Context-Specific Point-of-Interest Recommendation Based on Popularity-Weighted Random Sampling and Factorization Machine

Point-Of-Interest (POI) recommendation not only assists users to find their preferred places, but also helps businesses to attract potential customers. Recent studies have proposed many approaches to the POI recommendation. However, the lack of negative samples and the complexities of check-in conte...

Full description

Saved in:
Bibliographic Details
Published inISPRS international journal of geo-information Vol. 10; no. 4; p. 258
Main Authors Yu, Dongjin, Shen, Yi, Xu, Kaihui, Xu, Yihang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Point-Of-Interest (POI) recommendation not only assists users to find their preferred places, but also helps businesses to attract potential customers. Recent studies have proposed many approaches to the POI recommendation. However, the lack of negative samples and the complexities of check-in contexts limit their effectiveness significantly. This paper focuses on the problem of context-specific POI recommendation based on the check-in behaviors recorded by Location-Based Social Network (LBSN) services, which aims at recommending a list of POIs for a user to visit at a given context (such as time and weather). Specifically, a bidirectional influence correlativity metric is proposed to measure the semantic feature of user check-in behavior, and a contextual smoothing method to effectively alleviate the problem of data sparsity. In addition, the check-in probability is computed based on the geographical distance between the user’s home and the POI. Furthermore, to handle the problem of no negative feedback in LBSN, a weighted random sampling method is proposed based on contextual popularity. Finally, the recommendation results is obtained by utilizing Factorization Machine with Bayesian Personalized Ranking (BPR) loss. Experiments on a real dataset collected from Foursquare show that the proposed approach has better performance than others.
AbstractList Point-Of-Interest (POI) recommendation not only assists users to find their preferred places, but also helps businesses to attract potential customers. Recent studies have proposed many approaches to the POI recommendation. However, the lack of negative samples and the complexities of check-in contexts limit their effectiveness significantly. This paper focuses on the problem of context-specific POI recommendation based on the check-in behaviors recorded by Location-Based Social Network (LBSN) services, which aims at recommending a list of POIs for a user to visit at a given context (such as time and weather). Specifically, a bidirectional influence correlativity metric is proposed to measure the semantic feature of user check-in behavior, and a contextual smoothing method to effectively alleviate the problem of data sparsity. In addition, the check-in probability is computed based on the geographical distance between the user’s home and the POI. Furthermore, to handle the problem of no negative feedback in LBSN, a weighted random sampling method is proposed based on contextual popularity. Finally, the recommendation results is obtained by utilizing Factorization Machine with Bayesian Personalized Ranking (BPR) loss. Experiments on a real dataset collected from Foursquare show that the proposed approach has better performance than others.
Author Yu, Dongjin
Xu, Yihang
Xu, Kaihui
Shen, Yi
Author_xml – sequence: 1
  givenname: Dongjin
  surname: Yu
  fullname: Yu, Dongjin
– sequence: 2
  givenname: Yi
  surname: Shen
  fullname: Shen, Yi
– sequence: 3
  givenname: Kaihui
  surname: Xu
  fullname: Xu, Kaihui
– sequence: 4
  givenname: Yihang
  surname: Xu
  fullname: Xu, Yihang
BookMark eNpNUUtPGzEQthBIpJBbf8BKXLt0bM8-fKRRgUipinioR8trexNHWXvrdSTg1-OSCjGXmflm5pvXF3Lsg7eEfKVwybmA7267dhQAgVXtEZkxxqAUosbjT_YpmU_TFrIIyluEGXleBJ_scyofRqtd73RxF5xPZejLZQ5EO6Xi3uowDNYblVzwxQ81WVNk4y6M-52KLr2Uf6xbb1KG75U3YSge1DDunF8X2S2ulU4hutdD-S-lN87bc3LSq91k5__1GXm6_vm4uC1Xv2-Wi6tVqXndpLJC0xmOeTFbV03foRBAOWuwQ2xANxoVMqQtgLadaEVtUPQ9CsYsVqav-RlZHnhNUFs5Rjeo-CKDcvIdCHEtVUxO76zkHYDhwlCLLdZ1I5BDw7FmoLFSrclcFweuMYa_-3wauQ376PP4klWcUk4ZhZz17ZClY5imaPuPrhTkv1fJz6_ib-P0h5c
CitedBy_id crossref_primary_10_1016_j_jjimei_2023_100161
crossref_primary_10_1155_2022_7907210
crossref_primary_10_1007_s10489_022_03842_4
crossref_primary_10_3390_electronics11182966
crossref_primary_10_3390_electronics12204199
Cites_doi 10.14778/3115404.3115407
10.1016/B978-0-12-394424-5.00006-9
10.1016/j.neucom.2020.09.034
10.1016/j.knosys.2016.04.020
10.1109/ICDM.2010.127
10.1007/s00500-020-05107-z
10.1007/978-3-642-27848-8
10.1109/TKDE.2019.2903463
10.1145/3366423.3380202
10.1214/aoms/1177731647
10.1109/TAAI.2015.7407077
10.1145/3340531.3411905
10.14778/3402707.3402736
10.1145/3097983.3098063
10.1145/1869790.1869861
10.1016/j.knosys.2018.08.031
10.1007/s10707-014-0220-8
10.1007/978-3-642-35289-8
10.1109/ICDM.2018.00035
10.1145/2939672.2939767
10.1145/2507157.2507182
10.1109/IJCNN48605.2020.9207571
10.1145/2661829.2661983
10.1016/j.cosrev.2020.100255
10.1109/TKDE.2016.2598561
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
H96
HCIFZ
JQ2
KR7
L.G
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/ijgi10040258
DatabaseName CrossRef
Computer and Information Systems Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Visual Arts
EISSN 2220-9964
ExternalDocumentID oai_doaj_org_article_3b00d39d1e4846679430734620c45a8d
10_3390_ijgi10040258
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PIMPY
PROAC
PTHSS
RIG
ZBA
7SC
7UA
8FD
ABUWG
AZQEC
C1K
DWQXO
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c367t-54dbd34100e657fb499013274b4470c7c4a4241800ceb9896d49ff4922e45df63
IEDL.DBID DOA
ISSN 2220-9964
IngestDate Tue Oct 22 15:03:58 EDT 2024
Thu Oct 10 20:28:11 EDT 2024
Thu Sep 26 21:17:56 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-54dbd34100e657fb499013274b4470c7c4a4241800ceb9896d49ff4922e45df63
OpenAccessLink https://doaj.org/article/3b00d39d1e4846679430734620c45a8d
PQID 2531131210
PQPubID 2032387
ParticipantIDs doaj_primary_oai_doaj_org_article_3b00d39d1e4846679430734620c45a8d
proquest_journals_2531131210
crossref_primary_10_3390_ijgi10040258
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle ISPRS international journal of geo-information
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Bao (ref_6) 2015; 19
Lukacs (ref_29) 1942; 13
ref_13
ref_12
Sun (ref_23) 2011; 4
ref_31
ref_30
Si (ref_14) 2019; 163
ref_18
ref_16
Ma (ref_19) 2020; 24
ref_15
Unger (ref_17) 2016; 104
Shi (ref_22) 2017; 29
Kulkarni (ref_7) 2020; 37
Fesenmaier (ref_2) 2016; Volume 1685
ref_25
ref_24
ref_21
ref_20
Liu (ref_5) 2017; 10
ref_1
ref_3
ref_28
ref_27
ref_26
ref_9
ref_8
Cai (ref_10) 2021; 422
ref_4
Aliannejadi (ref_11) 2020; 32
References_xml – ident: ref_3
– volume: 10
  start-page: 1010
  year: 2017
  ident: ref_5
  article-title: An Experimental Evaluation of Point-of-interest Recommendation in Location-based Social Networks
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3115404.3115407
  contributor:
    fullname: Liu
– ident: ref_24
– ident: ref_26
– ident: ref_27
  doi: 10.1016/B978-0-12-394424-5.00006-9
– volume: 422
  start-page: 1
  year: 2021
  ident: ref_10
  article-title: A coarse-to-fine user preferences prediction method for point-of-interest recommendation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.09.034
  contributor:
    fullname: Cai
– volume: 104
  start-page: 165
  year: 2016
  ident: ref_17
  article-title: Towards latent context-aware recommendation systems
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2016.04.020
  contributor:
    fullname: Unger
– ident: ref_25
  doi: 10.1109/ICDM.2010.127
– volume: 24
  start-page: 18733
  year: 2020
  ident: ref_19
  article-title: Exploring multiple spatio-temporal information for point-of-interest recommendation
  publication-title: Soft Comput.
  doi: 10.1007/s00500-020-05107-z
  contributor:
    fullname: Ma
– ident: ref_28
  doi: 10.1007/978-3-642-27848-8
– volume: 32
  start-page: 1050
  year: 2020
  ident: ref_11
  article-title: A Joint Two-Phase Time-Sensitive Regularized Collaborative Ranking Model for Point of Interest Recommendation
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2903463
  contributor:
    fullname: Aliannejadi
– ident: ref_20
  doi: 10.1145/3366423.3380202
– volume: 13
  start-page: 91
  year: 1942
  ident: ref_29
  article-title: A Characterization of the Normal Distribution
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177731647
  contributor:
    fullname: Lukacs
– ident: ref_16
  doi: 10.1109/TAAI.2015.7407077
– ident: ref_18
  doi: 10.1145/3340531.3411905
– volume: Volume 1685
  start-page: 16
  year: 2016
  ident: ref_2
  article-title: Understanding the Impact of Weather for POI Recommendations
  publication-title: CEUR Workshop Proceedings, Proceedings of the Workshop on Recommenders in Tourism Co-Located with 10th ACM Conference on Recommender Systems (RecSys 2016), Boston, MA, USA, 15 September 2016
  contributor:
    fullname: Fesenmaier
– volume: 4
  start-page: 992
  year: 2011
  ident: ref_23
  article-title: PathSim: Meta Path-Based Top-K Similarity Search in Heterogeneous Information Networks
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3402707.3402736
  contributor:
    fullname: Sun
– ident: ref_15
  doi: 10.1145/3097983.3098063
– ident: ref_4
– ident: ref_8
  doi: 10.1145/1869790.1869861
– volume: 163
  start-page: 267
  year: 2019
  ident: ref_14
  article-title: An adaptive point-of-interest recommendation method for location-based social networks based on user activity and spatial features
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2018.08.031
  contributor:
    fullname: Si
– volume: 19
  start-page: 525
  year: 2015
  ident: ref_6
  article-title: Recommendations in location-based social networks: A survey
  publication-title: GeoInformatica
  doi: 10.1007/s10707-014-0220-8
  contributor:
    fullname: Bao
– ident: ref_30
  doi: 10.1007/978-3-642-35289-8
– ident: ref_12
– ident: ref_21
  doi: 10.1109/ICDM.2018.00035
– ident: ref_9
  doi: 10.1145/2939672.2939767
– ident: ref_1
  doi: 10.1145/2507157.2507182
– ident: ref_31
  doi: 10.1109/IJCNN48605.2020.9207571
– ident: ref_13
  doi: 10.1145/2661829.2661983
– volume: 37
  start-page: 100255
  year: 2020
  ident: ref_7
  article-title: Context Aware Recommendation Systems: A review of the state of the art techniques
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2020.100255
  contributor:
    fullname: Kulkarni
– volume: 29
  start-page: 17
  year: 2017
  ident: ref_22
  article-title: A survey of heterogeneous information network analysis
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2598561
  contributor:
    fullname: Shi
SSID ssj0000913840
Score 2.2533953
Snippet Point-Of-Interest (POI) recommendation not only assists users to find their preferred places, but also helps businesses to attract potential customers. Recent...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 258
SubjectTerms Algorithms
Bayesian analysis
Collaboration
Context
context-specific
Deep learning
Factorization
Factorization Machine
Feedback
heterogeneous information network
Influence
Location based services
location-based social network
Negative feedback
Neural networks
point-of-interest recommendation
Preferences
Principal components analysis
Probability theory
Random sampling
Sampling
Sampling methods
Social networks
Social organization
Sparsity
Statistical sampling
User behavior
Weather
weighted random sampling
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB5BOcAeVjxFWUA-wNGitR0nOaHtqhVCKqp436LEdkqQmrC0SPDvd8Z1YRESt8RxFGlszzvfB3CEPrwtkghXIDGCq9QpnuSF5iJPnRUWTayjiu7wQp_dqPP76D4k3KahrXKhE72ito2hHPmJwM3SlQR3dfr0lxNrFFVXA4XGMqwIjBREC1Z6_YvR5XuWhVAvMYSZd7xLjO9PqsdxRShpaOuTT7bIQ_Z_0cjezAzW4WfwD9nv-YJuwJKrN2E1UJU_vG3Cj9tq-jKfMd2CV48uhcGr55EvK8NGTVXPeFNyn-vDLzCKMCcTF9iTWA_tlmV4MfLcXURex-98ghSHL_PaNhN2lVOjeT1meMsGnpIn_K_Jhr770m3DzaB__eeMBzIFbqSOZzxStrBoslD4OorLQlFBTGJMWigVd0xsVK7QmqP_aFyRJqm2Ki1LlQrhVGRLLXegVTe12wXWEUZ2tUhyIj6KTZ5KlUinrcU3RVm6NhwvxJo9zTEzMow1SPzZ_-JvQ49k_j6HkK79QPM8zsLBySTqBStT23UKXSVNeHaolZQWHaOiPLFt2F-sWBaO3zT72Cx73z_-BWuCmlR8K84-tGbPL-4AvYxZcRi20j_vydJw
  priority: 102
  providerName: ProQuest
Title Context-Specific Point-of-Interest Recommendation Based on Popularity-Weighted Random Sampling and Factorization Machine
URI https://www.proquest.com/docview/2531131210
https://doaj.org/article/3b00d39d1e4846679430734620c45a8d
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7xGIAB8RTlUXmA0aK1HcceKaIgpFYVz25RYjsQpKaIFgn-PWcnRUUMLGyJ5cjRnXOfz758H8AxruFtpiL0gDKMCu0EVWkmKUu1s8wixDp_otvry6t7cT2MhnNSX74mrKIHrgx3ynFeWK5t2wmESun5zHBWCslaRkSpsiH6tvRcMhVisG5zTF2qSneOef1p8fJUeHY0xHj1A4MCVf-vSBzgpbsB6_W6kJxV77MJC67cgpVaovz5cwvWHorJe9Vjsg0fgVUKk9agH58XhgzGRTml45yGPT4cgfjMcjRytWoS6SBeWYIXg6DZ5UXr6GPYGMXmm7S04xG5TX2BeflE8JZ0gxRP_Z8m6YWqS7cD992Lu_MrWosoUMNlPKWRsJlFqEKjyyjOM-EPwjjmopkQccvERqQCURzXjcZlWmlphc5zoRlzIrK55LuwVI5LtwekxQxvS6ZSL3gUm1RzobiT1uKTLM9dA05mZk1eK66MBHMMb_5k3vwN6Hibf_fxDNehAf2e1H5P_vJ7Aw5nHkvqz26SMIwobe450fb_Y4wDWGW-hCUU6hzC0vTt3R3hGmSaNWFRdS-bsNy56A9ummHyfQHZd9p6
link.rule.ids 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,43614,43819,74371,74638
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fTxQxEJ4gPCAPBlDjIWgf9LHhrp3t7j4ZMBwncoQoKG-b3bZ7LsntAnck8t870-uhxsS3_ZlNpt35ZqbT7wN4RzG8q7KERiCzSmLuUWZlZaQqc--UI4j1vKI7PjOjSzy5Sq5iwW0W2yqXPjE4atdZrpHvK5osA810Vx9ubiWrRvHqapTQeAJrqAloeKf48PixxsKcl5TALPrdNWX3-831pGGONEL67C8kCoT9__jjADLDTXgWo0NxsBjOLVjx7TasR6HyHw_bsPGtmd0vnpg9h5-BW4pS16AiXzdWnHdNO5ddLUOlj74gOL-cTn3UThKHhFpO0MF5UO5i6Tr5PZRH6fKXsnXdVHwtuc28nQg6FcMgyBN3a4px6L30L-ByeHTxcSSjlIK02qRzmaCrHAEWmd4kaV0hL4dpykgrxLRvU4slEpZT9Gh9lWe5cZjXNeZKeUxcbfRLWG271r8C0VdWD4zKSpY9Sm2Za8y0N87Rm6qufQ_eL81a3CwYMwrKNNj8xZ_m78Eh2_zxGea5Dhe6u0kRf5tCk1dwOncDjxQoGWazI5-ERvUtJmXmerC7HLEi_nyz4vdU2fn_7bewProYnxann84-v4anittVQlPOLqzO7-79HsUb8-pNmFS_AGm70_s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BkXgcEC1UbCngQzlau2s7jnNCFAgtfWgFFHqLEj-WIG3SdrdS-ffMeL0tCKm3xHEUacael7_MB7CDMbxrTIYaMFZwVXjFTd1oLurCO-HQxXo60T061nsn6vNpdprwT_MEq1zZxGioXW-pRj4UuFjGktpdDUOCRUw-lG_PzjkxSNFJa6LTuAv30CvmtElN-em63kL9LzGZWWLfJWb6w_bXtKV-aej1zT9eKTbv_882R4dTPoHHKVJk75aqXYc7vtuAB4m0_OfvDXj0vZ1fLmfMn8JV7DOFaWxklA-tZZO-7Ra8DzxW_fALjHLN2cwnHiW2ix7MMbyYRBYvorHjP2KpFIe_1J3rZ-xrTZDzbsrwlpWRnCf9ucmOIg7TP4OT8uO393s80SpwK3W-4JlyjUPnhWrQWR4aRUdjErPTRql8ZHOraoV-HSNJ65vCFNqpIgRVCOFV5oKWm7DW9Z1_DmwkrBxrYWqiQMptXUhlpNfO4ZsiBD-ANyuxVmfL7hkVZh0k_upv8Q9gl2R-PYd6XseB_mJapS1USbQQThZu7BUGTZo626F9UlqMrMpq4wawvdJYlTbivLpZNlu3P34N93E9VYf7xwcv4KEg5ErE52zD2uLi0r_E0GPRvIpr6g8vANgw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Context-Specific+Point-of-Interest+Recommendation+Based+on+Popularity-Weighted+Random+Sampling+and+Factorization+Machine&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Yu%2C+Dongjin&rft.au=Shen%2C+Yi&rft.au=Xu%2C+Kaihui&rft.au=Xu%2C+Yihang&rft.date=2021-04-01&rft.issn=2220-9964&rft.eissn=2220-9964&rft.volume=10&rft.issue=4&rft.spage=258&rft_id=info:doi/10.3390%2Fijgi10040258&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijgi10040258
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon