A Deep Learning Approach for Repairing Missing Activity Labels in Event Logs for Process Mining
Process mining is a relatively new subject that builds a bridge between traditional process modeling and data mining. Process discovery is one of the most critical parts of process mining, which aims at discovering process models automatically from event logs. Like other data mining techniques, the...
Saved in:
Published in | Information (Basel) Vol. 13; no. 5; p. 234 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2078-2489 2078-2489 |
DOI | 10.3390/info13050234 |
Cover
Abstract | Process mining is a relatively new subject that builds a bridge between traditional process modeling and data mining. Process discovery is one of the most critical parts of process mining, which aims at discovering process models automatically from event logs. Like other data mining techniques, the performance of existing process discovery algorithms can be affected when there are missing activity labels in event logs. In this paper, we assume that the control-flow information in event logs could be useful in repairing missing activity labels. We propose an LSTM-based prediction model, which takes both the prefix and suffix sequences of the events with missing activity labels as input to predict missing activity labels. Additional attributes of event logs are also utilized to improve the performance. Our evaluation of several publicly available datasets shows that the proposed method performed consistently better than existing methods in terms of repairing missing activity labels in event logs. |
---|---|
AbstractList | Process mining is a relatively new subject that builds a bridge between traditional process modeling and data mining. Process discovery is one of the most critical parts of process mining, which aims at discovering process models automatically from event logs. Like other data mining techniques, the performance of existing process discovery algorithms can be affected when there are missing activity labels in event logs. In this paper, we assume that the control-flow information in event logs could be useful in repairing missing activity labels. We propose an LSTM-based prediction model, which takes both the prefix and suffix sequences of the events with missing activity labels as input to predict missing activity labels. Additional attributes of event logs are also utilized to improve the performance. Our evaluation of several publicly available datasets shows that the proposed method performed consistently better than existing methods in terms of repairing missing activity labels in event logs. |
Author | Chen, Qifan Poon, Simon K. Lu, Yang |
Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0002-9002-8650 surname: Lu fullname: Lu, Yang – sequence: 2 givenname: Qifan orcidid: 0000-0003-1068-6408 surname: Chen fullname: Chen, Qifan – sequence: 3 givenname: Simon K. orcidid: 0000-0003-2726-9109 surname: Poon fullname: Poon, Simon K. |
BookMark | eNptUU1rGzEQFSWB5sO3_gBBrnWir5W0R5OkjWFLQkjPQpZGrowrbSQlkH_ftZ1CKJ3LDDPvPd7MnKKjlBMg9IWSS857chVTyJSTjjAuPqETRpSeM6H7ow_1ZzSrdUOmUEoLTU-QWeAbgBEPYEuKaY0X41iydb9wyAU_wmhj2bV_xFr3Y9fia2xveLAr2FYcE759hdTwkNd1z3ko2UGtE2Ond46Og91WmL3nM_Tz2-3T9d18uP--vF4Mc8elavNOhCCD8Fx2SgZNXBCOesc4kBWE4HVg3gtFO6aFAi25mLbUQDhj1oPs-RlaHnR9thszlvjbljeTbTT7Ri5rY0uLbgtGiY6yzlHQZCWUI5ZRz2kvGUjie0UmrYuD1nSJ5xeozWzyS0mTfcOkIlQpzvSEYgeUK7nWAsG42GyLObVi49ZQYnZ_MR__MpG-_kP6a_W_8D8t4Y72 |
CitedBy_id | crossref_primary_10_3390_math11132858 crossref_primary_10_3390_fi14060181 crossref_primary_10_1016_j_is_2025_102548 |
Cites_doi | 10.3390/data5030082 10.1016/j.dss.2017.04.005 10.1007/s12599-018-0551-3 10.1007/978-3-642-33143-5 10.1007/978-3-662-49851-4 10.1007/978-3-642-41033-8_89 10.1162/neco.1997.9.8.1735 10.1007/978-3-540-68746-7_24 10.1109/ICPM53251.2021.9576849 10.1109/SERVICES55459.2022.00039 10.1007/s10115-020-01524-6 10.1007/978-3-319-69462-7_8 10.1142/S0218843014400012 10.1007/978-3-030-72693-5_5 10.1007/978-3-319-59536-8_30 10.1109/ICPM.2019.00013 10.1007/978-3-030-26619-6_19 10.1109/ACCESS.2019.2894905 10.5334/dsj-2015-002 10.1007/978-3-030-58666-9_14 10.1007/978-3-030-85440-9 10.1007/978-3-319-06257-0_6 10.1109/ICPM.2019.00028 10.1016/j.datak.2010.06.001 10.1109/CIDM.2011.5949453 10.1007/s10270-016-0545-x 10.1007/978-3-642-38697-8_17 10.1007/978-3-319-07734-5_6 10.1016/j.is.2016.07.011 10.1137/1.9781611975673.14 10.1007/s10115-018-1214-x 10.1109/ICWS.2015.24 10.1007/s10618-007-0065-y 10.1109/TKDE.2004.47 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.3390/info13050234 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection (ProQuest) ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2078-2489 |
ExternalDocumentID | oai_doaj_org_article_745125c1e80b47c0a21d31962e60d970 10_3390_info13050234 |
GroupedDBID | .4I 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABUWG ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO K6V K7- KQ8 MK~ ML~ MODMG M~E OK1 P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQGLB PQUKI PRINS Q9U ITC PUEGO XH6 |
ID | FETCH-LOGICAL-c367t-54ff6f4d36576f80cf4c1dc23e0beffd8f2dd47152847e86342348e0322ade693 |
IEDL.DBID | DOA |
ISSN | 2078-2489 |
IngestDate | Wed Aug 27 01:31:55 EDT 2025 Fri Jul 25 23:20:14 EDT 2025 Tue Jul 01 04:24:46 EDT 2025 Thu Apr 24 23:04:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-54ff6f4d36576f80cf4c1dc23e0beffd8f2dd47152847e86342348e0322ade693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9002-8650 0000-0003-1068-6408 0000-0003-2726-9109 |
OpenAccessLink | https://doaj.org/article/745125c1e80b47c0a21d31962e60d970 |
PQID | 2670177328 |
PQPubID | 2032384 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_745125c1e80b47c0a21d31962e60d970 proquest_journals_2670177328 crossref_citationtrail_10_3390_info13050234 crossref_primary_10_3390_info13050234 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Information (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_14 ref_36 ref_13 ref_35 ref_34 Wen (ref_16) 2007; 15 ref_33 ref_10 ref_32 (ref_19) 2017; 100 ref_31 ref_30 Cai (ref_3) 2015; 14 Mans (ref_5) 2013; 1302 ref_17 Buijs (ref_28) 2014; 23 Xu (ref_7) 2019; 7 Wen (ref_15) 2010; 69 ref_37 Hochreiter (ref_39) 1997; 9 Suriadi (ref_4) 2017; 64 Weijters (ref_12) 2004; 16 ref_25 ref_24 ref_22 ref_21 ref_20 ref_42 ref_41 ref_40 ref_1 Leemans (ref_23) 2018; 17 ref_2 ref_29 Weijters (ref_18) 2006; 166 ref_27 Mehdiyev (ref_38) 2020; 62 Liu (ref_8) 2021; 63 ref_26 ref_9 Augusto (ref_11) 2019; 59 ref_6 |
References_xml | – ident: ref_31 doi: 10.3390/data5030082 – volume: 100 start-page: 109 year: 2017 ident: ref_19 article-title: Fodina: A robust and flexible heuristic process discovery technique publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2017.04.005 – volume: 62 start-page: 143 year: 2020 ident: ref_38 article-title: A novel business process prediction model using a deep learning method publication-title: Bus. Inf. Syst. Eng. doi: 10.1007/s12599-018-0551-3 – ident: ref_24 – ident: ref_1 doi: 10.1007/978-3-642-33143-5 – ident: ref_2 doi: 10.1007/978-3-662-49851-4 – ident: ref_6 doi: 10.1007/978-3-642-41033-8_89 – volume: 9 start-page: 1735 year: 1997 ident: ref_39 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: ref_29 doi: 10.1007/978-3-540-68746-7_24 – ident: ref_30 doi: 10.1109/ICPM53251.2021.9576849 – ident: ref_34 doi: 10.1109/SERVICES55459.2022.00039 – volume: 63 start-page: 477 year: 2021 ident: ref_8 article-title: A repairing missing activities approach with succession relation for event logs publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-020-01524-6 – ident: ref_25 doi: 10.1007/978-3-319-69462-7_8 – volume: 1302 start-page: 127 year: 2013 ident: ref_5 article-title: Wanna improve process mining results?: It’s high time we consider data quality issues seriously publication-title: BPM Rep. – ident: ref_40 – volume: 23 start-page: 1440001 year: 2014 ident: ref_28 article-title: Quality dimensions in process discovery: The importance of fitness, precision, generalization and simplicity publication-title: Int. J. Coop. Inf. Syst. doi: 10.1142/S0218843014400012 – ident: ref_14 – ident: ref_26 doi: 10.1007/978-3-030-72693-5_5 – ident: ref_32 doi: 10.1007/978-3-319-59536-8_30 – ident: ref_9 doi: 10.1109/ICPM.2019.00013 – ident: ref_33 doi: 10.1007/978-3-030-26619-6_19 – volume: 7 start-page: 17872 year: 2019 ident: ref_7 article-title: A profile clustering based event logs repairing approach for process mining publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2894905 – volume: 14 start-page: 2 year: 2015 ident: ref_3 article-title: The Challenges of Data Quality and Data Quality Assessment in the Big Data Era publication-title: Data Sci. J. doi: 10.5334/dsj-2015-002 – ident: ref_36 doi: 10.1007/978-3-030-58666-9_14 – ident: ref_42 doi: 10.1007/978-3-030-85440-9 – ident: ref_21 doi: 10.1007/978-3-319-06257-0_6 – ident: ref_37 doi: 10.1109/ICPM.2019.00028 – ident: ref_27 – volume: 69 start-page: 999 year: 2010 ident: ref_15 article-title: Mining process models with prime invisible tasks publication-title: Data Knowl. Eng. doi: 10.1016/j.datak.2010.06.001 – ident: ref_17 doi: 10.1109/CIDM.2011.5949453 – volume: 17 start-page: 599 year: 2018 ident: ref_23 article-title: Scalable process discovery and conformance checking publication-title: Softw. Syst. Model. doi: 10.1007/s10270-016-0545-x – ident: ref_20 doi: 10.1007/978-3-642-38697-8_17 – ident: ref_41 – ident: ref_13 – volume: 166 start-page: 1 year: 2006 ident: ref_18 article-title: Process mining with the heuristics miner-algorithm publication-title: Tech. Univ. Eindh. Tech. Rep. WP – ident: ref_22 doi: 10.1007/978-3-319-07734-5_6 – volume: 64 start-page: 132 year: 2017 ident: ref_4 article-title: Event log imperfection patterns for process mining: Towards a systematic approach to cleaning event logs publication-title: Inf. Syst. doi: 10.1016/j.is.2016.07.011 – ident: ref_35 doi: 10.1137/1.9781611975673.14 – volume: 59 start-page: 251 year: 2019 ident: ref_11 article-title: Split miner: Automated discovery of accurate and simple business process models from event logs publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-018-1214-x – ident: ref_10 doi: 10.1109/ICWS.2015.24 – volume: 15 start-page: 145 year: 2007 ident: ref_16 article-title: Mining process models with non-free-choice constructs publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-007-0065-y – volume: 16 start-page: 1128 year: 2004 ident: ref_12 article-title: Workflow mining: Discovering process models from event logs publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2004.47 |
SSID | ssj0000778481 |
Score | 2.2710247 |
Snippet | Process mining is a relatively new subject that builds a bridge between traditional process modeling and data mining. Process discovery is one of the most... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 234 |
SubjectTerms | Airports Algorithms business process management data management Data mining data quality Datasets Deep learning incomplete event logs Labels Machine learning Neural networks Performance enhancement Performance evaluation Prediction models process mining |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8UL3owfkYUTQ96Mgvd2nXlZFBBYsCTJNyW9YuYGIaA_7_vjYIYo9f1dVne9-tef4-Qays519ZCdRInLhJZocDmYh85oX3BLBNa4d3hwYvsDcXzKB2FA7d5aKtc-cTKUdvS4Bl5M5EZKA9Cy9xNPyKcGoV_V8MIjW2yE0OkQT1X3af1GQvLMkSLX_a7c6jumyg18NopRCrxIxJVgP2__HEVZLoHZD9kh7S9FOch2XKTI7K3gRl4TPI2fXRuSgMw6pi2Ayo4hfSTQj5dvCEhHQBHq2WznA9B-4WGOEjfJrSDPY60X47n1Z5wVwB24PtOyLDbeX3oRWFKQmS4zBZRKryXXlguoXTwihkvTGxNwh3TznurfGIthKAUA5FTEiH_hHIMLLmwTrb4KalNyok7IzS1ULCywguOKPmFbSFyjwTDNEpzr1md3K44lpsAIY6TLN5zKCWQv_kmf-vkZk09XUJn_EF3j8xf0yDgdfWgnI3zYD95JiAzSU3sFNMiM6xIYoveI3GS2VYGn9ZYiS4PVjjPv3Xm_P_lC7Kb4LWGqpGxQWqL2ae7hGRjoa8qjfoC88LS0Q priority: 102 providerName: ProQuest |
Title | A Deep Learning Approach for Repairing Missing Activity Labels in Event Logs for Process Mining |
URI | https://www.proquest.com/docview/2670177328 https://doaj.org/article/745125c1e80b47c0a21d31962e60d970 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF58XPQgPrFayx70JKGb7GazPbbaKtKKqIXeQvYlBYmi9f87s4klIuLFUyCZTcLsvD6Y_YaQUys519YCOokTF4msUOBzsY-c0L5glgmt8Ozw5FZeT8XNLJ01Rn1hT1hFD1wprpsJSEmpiZ1iWmSGFUls0WwSJ5ntZQGtsx5rgKkQg7MMeeKrTncOuL6L-wXxOoUcJb7loEDV_yMSh_Qy2iZbdV1I-9X_7JAVV-6SzQZb4B7J-_TSuVdaU6I-0X7NB06h8KRQSRdzFKQT0GV4bKrJEHRcaMiAdF7SIXY30vHL03tYU58SgBX4vn0yHQ0fL66jej5CZLjMFlEqvJdeWC4BNHjFjBcmtibhjmnnvVU-sRaST4opyCmJZH9COQY-XFgne_yArJUvpTskNLUAVVnhBUd-_ML2kLNHgksapbnXrEXOvzSWm5o8HGdYPOcAIlC_eVO_LXK2lH6tSDN-kRug8pcySHUdboAB5LUB5H8ZQIu0v7Yur_3vPU9kBqEGiYiO_uMbx2QjwWMPodGxTdYWbx_uBIqRhe6QVTW66pD1_uVk_ADXwfD27r4TrPETgCvd5Q |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB5V6QE4IJ6iUMAHekKrem2vd3NAKKWpUppECLVSb2b9iipVSWhSVfwpfiMzu95QhODW63q8Wo0_z4y9M98AvPNaSus9nk5yETJV1hXuuTxmQdlYc8-Vrah2eDLVozP1-bw434KfXS0MpVV2NrEx1H7h6I58X-gSwUPUMh-X3zPqGkV_V7sWGi0sTsKPGzyyrT4cH-L67glxNDz9NMpSV4HMSV2us0LFqKPyUmOoHSvuonK5d0IGbkOMvorCezTZBRnuUGmiyFNV4Ij82gdN5Eto8rcVVbT2YPtgOP3ydXOrw8uS-OnbDHsp-3yfcIJ-okDfqP7wfU2LgL88QOPWjh7BwxSPskELoMewFeZP4MEtlsKnYAbsMIQlS1SsMzZIPOQMA16GEXx9QYJsgmvYDLu2IwUb1xY9L7uYsyFlVbLxYrZq5qTqBJxB73sGZ3eiwefQmy_m4QWwwuMRmddRSeLlr32fuII0mgJXWRkt34H3ncaMS6Tl1Dvj0uDhhfRrbut3B_Y20suWrOMfcgek_I0MUWw3DxZXM5N2rCkVxkKFy0PFrSodr0XuyV6JoLnvl_hpu93SmbTvV-Y3Sl_-f_gt3BudTsZmfDw9eQX3BRVVNGmUu9BbX12H1xjqrO2bhC8G3-4a0r8Ah5wRKQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELYQlVB7qPpUKRR8gFO1itf22s6hqlJCCiWgHorEzV2_IqQqSUlQ1b_WX9eZXW8KquDGdW2vVuPP8_DOfEPIXlBCuBAgOil5LKSuDZy5MhVRulSzwKQzWDt8eqaOzuWXi-pijfzpamEwrbLTiY2iDjOPd-Q9rjSAB6lleimnRXwdjj7OfxbYQQr_tHbtNFqInMTfvyB8W3w4HsJe73M-Ovx2cFTkDgOFF0ovi0qmpJIMQoHbnQzzSfoyeC4iczGlYBIPAdR3hUo8GoV0edJEBqegDlEhEROo_0da6D4Gfmb0eXW_w7RGpvo2116IPushYsBiVGAl5S0r2DQL-M8WNAZu9Iw8zZ4pHbRQek7W4vQFeXKDr_AlsQM6jHFOMynrhA4yIzkF15eCL19f4kR6CrvZDPu2NwUd1w5sML2c0kPMr6Tj2WTRrMl1CrAC3_eKnD-I_F6T9elsGt8QWgUIllmdpECG_jr0kTVIgVLwxonk2CZ530nM-kxfjl00flgIY1C-9qZ8N8n-ava8pe24Y94nFP5qDpJtNw9mVxObz67VEryiypfRMCe1ZzUvA2ouHhULfQ2ftt1tnc0aYGH_4fXt_cO7ZAOAbMfHZydb5DHH6oomn3KbrC-vruM78HmWbqcBFyXfHxrNfwFXehP5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Approach+for+Repairing+Missing+Activity+Labels+in+Event+Logs+for+Process+Mining&rft.jtitle=Information+%28Basel%29&rft.au=Yang+Lu&rft.au=Qifan+Chen&rft.au=Simon+K.+Poon&rft.date=2022-05-01&rft.pub=MDPI+AG&rft.eissn=2078-2489&rft.volume=13&rft.issue=5&rft.spage=234&rft_id=info:doi/10.3390%2Finfo13050234&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_745125c1e80b47c0a21d31962e60d970 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2078-2489&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2078-2489&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2078-2489&client=summon |