Multi-Layer Feature Restoration and Projection Model for Unsupervised Anomaly Detection

The anomaly detection of products is a classical problem in the field of computer vision. Image reconstruction-based methods have shown promising results in the field of abnormality detection. Most of the existing methods use convolutional neural networks to build encoding–decoding structures to do...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 12; no. 16; p. 2480
Main Authors Cai, Fuzhen, Xia, Siyu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The anomaly detection of products is a classical problem in the field of computer vision. Image reconstruction-based methods have shown promising results in the field of abnormality detection. Most of the existing methods use convolutional neural networks to build encoding–decoding structures to do image restoration. However, the limited receptive field of convolutional neural networks makes the information considered in the image restoration process limited, and the downsampling in the encoder causes information loss, which is not conducive to performing fine-grained restoration of images. To solve this problem, we propose a multi-layer feature restoration and projection model (MLFRP), which enables the restoration process to be carried out on multi-scale feature maps through a block-level feature restoration module that fully considers the detail information and semantic information required for the restoration process. We conducted in-depth experiments on the MvtecAD anomaly detection benchmark dataset, which showed that our model outperforms current state-of-the-art anomaly detection methods.
AbstractList The anomaly detection of products is a classical problem in the field of computer vision. Image reconstruction-based methods have shown promising results in the field of abnormality detection. Most of the existing methods use convolutional neural networks to build encoding–decoding structures to do image restoration. However, the limited receptive field of convolutional neural networks makes the information considered in the image restoration process limited, and the downsampling in the encoder causes information loss, which is not conducive to performing fine-grained restoration of images. To solve this problem, we propose a multi-layer feature restoration and projection model (MLFRP), which enables the restoration process to be carried out on multi-scale feature maps through a block-level feature restoration module that fully considers the detail information and semantic information required for the restoration process. We conducted in-depth experiments on the MvtecAD anomaly detection benchmark dataset, which showed that our model outperforms current state-of-the-art anomaly detection methods.
Author Cai, Fuzhen
Xia, Siyu
Author_xml – sequence: 1
  givenname: Fuzhen
  orcidid: 0009-0004-0085-1216
  surname: Cai
  fullname: Cai, Fuzhen
– sequence: 2
  givenname: Siyu
  orcidid: 0000-0002-0953-6501
  surname: Xia
  fullname: Xia, Siyu
BookMark eNptUV1LwzAUDaLgnHvzBxR8tZqvJs3jmE4HG4o4fAy3SaYdXTPTVNi_t64KQ7wv9-ucw-HeM3Rc-9ohdEHwNWMK32wgvhNKBOU5PkIDSqlMZbc4PqhP0ahp1rgLRVjO1QC9Ltoqlukcdi4kUwexDS55dk30AWLp6wRqmzwFv3Zm3y68dVWy8iFZ1k27deGzbJxNxrXfQLVLbl3sgefoZAVV40Y_eYiW07uXyUM6f7yfTcbz1DAhYyo4sy4DlWPsuBVECoaZBcoKYTKpeKHyDKQ1BcdSFsIpkwtJC0yIoUAwZkM063Wth7XehnIDYac9lHo_8OFNQ4ilqZwmIDEImrMVttxaDNRKxbJMWcOVkEWnddlrbYP_aLsb6LVvQ93Z1wx3FhmXJOtQtEeZ4JsmuJU2ZdzfKgYoK02w_v6HPvxHR7r6Q_q1-i_8C4K9jS4
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3551371
Cites_doi 10.1109/CVPR.2016.90
10.1109/TII.2022.3199228
10.1016/j.compind.2023.103990
10.1109/ICCV48922.2021.00986
10.1109/ICCV51070.2023.01503
10.1109/CVPR46437.2021.00954
10.1109/ICCV51070.2023.00593
10.1007/978-3-030-68799-1_35
10.5220/0007364500002108
10.1016/j.rcim.2022.102470
10.1109/ISIE45552.2021.9576231
10.1109/CVPR52688.2022.01392
10.1109/CVPR42600.2020.00424
10.1109/TII.2023.3292904
10.1016/j.patcog.2020.107706
10.1145/3422622
10.1007/s11633-023-1459-z
10.1109/CVPR52733.2024.01580
10.1109/ICCV48922.2021.00010
10.1109/CVPR52688.2022.00951
10.1109/CVPR.2019.00982
10.1109/ICCV48922.2021.00822
10.1109/CVPR46437.2021.01466
10.2139/ssrn.4742821
10.1109/TNNLS.2023.3344118
10.1109/CVPRW63382.2024.00408
10.1109/CVPR52688.2022.00475
10.1016/j.engappai.2023.106369
10.1109/CVPR52729.2023.02348
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math12162480
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_1a70a6283f0d4dd0a2d793559dc4967b
10_3390_math12162480
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c367t-643de5a9800e4d6176303da23b6c5794b985a7dcb4077b6e9c8672b011c2a1003
IEDL.DBID DOA
ISSN 2227-7390
IngestDate Wed Aug 27 01:14:54 EDT 2025
Fri Jul 25 12:11:20 EDT 2025
Thu Apr 24 23:09:15 EDT 2025
Tue Jul 01 01:53:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-643de5a9800e4d6176303da23b6c5794b985a7dcb4077b6e9c8672b011c2a1003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0953-6501
0009-0004-0085-1216
OpenAccessLink https://doaj.org/article/1a70a6283f0d4dd0a2d793559dc4967b
PQID 3098034715
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_1a70a6283f0d4dd0a2d793559dc4967b
proquest_journals_3098034715
crossref_citationtrail_10_3390_math12162480
crossref_primary_10_3390_math12162480
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Liu (ref_2) 2024; 21
Guo (ref_36) 2022; 45
ref_14
ref_13
ref_35
Guo (ref_6) 2023; 20
ref_12
ref_11
ref_33
Zhang (ref_34) 2023; 151
ref_10
ref_32
ref_31
ref_30
Li (ref_1) 2023; 80
ref_19
ref_18
ref_17
ref_16
ref_15
ref_37
Jiang (ref_25) 2022; 19
Zavrtanik (ref_23) 2021; 112
Shao (ref_3) 2023; 123
ref_24
Goodfellow (ref_20) 2020; 63
ref_22
ref_21
ref_29
ref_28
ref_27
ref_26
ref_9
ref_8
ref_5
ref_4
ref_7
References_xml – ident: ref_7
– ident: ref_8
  doi: 10.1109/CVPR.2016.90
– ident: ref_9
– volume: 19
  start-page: 2200
  year: 2022
  ident: ref_25
  article-title: Masked swin transformer unet for industrial anomaly detection
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3199228
– volume: 151
  start-page: 103990
  year: 2023
  ident: ref_34
  article-title: Industrial anomaly detection with domain shift: A real-world dataset and masked multi-scale reconstruction
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2023.103990
– ident: ref_5
– ident: ref_35
  doi: 10.1109/ICCV48922.2021.00986
– ident: ref_19
  doi: 10.1109/ICCV51070.2023.01503
– ident: ref_11
  doi: 10.1109/CVPR46437.2021.00954
– ident: ref_32
  doi: 10.1109/ICCV51070.2023.00593
– ident: ref_10
  doi: 10.1007/978-3-030-68799-1_35
– ident: ref_30
  doi: 10.5220/0007364500002108
– volume: 80
  start-page: 102470
  year: 2023
  ident: ref_1
  article-title: Deep learning based online metallic surface defect detection method for wire and arc additive manufacturing
  publication-title: Robot. Comput.-Integr. Manuf.
  doi: 10.1016/j.rcim.2022.102470
– ident: ref_28
  doi: 10.1109/ISIE45552.2021.9576231
– ident: ref_12
  doi: 10.1109/CVPR52688.2022.01392
– ident: ref_14
  doi: 10.1109/CVPR42600.2020.00424
– volume: 20
  start-page: 2477
  year: 2023
  ident: ref_6
  article-title: Mldfr: A multilevel features restoration method based on damaged images for anomaly detection and localization
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2023.3292904
– ident: ref_21
– volume: 112
  start-page: 107706
  year: 2021
  ident: ref_23
  article-title: Reconstruction by inpainting for visual anomaly detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107706
– volume: 63
  start-page: 139
  year: 2020
  ident: ref_20
  article-title: Generative adversarial networks
  publication-title: Commun. ACM
  doi: 10.1145/3422622
– volume: 21
  start-page: 104
  year: 2024
  ident: ref_2
  article-title: Deep industrial image anomaly detection: A survey
  publication-title: Mach. Intell. Res.
  doi: 10.1007/s11633-023-1459-z
– ident: ref_13
  doi: 10.1109/CVPR52733.2024.01580
– ident: ref_26
  doi: 10.1109/ICCV48922.2021.00010
– ident: ref_29
– ident: ref_16
  doi: 10.1109/CVPR52688.2022.00951
– ident: ref_27
  doi: 10.1109/CVPR.2019.00982
– ident: ref_24
  doi: 10.1109/ICCV48922.2021.00822
– ident: ref_15
  doi: 10.1109/CVPR46437.2021.01466
– ident: ref_31
  doi: 10.2139/ssrn.4742821
– ident: ref_33
  doi: 10.1109/TNNLS.2023.3344118
– ident: ref_17
– ident: ref_4
  doi: 10.1109/CVPRW63382.2024.00408
– volume: 45
  start-page: 5436
  year: 2022
  ident: ref_36
  article-title: Beyond self-attention: External attention using two linear layers for visual tasks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: ref_22
– ident: ref_37
  doi: 10.1109/CVPR52688.2022.00475
– volume: 123
  start-page: 106369
  year: 2023
  ident: ref_3
  article-title: Enriched multi-scale cascade pyramid features and guided context attention network for industrial surface defect detection
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106369
– ident: ref_18
  doi: 10.1109/CVPR52729.2023.02348
SSID ssj0000913849
Score 2.270789
Snippet The anomaly detection of products is a classical problem in the field of computer vision. Image reconstruction-based methods have shown promising results in...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2480
SubjectTerms Anomalies
anomaly detection
Artificial neural networks
CNNs
Computer vision
Deep learning
Defective products
Feature maps
Image reconstruction
Image restoration
Methods
Multilayers
MvtecAD
Neural networks
Projection model
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagLDAgnqJQkAeYkNU8HWdClIcQgqqqqOgW-RUYSlqaduDfc5e4pRKCMclNZ9_5u8v5-wg5jwMl81RqhqIDLLKRYdJ4CYuhcMuFAARQTVU-d_nDIHocxkPXcCvdWOUiJ1aJ2ow19sjboZcKL4RUGl9NPhmqRuHfVSehsU42IAUL0SAbnbtur7_ssiDrpYjSeuI9hPq-DTjw3Q98HkTIBLlyFlWU_b8ycnXM3O-QbYcP6XW9oLtkzRZ7ZOt5Sa5a7pPX6tIse5KAlilCuPnU0n6lEFO5mcrC0F7dYcFHlDsbUQCndFCU8wkmh9IaCoX_hxx90Vs7qw0PyOD-7uXmgTl9BKZDnswYgAljYwl-8cDHAEU4nEdGBqHiOoY4U6mIZWK0gqItUdymWvAkUBDROpA-hPMhaRTjwh4RKixXOVLjAXyLdOirNI-VRCxmbK6saZLLhacy7cjDUcNilEERgX7NVv3aJBdL60lNmvGHXQedvrRBquvqxXj6lrnIyXyZeJIDCso9ExnjycAkSAqfGh2lPFFN0losWebir8x-dsvx_59PyGYAMKUe6WuRxmw6t6cAM2bqzO2lb4X10vg
  priority: 102
  providerName: ProQuest
Title Multi-Layer Feature Restoration and Projection Model for Unsupervised Anomaly Detection
URI https://www.proquest.com/docview/3098034715
https://doaj.org/article/1a70a6283f0d4dd0a2d793559dc4967b
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60XvQgPrFayx70JEvz3GSPVluL2FKKxd7CvoKHGkubHvz3zu6mJSDixWPCQMI3mZlvwuw3CN3EgeA545KYpQMk0pEiXHkJiaFxy9MUGICdqhyO6GAaPc_iWW3Vl5kJc_LADriOzxOPUyiCuacipTweqMRogjMlI0YTYbIv1LxaM2VzMPPDNGJu0j2Evr4D_O_dD3waREYBslaDrFT_j0xsy0v_CB1WvBDfu_c5Rju6OEEHw62o6uoUvdnDsuSFA0vGhrqtlxpP7GYYCy_mhcJj92fFXJo1Z3MMpBRPi9V6YZLCSisMDf8Hn3_hR106wzM07fdeHwak2otAZEiTkgCJUDrmDLgeYAsUhEIdUjwIBZUxxJdgacwTJQU0a4mgmsmUJoGASJYB9yGMz1Gj-Cz0BcKppiI3knhA2yIZ-oLlseCGgymdC62a6G6DVCYr0XCzu2KeQfNgcM3quDbR7dZ64cQyfrHrGtC3Nkbi2t4Ax2eV47O_HN9ErY3LsiruVlnoASohFNz48j-ecYX2AyAxbuCvhRrlcq2vgYSUoo120_5TG-11e6PxpG2_vm9NENxQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeEE-xUMAHekJWE8dxkgOqCmXZ0t0Koa7oLfgVeliyy2ZXVf8Uv5EZJ1kqIbj1mHhkReN5fHbG3wC8ToXRVaEtp6YDXHrpuHZRxlPcuFV5jgggVFVOTtVoKj-dp-db8Ku_C0NllX1MDIHazS2dke8nUZFHCYbS9GDxk1PXKPq72rfQaM3ixF9d4pateXt8hOu7J8Tww9n7Ee-6CnCbqGzFMQU7n2qcLcIvwwSuMIo7LRKjbIrWaYo81ZmzBrc6mVG-sLnKhEE_sELH6AQ47y24LRPM5HQzffhxc6ZDHJu5LNr6ehyP9hF1XsQiVkIS7-S1zBcaBPwV_0NSG96Hex0aZYet-TyALV8_hJ3Jhsq1eQRfwxVdPtaIzRkBxvXSsy-hH01YVKZrxz635zn0SM3VZgyhMJvWzXpBoajxjh3W8x96dsWO_KoVfAzTG9HbE9iu57V_Ciz3ylRExIdgUdokNkWVGk3Iz_nKeDeAN72mSttRlVPHjFmJWxbSa3ldrwPY20gvWoqOf8i9I6VvZIhYO7yYL7-XnZ-Wsc4irRBzVZGTzkVauIwo6AtnZaEyM4DdfsnKztub8o9tPvv_8Cu4MzqbjMvx8enJc7grECC1xYS7sL1arv0LBDgr8zJYFYNvN23GvwFVxQy7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwqMpLDS2wB3pCq9hre-09INQ2jVraRlFFRG9mX4ZDcEKcCPWv8euY8SNUQnDr0fbIsmbn8c169huAt4kwulDacho6wGMfO65dkPIEC7ciyxAB1F2VV2N5No0_3iQ3W_CrOwtDbZVdTKwDtZtb2iMfRIHKgghDaTIo2raIyXD0YfGD0wQp-tPajdNoTOTC3_7E8q16fz7EtT4UYnT66eSMtxMGuI1kuuKYjp1PNL45wK_EZC4xojstIiNtgpZqVJbo1FmDZU9qpFc2k6kw6BNW6BAdAt_7ALZTqop6sH18Op5cb3Z4iHEzi1XTbR9FKhggBv0WilCKmFgo7-TBelzAX9mgTnGjXdhpsSk7aozpCWz58ik8vtoQu1bP4HN9YJdfakTqjODjeunZdT2dpl5ipkvHJs3uDl3SqLUZQ2DMpmW1XlBgqrxjR-X8u57dsqFfNYLPYXovmnsBvXJe-j1gmZemIFo-hI6xjUKjisRowoHOF8a7PrzrNJXblric5mfMcixgSK_5Xb324XAjvWgIO_4hd0xK38gQzXZ9Y778mrdem4c6DbREBFYELnYu0MKlREivnI2VTE0fDroly1vfr_I_lvry_4_fwEM04fzyfHyxD48EoqWms_AAeqvl2r9CtLMyr1uzYvDlvi35NzuPEk0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Layer+Feature+Restoration+and+Projection+Model+for+Unsupervised+Anomaly+Detection&rft.jtitle=Mathematics+%28Basel%29&rft.au=Fuzhen+Cai&rft.au=Siyu+Xia&rft.date=2024-08-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=12&rft.issue=16&rft.spage=2480&rft_id=info:doi/10.3390%2Fmath12162480&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1a70a6283f0d4dd0a2d793559dc4967b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon