Neutral scatterers dominate carrier transport in CVD graphene with ionic impurities
The carrier conduction in 2D materials is more sensitive to surface-bound disorder than bulk materials and is thought to limit their achievable performance in electronic devices. To date, charged impurity scattering is considered the main source of interaction between ionic adsorbates and carriers i...
Saved in:
Published in | Carbon (New York) Vol. 165; pp. 163 - 168 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Elsevier Ltd
15.09.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The carrier conduction in 2D materials is more sensitive to surface-bound disorder than bulk materials and is thought to limit their achievable performance in electronic devices. To date, charged impurity scattering is considered the main source of interaction between ionic adsorbates and carriers in 2D materials. We here observe a previously unknown source of carrier scattering in graphene upon interaction with ionic impurities. Different from charged impurity scattering, these “neutral scatterers” do not depend on carrier concentration and yield a sixfold mobility variation at similar doping. Comparison of different ionic residue from various metal etchants reveals a universal mechanism that controls the carrier mean free path. Raman spectroscopy suggests that inhomogeneous charge distribution is the source of neutral scatterers and we extract an optical fingerprint for their presence. The charge heterogeneity thus acts as an additional degree of freedom in graphene’s carrier transport and its consideration can explain the transition from ambipolar to unipolar charge transport in graphene. Our results not only provide new insight into the carrier transport of 2D materials in the presence of disorder and provide guidelines for enhancing the performance of graphene devices but also enable novel device concepts in graphene.
[Display omitted] |
---|---|
AbstractList | The carrier conduction in 2D materials is more sensitive to surface-bound disorder than bulk materials and is thought to limit their achievable performance in electronic devices. To date, charged impurity scattering is considered the main source of interaction between ionic adsorbates and carriers in 2D materials. We here observe a previously unknown source of carrier scattering in graphene upon interaction with ionic impurities. Different from charged impurity scattering, these “neutral scatterers” do not depend on carrier concentration and yield a sixfold mobility variation at similar doping. Comparison of different ionic residue from various metal etchants reveals a universal mechanism that controls the carrier mean free path. Raman spectroscopy suggests that inhomogeneous charge distribution is the source of neutral scatterers and we extract an optical fingerprint for their presence. The charge heterogeneity thus acts as an additional degree of freedom in graphene’s carrier transport and its consideration can explain the transition from ambipolar to unipolar charge transport in graphene. Our results not only provide new insight into the carrier transport of 2D materials in the presence of disorder and provide guidelines for enhancing the performance of graphene devices but also enable novel device concepts in graphene.
[Display omitted] The carrier conduction in 2D materials is more sensitive to surface-bound disorder than bulk materials and is thought to limit their achievable performance in electronic devices. To date, charged impurity scattering is considered the main source of interaction between ionic adsorbates and carriers in 2D materials. We here observe a previously unknown source of carrier scattering in graphene upon interaction with ionic impurities. Different from charged impurity scattering, these "neutral scatterers" do not depend on carrier concentration and yield a sixfold mobility variation at similar doping. Comparison of different ionic residue from various metal etchants reveals a universal mechanism that controls the carrier mean free path. Raman spectroscopy suggests that inhomogeneous charge distribution is the source of neutral scatterers and we extract an optical fingerprint for their presence. The charge heterogeneity thus acts as an additional degree of freedom in graphene's carrier transport and its consideration can explain the transition from ambipolar to unipolar charge transport in graphene. Our results not only provide new insight into the carrier transport of 2D materials in the presence of disorder and provide guidelines for enhancing the performance of graphene devices but also enable novel device concepts in graphene. |
Author | Hofmann, Mario Chen, Ting-Wei Chen, Szu-Hua Hsieh, Ya-Ping Yen, Zhi-Long Nguyen, Yen |
Author_xml | – sequence: 1 givenname: Szu-Hua surname: Chen fullname: Chen, Szu-Hua organization: Department of Physics, National Taiwan University, Taipei, 10617, Taiwan – sequence: 2 givenname: Yen surname: Nguyen fullname: Nguyen, Yen organization: Department of Physics, National Taiwan University, Taipei, 10617, Taiwan – sequence: 3 givenname: Ting-Wei surname: Chen fullname: Chen, Ting-Wei organization: Graduate Institute of Opto-Mechatronics, National Chung Cheng University, Chiayi, 62102, Taiwan – sequence: 4 givenname: Zhi-Long surname: Yen fullname: Yen, Zhi-Long organization: Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan – sequence: 5 givenname: Mario surname: Hofmann fullname: Hofmann, Mario email: mario@phys.ntu.edu.tw organization: Department of Physics, National Taiwan University, Taipei, 10617, Taiwan – sequence: 6 givenname: Ya-Ping surname: Hsieh fullname: Hsieh, Ya-Ping email: yphsieh@gate.sinica.edu.tw organization: Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan |
BookMark | eNqFkEFLHTEURoMo-NT-AxeBbtzMeDOJM3ldCPJsa0F0oXUbMpkbzWNeMiYZi__eyHPloq7ChXM-wjkguz54JOSYQc2Atafr2ujYB1830EANogbe7pAFkx2vuFyyXbIAAFm1TcP3yUFK63IKycSC3N3gnKMeaTI6Z4wYEx3CxnmdkZbV6DDSAvg0hZip83T1cEkfo56e0CP95_ITdcE7Q91mmqPLDtMR2bN6TPjt4z0kf3_9vF9dVde3v_-sLq4rw9suV23f876VtjHNcKbPpAZkggEYuwTBOyu7Toi-t11v5ACyRY6wbC1yY60UhvNDcrLdnWJ4njFltXHJ4Dhqj2FOqhF8KRooTQr6_RO6DnP05XeFEqWFLFyhxJYyMaQU0aopuo2Or4qBei-t1mpbWr2XViBUKV20H58047LOJUsJ58av5POtjKXUS6mtknHoDQ4uoslqCO7_A28oip6T |
CitedBy_id | crossref_primary_10_3390_nano13091494 crossref_primary_10_1007_s12274_022_4130_z crossref_primary_10_1021_acsaelm_4c02119 crossref_primary_10_1002_adfm_202004370 crossref_primary_10_1021_acsnano_1c03549 crossref_primary_10_1002_smtd_202400955 |
Cites_doi | 10.1109/LED.2009.2016443 10.1007/s12274-012-0227-0 10.1038/nnano.2010.132 10.1038/nnano.2009.177 10.1038/srep17393 10.1021/nl201432g 10.1021/acs.nanolett.5b00440 10.1021/acs.jpclett.9b00862 10.1103/PhysRevLett.98.186806 10.1021/nl903272n 10.1038/ncomms2022 10.7567/JJAP.50.070108 10.1021/nl904286r 10.1039/C6RA27436F 10.1039/C4NR04956J 10.1039/C3NR05230C 10.1063/1.5009253 10.1021/acs.nanolett.9b02178 10.1002/smll.201100318 10.1021/acsnano.5b01261 10.1021/acs.chemmater.5b04007 10.1038/srep21676 10.1038/nmat1967 10.1021/acsnano.6b08278 10.1038/s41598-017-09465-x 10.1038/srep15061 10.1063/1.4983310 |
ContentType | Journal Article |
Copyright | 2020 Copyright Elsevier BV Sep 15, 2020 |
Copyright_xml | – notice: 2020 – notice: Copyright Elsevier BV Sep 15, 2020 |
DBID | AAYXX CITATION 7SR 8FD JG9 7S9 L.6 |
DOI | 10.1016/j.carbon.2020.04.036 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3891 |
EndPage | 168 |
ExternalDocumentID | 10_1016_j_carbon_2020_04_036 S0008622320303596 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA J1W JARJE KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSM SSR SSZ T5K TWZ XPP ZMT ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ IHE R2- RIG SEW SMS WUQ 7SR 8FD JG9 SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c367t-6bb3b68f2c2d5a58a0e14100cf90437f87744bbf7bc8d086e3e096fe3cff84c33 |
IEDL.DBID | .~1 |
ISSN | 0008-6223 |
IngestDate | Fri Jul 11 07:41:17 EDT 2025 Fri Jul 25 04:51:25 EDT 2025 Tue Aug 05 03:08:26 EDT 2025 Thu Apr 24 23:12:05 EDT 2025 Fri Feb 23 02:46:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-6bb3b68f2c2d5a58a0e14100cf90437f87744bbf7bc8d086e3e096fe3cff84c33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2440488200 |
PQPubID | 2045273 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2439420020 proquest_journals_2440488200 crossref_primary_10_1016_j_carbon_2020_04_036 crossref_citationtrail_10_1016_j_carbon_2020_04_036 elsevier_sciencedirect_doi_10_1016_j_carbon_2020_04_036 |
PublicationCentury | 2000 |
PublicationDate | 2020-09-15 |
PublicationDateYYYYMMDD | 2020-09-15 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Carbon (New York) |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Dresselhaus, Jorio, Hofmann, Dresselhaus, Saito (bib19) 2010; 10 Hofmann, Shin, Hsieh, Dresselhaus, Kong (bib17) 2012; 5 Van Bremen, Vonk, Zandvliet, P. (bib28) 2019; 10 Lupina, Kitzmann, Costina, Lukosius, Wenger, Wolff, Vaziri, Ostling, Pasternak, Krajewska, Strupinski, Katatia, Gahoi, Lemme, Ruhl, Zoth, Luxenhofer, Mehr (bib8) 2015; 9 Lee, Ahn, Shim, Lee, Ryu (bib21) 2012; 3 Xia, Chen, Li, Tao (bib24) 2009; 4 Wang, Yang, Vajtai, Kono, Ajayan (bib11) 2018; 123 Cançado, Jorio, Ferreira, Stavale, Achete, Capaz, Moutinho, Lombardo, Kulmala, Ferrari (bib20) 2011; 11 Schedin, Geim, Morozov, Hill, Blake, Katsnelson, Novoselov (bib1) 2007; 6 Krauß, Engstler, Schneider (bib13) 2017; 8 Lee, Bae, Jang, Jang, Zhu, Sim, Song, Hong, Ahn (bib6) 2010; 10 Zebrev, Melnik, Tselykovskiy (bib26) 2010 Chang, Hsieh, Ting, Su, Hofmann (bib30) 2017; 7 Li, Miyazaki, Lee, Liu, Kanda, Tsukagoshi (bib25) 2011; 7 Wang, Nezich, Kong, Palacios (bib23) 2009; 30 Borys, Barnard, Gao, Yao, Bao, Buyanin, Zhang, Tongay, Ko, Suh, Bargioni, Wu, Yang, Schuck (bib27) 2017; 11 Bae, Kim, Lee, Xu, Park, Zheng, Balakrishnan, Lei, Kim, Song, J Kim, Kim, Ozyilmaz, Ahn, Hong, Lijima (bib5) 2010; 5 Cattelan, Peng, Cavaliere, Artiglia, Barinov, Roling, Favaro, Pis, Nappini, Magnano, Bondino, Gavioli, Agnoli, Mavrikakis, Granozzi (bib29) 2015; 7 Kim, Choi, Lee, Lee, Choi, Park, Yoo, Choi, Ryu, Kim, Hone, Hong (bib7) 2015; 15 Hsieh, Shih, Chiu, Hofmann (bib9) 2016; 28 Choi, Shehzad, Park, Seo (bib14) 2017; 7 Avouris, Heinz, T., Low 2D Materials (bib4) 2017 Nagashio, Toriumi (bib22) 2011; 50 Yang, Jiang, Wei (bib2) 2017; 4 Ambrosi, Pumera (bib10) 2014; 6 Deng, Rhee, Lee, Che, Keisham, Berry, T.W. (bib16) 2019; 19 Hofmann, Hsieh, Chang, Tsai, Chen (bib12) 2015; 5 Vejpravova, Pacakova, Endres, Mantlikova, Verhagen, Vales, Frank, Kalbac (bib15) 2015; 5 Boscá, Pedrós, Martínez, Palacios, Calle (bib18) 2016; 6 Hwang, Adam, Das Sarma (bib3) 2007; 98 Wang (10.1016/j.carbon.2020.04.036_bib23) 2009; 30 Lupina (10.1016/j.carbon.2020.04.036_bib8) 2015; 9 Deng (10.1016/j.carbon.2020.04.036_bib16) 2019; 19 Van Bremen (10.1016/j.carbon.2020.04.036_bib28) 2019; 10 Borys (10.1016/j.carbon.2020.04.036_bib27) 2017; 11 Lee (10.1016/j.carbon.2020.04.036_bib6) 2010; 10 Bae (10.1016/j.carbon.2020.04.036_bib5) 2010; 5 Hsieh (10.1016/j.carbon.2020.04.036_bib9) 2016; 28 Nagashio (10.1016/j.carbon.2020.04.036_bib22) 2011; 50 Choi (10.1016/j.carbon.2020.04.036_bib14) 2017; 7 Lee (10.1016/j.carbon.2020.04.036_bib21) 2012; 3 Vejpravova (10.1016/j.carbon.2020.04.036_bib15) 2015; 5 Li (10.1016/j.carbon.2020.04.036_bib25) 2011; 7 Hofmann (10.1016/j.carbon.2020.04.036_bib17) 2012; 5 Dresselhaus (10.1016/j.carbon.2020.04.036_bib19) 2010; 10 Cattelan (10.1016/j.carbon.2020.04.036_bib29) 2015; 7 Cançado (10.1016/j.carbon.2020.04.036_bib20) 2011; 11 Krauß (10.1016/j.carbon.2020.04.036_bib13) 2017; 8 Zebrev (10.1016/j.carbon.2020.04.036_bib26) 2010 Hofmann (10.1016/j.carbon.2020.04.036_bib12) 2015; 5 Wang (10.1016/j.carbon.2020.04.036_bib11) 2018; 123 Ambrosi (10.1016/j.carbon.2020.04.036_bib10) 2014; 6 Xia (10.1016/j.carbon.2020.04.036_bib24) 2009; 4 Avouris (10.1016/j.carbon.2020.04.036_bib4) 2017 Hwang (10.1016/j.carbon.2020.04.036_bib3) 2007; 98 Chang (10.1016/j.carbon.2020.04.036_bib30) 2017; 7 Boscá (10.1016/j.carbon.2020.04.036_bib18) 2016; 6 Schedin (10.1016/j.carbon.2020.04.036_bib1) 2007; 6 Kim (10.1016/j.carbon.2020.04.036_bib7) 2015; 15 Yang (10.1016/j.carbon.2020.04.036_bib2) 2017; 4 |
References_xml | – volume: 123 start-page: 195103 year: 2018 ident: bib11 article-title: Effects of etchants in the transfer of chemical vapor deposited graphene publication-title: J. Appl. Phys. – volume: 5 start-page: 574 year: 2010 end-page: 578 ident: bib5 article-title: Roll-to-roll production of 30-inch graphene films for transparent electrodes publication-title: Nat. Nanotechnol. – volume: 4 year: 2017 ident: bib2 article-title: Gas sensing in 2D materials publication-title: Appl. Phys. Rev. – volume: 98 start-page: 186806 year: 2007 ident: bib3 article-title: Carrier transport in two-dimensional graphene layers publication-title: Phys. Rev. Lett. – volume: 5 start-page: 1 year: 2015 end-page: 9 ident: bib15 article-title: Graphene wrinkling induced by monodisperse nanoparticles: facile control and quantification publication-title: Sci. Rep. – volume: 9 start-page: 4776 year: 2015 end-page: 4785 ident: bib8 article-title: Residual metallic contamination of transferred chemical vapor deposited graphene publication-title: ACS Nano – volume: 8 year: 2017 ident: bib13 article-title: A systematic study of the controlled generation of crystalline iron oxide nanoparticles on graphene using a chemical etching process publication-title: Beilstein J. Nanotechnol. – volume: 30 start-page: 547 year: 2009 end-page: 549 ident: bib23 article-title: Graphene frequency multipliers publication-title: IEEE Electron. Device Lett. – volume: 7 start-page: 9052 year: 2017 ident: bib30 article-title: Increasing the doping efficiency by surface energy control for ultra-transparent graphene conductors publication-title: Sci. Rep. – volume: 11 start-page: 3190 year: 2011 end-page: 3196 ident: bib20 article-title: Quantifying defects in graphene via Raman spectroscopy at different excitation energies publication-title: Nano Lett. – volume: 4 start-page: 505 year: 2009 ident: bib24 article-title: Measurement of the quantum capacitance of graphene publication-title: Nat. Nanotechnol. – volume: 5 start-page: 504 year: 2012 end-page: 511 ident: bib17 article-title: A facile tool for the characterization of two-dimensional materials grown by chemical vapor deposition publication-title: Nano Res. – volume: 7 start-page: 2450 year: 2015 end-page: 2460 ident: bib29 article-title: The nature of the Fe–graphene interface at the nanometer level publication-title: Nanoscale – volume: 50 year: 2011 ident: bib22 article-title: Density-of-states limited contact resistance in graphene field-effect transistors publication-title: Jpn. J. Appl. Phys. – volume: 7 start-page: 1552 year: 2011 end-page: 1556 ident: bib25 article-title: Complementary-Like Graphene Logic Gates Controlled by Electrostatic Doping publication-title: Small – volume: 6 start-page: 472 year: 2014 end-page: 476 ident: bib10 article-title: The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties publication-title: Nanoscale – volume: 5 start-page: 17393 year: 2015 ident: bib12 article-title: Dopant morphology as the factor limiting graphene conductivity publication-title: Sci. Rep. – volume: 28 start-page: 40 year: 2016 end-page: 43 ident: bib9 article-title: High-throughput graphene synthesis in gapless stacks publication-title: Chem. Mater. – volume: 10 start-page: 490 year: 2010 end-page: 493 ident: bib6 article-title: Wafer-scale synthesis and transfer of graphene films publication-title: Nano Lett. – volume: 10 start-page: 2578 year: 2019 end-page: 2584 ident: bib28 article-title: Bampoulis environmentally controlled charge carrier injection mechanisms of metal/WS2 junctions publication-title: J. Phys. Chem. Lett. – volume: 6 start-page: 652 year: 2007 end-page: 655 ident: bib1 article-title: Detection of individual gas molecules adsorbed on graphene publication-title: Nat. Mater. – volume: 6 start-page: 21676 year: 2016 ident: bib18 article-title: Automatic graphene transfer system for improved material quality and efficiency publication-title: Sci. Rep. – volume: 10 start-page: 751 year: 2010 end-page: 758 ident: bib19 article-title: Perspectives on carbon nanotubes and graphene Raman spectroscopy publication-title: Nano Lett. – volume: 11 start-page: 2115 year: 2017 end-page: 2123 ident: bib27 article-title: Anomalous above-gap photoexcitations and optical signatures of localized charge puddles in monolayer molybdenum disulfide publication-title: ACS Nano – volume: 7 start-page: 6943 year: 2017 end-page: 6949 ident: bib14 article-title: Influence of removing PMMA residues on surface of CVD graphene using a contact-mode atomic force microscope publication-title: RSC Adv. – year: 2017 ident: bib4 – volume: 19 start-page: 5640 year: 2019 end-page: 5646 ident: bib16 article-title: Odom graphene wrinkles enable spatially defined chemistry publication-title: Nano Lett. – volume: 3 start-page: 1024 year: 2012 ident: bib21 article-title: Optical separation of mechanical strain from charge doping in graphene publication-title: Nat. Commun. – year: 2010 ident: bib26 article-title: Influence of Interface Traps and Electron-Hole Puddles on Quantum Capacitance and Conductivity in Graphene Field-Effect Transistors – volume: 15 start-page: 3236 year: 2015 end-page: 3240 ident: bib7 article-title: Ultraclean patterned transfer of single-layer graphene by recyclable pressure sensitive adhesive films publication-title: Nano Lett. – volume: 30 start-page: 547 issue: 5 year: 2009 ident: 10.1016/j.carbon.2020.04.036_bib23 article-title: Graphene frequency multipliers publication-title: IEEE Electron. Device Lett. doi: 10.1109/LED.2009.2016443 – volume: 5 start-page: 504 issue: 7 year: 2012 ident: 10.1016/j.carbon.2020.04.036_bib17 article-title: A facile tool for the characterization of two-dimensional materials grown by chemical vapor deposition publication-title: Nano Res. doi: 10.1007/s12274-012-0227-0 – volume: 5 start-page: 574 issue: 8 year: 2010 ident: 10.1016/j.carbon.2020.04.036_bib5 article-title: Roll-to-roll production of 30-inch graphene films for transparent electrodes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.132 – volume: 4 start-page: 505 issue: 8 year: 2009 ident: 10.1016/j.carbon.2020.04.036_bib24 article-title: Measurement of the quantum capacitance of graphene publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.177 – volume: 5 start-page: 17393 year: 2015 ident: 10.1016/j.carbon.2020.04.036_bib12 article-title: Dopant morphology as the factor limiting graphene conductivity publication-title: Sci. Rep. doi: 10.1038/srep17393 – volume: 11 start-page: 3190 issue: 8 year: 2011 ident: 10.1016/j.carbon.2020.04.036_bib20 article-title: Quantifying defects in graphene via Raman spectroscopy at different excitation energies publication-title: Nano Lett. doi: 10.1021/nl201432g – volume: 15 start-page: 3236 issue: 5 year: 2015 ident: 10.1016/j.carbon.2020.04.036_bib7 article-title: Ultraclean patterned transfer of single-layer graphene by recyclable pressure sensitive adhesive films publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00440 – volume: 10 start-page: 2578 year: 2019 ident: 10.1016/j.carbon.2020.04.036_bib28 article-title: Bampoulis environmentally controlled charge carrier injection mechanisms of metal/WS2 junctions publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b00862 – volume: 98 start-page: 186806 issue: 18 year: 2007 ident: 10.1016/j.carbon.2020.04.036_bib3 article-title: Carrier transport in two-dimensional graphene layers publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.186806 – volume: 10 start-page: 490 issue: 2 year: 2010 ident: 10.1016/j.carbon.2020.04.036_bib6 article-title: Wafer-scale synthesis and transfer of graphene films publication-title: Nano Lett. doi: 10.1021/nl903272n – volume: 3 start-page: 1024 year: 2012 ident: 10.1016/j.carbon.2020.04.036_bib21 article-title: Optical separation of mechanical strain from charge doping in graphene publication-title: Nat. Commun. doi: 10.1038/ncomms2022 – volume: 50 issue: 7R year: 2011 ident: 10.1016/j.carbon.2020.04.036_bib22 article-title: Density-of-states limited contact resistance in graphene field-effect transistors publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.50.070108 – volume: 10 start-page: 751 issue: 3 year: 2010 ident: 10.1016/j.carbon.2020.04.036_bib19 article-title: Perspectives on carbon nanotubes and graphene Raman spectroscopy publication-title: Nano Lett. doi: 10.1021/nl904286r – volume: 7 start-page: 6943 issue: 12 year: 2017 ident: 10.1016/j.carbon.2020.04.036_bib14 article-title: Influence of removing PMMA residues on surface of CVD graphene using a contact-mode atomic force microscope publication-title: RSC Adv. doi: 10.1039/C6RA27436F – volume: 7 start-page: 2450 issue: 6 year: 2015 ident: 10.1016/j.carbon.2020.04.036_bib29 article-title: The nature of the Fe–graphene interface at the nanometer level publication-title: Nanoscale doi: 10.1039/C4NR04956J – year: 2017 ident: 10.1016/j.carbon.2020.04.036_bib4 – volume: 6 start-page: 472 issue: 1 year: 2014 ident: 10.1016/j.carbon.2020.04.036_bib10 article-title: The CVD graphene transfer procedure introduces metallic impurities which alter the graphene electrochemical properties publication-title: Nanoscale doi: 10.1039/C3NR05230C – year: 2010 ident: 10.1016/j.carbon.2020.04.036_bib26 – volume: 123 start-page: 195103 issue: 19 year: 2018 ident: 10.1016/j.carbon.2020.04.036_bib11 article-title: Effects of etchants in the transfer of chemical vapor deposited graphene publication-title: J. Appl. Phys. doi: 10.1063/1.5009253 – volume: 19 start-page: 5640 issue: 8 year: 2019 ident: 10.1016/j.carbon.2020.04.036_bib16 article-title: Odom graphene wrinkles enable spatially defined chemistry publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b02178 – volume: 7 start-page: 1552 issue: 11 year: 2011 ident: 10.1016/j.carbon.2020.04.036_bib25 article-title: Complementary-Like Graphene Logic Gates Controlled by Electrostatic Doping publication-title: Small doi: 10.1002/smll.201100318 – volume: 9 start-page: 4776 issue: 5 year: 2015 ident: 10.1016/j.carbon.2020.04.036_bib8 article-title: Residual metallic contamination of transferred chemical vapor deposited graphene publication-title: ACS Nano doi: 10.1021/acsnano.5b01261 – volume: 28 start-page: 40 issue: 1 year: 2016 ident: 10.1016/j.carbon.2020.04.036_bib9 article-title: High-throughput graphene synthesis in gapless stacks publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04007 – volume: 6 start-page: 21676 year: 2016 ident: 10.1016/j.carbon.2020.04.036_bib18 article-title: Automatic graphene transfer system for improved material quality and efficiency publication-title: Sci. Rep. doi: 10.1038/srep21676 – volume: 6 start-page: 652 issue: 9 year: 2007 ident: 10.1016/j.carbon.2020.04.036_bib1 article-title: Detection of individual gas molecules adsorbed on graphene publication-title: Nat. Mater. doi: 10.1038/nmat1967 – volume: 11 start-page: 2115 issue: 2 year: 2017 ident: 10.1016/j.carbon.2020.04.036_bib27 article-title: Anomalous above-gap photoexcitations and optical signatures of localized charge puddles in monolayer molybdenum disulfide publication-title: ACS Nano doi: 10.1021/acsnano.6b08278 – volume: 7 start-page: 9052 issue: 1 year: 2017 ident: 10.1016/j.carbon.2020.04.036_bib30 article-title: Increasing the doping efficiency by surface energy control for ultra-transparent graphene conductors publication-title: Sci. Rep. doi: 10.1038/s41598-017-09465-x – volume: 8 issue: 1 year: 2017 ident: 10.1016/j.carbon.2020.04.036_bib13 article-title: A systematic study of the controlled generation of crystalline iron oxide nanoparticles on graphene using a chemical etching process publication-title: Beilstein J. Nanotechnol. – volume: 5 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.carbon.2020.04.036_bib15 article-title: Graphene wrinkling induced by monodisperse nanoparticles: facile control and quantification publication-title: Sci. Rep. doi: 10.1038/srep15061 – volume: 4 issue: 2 year: 2017 ident: 10.1016/j.carbon.2020.04.036_bib2 article-title: Gas sensing in 2D materials publication-title: Appl. Phys. Rev. doi: 10.1063/1.4983310 |
SSID | ssj0004814 |
Score | 2.3762703 |
Snippet | The carrier conduction in 2D materials is more sensitive to surface-bound disorder than bulk materials and is thought to limit their achievable performance in... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 163 |
SubjectTerms | Adsorbates Carrier density Carrier transport Charge distribution Charge transport Electronic devices electronic equipment Etchants Graphene Graphite Heterogeneity Impurities Insulators Raman spectroscopy Scattering Semiconductor doping technology Two dimensional materials |
Title | Neutral scatterers dominate carrier transport in CVD graphene with ionic impurities |
URI | https://dx.doi.org/10.1016/j.carbon.2020.04.036 https://www.proquest.com/docview/2440488200 https://www.proquest.com/docview/2439420020 |
Volume | 165 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9DD3oRP3E6RwSvdbFJ0_Q4qmMq7qKT3UKTJlDRdmzd1b_dvH5MFGHgsW1Cw8vLy3svv_weQldhwoPI-MIzTFiPaR16kSGppzlw4vqaRhrykE8TPp6yh1kw66C4vQsDsMrG9tc2vbLWzZtBI83BPMvgji-4484jcHpKgwhotxkLQcuvP79hHkzU_N5wzA-t2-tzFcZLJwtVAAuqTyrC04qo-c_t6Zehrnaf0T7aa9xGPKxHdoA6Jj9EO3Fbre0IPU_MCpIWeKkrxkzn1eG0AJxLabAbABSmw2XLZI6zHMevt7iiq3bWDkM6FkNqVuPsYw4V7VwEfYymo7uXeOw1BRM8TXlYelwpqriwvvbTIAlEQgzAOIm2EVAYWeF8PaaUDZUWqROeocZFMNZQba1gmtITtJUXuTlFWLu1qlxoCP4f40koEsETRYUJLSU2Ml1EWzlJ3bCJQ1GLd9nCxt5kLV0J0pWESSfdLvLWveY1m8aG9mE7BfKHVkhn8Df07LUzJptVuZQ-kCG6kIKQLrpcf3YTBYckSW6KFbShEQPkCjn798_P0S48AazkJuihrXKxMhfOdylVv1LOPtoe3j-OJ1-2Ru5k |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgO4wL4inGM0hcK0LTpukRDdAGWy9saLeoSRNpCLoJuv9P3McQCGkS1yZRIydxbOfzZ4CrKOVhbHzhmUBYL9A68mJDM09z5MT1NYs1xiFHCe9PgsdpON2AXpMLg7DKWvdXOr3U1vWX61qa14vZDHN80Rx3FoHbpyyM-Sa0kZ0qbEH7dvDUT77TI0VF8Y0v_TigyaArYV46_VBzJEL1acl5WnI1_3lD_dLV5QX0sAPbteVIbqvJ7cKGyfeg02sKtu3Dc2KWGLcgn7okzXSGHcnmCHUpDHETwNp0pGjIzMksJ72XO1IyVjuFRzAiSzA6q8nsfYFF7ZwTfQCTh_txr-_VNRM8zXhUeFwppriwvvazMA1FSg0iOam2MbIYWeHMvUApGyktMic_w4xzYqxh2loRaMYOoZXPc3MERLvjqpx3iCZgwNNIpIKnigkTWUZtbLrAGjlJXROKY12LN9kgx15lJV2J0pU0kE66XfBWoxYVocaa_lGzBPLHxpBO568ZedqsmKwP5qf0kQ_ReRWUduFy1ewWCt9J0tzMl9iHxQGCV-jxv39-AZ3-eDSUw0HydAJb2IIok5vwFFrFx9KcOVOmUOf1Vv0C41jxFQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neutral+scatterers+dominate+carrier+transport+in+CVD+graphene+with+ionic+impurities&rft.jtitle=Carbon+%28New+York%29&rft.au=Chen%2C+Szu-Hua&rft.au=Nguyen%2C+Yen&rft.au=Chen%2C+Ting-Wei&rft.au=Yen%2C+Zhi-Long&rft.date=2020-09-15&rft.issn=0008-6223&rft.volume=165+p.163-168&rft.spage=163&rft.epage=168&rft_id=info:doi/10.1016%2Fj.carbon.2020.04.036&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-6223&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-6223&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-6223&client=summon |