Optimizing Kinematic Modeling and Self-Collision Detection of a Mobile Manipulator Robot by Considering the Actual Physical Structure

In this paper, an optimized kinematic modeling method to accurately describe the actual structure of a mobile manipulator robot with a manipulator similar to the universal robot (UR5) is developed, and an improved self-collision detection technology realized for improving the description accuracy of...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 11; no. 22; p. 10591
Main Authors Qiao, Lijun, Luo, Xiao, Luo, Qingsheng, Li, Minghao, Jiang, Jianfeng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2021
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app112210591

Cover

Loading…
Abstract In this paper, an optimized kinematic modeling method to accurately describe the actual structure of a mobile manipulator robot with a manipulator similar to the universal robot (UR5) is developed, and an improved self-collision detection technology realized for improving the description accuracy of each component and reducing the time required for approximating the whole robot is introduced. As the primary foundation for trajectory tracking and automatic navigation, the kinematic modeling technology of the mobile manipulator has been the subject of much interest and research for many years. However, the kinematic model established by various methods is different from the actual physical model due to the fact that researchers have mainly focused on the relationship between driving joints and the end positions while ignoring the physical structure. To improve the accuracy of the kinematic model, we present a kinematic modeling method with the addition of key points and coordinate systems to some components that failed to model the physical structure based on the classical method. Moreover, self-collision detection is also a primary problem for successfully completing the specified task of the mobile manipulator. In traditional self-collision detection technology, the description of each approximation is determined by the spatial transformation of each corresponding component in the mobile manipulator robot. Unlike the traditional technology, each approximation in the paper is directly established by the physical structure used in the kinematic modeling method, which significantly reduces the complicated analysis and shortens the required time. The numerical simulations prove that the kinematic model with the addition of key point technology is similar to the actual structure of mobile manipulator robots, and the self-collision detection technology proposed in the article effectively improves the performance of self-collision detection. Additionally, the experimental results prove that the kinematic modeling method and self-collision detection technology outlined in this paper can optimize the inverse kinematics solution.
AbstractList In this paper, an optimized kinematic modeling method to accurately describe the actual structure of a mobile manipulator robot with a manipulator similar to the universal robot (UR5) is developed, and an improved self-collision detection technology realized for improving the description accuracy of each component and reducing the time required for approximating the whole robot is introduced. As the primary foundation for trajectory tracking and automatic navigation, the kinematic modeling technology of the mobile manipulator has been the subject of much interest and research for many years. However, the kinematic model established by various methods is different from the actual physical model due to the fact that researchers have mainly focused on the relationship between driving joints and the end positions while ignoring the physical structure. To improve the accuracy of the kinematic model, we present a kinematic modeling method with the addition of key points and coordinate systems to some components that failed to model the physical structure based on the classical method. Moreover, self-collision detection is also a primary problem for successfully completing the specified task of the mobile manipulator. In traditional self-collision detection technology, the description of each approximation is determined by the spatial transformation of each corresponding component in the mobile manipulator robot. Unlike the traditional technology, each approximation in the paper is directly established by the physical structure used in the kinematic modeling method, which significantly reduces the complicated analysis and shortens the required time. The numerical simulations prove that the kinematic model with the addition of key point technology is similar to the actual structure of mobile manipulator robots, and the self-collision detection technology proposed in the article effectively improves the performance of self-collision detection. Additionally, the experimental results prove that the kinematic modeling method and self-collision detection technology outlined in this paper can optimize the inverse kinematics solution.
Author Li, Minghao
Jiang, Jianfeng
Luo, Qingsheng
Qiao, Lijun
Luo, Xiao
Author_xml – sequence: 1
  givenname: Lijun
  orcidid: 0000-0002-2667-1713
  surname: Qiao
  fullname: Qiao, Lijun
– sequence: 2
  givenname: Xiao
  orcidid: 0000-0003-2574-4594
  surname: Luo
  fullname: Luo, Xiao
– sequence: 3
  givenname: Qingsheng
  orcidid: 0000-0002-5549-8016
  surname: Luo
  fullname: Luo, Qingsheng
– sequence: 4
  givenname: Minghao
  orcidid: 0000-0002-5648-8776
  surname: Li
  fullname: Li, Minghao
– sequence: 5
  givenname: Jianfeng
  orcidid: 0000-0001-9600-8063
  surname: Jiang
  fullname: Jiang, Jianfeng
BookMark eNptUU1v1TAQtFCRKKU3foAlrqTYceLEx-oBpaJVUVvO1sYfrZ_87GA7h8ed_43Th1CF2MuORrOz9uxrdBRiMAi9peSMMUE-wDxT2raU9IK-QMctGXjDOjocPcOv0GnOW1JLUDZScox-3czF7dxPFx7wVxfMDopT-Dpq41cKgsZ3xttmE7132cWAP5piVFlRtBiqdHLe4GsIbl48lJjwbZxiwdMeb2LITpu0OpVHg89VWcDjb4_77FQFdyUtlUrmDXppwWdz-qefoO-fP91vvjRXNxeXm_OrRjE-lKbn08j7ibbU1C9rwqnltqPiiRKUWw2CtQOnmoARxLYDMM0sVZzYQdSZE3R58NURtnJObgdpLyM4-UTE9CAh1QC8kWIcRq0Y40JPXUfUNBELWlkzdpyMtK9e7w5ec4o_FpOL3MYlhfp82XLS1oh7Iarq_UGlUsw5Gft3KyVyvZt8frcqb_-RK1dgTbskcP7_Q78Bk82dig
CitedBy_id crossref_primary_10_1016_j_robot_2023_104526
crossref_primary_10_3390_machines10121232
Cites_doi 10.3389/fnbot.2017.00053
10.3901/CJME.2013.03.585
10.1016/j.matcom.2019.11.002
10.1007/s11071-013-0776-0
10.1017/S0263574700003295
10.1177/1729881416666782
10.1016/j.isatra.2018.07.023
10.1109/TII.2018.2879426
10.1016/j.neucom.2018.01.002
10.1016/j.cad.2009.04.010
10.1007/s10846-017-0705-4
10.3390/app10175893
10.14429/dsj.70.14119
10.1016/j.jfranklin.2019.09.045
10.1109/ROBOT.2010.5509554
10.1007/s41315-019-00090-7
10.3390/s20247249
10.1016/j.robot.2019.07.013
10.1016/j.mechmachtheory.2020.103919
10.1109/TIE.2017.2674624
10.1007/s10846-017-0713-4
10.1016/j.ast.2020.105882
10.1016/j.robot.2020.103554
10.1109/ICRA.2013.6630836
10.1155/2019/6857106
10.3390/s21030890
10.1109/TMECH.2006.871092
10.1007/s10846-017-0686-3
10.1007/s10846-008-9205-x
10.1002/rob.20096
10.1016/j.robot.2019.103344
10.1016/j.rcim.2017.05.013
10.1016/j.biosystemseng.2010.01.007
10.1109/ACCESS.2019.2925428
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app112210591
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (ProQuest)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Open Access: DOAJ - Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_9878dc3369db440cbb0fadcfe8460815
10_3390_app112210591
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c367t-56b865b121e339d061f6f4195b121916fda932761d0ae90f27a3d3f1c60f79e33
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Wed Aug 27 01:27:05 EDT 2025
Mon Jun 30 07:29:00 EDT 2025
Thu Apr 24 23:09:05 EDT 2025
Tue Jul 01 00:51:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-56b865b121e339d061f6f4195b121916fda932761d0ae90f27a3d3f1c60f79e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5648-8776
0000-0002-5549-8016
0000-0003-2574-4594
0000-0001-9600-8063
0000-0002-2667-1713
OpenAccessLink https://doaj.org/article/9878dc3369db440cbb0fadcfe8460815
PQID 2602009599
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_9878dc3369db440cbb0fadcfe8460815
proquest_journals_2602009599
crossref_primary_10_3390_app112210591
crossref_citationtrail_10_3390_app112210591
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Li (ref_17) 2019; 7
Liao (ref_36) 2019; 3
Henten (ref_34) 2010; 106
Ju (ref_31) 2001; 19
Jin (ref_6) 2018; 85
My (ref_20) 2020; 170
Wang (ref_21) 2019; 2019
ref_33
ref_10
Seo (ref_4) 2018; 80
Qiu (ref_24) 2008; 52
Savino (ref_25) 2020; 357
Chang (ref_28) 2010; 42
ref_39
Wu (ref_3) 2017; 11
Tang (ref_23) 2006; 11
ref_38
ref_37
Bostelman (ref_9) 2018; 92
Mishra (ref_15) 2020; 70
Jin (ref_13) 2017; 64
Baron (ref_41) 2020; 12
Park (ref_8) 2020; 103
Wang (ref_18) 2016; 13
Duguleana (ref_35) 2012; 28
Patel (ref_32) 2005; 22
Safeea (ref_7) 2019; 119
Tawfik (ref_19) 2019; 26
Alanis (ref_43) 2018; 15
Han (ref_30) 2018; 49
Du (ref_11) 2013; 26
Chen (ref_14) 2019; 15
ref_40
ref_1
Gong (ref_5) 2020; 152
Adorno (ref_26) 2018; 91
Silva (ref_27) 2018; 91
Mashali (ref_12) 2016; 2016
Zhang (ref_42) 2020; 129
Tao (ref_22) 2020; 10
Park (ref_2) 2020; 124
Zhong (ref_16) 2013; 73
Xiaodong (ref_29) 2015; 9
References_xml – volume: 11
  start-page: 53
  year: 2017
  ident: ref_3
  article-title: A developmental learning approach of mobile manipulator via playing
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2017.00053
– volume: 26
  start-page: 585
  year: 2013
  ident: ref_11
  article-title: Dexterity analysis for omni-directional wheeled mobile manipulator based on double quaternion
  publication-title: Chin. J. Mech. Eng.
  doi: 10.3901/CJME.2013.03.585
– volume: 170
  start-page: 300
  year: 2020
  ident: ref_20
  article-title: Modeling and computation of real-time applied torques and non-holonomic constraint forces/moment, and optimal design of wheels for an autonomous security robot tracking a moving target
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2019.11.002
– volume: 73
  start-page: 167
  year: 2013
  ident: ref_16
  article-title: System modeling and tracking control of mobile manipulator subjected to dynamic interaction and uncertainty
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-013-0776-0
– volume: 19
  start-page: 381
  year: 2001
  ident: ref_31
  article-title: Fast and accurate collision detection based on enclosed ellipsoid
  publication-title: Robotica
  doi: 10.1017/S0263574700003295
– volume: 12
  start-page: 1
  year: 2020
  ident: ref_41
  article-title: Measurement of unidirectional pose accuracy and repeatability of the collaborative robot UR5
  publication-title: Adv. Mech. Eng.
– volume: 13
  start-page: 1
  year: 2016
  ident: ref_18
  article-title: Comparative study on the redundancy of mobile single- and dual-arm robots
  publication-title: Int. J. Adv. Robot. Syst.
  doi: 10.1177/1729881416666782
– volume: 10
  start-page: 1
  year: 2020
  ident: ref_22
  article-title: Kinematic modeling and control of mobile robot for large-scale workpiece machining
  publication-title: Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
– ident: ref_39
– ident: ref_40
– volume: 80
  start-page: 322
  year: 2018
  ident: ref_4
  article-title: Dual closed-loop sliding mode control for a decoupled three-link wheeled mobile manipulator
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2018.07.023
– volume: 15
  start-page: 1202
  year: 2019
  ident: ref_14
  article-title: Dexterous Grasping by Manipulability Selection for Mobile Manipulator with Visual Guidance
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2879426
– volume: 85
  start-page: 23
  year: 2018
  ident: ref_6
  article-title: Robot manipulator control using neural networks: A survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.01.002
– volume: 26
  start-page: 55
  year: 2019
  ident: ref_19
  article-title: Motion Control of Non-Holonomic Wheeled Mobile Robot Based on Particle Swarm Optimization Method (PSO)
  publication-title: Assoc. Arab Univ. J. Eng. Sci.
– volume: 42
  start-page: 50
  year: 2010
  ident: ref_28
  article-title: Efficient collision detection using a dual OBB-sphere bounding volume hierarchy
  publication-title: CAD Comput. Aided Des.
  doi: 10.1016/j.cad.2009.04.010
– volume: 92
  start-page: 65
  year: 2018
  ident: ref_9
  article-title: Model of Mobile Manipulator Performance Measurement using SysML
  publication-title: J. Intell. Robot. Syst. Theory Appl.
  doi: 10.1007/s10846-017-0705-4
– volume: 9
  start-page: 849
  year: 2015
  ident: ref_29
  article-title: Real-time Detection of Space Manipulator
  publication-title: World Acad. Sci. Eng. Technol.
– ident: ref_37
  doi: 10.3390/app10175893
– volume: 70
  start-page: 72
  year: 2020
  ident: ref_15
  article-title: Simplified motion control of a vehicle-manipulator for the coordinated mobile manipulation
  publication-title: Def. Sci. J.
  doi: 10.14429/dsj.70.14119
– volume: 357
  start-page: 142
  year: 2020
  ident: ref_25
  article-title: Pose consensus based on dual quaternion algebra with application to decentralized formation control of mobile manipulators
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2019.09.045
– ident: ref_10
  doi: 10.1109/ROBOT.2010.5509554
– volume: 2016
  start-page: 1
  year: 2016
  ident: ref_12
  article-title: Mobile manipulator dual-trajectory tracking using control variables introduced to end-effector task vector
  publication-title: World Autom. Congr. Proc.
– volume: 3
  start-page: 115
  year: 2019
  ident: ref_36
  article-title: Optimization-based motion planning of mobile manipulator with high degree of kinematic redundancy
  publication-title: Int. J. Intell. Robot. Appl.
  doi: 10.1007/s41315-019-00090-7
– ident: ref_1
  doi: 10.3390/s20247249
– volume: 119
  start-page: 278
  year: 2019
  ident: ref_7
  article-title: On-line collision avoidance for collaborative robot manipulators by adjusting off-line generated paths: An industrial use case
  publication-title: Rob. Auton. Syst.
  doi: 10.1016/j.robot.2019.07.013
– volume: 152
  start-page: 103919
  year: 2020
  ident: ref_5
  article-title: Obstacle-crossing Strategy and Formation Parameters Optimization of a Multi-tracked-mobile-robot System with a Parallel Manipulator
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2020.103919
– volume: 64
  start-page: 4710
  year: 2017
  ident: ref_13
  article-title: Manipulability Optimization of Redundant Manipulators Using Dynamic Neural Networks
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2674624
– volume: 91
  start-page: 263
  year: 2018
  ident: ref_26
  article-title: Whole-Body Kinematic Control of Nonholonomic Mobile Manipulators Using Linear Programming
  publication-title: J. Intell. Robot. Syst. Theory Appl.
  doi: 10.1007/s10846-017-0713-4
– volume: 103
  start-page: 105882
  year: 2020
  ident: ref_8
  article-title: Stereo vision based obstacle collision avoidance for a quadrotor using ellipsoidal bounding box and hierarchical clustering
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2020.105882
– volume: 129
  start-page: 103554
  year: 2020
  ident: ref_42
  article-title: A novel coordinated motion planner based on capability map for autonomous mobile manipulator
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2020.103554
– ident: ref_33
  doi: 10.1109/ICRA.2013.6630836
– volume: 2019
  start-page: 6857106
  year: 2019
  ident: ref_21
  article-title: Kinematical research of free-floating space-robot system at position level based on screw theory
  publication-title: Int. J. Aerosp. Eng.
  doi: 10.1155/2019/6857106
– ident: ref_38
  doi: 10.3390/s21030890
– volume: 11
  start-page: 169
  year: 2006
  ident: ref_23
  article-title: Screw-theoretic analysis framework for cooperative payload transport by mobile manipulator collectives
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2006.871092
– volume: 91
  start-page: 249
  year: 2018
  ident: ref_27
  article-title: Whole-body Control of a Mobile Manipulator Using Feedback Linearization and Dual Quaternion Algebra
  publication-title: J. Intell. Robot. Syst. Theory Appl.
  doi: 10.1007/s10846-017-0686-3
– volume: 52
  start-page: 101
  year: 2008
  ident: ref_24
  article-title: Modeling and analysis of the dynamics of an omni-directional mobile manipulators system
  publication-title: J. Intell. Robot. Syst. Theory Appl.
  doi: 10.1007/s10846-008-9205-x
– volume: 22
  start-page: 737
  year: 2005
  ident: ref_32
  article-title: A collision-avoidance scheme for redundant manipulators: Theory and experiments
  publication-title: J. Robot. Syst.
  doi: 10.1002/rob.20096
– volume: 124
  start-page: 103344
  year: 2020
  ident: ref_2
  article-title: Active robot-assisted feeding with a general-purpose mobile manipulator: Design, evaluation, and lessons learned
  publication-title: Rob. Auton. Syst.
  doi: 10.1016/j.robot.2019.103344
– volume: 49
  start-page: 98
  year: 2018
  ident: ref_30
  article-title: Dynamic obstacle avoidance for manipulators using distance calculation and discrete detection
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2017.05.013
– volume: 106
  start-page: 112
  year: 2010
  ident: ref_34
  article-title: Collision-free inverse kinematics of the redundant seven-link manipulator used in a cucumber picking robot
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2010.01.007
– volume: 28
  start-page: 132
  year: 2012
  ident: ref_35
  article-title: Obstacle avoidance of redundant manipulators using neural networks based reinforcement learning
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 15
  start-page: 1
  year: 2018
  ident: ref_43
  article-title: Inverse kinematics of mobile manipulators based on differential evolution
  publication-title: Int. J. Adv. Robot. Syst.
– volume: 7
  start-page: 88301
  year: 2019
  ident: ref_17
  article-title: Dynamical Obstacle Avoidance of Task- Constrained Mobile Manipulation Using Model Predictive Control
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2925428
SSID ssj0000913810
Score 2.2070305
Snippet In this paper, an optimized kinematic modeling method to accurately describe the actual structure of a mobile manipulator robot with a manipulator similar to...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 10591
SubjectTerms actual physical structure
Approximation
kinematic modeling
Kinematics
Mathematical models
Methods
mobile manipulator robot
Researchers
Robots
self-collision detection
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxNBDLYgucAB0ULV0IJ8oBIIrdjn7M4JtdCqomqJEir1tponqlR22yQ9lDv_G3syCUUIrrPe1Wo8tr-ZsT8DvNYcN6Qn76eFTUqdy0Sm2iQy16XSprS14gLn0zNxfF5-vqgu4oHbPKZVrnxicNS2N3xG_p5wdx5odOWH65uEu0bx7WpsofEQhuSCm2oAw4PDs_FkfcrCrJdNli4z3gva3_O9MEGMnGFF9kcsCpT9f3nkEGaOnsKTiA9xf6nQDXjguk14fI81cBM2oj3O8U0kjX77DH5-Idv_fvmDJPCEZAMTK3KnM643R9VZnLorn_BBQSgnx09uEdKwOuw9KhLV5CDwVHWXoaVXP8NJr_sF6jtcdfXkLxFgxP1QdYLjqGOcBhLa25l7DudHh18_HiexxUJiClEvkkroRlQ6yzNHs2MpuHvhy0yGIUKO3ioCeLXIbKqcTH1eq8IWPjMi9bWkd7Zg0PWd2wYUhbLOpLXLGlPSrk1aKQ3hSU3AWJaNGMG71WS3JvKPcxuMq5b2Iaya9r5qRrC3lr5e8m78Q-6A9baWYbbsMNDPvrXR-FrZ1I01RSGk1fRrRuvUK2u8I_BFkKgawe5K62004Xn7e8G9-P_jHXiUc6JLKFDchQFNuXtJSGWhX8Xl-AsKjelw
  priority: 102
  providerName: ProQuest
Title Optimizing Kinematic Modeling and Self-Collision Detection of a Mobile Manipulator Robot by Considering the Actual Physical Structure
URI https://www.proquest.com/docview/2602009599
https://doaj.org/article/9878dc3369db440cbb0fadcfe8460815
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS-RAEC50vKwH8bHLjo-hDgqKhE0nmU766GsUxQe6grfQTxA0EWc86N3_bXUnIyMiXrw2lQdd1VVfJVVfAawrHzeEI--nuIkylYhIxEpHIlGZVDozufQNzqdn_Og6O77p30yM-vI1YQ09cLNx_ygnLoxOUy6MyrJYKxU7abSzFDgpnAX2Uop5E8lU8MGCeeqqptI9pbze_w8maJF4OME-xKBA1f_JE4fwMpiHuRYX4k7zPgswZatFmJ1gC1yEhfYcDnGzJYveWoLXczrz97cvJIEnJBsYWNFPOPN95igrg1f2zkX-A0FoI8d9OwrlVxXWDiWJKnIMeCqr2zDKq37Ey1rVI1TPOJ7m6e9EQBF3QrcJXrS6xatAPvv0aH_D9eDg_95R1I5WiHTK81HU56rgfcUSZml3DAV1x13GRFgixOiMJGCXc2ZiaUXsklymJnVM89jlgq75A52qruxfQJ5KY3WcW1ZoUhATRghNOFIRIBZZwbuwPd7sUre84378xV1J-YdXTTmpmi5svEs_NHwbX8jter29y3iW7LBAtlO2tlN-ZztdWB1rvWyP7rCkBC8JfM1i-SeesQK_El8GE9oXV6FDirFrhGNGqgfTxeCwBzO7B2cXl71gwG8OPPOV
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7QE4IFpALBTwgUogFJE4WSc-INTSVlu2u1R9SL2lfqJKJSm7i1C583f4jcx4naUIwa1XZ2RFnvHMZ3vmG4AXmuKG9Oj9tLBJoblMZKpNIrkulDaFLRUVOI_GYnBSfDjtny7Bz64WhtIqO58YHLVtDd2Rv0HczQONrnx3-SWhrlH0utq10JibxdBdfcMj2_Tt3jbqd4Pz3Z3j94MkdhVITC7KWdIXuhJ9nfHM5bm0GM-88EUmwxCCJW8VYho83dtUOZl6Xqrc5j4zIvWldHQBii5_BWGGxF20srUzPjhc3OoQy2aVpfMMe5w-pXdohDScYEz2R-wLLQL-igAhrO3eg7sRj7LNuQGtwpJr1uDONZbCNViN-3_KXkaS6lf34cdH9DWfz7-jBBuibGB-ZdRZjerbmWosO3IXPqGLiVC-zrbdLKR9Naz1TKGoRofERqo5Dy3E2gk7bHU7Y_qKdV1EaSYEqGwzVLmwg2hT7CiQ3n6duAdwciOL_xCWm7Zxj4CJXFln0tJllSnwlCitlAbxq0YgLotK9OB1t9i1iXzn1HbjosZzD6mmvq6aHmwspC_nPB__kNsivS1kiJ07DLSTT3Xc7LWsysqaPBfSavw1o3XqlTXeIdhDCNbvwXqn9Tq6jGn928Af___zc7g1OB7t1_t74-ETuM0pySYUR67DMi6_e4ooaaafRdNkcHbTu-EXp4oktg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK6QJTF6IIIaF1D7IInGTJjX9kwfjAGXDbiybkASbmM_DQnM4O4Sgnf_lL_Oqt6eFWP0xrWn0pl0VVd93V31FcBLRXFDOPR-ipsoV6mIRKx0JFKVS6VzU0gqcD4c8f2T_MNp73QJfra1MJRW2fpE76hNo-mOfBtxd-ppdMW2C2kR4_7g3eW3iDpI0Utr205jbiJDe3ONx7fp24M-6norTQd7n9_vR6HDQKQzXsyiHlcl76kkTWyWCYOxzXGXJ8IPIXByRiK-wZO-iaUVsUsLmZnMJZrHrhCWLkPR_S8XGBXLDizv7o3GR4sbHmLcLJN4nm2P08f0Jo3wJiVIk_wRB327gL-igQ9xg4ewErAp25kb0yos2XoNHtxiLFyD1eALpuxVIKx-_Qh-fEK_c3H2HSXYEGU9CyyjLmtU685kbdixPXcRXVL4UnbWtzOfAlazxjGJogqdEzuU9ZlvJ9ZM2FGjmhlTN6ztKEozIVhlO77ihY2DfbFjT4B7NbGP4eROFv8JdOqmtk-B8Uwaq-PCJqXO8cQojBAasaxCUC7yknfhTbvYlQ7c59SC47zCMxCpprqtmi5sLaQv55wf_5DbJb0tZIip2w80k69V2PiVKIvS6Czjwij8Na1U7KTRziLwQzjW68Jmq_UquI9p9dvY1___-QXcw11QfTwYDTfgfkr5Nr5OchM6uPr2GQKmmXoeLJPBl7veDL8ADYwo4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Kinematic+Modeling+and+Self-Collision+Detection+of+a+Mobile+Manipulator+Robot+by+Considering+the+Actual+Physical+Structure&rft.jtitle=Applied+sciences&rft.au=Lijun+Qiao&rft.au=Xiao+Luo&rft.au=Qingsheng+Luo&rft.au=Minghao+Li&rft.date=2021-11-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=22&rft.spage=10591&rft_id=info:doi/10.3390%2Fapp112210591&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9878dc3369db440cbb0fadcfe8460815
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon