 65 start-page: 104111 year: 2002 ident: ref_54 article-title: Ab initio study of ferroelectric domain walls in PbTiO3 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.104111 – volume: 80 start-page: 72 year: 1950 ident: ref_49 article-title: Deformation potentials and mobilities in non-polar crystals publication-title: Phys. Rev. Appl. – volume: 12 start-page: 5524 year: 2012 ident: ref_25 article-title: Domain wall geometry controls conduction in ferroelectrics publication-title: Nano Lett. doi: 10.1021/nl302382k – volume: 54 start-page: 11169 year: 1996 ident: ref_38 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 105 start-page: 197603 year: 2010 ident: ref_28 article-title: Domain wall conductivity in La-Doped BiFeO3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.197603 – ident: ref_47 – volume: 16 start-page: 322 year: 2017 ident: ref_29 article-title: Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects publication-title: Nat. Mater. doi: 10.1038/nmat4799 – volume: 2 start-page: 634 year: 2020 ident: ref_21 article-title: Domain-wall engineering and topological defects in ferroelectric and ferroelastic materials publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-020-0235-z – volume: 12 start-page: 2222 year: 2021 ident: ref_43 article-title: Efficient calculation of carrier scattering rates from first principles publication-title: Nat. Commun. doi: 10.1038/s41467-021-22440-5 – volume: 12 start-page: 1024 year: 2013 ident: ref_65 article-title: A ferroelectric-like structural transition in a metal publication-title: Nat. Mater. doi: 10.1038/nmat3754 – volume: 84 start-page: 119 year: 2012 ident: ref_16 article-title: Domain wall nanoelectronics publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.84.119 – volume: 47 start-page: 558 year: 1993 ident: ref_40 article-title: Ab initio molecular dynamics for liquid metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 95 start-page: 196804 year: 2005 ident: ref_57 article-title: Ferroelectricity of perovskites under pressure publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.196804 – volume: 45 start-page: 566 year: 1980 ident: ref_41 article-title: Ground state of the electron gas by a stochastic method publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.566 – volume: 8 start-page: 229 year: 2009 ident: ref_2 article-title: Conduction at domain walls in oxide multiferroics publication-title: Nat. Mater. doi: 10.1038/nmat2373 – volume: 231 start-page: 140 year: 2018 ident: ref_44 article-title: BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2018.05.010 – volume: 5 start-page: 2593 year: 2011 ident: ref_52 article-title: Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions publication-title: ACS Nano doi: 10.1021/nn102472s – volume: 7 start-page: 157 year: 2022 ident: ref_30 article-title: Ferroelectric domain walls for nanotechnology publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00375-z – volume: 83 start-page: 036501 year: 2020 ident: ref_45 article-title: First-principles calculations of charge carrier mobility and conductivity in bulk semiconductors and two-dimensional materials publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/ab6a43 – volume: 11 start-page: 4816 year: 2017 ident: ref_26 article-title: Enhancing the domain wall conductivity in lithium niobate single crystals publication-title: ACS Nano doi: 10.1021/acsnano.7b01199 – volume: 136 start-page: 864 year: 1964 ident: ref_36 article-title: Inhomogeneous electron gas publication-title: Phys. Rev. B doi: 10.1103/PhysRev.136.B864 – volume: 4 start-page: 1808 year: 2013 ident: ref_7 article-title: Free-electron gas at charged domain walls in insulating BaTiO3 publication-title: Nat. Commun. doi: 10.1038/ncomms2839 – volume: 34 start-page: 2204298 year: 2022 ident: ref_33 article-title: Ultrahigh carrier mobilities in ferroelectric domain wall corbino cones at room temperature publication-title: Adv. Mater. doi: 10.1002/adma.202204298 – volume: 10 start-page: 614 year: 2015 ident: ref_6 article-title: Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.114 – volume: 355 start-page: 37 year: 2007 ident: ref_70 article-title: Domain wall engineering in lead-free piezoelectric crystals publication-title: Ferroelectrics doi: 10.1080/00150190701515881 – volume: 7 start-page: 13764 year: 2016 ident: ref_31 article-title: Hall effect in charged conducting ferroelectric domain walls publication-title: Nat. Commun. doi: 10.1038/ncomms13764 – volume: 6 start-page: 693 year: 2015 ident: ref_69 article-title: Ferroelectric domain wall induced band gap reduction and charge separation in organometal halide perovskites publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz502666j – volume: 96 start-page: 032904 year: 2010 ident: ref_10 article-title: Nanoscale properties of thin twin walls and surface layers in piezoelectric WO3−x publication-title: Appl. Phys. Lett. doi: 10.1063/1.3292587 – volume: 101 start-page: 174114 year: 2020 ident: ref_53 article-title: First-principles study of two-dimensional electron and hole gases at the head-to-head and tail-to-tail 180° domain walls in PbTiO3 ferroelectric thin films publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.174114 – volume: 140 start-page: A1133 year: 1965 ident: ref_37 article-title: Self-consistent equations including exchange and correlation effects publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 11 start-page: 1906 year: 2011 ident: ref_11 article-title: Dynamic conductivity of ferroelectric domain walls in BiFeO3 publication-title: Nano Lett. doi: 10.1021/nl104363x – volume: 5 start-page: 8717 year: 2022 ident: ref_34 article-title: Nanoscale conductive sheets in ferroelectric BaTiO3: Large Hall electron mobilities at head-to-head domain walls publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.2c01919 – volume: 23 start-page: 5377 year: 2011 ident: ref_9 article-title: Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films publication-title: Adv. Mater. doi: 10.1002/adma.201102254 – volume: 104 start-page: 1281 year: 1956 ident: ref_48 article-title: Scattering of electrons by lattice vibrations in nonpolar crystals publication-title: Phys. Rev. doi: 10.1103/PhysRev.104.1281 – volume: 22 start-page: 3936 year: 2012 ident: ref_8 article-title: Conducting domain walls in lithium niobate single crystals publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201201174 – volume: 107 start-page: 127601 year: 2011 ident: ref_27 article-title: Conduction through 71° domain walls in BiFeO3 thin films publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.127601 |
SSID | ssj0002505925 |
Score | 2.2670977 |
Snippet | Ferroelectric charged domain walls offer a revolutionary path for next-generation ferroelectric devices due to their exceptional conductivity within an... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 1083 |
SubjectTerms | Approximation Carrier density Carrier mobility charged domain wall Compressive properties conductance Current carriers Domain walls Electric fields Electrons Ferroelectric materials Ferroelectricity ferroelectrics First principles Periodic structures Point defects Relaxation time Semiconductors Thin films Transport theory |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iCF7ET1xdpQfBU9m2SacNnnR1WQXFgwt7K8kkAQ-2slv_v5mmqysevHjsB215k8y8Cel7jF3wRJsy5RDnOZKFmbRxaSxNd3QAOnFZZ53w-ATTmXiY5_M1qy_aExbkgQNwI-Wk9llUKkQujEo1WOe0NtKWOUjV_ebra95aM0U5mAq7zPKg0sh9Xz8KCwVL8IM66Uzlv6tQJ9b_Kxd3BWayy3Z6Zhhdhy_aYxu23mdbz-GBB-zqvm4Xr7U_iMZNTSqtFK-ocdHELhZNsLOhiyR9ZE1027z5pj-ihfLlIZtN7l7G07h3PoiRQ9HGhUB0OkPUYERiMl0IzxwSUGmpiBIkJNFSOCtdAb4C81SgtKpAMBlHwwU_Ypt1U9tjFhmjETgZQMhUZDbVpRQSZKGMFQkqHLDLFRLVexC4qHxjQJhVPzEbsBsC6usuEqbuTvhwVX24qr_CNWDDFcxVP1uWFfccBDwXlOnJf7zjlG1nnnqEnWBDttkuPuyZpw6tPu9GySf5asPl priority: 102 providerName: Directory of Open Access Journals |
Title | Intrinsic Conductance of Ferroelectric Charged Domain Walls |
URI | https://www.proquest.com/docview/3110608391 https://doaj.org/article/af9b8019acc34da1b6effbbd9e8569a8 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60RfAiPrFaSw6Cp2CS3Wx28SD1UR-oFB_gLexTPJjUtP5_d5K0IoLHZJccZmbnm5ks3wdwSCJleExYmKYaJcyEDbmxeNy1Y0xFLqmlE-4f2PULvX1NX9uB27S9VjnPiXWiNqXGGfkx8TjFfL0g4tPJZ4iqUfh3tZXQWIauT8Gcd6B7dvkwflxMWRDgRZI2bI3E9_fHzcBgynxwR7W4_A8a1aT9f3JyDTSjdVhrK8Rg2Lh0A5ZssQkr4-aDW3ByU8yq98I_BOdlgWyt6LegdMHIVlXZyNrgIlIgWRNclB---Q9wYD7dhpfR5fP5ddgqIISasGwWZlRrpxKtFTM0MonKqK8gIiZjLrE0iJCqJXNWuIx5JCYx1cLKTDOTEG0IJTvQKcrC7kJgjNKMoBCEiGliY8UFFUxk0lgaaal7cDS3RD5piC5y3yCgzfLfNuvBGRpqsQsJqusXZfWWt_GeSyeUBz8htSbUyFgx65xSRlieMiF5D_pzM-ftqZnmPz7e-395H1YTX1w0d7360JlVX_bAFwczNYBlProaQHd4cX_3NGjjYVC32t_Hyr4a |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3RrapyQS0UdWGhOYA4RSS248RCCNHdbneBRT2AxC34s-JAAtlFiD_Fb8STbBZVSL1xTMbyYTLjN57Y7wHs0EiZLKY8TBKNEmbChpmxmO7aca4iR2rphMk5H12yk6vkagme27sweKyyXRPrhdqUGnvk-9TjFPf1goiP7u5DVI3Cv6uthEYTFqf26dFv2aaH44H_vruEDH9d9EfhXFUg1JSnszBlWjtFtFbcsMgQlTKPyhGXcSYRbiOkP0mdFS7lHt1ozLSwMtXcEKoNZdTP-wE-MuqRHG-mD38vejpYTgiSNNyQ3h7tN-2JKfepFNVS9q_YV0sEvEGAGtaGX2BlXo8Gx00AfYUlW6zCpz_NhGtwMC5m1U3hH4J-WSA3LEZJULpgaKuqbER00IiES9YEg_JW3hQBtuen3-DyXTyzDp2iLOx3CIxRmlOUnRAxIzZWmWCCi1QayyItdRf2Wk_kdw2tRu63I-iz_F-fdeEnOmoxCumw6xdl9TefZ1cunVAeaoXUmjIjY8Wtc0oZYbOEC5l1ode6OZ_n6DR_jaiN_5t_wOfRxeQsPxufn27CMvFlTXPKrAedWfVgt3xZMlPbdSwEcP3ewfcCpwr1HQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3BoqJeUCkgtlDIAcQp2sR2nFioqgrLioWyWlUgcQv-RBxIaHYrxF_j19WTDxCq1BvHxJEPkzd-M5PJPIA9GimTxZSHSaJRwkzYMDMW3V07zlXkSC2dcDHhp1fs7Dq5XoDn7l8YbKvszsT6oDalxhr5gHqe4j5eEPHAtW0R0-Ho-8PvEBWk8EtrJ6fRQOTcPj369G32bTz073qfkNHJ5fFp2CoMhJrydB6mTGuniNaKGxYZolLmGTriMs4kUm-Eo1BSZ4VLuWc6GjMtrEw1N4RqQxn1-y7CUopZUQ-Wjk4m018vFR4MLgRJmkmRlIpo0BQrZtw7VlQL278yYS0Y8A8f1CQ3-gQrbXQa_GjgtAoLtvgMH6bNhmtwOC7m1V3hL4LjssBJsYiZoHTByFZV2Ujq4CKOX7ImGJb38q4IsFg_W4erd7HNBvSKsrCbEBijNKcoQiFiRmysMsEEF6k0lkVa6j4cdJbIH5ohG7lPTtBm-Vub9eEIDfXyFA7Hrm-U1W3e-lounVCeeIXUmjIjY8Wtc0oZYbOEC5n1Ybszc9567Cx_xdeX_y_vwrIHXv5zPDnfgo_ExzhNy9k29ObVH_vVxyhztdOCIYCb98bfX-1L-q8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intrinsic+Conductance+of+Ferroelectric+Charged+Domain+Walls&rft.jtitle=Physics+%28Online%29&rft.au=Yang%2C+Feng&rft.date=2024-09-01&rft.pub=MDPI+AG&rft.eissn=2624-8174&rft.volume=6&rft.issue=3&rft.spage=1083&rft_id=info:doi/10.3390%2Fphysics6030067&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-8174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-8174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-8174&client=summon |