Neutral scatterers dominate carrier transport in CVD graphene with ionic impurities

The carrier conduction in 2D materials is more sensitive to surface-bound disorder than bulk materials and is thought to limit their achievable performance in electronic devices. To date, charged impurity scattering is considered the main source of interaction between ionic adsorbates and carriers i...

Full description

Saved in:
Bibliographic Details
Published inCarbon (New York) Vol. 165; pp. 163 - 168
Main Authors Chen, Szu-Hua, Nguyen, Yen, Chen, Ting-Wei, Yen, Zhi-Long, Hofmann, Mario, Hsieh, Ya-Ping
Format Journal Article
LanguageEnglish
Published New York Elsevier Ltd 15.09.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The carrier conduction in 2D materials is more sensitive to surface-bound disorder than bulk materials and is thought to limit their achievable performance in electronic devices. To date, charged impurity scattering is considered the main source of interaction between ionic adsorbates and carriers in 2D materials. We here observe a previously unknown source of carrier scattering in graphene upon interaction with ionic impurities. Different from charged impurity scattering, these “neutral scatterers” do not depend on carrier concentration and yield a sixfold mobility variation at similar doping. Comparison of different ionic residue from various metal etchants reveals a universal mechanism that controls the carrier mean free path. Raman spectroscopy suggests that inhomogeneous charge distribution is the source of neutral scatterers and we extract an optical fingerprint for their presence. The charge heterogeneity thus acts as an additional degree of freedom in graphene’s carrier transport and its consideration can explain the transition from ambipolar to unipolar charge transport in graphene. Our results not only provide new insight into the carrier transport of 2D materials in the presence of disorder and provide guidelines for enhancing the performance of graphene devices but also enable novel device concepts in graphene. [Display omitted]
AbstractList The carrier conduction in 2D materials is more sensitive to surface-bound disorder than bulk materials and is thought to limit their achievable performance in electronic devices. To date, charged impurity scattering is considered the main source of interaction between ionic adsorbates and carriers in 2D materials. We here observe a previously unknown source of carrier scattering in graphene upon interaction with ionic impurities. Different from charged impurity scattering, these “neutral scatterers” do not depend on carrier concentration and yield a sixfold mobility variation at similar doping. Comparison of different ionic residue from various metal etchants reveals a universal mechanism that controls the carrier mean free path. Raman spectroscopy suggests that inhomogeneous charge distribution is the source of neutral scatterers and we extract an optical fingerprint for their presence. The charge heterogeneity thus acts as an additional degree of freedom in graphene’s carrier transport and its consideration can explain the transition from ambipolar to unipolar charge transport in graphene. Our results not only provide new insight into the carrier transport of 2D materials in the presence of disorder and provide guidelines for enhancing the performance of graphene devices but also enable novel device concepts in graphene. [Display omitted]
The carrier conduction in 2D materials is more sensitive to surface-bound disorder than bulk materials and is thought to limit their achievable performance in electronic devices. To date, charged impurity scattering is considered the main source of interaction between ionic adsorbates and carriers in 2D materials. We here observe a previously unknown source of carrier scattering in graphene upon interaction with ionic impurities. Different from charged impurity scattering, these "neutral scatterers" do not depend on carrier concentration and yield a sixfold mobility variation at similar doping. Comparison of different ionic residue from various metal etchants reveals a universal mechanism that controls the carrier mean free path. Raman spectroscopy suggests that inhomogeneous charge distribution is the source of neutral scatterers and we extract an optical fingerprint for their presence. The charge heterogeneity thus acts as an additional degree of freedom in graphene's carrier transport and its consideration can explain the transition from ambipolar to unipolar charge transport in graphene. Our results not only provide new insight into the carrier transport of 2D materials in the presence of disorder and provide guidelines for enhancing the performance of graphene devices but also enable novel device concepts in graphene.
Author Hofmann, Mario
Chen, Ting-Wei
Chen, Szu-Hua
Hsieh, Ya-Ping
Yen, Zhi-Long
Nguyen, Yen
Author_xml – sequence: 1
  givenname: Szu-Hua
  surname: Chen
  fullname: Chen, Szu-Hua
  organization: Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
– sequence: 2
  givenname: Yen
  surname: Nguyen
  fullname: Nguyen, Yen
  organization: Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
– sequence: 3
  givenname: Ting-Wei
  surname: Chen
  fullname: Chen, Ting-Wei
  organization: Graduate Institute of Opto-Mechatronics, National Chung Cheng University, Chiayi, 62102, Taiwan
– sequence: 4
  givenname: Zhi-Long
  surname: Yen
  fullname: Yen, Zhi-Long
  organization: Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
– sequence: 5
  givenname: Mario
  surname: Hofmann
  fullname: Hofmann, Mario
  email: mario@phys.ntu.edu.tw
  organization: Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
– sequence: 6
  givenname: Ya-Ping
  surname: Hsieh
  fullname: Hsieh, Ya-Ping
  email: yphsieh@gate.sinica.edu.tw
  organization: Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
BookMark eNqFkEFLHTEURoMo-NT-AxeBbtzMeDOJM3ldCPJsa0F0oXUbMpkbzWNeMiYZi__eyHPloq7ChXM-wjkguz54JOSYQc2Atafr2ujYB1830EANogbe7pAFkx2vuFyyXbIAAFm1TcP3yUFK63IKycSC3N3gnKMeaTI6Z4wYEx3CxnmdkZbV6DDSAvg0hZip83T1cEkfo56e0CP95_ITdcE7Q91mmqPLDtMR2bN6TPjt4z0kf3_9vF9dVde3v_-sLq4rw9suV23f876VtjHNcKbPpAZkggEYuwTBOyu7Toi-t11v5ACyRY6wbC1yY60UhvNDcrLdnWJ4njFltXHJ4Dhqj2FOqhF8KRooTQr6_RO6DnP05XeFEqWFLFyhxJYyMaQU0aopuo2Or4qBei-t1mpbWr2XViBUKV20H58047LOJUsJ58av5POtjKXUS6mtknHoDQ4uoslqCO7_A28oip6T
CitedBy_id crossref_primary_10_3390_nano13091494
crossref_primary_10_1007_s12274_022_4130_z
crossref_primary_10_1021_acsaelm_4c02119
crossref_primary_10_1002_adfm_202004370
crossref_primary_10_1021_acsnano_1c03549
crossref_primary_10_1002_smtd_202400955
Cites_doi 10.1109/LED.2009.2016443
10.1007/s12274-012-0227-0
10.1038/nnano.2010.132
10.1038/nnano.2009.177
10.1038/srep17393
10.1021/nl201432g
10.1021/acs.nanolett.5b00440
10.1021/acs.jpclett.9b00862
10.1103/PhysRevLett.98.186806
10.1021/nl903272n
10.1038/ncomms2022
10.7567/JJAP.50.070108
10.1021/nl904286r
10.1039/C6RA27436F
10.1039/C4NR04956J
10.1039/C3NR05230C
10.1063/1.5009253
10.1021/acs.nanolett.9b02178
10.1002/smll.201100318
10.1021/acsnano.5b01261
10.1021/acs.chemmater.5b04007
10.1038/srep21676
10.1038/nmat1967
10.1021/acsnano.6b08278
10.1038/s41598-017-09465-x
10.1038/srep15061
10.1063/1.4983310
ContentType Journal Article
Copyright 2020
Copyright Elsevier BV Sep 15, 2020
Copyright_xml – notice: 2020
– notice: Copyright Elsevier BV Sep 15, 2020
DBID AAYXX
CITATION
7SR
8FD
JG9
7S9
L.6
DOI 10.1016/j.carbon.2020.04.036
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Materials Research Database
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3891
EndPage 168
ExternalDocumentID 10_1016_j_carbon_2020_04_036
S0008622320303596
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
J1W
JARJE
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSR
SSZ
T5K
TWZ
XPP
ZMT
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
IHE
R2-
RIG
SEW
SMS
WUQ
7SR
8FD
JG9
SSH
7S9
L.6
ID FETCH-LOGICAL-c367t-6bb3b68f2c2d5a58a0e14100cf90437f87744bbf7bc8d086e3e096fe3cff84c33
IEDL.DBID .~1
ISSN 0008-6223
IngestDate Fri Jul 11 07:41:17 EDT 2025
Fri Jul 25 04:51:25 EDT 2025
Tue Aug 05 03:08:26 EDT 2025
Thu Apr 24 23:12:05 EDT 2025
Fri Feb 23 02:46:54 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-6bb3b68f2c2d5a58a0e14100cf90437f87744bbf7bc8d086e3e096fe3cff84c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2440488200
PQPubID 2045273
PageCount 6
ParticipantIDs proquest_miscellaneous_2439420020
proquest_journals_2440488200
crossref_primary_10_1016_j_carbon_2020_04_036
crossref_citationtrail_10_1016_j_carbon_2020_04_036
elsevier_sciencedirect_doi_10_1016_j_carbon_2020_04_036
PublicationCentury 2000
PublicationDate 2020-09-15
PublicationDateYYYYMMDD 2020-09-15
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Carbon (New York)
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Dresselhaus, Jorio, Hofmann, Dresselhaus, Saito (bib19) 2010; 10
Hofmann, Shin, Hsieh, Dresselhaus, Kong (bib17) 2012; 5
Van Bremen, Vonk, Zandvliet, P. (bib28) 2019; 10
Lupina, Kitzmann, Costina, Lukosius, Wenger, Wolff, Vaziri, Ostling, Pasternak, Krajewska, Strupinski, Katatia, Gahoi, Lemme, Ruhl, Zoth, Luxenhofer, Mehr (bib8) 2015; 9
Lee, Ahn, Shim, Lee, Ryu (bib21) 2012; 3
Xia, Chen, Li, Tao (bib24) 2009; 4
Wang, Yang, Vajtai, Kono, Ajayan (bib11) 2018; 123
Cançado, Jorio, Ferreira, Stavale, Achete, Capaz, Moutinho, Lombardo, Kulmala, Ferrari (bib20) 2011; 11
Schedin, Geim, Morozov, Hill, Blake, Katsnelson, Novoselov (bib1) 2007; 6
Krauß, Engstler, Schneider (bib13) 2017; 8
Lee, Bae, Jang, Jang, Zhu, Sim, Song, Hong, Ahn (bib6) 2010; 10
Zebrev, Melnik, Tselykovskiy (bib26) 2010
Chang, Hsieh, Ting, Su, Hofmann (bib30) 2017; 7
Li, Miyazaki, Lee, Liu, Kanda, Tsukagoshi (bib25) 2011; 7
Wang, Nezich, Kong, Palacios (bib23) 2009; 30
Borys, Barnard, Gao, Yao, Bao, Buyanin, Zhang, Tongay, Ko, Suh, Bargioni, Wu, Yang, Schuck (bib27) 2017; 11
Bae, Kim, Lee, Xu, Park, Zheng, Balakrishnan, Lei, Kim, Song, J Kim, Kim, Ozyilmaz, Ahn, Hong, Lijima (bib5) 2010; 5
Cattelan, Peng, Cavaliere, Artiglia, Barinov, Roling, Favaro, Pis, Nappini, Magnano, Bondino, Gavioli, Agnoli, Mavrikakis, Granozzi (bib29) 2015; 7
Kim, Choi, Lee, Lee, Choi, Park, Yoo, Choi, Ryu, Kim, Hone, Hong (bib7) 2015; 15
Hsieh, Shih, Chiu, Hofmann (bib9) 2016; 28
Choi, Shehzad, Park, Seo (bib14) 2017; 7
Avouris, Heinz, T., Low 2D Materials (bib4) 2017
Nagashio, Toriumi (bib22) 2011; 50
Yang, Jiang, Wei (bib2) 2017; 4
Ambrosi, Pumera (bib10) 2014; 6
Deng, Rhee, Lee, Che, Keisham, Berry, T.W. (bib16) 2019; 19
Hofmann, Hsieh, Chang, Tsai, Chen (bib12) 2015; 5
Vejpravova, Pacakova, Endres, Mantlikova, Verhagen, Vales, Frank, Kalbac (bib15) 2015; 5
Boscá, Pedrós, Martínez, Palacios, Calle (bib18) 2016; 6
Hwang, Adam, Das Sarma (bib3) 2007; 98
Wang (10.1016/j.carbon.2020.04.036_bib23) 2009; 30
Lupina (10.1016/j.carbon.2020.04.036_bib8) 2015; 9
Deng (10.1016/j.carbon.2020.04.036_bib16) 2019; 19
Van Bremen (10.1016/j.carbon.2020.04.036_bib28) 2019; 10
Borys (10.1016/j.carbon.2020.04.036_bib27) 2017; 11
Lee (10.1016/j.carbon.2020.04.036_bib6) 2010; 10
Bae (10.1016/j.carbon.2020.04.036_bib5) 2010; 5
Hsieh (10.1016/j.carbon.2020.04.036_bib9) 2016; 28
Nagashio (10.1016/j.carbon.2020.04.036_bib22) 2011; 50
Choi (10.1016/j.carbon.2020.04.036_bib14) 2017; 7
Lee (10.1016/j.carbon.2020.04.036_bib21) 2012; 3
Vejpravova (10.1016/j.carbon.2020.04.036_bib15) 2015; 5
Li (10.1016/j.carbon.2020.04.036_bib25) 2011; 7
Hofmann (10.1016/j.carbon.2020.04.036_bib17) 2012; 5
Dresselhaus (10.1016/j.carbon.2020.04.036_bib19) 2010; 10
Cattelan (10.1016/j.carbon.2020.04.036_bib29) 2015; 7
Cançado (10.1016/j.carbon.2020.04.036_bib20) 2011; 11
Krauß (10.1016/j.carbon.2020.04.036_bib13) 2017; 8
Zebrev (10.1016/j.carbon.2020.04.036_bib26) 2010
Hofmann (10.1016/j.carbon.2020.04.036_bib12) 2015; 5
Wang (10.1016/j.carbon.2020.04.036_bib11) 2018; 123
Ambrosi (10.1016/j.carbon.2020.04.036_bib10) 2014; 6
Xia (10.1016/j.carbon.2020.04.036_bib24) 2009; 4
Avouris (10.1016/j.carbon.2020.04.036_bib4) 2017
Hwang (10.1016/j.carbon.2020.04.036_bib3) 2007; 98
Chang (10.1016/j.carbon.2020.04.036_bib30) 2017; 7
Boscá (10.1016/j.carbon.2020.04.036_bib18) 2016; 6
Schedin (10.1016/j.carbon.2020.04.036_bib1) 2007; 6
Kim (10.1016/j.carbon.2020.04.036_bib7) 2015; 15
Yang (10.1016/j.carbon.2020.04.036_bib2) 2017; 4
References_xml – volume: 123
  start-page: 195103
  year: 2018
  ident: bib11
  article-title: Effects of etchants in the transfer of chemical vapor deposited graphene
  publication-title: J. Appl. Phys.
– volume: 5
  start-page: 574
  year: 2010
  end-page: 578
  ident: bib5
  article-title: Roll-to-roll production of 30-inch graphene films for transparent electrodes
  publication-title: Nat. Nanotechnol.
– volume: 4
  year: 2017
  ident: bib2
  article-title: Gas sensing in 2D materials
  publication-title: Appl. Phys. Rev.
– volume: 98
  start-page: 186806
  year: 2007
  ident: bib3
  article-title: Carrier transport in two-dimensional graphene layers
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 1
  year: 2015
  end-page: 9
  ident: bib15
  article-title: Graphene wrinkling induced by monodisperse nanoparticles: facile control and quantification
  publication-title: Sci. Rep.
– volume: 9
  start-page: 4776
  year: 2015
  end-page: 4785
  ident: bib8
  article-title: Residual metallic contamination of transferred chemical vapor deposited graphene
  publication-title: ACS Nano
– volume: 8
  year: 2017
  ident: bib13
  article-title: A systematic study of the controlled generation of crystalline iron oxide nanoparticles on graphene using a chemical etching process
  publication-title: Beilstein J. Nanotechnol.
– volume: 30
  start-page: 547
  year: 2009
  end-page: 549
  ident: bib23
  article-title: Graphene frequency multipliers
  publication-title: IEEE Electron. Device Lett.
– volume: 7
  start-page: 9052
  year: 2017
  ident: bib30
  article-title: Increasing the doping efficiency by surface energy control for ultra-transparent graphene conductors
  publication-title: Sci. Rep.
– volume: 11
  start-page: 3190
  year: 2011
  end-page: 3196
  ident: bib20
  article-title: Quantifying defects in graphene via Raman spectroscopy at different excitation energies
  publication-title: Nano Lett.
– volume: 4
  start-page: 505
  year: 2009
  ident: bib24
  article-title: Measurement of the quantum capacitance of graphene
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 504
  year: 2012
  end-page: 511
  ident: bib17
  article-title: A facile tool for the characterization of two-dimensional materials grown by chemical vapor deposition
  publication-title: Nano Res.
– volume: 7
  start-page: 2450
  year: 2015
  end-page: 2460
  ident: bib29
  article-title: The nature of the Fe–graphene interface at the nanometer level
  publication-title: Nanoscale
– volume: 50
  year: 2011
  ident: bib22
  article-title: Density-of-states limited contact resistance in graphene field-effect transistors
  publication-title: Jpn. J. Appl. Phys.
– volume: 7
  start-page: 1552
  year: 2011
  end-page: 1556
  ident: bib25
  article-title: Complementary-Like Graphene Logic Gates Controlled by Electrostatic Doping
  publication-title: Small
– volume: 6
  start-page: 472
  year: 2014
  end-page: 476
  ident: bib10
  article-title: The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties
  publication-title: Nanoscale
– volume: 5
  start-page: 17393
  year: 2015
  ident: bib12
  article-title: Dopant morphology as the factor limiting graphene conductivity
  publication-title: Sci. Rep.
– volume: 28
  start-page: 40
  year: 2016
  end-page: 43
  ident: bib9
  article-title: High-throughput graphene synthesis in gapless stacks
  publication-title: Chem. Mater.
– volume: 10
  start-page: 490
  year: 2010
  end-page: 493
  ident: bib6
  article-title: Wafer-scale synthesis and transfer of graphene films
  publication-title: Nano Lett.
– volume: 10
  start-page: 2578
  year: 2019
  end-page: 2584
  ident: bib28
  article-title: Bampoulis environmentally controlled charge carrier injection mechanisms of metal/WS2 junctions
  publication-title: J. Phys. Chem. Lett.
– volume: 6
  start-page: 652
  year: 2007
  end-page: 655
  ident: bib1
  article-title: Detection of individual gas molecules adsorbed on graphene
  publication-title: Nat. Mater.
– volume: 6
  start-page: 21676
  year: 2016
  ident: bib18
  article-title: Automatic graphene transfer system for improved material quality and efficiency
  publication-title: Sci. Rep.
– volume: 10
  start-page: 751
  year: 2010
  end-page: 758
  ident: bib19
  article-title: Perspectives on carbon nanotubes and graphene Raman spectroscopy
  publication-title: Nano Lett.
– volume: 11
  start-page: 2115
  year: 2017
  end-page: 2123
  ident: bib27
  article-title: Anomalous above-gap photoexcitations and optical signatures of localized charge puddles in monolayer molybdenum disulfide
  publication-title: ACS Nano
– volume: 7
  start-page: 6943
  year: 2017
  end-page: 6949
  ident: bib14
  article-title: Influence of removing PMMA residues on surface of CVD graphene using a contact-mode atomic force microscope
  publication-title: RSC Adv.
– year: 2017
  ident: bib4
– volume: 19
  start-page: 5640
  year: 2019
  end-page: 5646
  ident: bib16
  article-title: Odom graphene wrinkles enable spatially defined chemistry
  publication-title: Nano Lett.
– volume: 3
  start-page: 1024
  year: 2012
  ident: bib21
  article-title: Optical separation of mechanical strain from charge doping in graphene
  publication-title: Nat. Commun.
– year: 2010
  ident: bib26
  article-title: Influence of Interface Traps and Electron-Hole Puddles on Quantum Capacitance and Conductivity in Graphene Field-Effect Transistors
– volume: 15
  start-page: 3236
  year: 2015
  end-page: 3240
  ident: bib7
  article-title: Ultraclean patterned transfer of single-layer graphene by recyclable pressure sensitive adhesive films
  publication-title: Nano Lett.
– volume: 30
  start-page: 547
  issue: 5
  year: 2009
  ident: 10.1016/j.carbon.2020.04.036_bib23
  article-title: Graphene frequency multipliers
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/LED.2009.2016443
– volume: 5
  start-page: 504
  issue: 7
  year: 2012
  ident: 10.1016/j.carbon.2020.04.036_bib17
  article-title: A facile tool for the characterization of two-dimensional materials grown by chemical vapor deposition
  publication-title: Nano Res.
  doi: 10.1007/s12274-012-0227-0
– volume: 5
  start-page: 574
  issue: 8
  year: 2010
  ident: 10.1016/j.carbon.2020.04.036_bib5
  article-title: Roll-to-roll production of 30-inch graphene films for transparent electrodes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.132
– volume: 4
  start-page: 505
  issue: 8
  year: 2009
  ident: 10.1016/j.carbon.2020.04.036_bib24
  article-title: Measurement of the quantum capacitance of graphene
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.177
– volume: 5
  start-page: 17393
  year: 2015
  ident: 10.1016/j.carbon.2020.04.036_bib12
  article-title: Dopant morphology as the factor limiting graphene conductivity
  publication-title: Sci. Rep.
  doi: 10.1038/srep17393
– volume: 11
  start-page: 3190
  issue: 8
  year: 2011
  ident: 10.1016/j.carbon.2020.04.036_bib20
  article-title: Quantifying defects in graphene via Raman spectroscopy at different excitation energies
  publication-title: Nano Lett.
  doi: 10.1021/nl201432g
– volume: 15
  start-page: 3236
  issue: 5
  year: 2015
  ident: 10.1016/j.carbon.2020.04.036_bib7
  article-title: Ultraclean patterned transfer of single-layer graphene by recyclable pressure sensitive adhesive films
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00440
– volume: 10
  start-page: 2578
  year: 2019
  ident: 10.1016/j.carbon.2020.04.036_bib28
  article-title: Bampoulis environmentally controlled charge carrier injection mechanisms of metal/WS2 junctions
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.9b00862
– volume: 98
  start-page: 186806
  issue: 18
  year: 2007
  ident: 10.1016/j.carbon.2020.04.036_bib3
  article-title: Carrier transport in two-dimensional graphene layers
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.186806
– volume: 10
  start-page: 490
  issue: 2
  year: 2010
  ident: 10.1016/j.carbon.2020.04.036_bib6
  article-title: Wafer-scale synthesis and transfer of graphene films
  publication-title: Nano Lett.
  doi: 10.1021/nl903272n
– volume: 3
  start-page: 1024
  year: 2012
  ident: 10.1016/j.carbon.2020.04.036_bib21
  article-title: Optical separation of mechanical strain from charge doping in graphene
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2022
– volume: 50
  issue: 7R
  year: 2011
  ident: 10.1016/j.carbon.2020.04.036_bib22
  article-title: Density-of-states limited contact resistance in graphene field-effect transistors
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.50.070108
– volume: 10
  start-page: 751
  issue: 3
  year: 2010
  ident: 10.1016/j.carbon.2020.04.036_bib19
  article-title: Perspectives on carbon nanotubes and graphene Raman spectroscopy
  publication-title: Nano Lett.
  doi: 10.1021/nl904286r
– volume: 7
  start-page: 6943
  issue: 12
  year: 2017
  ident: 10.1016/j.carbon.2020.04.036_bib14
  article-title: Influence of removing PMMA residues on surface of CVD graphene using a contact-mode atomic force microscope
  publication-title: RSC Adv.
  doi: 10.1039/C6RA27436F
– volume: 7
  start-page: 2450
  issue: 6
  year: 2015
  ident: 10.1016/j.carbon.2020.04.036_bib29
  article-title: The nature of the Fe–graphene interface at the nanometer level
  publication-title: Nanoscale
  doi: 10.1039/C4NR04956J
– year: 2017
  ident: 10.1016/j.carbon.2020.04.036_bib4
– volume: 6
  start-page: 472
  issue: 1
  year: 2014
  ident: 10.1016/j.carbon.2020.04.036_bib10
  article-title: The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties
  publication-title: Nanoscale
  doi: 10.1039/C3NR05230C
– year: 2010
  ident: 10.1016/j.carbon.2020.04.036_bib26
– volume: 123
  start-page: 195103
  issue: 19
  year: 2018
  ident: 10.1016/j.carbon.2020.04.036_bib11
  article-title: Effects of etchants in the transfer of chemical vapor deposited graphene
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5009253
– volume: 19
  start-page: 5640
  issue: 8
  year: 2019
  ident: 10.1016/j.carbon.2020.04.036_bib16
  article-title: Odom graphene wrinkles enable spatially defined chemistry
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b02178
– volume: 7
  start-page: 1552
  issue: 11
  year: 2011
  ident: 10.1016/j.carbon.2020.04.036_bib25
  article-title: Complementary-Like Graphene Logic Gates Controlled by Electrostatic Doping
  publication-title: Small
  doi: 10.1002/smll.201100318
– volume: 9
  start-page: 4776
  issue: 5
  year: 2015
  ident: 10.1016/j.carbon.2020.04.036_bib8
  article-title: Residual metallic contamination of transferred chemical vapor deposited graphene
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01261
– volume: 28
  start-page: 40
  issue: 1
  year: 2016
  ident: 10.1016/j.carbon.2020.04.036_bib9
  article-title: High-throughput graphene synthesis in gapless stacks
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04007
– volume: 6
  start-page: 21676
  year: 2016
  ident: 10.1016/j.carbon.2020.04.036_bib18
  article-title: Automatic graphene transfer system for improved material quality and efficiency
  publication-title: Sci. Rep.
  doi: 10.1038/srep21676
– volume: 6
  start-page: 652
  issue: 9
  year: 2007
  ident: 10.1016/j.carbon.2020.04.036_bib1
  article-title: Detection of individual gas molecules adsorbed on graphene
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1967
– volume: 11
  start-page: 2115
  issue: 2
  year: 2017
  ident: 10.1016/j.carbon.2020.04.036_bib27
  article-title: Anomalous above-gap photoexcitations and optical signatures of localized charge puddles in monolayer molybdenum disulfide
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b08278
– volume: 7
  start-page: 9052
  issue: 1
  year: 2017
  ident: 10.1016/j.carbon.2020.04.036_bib30
  article-title: Increasing the doping efficiency by surface energy control for ultra-transparent graphene conductors
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-09465-x
– volume: 8
  issue: 1
  year: 2017
  ident: 10.1016/j.carbon.2020.04.036_bib13
  article-title: A systematic study of the controlled generation of crystalline iron oxide nanoparticles on graphene using a chemical etching process
  publication-title: Beilstein J. Nanotechnol.
– volume: 5
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.carbon.2020.04.036_bib15
  article-title: Graphene wrinkling induced by monodisperse nanoparticles: facile control and quantification
  publication-title: Sci. Rep.
  doi: 10.1038/srep15061
– volume: 4
  issue: 2
  year: 2017
  ident: 10.1016/j.carbon.2020.04.036_bib2
  article-title: Gas sensing in 2D materials
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4983310
SSID ssj0004814
Score 2.3762703
Snippet The carrier conduction in 2D materials is more sensitive to surface-bound disorder than bulk materials and is thought to limit their achievable performance in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 163
SubjectTerms Adsorbates
Carrier density
Carrier transport
Charge distribution
Charge transport
Electronic devices
electronic equipment
Etchants
Graphene
Graphite
Heterogeneity
Impurities
Insulators
Raman spectroscopy
Scattering
Semiconductor doping
technology
Two dimensional materials
Title Neutral scatterers dominate carrier transport in CVD graphene with ionic impurities
URI https://dx.doi.org/10.1016/j.carbon.2020.04.036
https://www.proquest.com/docview/2440488200
https://www.proquest.com/docview/2439420020
Volume 165
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DD3oRP3E6RwSvdbFJ0_Q4qmMq7qKT3UKTJlDRdmzd1b_dvH5MFGHgsW1Cw8vLy3svv_weQldhwoPI-MIzTFiPaR16kSGppzlw4vqaRhrykE8TPp6yh1kw66C4vQsDsMrG9tc2vbLWzZtBI83BPMvgji-4484jcHpKgwhotxkLQcuvP79hHkzU_N5wzA-t2-tzFcZLJwtVAAuqTyrC04qo-c_t6Zehrnaf0T7aa9xGPKxHdoA6Jj9EO3Fbre0IPU_MCpIWeKkrxkzn1eG0AJxLabAbABSmw2XLZI6zHMevt7iiq3bWDkM6FkNqVuPsYw4V7VwEfYymo7uXeOw1BRM8TXlYelwpqriwvvbTIAlEQgzAOIm2EVAYWeF8PaaUDZUWqROeocZFMNZQba1gmtITtJUXuTlFWLu1qlxoCP4f40koEsETRYUJLSU2Ml1EWzlJ3bCJQ1GLd9nCxt5kLV0J0pWESSfdLvLWveY1m8aG9mE7BfKHVkhn8Df07LUzJptVuZQ-kCG6kIKQLrpcf3YTBYckSW6KFbShEQPkCjn798_P0S48AazkJuihrXKxMhfOdylVv1LOPtoe3j-OJ1-2Ru5k
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgO4wL4inGM0hcK0LTpukRDdAGWy9saLeoSRNpCLoJuv9P3McQCGkS1yZRIydxbOfzZ4CrKOVhbHzhmUBYL9A68mJDM09z5MT1NYs1xiFHCe9PgsdpON2AXpMLg7DKWvdXOr3U1vWX61qa14vZDHN80Rx3FoHbpyyM-Sa0kZ0qbEH7dvDUT77TI0VF8Y0v_TigyaArYV46_VBzJEL1acl5WnI1_3lD_dLV5QX0sAPbteVIbqvJ7cKGyfeg02sKtu3Dc2KWGLcgn7okzXSGHcnmCHUpDHETwNp0pGjIzMksJ72XO1IyVjuFRzAiSzA6q8nsfYFF7ZwTfQCTh_txr-_VNRM8zXhUeFwppriwvvazMA1FSg0iOam2MbIYWeHMvUApGyktMic_w4xzYqxh2loRaMYOoZXPc3MERLvjqpx3iCZgwNNIpIKnigkTWUZtbLrAGjlJXROKY12LN9kgx15lJV2J0pU0kE66XfBWoxYVocaa_lGzBPLHxpBO568ZedqsmKwP5qf0kQ_ReRWUduFy1ewWCt9J0tzMl9iHxQGCV-jxv39-AZ3-eDSUw0HydAJb2IIok5vwFFrFx9KcOVOmUOf1Vv0C41jxFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neutral+scatterers+dominate+carrier+transport+in+CVD+graphene+with+ionic+impurities&rft.jtitle=Carbon+%28New+York%29&rft.au=Chen%2C+Szu-Hua&rft.au=Nguyen%2C+Yen&rft.au=Chen%2C+Ting-Wei&rft.au=Yen%2C+Zhi-Long&rft.date=2020-09-15&rft.issn=0008-6223&rft.volume=165+p.163-168&rft.spage=163&rft.epage=168&rft_id=info:doi/10.1016%2Fj.carbon.2020.04.036&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon