A Deep Learning Approach for Repairing Missing Activity Labels in Event Logs for Process Mining

Process mining is a relatively new subject that builds a bridge between traditional process modeling and data mining. Process discovery is one of the most critical parts of process mining, which aims at discovering process models automatically from event logs. Like other data mining techniques, the...

Full description

Saved in:
Bibliographic Details
Published inInformation (Basel) Vol. 13; no. 5; p. 234
Main Authors Lu, Yang, Chen, Qifan, Poon, Simon K.
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2022
Subjects
Online AccessGet full text
ISSN2078-2489
2078-2489
DOI10.3390/info13050234

Cover

Abstract Process mining is a relatively new subject that builds a bridge between traditional process modeling and data mining. Process discovery is one of the most critical parts of process mining, which aims at discovering process models automatically from event logs. Like other data mining techniques, the performance of existing process discovery algorithms can be affected when there are missing activity labels in event logs. In this paper, we assume that the control-flow information in event logs could be useful in repairing missing activity labels. We propose an LSTM-based prediction model, which takes both the prefix and suffix sequences of the events with missing activity labels as input to predict missing activity labels. Additional attributes of event logs are also utilized to improve the performance. Our evaluation of several publicly available datasets shows that the proposed method performed consistently better than existing methods in terms of repairing missing activity labels in event logs.
AbstractList Process mining is a relatively new subject that builds a bridge between traditional process modeling and data mining. Process discovery is one of the most critical parts of process mining, which aims at discovering process models automatically from event logs. Like other data mining techniques, the performance of existing process discovery algorithms can be affected when there are missing activity labels in event logs. In this paper, we assume that the control-flow information in event logs could be useful in repairing missing activity labels. We propose an LSTM-based prediction model, which takes both the prefix and suffix sequences of the events with missing activity labels as input to predict missing activity labels. Additional attributes of event logs are also utilized to improve the performance. Our evaluation of several publicly available datasets shows that the proposed method performed consistently better than existing methods in terms of repairing missing activity labels in event logs.
Author Chen, Qifan
Poon, Simon K.
Lu, Yang
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0002-9002-8650
  surname: Lu
  fullname: Lu, Yang
– sequence: 2
  givenname: Qifan
  orcidid: 0000-0003-1068-6408
  surname: Chen
  fullname: Chen, Qifan
– sequence: 3
  givenname: Simon K.
  orcidid: 0000-0003-2726-9109
  surname: Poon
  fullname: Poon, Simon K.
BookMark eNptUU1rGzEQFSWB5sO3_gBBrnWir5W0R5OkjWFLQkjPQpZGrowrbSQlkH_ftZ1CKJ3LDDPvPd7MnKKjlBMg9IWSS857chVTyJSTjjAuPqETRpSeM6H7ow_1ZzSrdUOmUEoLTU-QWeAbgBEPYEuKaY0X41iydb9wyAU_wmhj2bV_xFr3Y9fia2xveLAr2FYcE759hdTwkNd1z3ko2UGtE2Ond46Og91WmL3nM_Tz2-3T9d18uP--vF4Mc8elavNOhCCD8Fx2SgZNXBCOesc4kBWE4HVg3gtFO6aFAi25mLbUQDhj1oPs-RlaHnR9thszlvjbljeTbTT7Ri5rY0uLbgtGiY6yzlHQZCWUI5ZRz2kvGUjie0UmrYuD1nSJ5xeozWzyS0mTfcOkIlQpzvSEYgeUK7nWAsG42GyLObVi49ZQYnZ_MR__MpG-_kP6a_W_8D8t4Y72
CitedBy_id crossref_primary_10_3390_math11132858
crossref_primary_10_3390_fi14060181
crossref_primary_10_1016_j_is_2025_102548
Cites_doi 10.3390/data5030082
10.1016/j.dss.2017.04.005
10.1007/s12599-018-0551-3
10.1007/978-3-642-33143-5
10.1007/978-3-662-49851-4
10.1007/978-3-642-41033-8_89
10.1162/neco.1997.9.8.1735
10.1007/978-3-540-68746-7_24
10.1109/ICPM53251.2021.9576849
10.1109/SERVICES55459.2022.00039
10.1007/s10115-020-01524-6
10.1007/978-3-319-69462-7_8
10.1142/S0218843014400012
10.1007/978-3-030-72693-5_5
10.1007/978-3-319-59536-8_30
10.1109/ICPM.2019.00013
10.1007/978-3-030-26619-6_19
10.1109/ACCESS.2019.2894905
10.5334/dsj-2015-002
10.1007/978-3-030-58666-9_14
10.1007/978-3-030-85440-9
10.1007/978-3-319-06257-0_6
10.1109/ICPM.2019.00028
10.1016/j.datak.2010.06.001
10.1109/CIDM.2011.5949453
10.1007/s10270-016-0545-x
10.1007/978-3-642-38697-8_17
10.1007/978-3-319-07734-5_6
10.1016/j.is.2016.07.011
10.1137/1.9781611975673.14
10.1007/s10115-018-1214-x
10.1109/ICWS.2015.24
10.1007/s10618-007-0065-y
10.1109/TKDE.2004.47
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/info13050234
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection (ProQuest)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2078-2489
ExternalDocumentID oai_doaj_org_article_745125c1e80b47c0a21d31962e60d970
10_3390_info13050234
GroupedDBID .4I
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
K6V
K7-
KQ8
MK~
ML~
MODMG
M~E
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ITC
PUEGO
XH6
ID FETCH-LOGICAL-c367t-54ff6f4d36576f80cf4c1dc23e0beffd8f2dd47152847e86342348e0322ade693
IEDL.DBID DOA
ISSN 2078-2489
IngestDate Wed Aug 27 01:31:55 EDT 2025
Fri Jul 25 23:20:14 EDT 2025
Tue Jul 01 04:24:46 EDT 2025
Thu Apr 24 23:04:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-54ff6f4d36576f80cf4c1dc23e0beffd8f2dd47152847e86342348e0322ade693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9002-8650
0000-0003-1068-6408
0000-0003-2726-9109
OpenAccessLink https://doaj.org/article/745125c1e80b47c0a21d31962e60d970
PQID 2670177328
PQPubID 2032384
ParticipantIDs doaj_primary_oai_doaj_org_article_745125c1e80b47c0a21d31962e60d970
proquest_journals_2670177328
crossref_citationtrail_10_3390_info13050234
crossref_primary_10_3390_info13050234
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Information (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
ref_36
ref_13
ref_35
ref_34
Wen (ref_16) 2007; 15
ref_33
ref_10
ref_32
(ref_19) 2017; 100
ref_31
ref_30
Cai (ref_3) 2015; 14
Mans (ref_5) 2013; 1302
ref_17
Buijs (ref_28) 2014; 23
Xu (ref_7) 2019; 7
Wen (ref_15) 2010; 69
ref_37
Hochreiter (ref_39) 1997; 9
Suriadi (ref_4) 2017; 64
Weijters (ref_12) 2004; 16
ref_25
ref_24
ref_22
ref_21
ref_20
ref_42
ref_41
ref_40
ref_1
Leemans (ref_23) 2018; 17
ref_2
ref_29
Weijters (ref_18) 2006; 166
ref_27
Mehdiyev (ref_38) 2020; 62
Liu (ref_8) 2021; 63
ref_26
ref_9
Augusto (ref_11) 2019; 59
ref_6
References_xml – ident: ref_31
  doi: 10.3390/data5030082
– volume: 100
  start-page: 109
  year: 2017
  ident: ref_19
  article-title: Fodina: A robust and flexible heuristic process discovery technique
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2017.04.005
– volume: 62
  start-page: 143
  year: 2020
  ident: ref_38
  article-title: A novel business process prediction model using a deep learning method
  publication-title: Bus. Inf. Syst. Eng.
  doi: 10.1007/s12599-018-0551-3
– ident: ref_24
– ident: ref_1
  doi: 10.1007/978-3-642-33143-5
– ident: ref_2
  doi: 10.1007/978-3-662-49851-4
– ident: ref_6
  doi: 10.1007/978-3-642-41033-8_89
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_39
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref_29
  doi: 10.1007/978-3-540-68746-7_24
– ident: ref_30
  doi: 10.1109/ICPM53251.2021.9576849
– ident: ref_34
  doi: 10.1109/SERVICES55459.2022.00039
– volume: 63
  start-page: 477
  year: 2021
  ident: ref_8
  article-title: A repairing missing activities approach with succession relation for event logs
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-020-01524-6
– ident: ref_25
  doi: 10.1007/978-3-319-69462-7_8
– volume: 1302
  start-page: 127
  year: 2013
  ident: ref_5
  article-title: Wanna improve process mining results?: It’s high time we consider data quality issues seriously
  publication-title: BPM Rep.
– ident: ref_40
– volume: 23
  start-page: 1440001
  year: 2014
  ident: ref_28
  article-title: Quality dimensions in process discovery: The importance of fitness, precision, generalization and simplicity
  publication-title: Int. J. Coop. Inf. Syst.
  doi: 10.1142/S0218843014400012
– ident: ref_14
– ident: ref_26
  doi: 10.1007/978-3-030-72693-5_5
– ident: ref_32
  doi: 10.1007/978-3-319-59536-8_30
– ident: ref_9
  doi: 10.1109/ICPM.2019.00013
– ident: ref_33
  doi: 10.1007/978-3-030-26619-6_19
– volume: 7
  start-page: 17872
  year: 2019
  ident: ref_7
  article-title: A profile clustering based event logs repairing approach for process mining
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2894905
– volume: 14
  start-page: 2
  year: 2015
  ident: ref_3
  article-title: The Challenges of Data Quality and Data Quality Assessment in the Big Data Era
  publication-title: Data Sci. J.
  doi: 10.5334/dsj-2015-002
– ident: ref_36
  doi: 10.1007/978-3-030-58666-9_14
– ident: ref_42
  doi: 10.1007/978-3-030-85440-9
– ident: ref_21
  doi: 10.1007/978-3-319-06257-0_6
– ident: ref_37
  doi: 10.1109/ICPM.2019.00028
– ident: ref_27
– volume: 69
  start-page: 999
  year: 2010
  ident: ref_15
  article-title: Mining process models with prime invisible tasks
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2010.06.001
– ident: ref_17
  doi: 10.1109/CIDM.2011.5949453
– volume: 17
  start-page: 599
  year: 2018
  ident: ref_23
  article-title: Scalable process discovery and conformance checking
  publication-title: Softw. Syst. Model.
  doi: 10.1007/s10270-016-0545-x
– ident: ref_20
  doi: 10.1007/978-3-642-38697-8_17
– ident: ref_41
– ident: ref_13
– volume: 166
  start-page: 1
  year: 2006
  ident: ref_18
  article-title: Process mining with the heuristics miner-algorithm
  publication-title: Tech. Univ. Eindh. Tech. Rep. WP
– ident: ref_22
  doi: 10.1007/978-3-319-07734-5_6
– volume: 64
  start-page: 132
  year: 2017
  ident: ref_4
  article-title: Event log imperfection patterns for process mining: Towards a systematic approach to cleaning event logs
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2016.07.011
– ident: ref_35
  doi: 10.1137/1.9781611975673.14
– volume: 59
  start-page: 251
  year: 2019
  ident: ref_11
  article-title: Split miner: Automated discovery of accurate and simple business process models from event logs
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-018-1214-x
– ident: ref_10
  doi: 10.1109/ICWS.2015.24
– volume: 15
  start-page: 145
  year: 2007
  ident: ref_16
  article-title: Mining process models with non-free-choice constructs
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-007-0065-y
– volume: 16
  start-page: 1128
  year: 2004
  ident: ref_12
  article-title: Workflow mining: Discovering process models from event logs
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2004.47
SSID ssj0000778481
Score 2.2710247
Snippet Process mining is a relatively new subject that builds a bridge between traditional process modeling and data mining. Process discovery is one of the most...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 234
SubjectTerms Airports
Algorithms
business process management
data management
Data mining
data quality
Datasets
Deep learning
incomplete event logs
Labels
Machine learning
Neural networks
Performance enhancement
Performance evaluation
Prediction models
process mining
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8UL3owfkYUTQ96Mgvd2nXlZFBBYsCTJNyW9YuYGIaA_7_vjYIYo9f1dVne9-tef4-Qays519ZCdRInLhJZocDmYh85oX3BLBNa4d3hwYvsDcXzKB2FA7d5aKtc-cTKUdvS4Bl5M5EZKA9Cy9xNPyKcGoV_V8MIjW2yE0OkQT1X3af1GQvLMkSLX_a7c6jumyg18NopRCrxIxJVgP2__HEVZLoHZD9kh7S9FOch2XKTI7K3gRl4TPI2fXRuSgMw6pi2Ayo4hfSTQj5dvCEhHQBHq2WznA9B-4WGOEjfJrSDPY60X47n1Z5wVwB24PtOyLDbeX3oRWFKQmS4zBZRKryXXlguoXTwihkvTGxNwh3TznurfGIthKAUA5FTEiH_hHIMLLmwTrb4KalNyok7IzS1ULCywguOKPmFbSFyjwTDNEpzr1md3K44lpsAIY6TLN5zKCWQv_kmf-vkZk09XUJn_EF3j8xf0yDgdfWgnI3zYD95JiAzSU3sFNMiM6xIYoveI3GS2VYGn9ZYiS4PVjjPv3Xm_P_lC7Kb4LWGqpGxQWqL2ae7hGRjoa8qjfoC88LS0Q
  priority: 102
  providerName: ProQuest
Title A Deep Learning Approach for Repairing Missing Activity Labels in Event Logs for Process Mining
URI https://www.proquest.com/docview/2670177328
https://doaj.org/article/745125c1e80b47c0a21d31962e60d970
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF58XPQgPrFayx70JKGb7GazPbbaKtKKqIXeQvYlBYmi9f87s4klIuLFUyCZTcLsvD6Y_YaQUys519YCOokTF4msUOBzsY-c0L5glgmt8Ozw5FZeT8XNLJ01Rn1hT1hFD1wprpsJSEmpiZ1iWmSGFUls0WwSJ5ntZQGtsx5rgKkQg7MMeeKrTncOuL6L-wXxOoUcJb7loEDV_yMSh_Qy2iZbdV1I-9X_7JAVV-6SzQZb4B7J-_TSuVdaU6I-0X7NB06h8KRQSRdzFKQT0GV4bKrJEHRcaMiAdF7SIXY30vHL03tYU58SgBX4vn0yHQ0fL66jej5CZLjMFlEqvJdeWC4BNHjFjBcmtibhjmnnvVU-sRaST4opyCmJZH9COQY-XFgne_yArJUvpTskNLUAVVnhBUd-_ML2kLNHgksapbnXrEXOvzSWm5o8HGdYPOcAIlC_eVO_LXK2lH6tSDN-kRug8pcySHUdboAB5LUB5H8ZQIu0v7Yur_3vPU9kBqEGiYiO_uMbx2QjwWMPodGxTdYWbx_uBIqRhe6QVTW66pD1_uVk_ADXwfD27r4TrPETgCvd5Q
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5V6QE4IJ6iUMAHekKrem2vd3NAKKWpUppECLVSb2b9iipVSWhSVfwpfiMzu95QhODW63q8Wo0_z4y9M98AvPNaSus9nk5yETJV1hXuuTxmQdlYc8-Vrah2eDLVozP1-bw434KfXS0MpVV2NrEx1H7h6I58X-gSwUPUMh-X3zPqGkV_V7sWGi0sTsKPGzyyrT4cH-L67glxNDz9NMpSV4HMSV2us0LFqKPyUmOoHSvuonK5d0IGbkOMvorCezTZBRnuUGmiyFNV4Ij82gdN5Eto8rcVVbT2YPtgOP3ydXOrw8uS-OnbDHsp-3yfcIJ-okDfqP7wfU2LgL88QOPWjh7BwxSPskELoMewFeZP4MEtlsKnYAbsMIQlS1SsMzZIPOQMA16GEXx9QYJsgmvYDLu2IwUb1xY9L7uYsyFlVbLxYrZq5qTqBJxB73sGZ3eiwefQmy_m4QWwwuMRmddRSeLlr32fuII0mgJXWRkt34H3ncaMS6Tl1Dvj0uDhhfRrbut3B_Y20suWrOMfcgek_I0MUWw3DxZXM5N2rCkVxkKFy0PFrSodr0XuyV6JoLnvl_hpu93SmbTvV-Y3Sl_-f_gt3BudTsZmfDw9eQX3BRVVNGmUu9BbX12H1xjqrO2bhC8G3-4a0r8Ah5wRKQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELYQlVB7qPpUKRR8gFO1itf22s6hqlJCCiWgHorEzV2_IqQqSUlQ1b_WX9eZXW8KquDGdW2vVuPP8_DOfEPIXlBCuBAgOil5LKSuDZy5MhVRulSzwKQzWDt8eqaOzuWXi-pijfzpamEwrbLTiY2iDjOPd-Q9rjSAB6lleimnRXwdjj7OfxbYQQr_tHbtNFqInMTfvyB8W3w4HsJe73M-Ovx2cFTkDgOFF0ovi0qmpJIMQoHbnQzzSfoyeC4iczGlYBIPAdR3hUo8GoV0edJEBqegDlEhEROo_0da6D4Gfmb0eXW_w7RGpvo2116IPushYsBiVGAl5S0r2DQL-M8WNAZu9Iw8zZ4pHbRQek7W4vQFeXKDr_AlsQM6jHFOMynrhA4yIzkF15eCL19f4kR6CrvZDPu2NwUd1w5sML2c0kPMr6Tj2WTRrMl1CrAC3_eKnD-I_F6T9elsGt8QWgUIllmdpECG_jr0kTVIgVLwxonk2CZ530nM-kxfjl00flgIY1C-9qZ8N8n-ava8pe24Y94nFP5qDpJtNw9mVxObz67VEryiypfRMCe1ZzUvA2ouHhULfQ2ftt1tnc0aYGH_4fXt_cO7ZAOAbMfHZydb5DHH6oomn3KbrC-vruM78HmWbqcBFyXfHxrNfwFXehP5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Approach+for+Repairing+Missing+Activity+Labels+in+Event+Logs+for+Process+Mining&rft.jtitle=Information+%28Basel%29&rft.au=Yang+Lu&rft.au=Qifan+Chen&rft.au=Simon+K.+Poon&rft.date=2022-05-01&rft.pub=MDPI+AG&rft.eissn=2078-2489&rft.volume=13&rft.issue=5&rft.spage=234&rft_id=info:doi/10.3390%2Finfo13050234&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_745125c1e80b47c0a21d31962e60d970
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2078-2489&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2078-2489&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2078-2489&client=summon