Multi-Layer Feature Restoration and Projection Model for Unsupervised Anomaly Detection
The anomaly detection of products is a classical problem in the field of computer vision. Image reconstruction-based methods have shown promising results in the field of abnormality detection. Most of the existing methods use convolutional neural networks to build encoding–decoding structures to do...
Saved in:
Published in | Mathematics (Basel) Vol. 12; no. 16; p. 2480 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The anomaly detection of products is a classical problem in the field of computer vision. Image reconstruction-based methods have shown promising results in the field of abnormality detection. Most of the existing methods use convolutional neural networks to build encoding–decoding structures to do image restoration. However, the limited receptive field of convolutional neural networks makes the information considered in the image restoration process limited, and the downsampling in the encoder causes information loss, which is not conducive to performing fine-grained restoration of images. To solve this problem, we propose a multi-layer feature restoration and projection model (MLFRP), which enables the restoration process to be carried out on multi-scale feature maps through a block-level feature restoration module that fully considers the detail information and semantic information required for the restoration process. We conducted in-depth experiments on the MvtecAD anomaly detection benchmark dataset, which showed that our model outperforms current state-of-the-art anomaly detection methods. |
---|---|
AbstractList | The anomaly detection of products is a classical problem in the field of computer vision. Image reconstruction-based methods have shown promising results in the field of abnormality detection. Most of the existing methods use convolutional neural networks to build encoding–decoding structures to do image restoration. However, the limited receptive field of convolutional neural networks makes the information considered in the image restoration process limited, and the downsampling in the encoder causes information loss, which is not conducive to performing fine-grained restoration of images. To solve this problem, we propose a multi-layer feature restoration and projection model (MLFRP), which enables the restoration process to be carried out on multi-scale feature maps through a block-level feature restoration module that fully considers the detail information and semantic information required for the restoration process. We conducted in-depth experiments on the MvtecAD anomaly detection benchmark dataset, which showed that our model outperforms current state-of-the-art anomaly detection methods. |
Author | Cai, Fuzhen Xia, Siyu |
Author_xml | – sequence: 1 givenname: Fuzhen orcidid: 0009-0004-0085-1216 surname: Cai fullname: Cai, Fuzhen – sequence: 2 givenname: Siyu orcidid: 0000-0002-0953-6501 surname: Xia fullname: Xia, Siyu |
BookMark | eNptUV1LwzAUDaLgnHvzBxR8tZqvJs3jmE4HG4o4fAy3SaYdXTPTVNi_t64KQ7wv9-ucw-HeM3Rc-9ohdEHwNWMK32wgvhNKBOU5PkIDSqlMZbc4PqhP0ahp1rgLRVjO1QC9Ltoqlukcdi4kUwexDS55dk30AWLp6wRqmzwFv3Zm3y68dVWy8iFZ1k27deGzbJxNxrXfQLVLbl3sgefoZAVV40Y_eYiW07uXyUM6f7yfTcbz1DAhYyo4sy4DlWPsuBVECoaZBcoKYTKpeKHyDKQ1BcdSFsIpkwtJC0yIoUAwZkM063Wth7XehnIDYac9lHo_8OFNQ4ilqZwmIDEImrMVttxaDNRKxbJMWcOVkEWnddlrbYP_aLsb6LVvQ93Z1wx3FhmXJOtQtEeZ4JsmuJU2ZdzfKgYoK02w_v6HPvxHR7r6Q_q1-i_8C4K9jS4 |
CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3551371 |
Cites_doi | 10.1109/CVPR.2016.90 10.1109/TII.2022.3199228 10.1016/j.compind.2023.103990 10.1109/ICCV48922.2021.00986 10.1109/ICCV51070.2023.01503 10.1109/CVPR46437.2021.00954 10.1109/ICCV51070.2023.00593 10.1007/978-3-030-68799-1_35 10.5220/0007364500002108 10.1016/j.rcim.2022.102470 10.1109/ISIE45552.2021.9576231 10.1109/CVPR52688.2022.01392 10.1109/CVPR42600.2020.00424 10.1109/TII.2023.3292904 10.1016/j.patcog.2020.107706 10.1145/3422622 10.1007/s11633-023-1459-z 10.1109/CVPR52733.2024.01580 10.1109/ICCV48922.2021.00010 10.1109/CVPR52688.2022.00951 10.1109/CVPR.2019.00982 10.1109/ICCV48922.2021.00822 10.1109/CVPR46437.2021.01466 10.2139/ssrn.4742821 10.1109/TNNLS.2023.3344118 10.1109/CVPRW63382.2024.00408 10.1109/CVPR52688.2022.00475 10.1016/j.engappai.2023.106369 10.1109/CVPR52729.2023.02348 |
ContentType | Journal Article |
Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math12162480 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_1a70a6283f0d4dd0a2d793559dc4967b 10_3390_math12162480 |
GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c367t-643de5a9800e4d6176303da23b6c5794b985a7dcb4077b6e9c8672b011c2a1003 |
IEDL.DBID | DOA |
ISSN | 2227-7390 |
IngestDate | Wed Aug 27 01:14:54 EDT 2025 Fri Jul 25 12:11:20 EDT 2025 Thu Apr 24 23:09:15 EDT 2025 Tue Jul 01 01:53:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-643de5a9800e4d6176303da23b6c5794b985a7dcb4077b6e9c8672b011c2a1003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0953-6501 0009-0004-0085-1216 |
OpenAccessLink | https://doaj.org/article/1a70a6283f0d4dd0a2d793559dc4967b |
PQID | 3098034715 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1a70a6283f0d4dd0a2d793559dc4967b proquest_journals_3098034715 crossref_citationtrail_10_3390_math12162480 crossref_primary_10_3390_math12162480 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-01 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Liu (ref_2) 2024; 21 Guo (ref_36) 2022; 45 ref_14 ref_13 ref_35 Guo (ref_6) 2023; 20 ref_12 ref_11 ref_33 Zhang (ref_34) 2023; 151 ref_10 ref_32 ref_31 ref_30 Li (ref_1) 2023; 80 ref_19 ref_18 ref_17 ref_16 ref_15 ref_37 Jiang (ref_25) 2022; 19 Zavrtanik (ref_23) 2021; 112 Shao (ref_3) 2023; 123 ref_24 Goodfellow (ref_20) 2020; 63 ref_22 ref_21 ref_29 ref_28 ref_27 ref_26 ref_9 ref_8 ref_5 ref_4 ref_7 |
References_xml | – ident: ref_7 – ident: ref_8 doi: 10.1109/CVPR.2016.90 – ident: ref_9 – volume: 19 start-page: 2200 year: 2022 ident: ref_25 article-title: Masked swin transformer unet for industrial anomaly detection publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2022.3199228 – volume: 151 start-page: 103990 year: 2023 ident: ref_34 article-title: Industrial anomaly detection with domain shift: A real-world dataset and masked multi-scale reconstruction publication-title: Comput. Ind. doi: 10.1016/j.compind.2023.103990 – ident: ref_5 – ident: ref_35 doi: 10.1109/ICCV48922.2021.00986 – ident: ref_19 doi: 10.1109/ICCV51070.2023.01503 – ident: ref_11 doi: 10.1109/CVPR46437.2021.00954 – ident: ref_32 doi: 10.1109/ICCV51070.2023.00593 – ident: ref_10 doi: 10.1007/978-3-030-68799-1_35 – ident: ref_30 doi: 10.5220/0007364500002108 – volume: 80 start-page: 102470 year: 2023 ident: ref_1 article-title: Deep learning based online metallic surface defect detection method for wire and arc additive manufacturing publication-title: Robot. Comput.-Integr. Manuf. doi: 10.1016/j.rcim.2022.102470 – ident: ref_28 doi: 10.1109/ISIE45552.2021.9576231 – ident: ref_12 doi: 10.1109/CVPR52688.2022.01392 – ident: ref_14 doi: 10.1109/CVPR42600.2020.00424 – volume: 20 start-page: 2477 year: 2023 ident: ref_6 article-title: Mldfr: A multilevel features restoration method based on damaged images for anomaly detection and localization publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2023.3292904 – ident: ref_21 – volume: 112 start-page: 107706 year: 2021 ident: ref_23 article-title: Reconstruction by inpainting for visual anomaly detection publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107706 – volume: 63 start-page: 139 year: 2020 ident: ref_20 article-title: Generative adversarial networks publication-title: Commun. ACM doi: 10.1145/3422622 – volume: 21 start-page: 104 year: 2024 ident: ref_2 article-title: Deep industrial image anomaly detection: A survey publication-title: Mach. Intell. Res. doi: 10.1007/s11633-023-1459-z – ident: ref_13 doi: 10.1109/CVPR52733.2024.01580 – ident: ref_26 doi: 10.1109/ICCV48922.2021.00010 – ident: ref_29 – ident: ref_16 doi: 10.1109/CVPR52688.2022.00951 – ident: ref_27 doi: 10.1109/CVPR.2019.00982 – ident: ref_24 doi: 10.1109/ICCV48922.2021.00822 – ident: ref_15 doi: 10.1109/CVPR46437.2021.01466 – ident: ref_31 doi: 10.2139/ssrn.4742821 – ident: ref_33 doi: 10.1109/TNNLS.2023.3344118 – ident: ref_17 – ident: ref_4 doi: 10.1109/CVPRW63382.2024.00408 – volume: 45 start-page: 5436 year: 2022 ident: ref_36 article-title: Beyond self-attention: External attention using two linear layers for visual tasks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: ref_22 – ident: ref_37 doi: 10.1109/CVPR52688.2022.00475 – volume: 123 start-page: 106369 year: 2023 ident: ref_3 article-title: Enriched multi-scale cascade pyramid features and guided context attention network for industrial surface defect detection publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106369 – ident: ref_18 doi: 10.1109/CVPR52729.2023.02348 |
SSID | ssj0000913849 |
Score | 2.270789 |
Snippet | The anomaly detection of products is a classical problem in the field of computer vision. Image reconstruction-based methods have shown promising results in... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 2480 |
SubjectTerms | Anomalies anomaly detection Artificial neural networks CNNs Computer vision Deep learning Defective products Feature maps Image reconstruction Image restoration Methods Multilayers MvtecAD Neural networks Projection model |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagLDAgnqJQkAeYkNU8HWdClIcQgqqqqOgW-RUYSlqaduDfc5e4pRKCMclNZ9_5u8v5-wg5jwMl81RqhqIDLLKRYdJ4CYuhcMuFAARQTVU-d_nDIHocxkPXcCvdWOUiJ1aJ2ow19sjboZcKL4RUGl9NPhmqRuHfVSehsU42IAUL0SAbnbtur7_ssiDrpYjSeuI9hPq-DTjw3Q98HkTIBLlyFlWU_b8ycnXM3O-QbYcP6XW9oLtkzRZ7ZOt5Sa5a7pPX6tIse5KAlilCuPnU0n6lEFO5mcrC0F7dYcFHlDsbUQCndFCU8wkmh9IaCoX_hxx90Vs7qw0PyOD-7uXmgTl9BKZDnswYgAljYwl-8cDHAEU4nEdGBqHiOoY4U6mIZWK0gqItUdymWvAkUBDROpA-hPMhaRTjwh4RKixXOVLjAXyLdOirNI-VRCxmbK6saZLLhacy7cjDUcNilEERgX7NVv3aJBdL60lNmvGHXQedvrRBquvqxXj6lrnIyXyZeJIDCso9ExnjycAkSAqfGh2lPFFN0losWebir8x-dsvx_59PyGYAMKUe6WuRxmw6t6cAM2bqzO2lb4X10vg priority: 102 providerName: ProQuest |
Title | Multi-Layer Feature Restoration and Projection Model for Unsupervised Anomaly Detection |
URI | https://www.proquest.com/docview/3098034715 https://doaj.org/article/1a70a6283f0d4dd0a2d793559dc4967b |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60XvQgPrFayx70JEvz3GSPVluL2FKKxd7CvoKHGkubHvz3zu6mJSDixWPCQMI3mZlvwuw3CN3EgeA545KYpQMk0pEiXHkJiaFxy9MUGICdqhyO6GAaPc_iWW3Vl5kJc_LADriOzxOPUyiCuacipTweqMRogjMlI0YTYbIv1LxaM2VzMPPDNGJu0j2Evr4D_O_dD3waREYBslaDrFT_j0xsy0v_CB1WvBDfu_c5Rju6OEEHw62o6uoUvdnDsuSFA0vGhrqtlxpP7GYYCy_mhcJj92fFXJo1Z3MMpBRPi9V6YZLCSisMDf8Hn3_hR106wzM07fdeHwak2otAZEiTkgCJUDrmDLgeYAsUhEIdUjwIBZUxxJdgacwTJQU0a4mgmsmUJoGASJYB9yGMz1Gj-Cz0BcKppiI3knhA2yIZ-oLlseCGgymdC62a6G6DVCYr0XCzu2KeQfNgcM3quDbR7dZ64cQyfrHrGtC3Nkbi2t4Ax2eV47O_HN9ErY3LsiruVlnoASohFNz48j-ecYX2AyAxbuCvhRrlcq2vgYSUoo120_5TG-11e6PxpG2_vm9NENxQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEE-xUMAHekJWE8dxkgOqCmXZ0t0Koa7oLfgVeliyy2ZXVf8Uv5EZJ1kqIbj1mHhkReN5fHbG3wC8ToXRVaEtp6YDXHrpuHZRxlPcuFV5jgggVFVOTtVoKj-dp-db8Ku_C0NllX1MDIHazS2dke8nUZFHCYbS9GDxk1PXKPq72rfQaM3ixF9d4pateXt8hOu7J8Tww9n7Ee-6CnCbqGzFMQU7n2qcLcIvwwSuMIo7LRKjbIrWaYo81ZmzBrc6mVG-sLnKhEE_sELH6AQ47y24LRPM5HQzffhxc6ZDHJu5LNr6ehyP9hF1XsQiVkIS7-S1zBcaBPwV_0NSG96Hex0aZYet-TyALV8_hJ3Jhsq1eQRfwxVdPtaIzRkBxvXSsy-hH01YVKZrxz635zn0SM3VZgyhMJvWzXpBoajxjh3W8x96dsWO_KoVfAzTG9HbE9iu57V_Ciz3ylRExIdgUdokNkWVGk3Iz_nKeDeAN72mSttRlVPHjFmJWxbSa3ldrwPY20gvWoqOf8i9I6VvZIhYO7yYL7-XnZ-Wsc4irRBzVZGTzkVauIwo6AtnZaEyM4DdfsnKztub8o9tPvv_8Cu4MzqbjMvx8enJc7grECC1xYS7sL1arv0LBDgr8zJYFYNvN23GvwFVxQy7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwqMpLDS2wB3pCq9hre-09INQ2jVraRlFFRG9mX4ZDcEKcCPWv8euY8SNUQnDr0fbIsmbn8c169huAt4kwulDacho6wGMfO65dkPIEC7ciyxAB1F2VV2N5No0_3iQ3W_CrOwtDbZVdTKwDtZtb2iMfRIHKgghDaTIo2raIyXD0YfGD0wQp-tPajdNoTOTC3_7E8q16fz7EtT4UYnT66eSMtxMGuI1kuuKYjp1PNL45wK_EZC4xojstIiNtgpZqVJbo1FmDZU9qpFc2k6kw6BNW6BAdAt_7ALZTqop6sH18Op5cb3Z4iHEzi1XTbR9FKhggBv0WilCKmFgo7-TBelzAX9mgTnGjXdhpsSk7aozpCWz58ik8vtoQu1bP4HN9YJdfakTqjODjeunZdT2dpl5ipkvHJs3uDl3SqLUZQ2DMpmW1XlBgqrxjR-X8u57dsqFfNYLPYXovmnsBvXJe-j1gmZemIFo-hI6xjUKjisRowoHOF8a7PrzrNJXblric5mfMcixgSK_5Xb324XAjvWgIO_4hd0xK38gQzXZ9Y778mrdem4c6DbREBFYELnYu0MKlREivnI2VTE0fDroly1vfr_I_lvry_4_fwEM04fzyfHyxD48EoqWms_AAeqvl2r9CtLMyr1uzYvDlvi35NzuPEk0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Layer+Feature+Restoration+and+Projection+Model+for+Unsupervised+Anomaly+Detection&rft.jtitle=Mathematics+%28Basel%29&rft.au=Fuzhen+Cai&rft.au=Siyu+Xia&rft.date=2024-08-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=12&rft.issue=16&rft.spage=2480&rft_id=info:doi/10.3390%2Fmath12162480&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1a70a6283f0d4dd0a2d793559dc4967b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |