Context-Specific Point-of-Interest Recommendation Based on Popularity-Weighted Random Sampling and Factorization Machine
Point-Of-Interest (POI) recommendation not only assists users to find their preferred places, but also helps businesses to attract potential customers. Recent studies have proposed many approaches to the POI recommendation. However, the lack of negative samples and the complexities of check-in conte...
Saved in:
Published in | ISPRS international journal of geo-information Vol. 10; no. 4; p. 258 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Point-Of-Interest (POI) recommendation not only assists users to find their preferred places, but also helps businesses to attract potential customers. Recent studies have proposed many approaches to the POI recommendation. However, the lack of negative samples and the complexities of check-in contexts limit their effectiveness significantly. This paper focuses on the problem of context-specific POI recommendation based on the check-in behaviors recorded by Location-Based Social Network (LBSN) services, which aims at recommending a list of POIs for a user to visit at a given context (such as time and weather). Specifically, a bidirectional influence correlativity metric is proposed to measure the semantic feature of user check-in behavior, and a contextual smoothing method to effectively alleviate the problem of data sparsity. In addition, the check-in probability is computed based on the geographical distance between the user’s home and the POI. Furthermore, to handle the problem of no negative feedback in LBSN, a weighted random sampling method is proposed based on contextual popularity. Finally, the recommendation results is obtained by utilizing Factorization Machine with Bayesian Personalized Ranking (BPR) loss. Experiments on a real dataset collected from Foursquare show that the proposed approach has better performance than others. |
---|---|
AbstractList | Point-Of-Interest (POI) recommendation not only assists users to find their preferred places, but also helps businesses to attract potential customers. Recent studies have proposed many approaches to the POI recommendation. However, the lack of negative samples and the complexities of check-in contexts limit their effectiveness significantly. This paper focuses on the problem of context-specific POI recommendation based on the check-in behaviors recorded by Location-Based Social Network (LBSN) services, which aims at recommending a list of POIs for a user to visit at a given context (such as time and weather). Specifically, a bidirectional influence correlativity metric is proposed to measure the semantic feature of user check-in behavior, and a contextual smoothing method to effectively alleviate the problem of data sparsity. In addition, the check-in probability is computed based on the geographical distance between the user’s home and the POI. Furthermore, to handle the problem of no negative feedback in LBSN, a weighted random sampling method is proposed based on contextual popularity. Finally, the recommendation results is obtained by utilizing Factorization Machine with Bayesian Personalized Ranking (BPR) loss. Experiments on a real dataset collected from Foursquare show that the proposed approach has better performance than others. |
Author | Yu, Dongjin Xu, Yihang Xu, Kaihui Shen, Yi |
Author_xml | – sequence: 1 givenname: Dongjin surname: Yu fullname: Yu, Dongjin – sequence: 2 givenname: Yi surname: Shen fullname: Shen, Yi – sequence: 3 givenname: Kaihui surname: Xu fullname: Xu, Kaihui – sequence: 4 givenname: Yihang surname: Xu fullname: Xu, Yihang |
BookMark | eNpNUUtPGzEQthBIpJBbf8BKXLt0bM8-fKRRgUipinioR8trexNHWXvrdSTg1-OSCjGXmflm5pvXF3Lsg7eEfKVwybmA7267dhQAgVXtEZkxxqAUosbjT_YpmU_TFrIIyluEGXleBJ_scyofRqtd73RxF5xPZejLZQ5EO6Xi3uowDNYblVzwxQ81WVNk4y6M-52KLr2Uf6xbb1KG75U3YSge1DDunF8X2S2ulU4hutdD-S-lN87bc3LSq91k5__1GXm6_vm4uC1Xv2-Wi6tVqXndpLJC0xmOeTFbV03foRBAOWuwQ2xANxoVMqQtgLadaEVtUPQ9CsYsVqav-RlZHnhNUFs5Rjeo-CKDcvIdCHEtVUxO76zkHYDhwlCLLdZ1I5BDw7FmoLFSrclcFweuMYa_-3wauQ376PP4klWcUk4ZhZz17ZClY5imaPuPrhTkv1fJz6_ib-P0h5c |
CitedBy_id | crossref_primary_10_1016_j_jjimei_2023_100161 crossref_primary_10_1155_2022_7907210 crossref_primary_10_1007_s10489_022_03842_4 crossref_primary_10_3390_electronics11182966 crossref_primary_10_3390_electronics12204199 |
Cites_doi | 10.14778/3115404.3115407 10.1016/B978-0-12-394424-5.00006-9 10.1016/j.neucom.2020.09.034 10.1016/j.knosys.2016.04.020 10.1109/ICDM.2010.127 10.1007/s00500-020-05107-z 10.1007/978-3-642-27848-8 10.1109/TKDE.2019.2903463 10.1145/3366423.3380202 10.1214/aoms/1177731647 10.1109/TAAI.2015.7407077 10.1145/3340531.3411905 10.14778/3402707.3402736 10.1145/3097983.3098063 10.1145/1869790.1869861 10.1016/j.knosys.2018.08.031 10.1007/s10707-014-0220-8 10.1007/978-3-642-35289-8 10.1109/ICDM.2018.00035 10.1145/2939672.2939767 10.1145/2507157.2507182 10.1109/IJCNN48605.2020.9207571 10.1145/2661829.2661983 10.1016/j.cosrev.2020.100255 10.1109/TKDE.2016.2598561 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SC 7UA 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 H96 HCIFZ JQ2 KR7 L.G L6V L7M L~C L~D M7S P5Z P62 PCBAR PIMPY PQEST PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/ijgi10040258 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Visual Arts |
EISSN | 2220-9964 |
ExternalDocumentID | oai_doaj_org_article_3b00d39d1e4846679430734620c45a8d 10_3390_ijgi10040258 |
GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION GROUPED_DOAJ HCIFZ IAO KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PIMPY PROAC PTHSS RIG ZBA 7SC 7UA 8FD ABUWG AZQEC C1K DWQXO F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c367t-54dbd34100e657fb499013274b4470c7c4a4241800ceb9896d49ff4922e45df63 |
IEDL.DBID | DOA |
ISSN | 2220-9964 |
IngestDate | Tue Oct 22 15:03:58 EDT 2024 Thu Oct 10 20:28:11 EDT 2024 Thu Sep 26 21:17:56 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-54dbd34100e657fb499013274b4470c7c4a4241800ceb9896d49ff4922e45df63 |
OpenAccessLink | https://doaj.org/article/3b00d39d1e4846679430734620c45a8d |
PQID | 2531131210 |
PQPubID | 2032387 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3b00d39d1e4846679430734620c45a8d proquest_journals_2531131210 crossref_primary_10_3390_ijgi10040258 |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | ISPRS international journal of geo-information |
PublicationYear | 2021 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Bao (ref_6) 2015; 19 Lukacs (ref_29) 1942; 13 ref_13 ref_12 Sun (ref_23) 2011; 4 ref_31 ref_30 Si (ref_14) 2019; 163 ref_18 ref_16 Ma (ref_19) 2020; 24 ref_15 Unger (ref_17) 2016; 104 Shi (ref_22) 2017; 29 Kulkarni (ref_7) 2020; 37 Fesenmaier (ref_2) 2016; Volume 1685 ref_25 ref_24 ref_21 ref_20 Liu (ref_5) 2017; 10 ref_1 ref_3 ref_28 ref_27 ref_26 ref_9 ref_8 Cai (ref_10) 2021; 422 ref_4 Aliannejadi (ref_11) 2020; 32 |
References_xml | – ident: ref_3 – volume: 10 start-page: 1010 year: 2017 ident: ref_5 article-title: An Experimental Evaluation of Point-of-interest Recommendation in Location-based Social Networks publication-title: Proc. VLDB Endow. doi: 10.14778/3115404.3115407 contributor: fullname: Liu – ident: ref_24 – ident: ref_26 – ident: ref_27 doi: 10.1016/B978-0-12-394424-5.00006-9 – volume: 422 start-page: 1 year: 2021 ident: ref_10 article-title: A coarse-to-fine user preferences prediction method for point-of-interest recommendation publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.09.034 contributor: fullname: Cai – volume: 104 start-page: 165 year: 2016 ident: ref_17 article-title: Towards latent context-aware recommendation systems publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2016.04.020 contributor: fullname: Unger – ident: ref_25 doi: 10.1109/ICDM.2010.127 – volume: 24 start-page: 18733 year: 2020 ident: ref_19 article-title: Exploring multiple spatio-temporal information for point-of-interest recommendation publication-title: Soft Comput. doi: 10.1007/s00500-020-05107-z contributor: fullname: Ma – ident: ref_28 doi: 10.1007/978-3-642-27848-8 – volume: 32 start-page: 1050 year: 2020 ident: ref_11 article-title: A Joint Two-Phase Time-Sensitive Regularized Collaborative Ranking Model for Point of Interest Recommendation publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2019.2903463 contributor: fullname: Aliannejadi – ident: ref_20 doi: 10.1145/3366423.3380202 – volume: 13 start-page: 91 year: 1942 ident: ref_29 article-title: A Characterization of the Normal Distribution publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177731647 contributor: fullname: Lukacs – ident: ref_16 doi: 10.1109/TAAI.2015.7407077 – ident: ref_18 doi: 10.1145/3340531.3411905 – volume: Volume 1685 start-page: 16 year: 2016 ident: ref_2 article-title: Understanding the Impact of Weather for POI Recommendations publication-title: CEUR Workshop Proceedings, Proceedings of the Workshop on Recommenders in Tourism Co-Located with 10th ACM Conference on Recommender Systems (RecSys 2016), Boston, MA, USA, 15 September 2016 contributor: fullname: Fesenmaier – volume: 4 start-page: 992 year: 2011 ident: ref_23 article-title: PathSim: Meta Path-Based Top-K Similarity Search in Heterogeneous Information Networks publication-title: Proc. VLDB Endow. doi: 10.14778/3402707.3402736 contributor: fullname: Sun – ident: ref_15 doi: 10.1145/3097983.3098063 – ident: ref_4 – ident: ref_8 doi: 10.1145/1869790.1869861 – volume: 163 start-page: 267 year: 2019 ident: ref_14 article-title: An adaptive point-of-interest recommendation method for location-based social networks based on user activity and spatial features publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2018.08.031 contributor: fullname: Si – volume: 19 start-page: 525 year: 2015 ident: ref_6 article-title: Recommendations in location-based social networks: A survey publication-title: GeoInformatica doi: 10.1007/s10707-014-0220-8 contributor: fullname: Bao – ident: ref_30 doi: 10.1007/978-3-642-35289-8 – ident: ref_12 – ident: ref_21 doi: 10.1109/ICDM.2018.00035 – ident: ref_9 doi: 10.1145/2939672.2939767 – ident: ref_1 doi: 10.1145/2507157.2507182 – ident: ref_31 doi: 10.1109/IJCNN48605.2020.9207571 – ident: ref_13 doi: 10.1145/2661829.2661983 – volume: 37 start-page: 100255 year: 2020 ident: ref_7 article-title: Context Aware Recommendation Systems: A review of the state of the art techniques publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2020.100255 contributor: fullname: Kulkarni – volume: 29 start-page: 17 year: 2017 ident: ref_22 article-title: A survey of heterogeneous information network analysis publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2016.2598561 contributor: fullname: Shi |
SSID | ssj0000913840 |
Score | 2.2533953 |
Snippet | Point-Of-Interest (POI) recommendation not only assists users to find their preferred places, but also helps businesses to attract potential customers. Recent... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 258 |
SubjectTerms | Algorithms Bayesian analysis Collaboration Context context-specific Deep learning Factorization Factorization Machine Feedback heterogeneous information network Influence Location based services location-based social network Negative feedback Neural networks point-of-interest recommendation Preferences Principal components analysis Probability theory Random sampling Sampling Sampling methods Social networks Social organization Sparsity Statistical sampling User behavior Weather weighted random sampling |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB5BOcAeVjxFWUA-wNGitR0nOaHtqhVCKqp436LEdkqQmrC0SPDvd8Z1YRESt8RxFGlszzvfB3CEPrwtkghXIDGCq9QpnuSF5iJPnRUWTayjiu7wQp_dqPP76D4k3KahrXKhE72ito2hHPmJwM3SlQR3dfr0lxNrFFVXA4XGMqwIjBREC1Z6_YvR5XuWhVAvMYSZd7xLjO9PqsdxRShpaOuTT7bIQ_Z_0cjezAzW4WfwD9nv-YJuwJKrN2E1UJU_vG3Cj9tq-jKfMd2CV48uhcGr55EvK8NGTVXPeFNyn-vDLzCKMCcTF9iTWA_tlmV4MfLcXURex-98ghSHL_PaNhN2lVOjeT1meMsGnpIn_K_Jhr770m3DzaB__eeMBzIFbqSOZzxStrBoslD4OorLQlFBTGJMWigVd0xsVK7QmqP_aFyRJqm2Ki1LlQrhVGRLLXegVTe12wXWEUZ2tUhyIj6KTZ5KlUinrcU3RVm6NhwvxJo9zTEzMow1SPzZ_-JvQ49k_j6HkK79QPM8zsLBySTqBStT23UKXSVNeHaolZQWHaOiPLFt2F-sWBaO3zT72Cx73z_-BWuCmlR8K84-tGbPL-4AvYxZcRi20j_vydJw priority: 102 providerName: ProQuest |
Title | Context-Specific Point-of-Interest Recommendation Based on Popularity-Weighted Random Sampling and Factorization Machine |
URI | https://www.proquest.com/docview/2531131210 https://doaj.org/article/3b00d39d1e4846679430734620c45a8d |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED7xGIAB8RTlUXmA0aK1HcceKaIgpFYVz25RYjsQpKaIFgn-PWcnRUUMLGyJ5cjRnXOfz758H8AxruFtpiL0gDKMCu0EVWkmKUu1s8wixDp_otvry6t7cT2MhnNSX74mrKIHrgx3ynFeWK5t2wmESun5zHBWCslaRkSpsiH6tvRcMhVisG5zTF2qSneOef1p8fJUeHY0xHj1A4MCVf-vSBzgpbsB6_W6kJxV77MJC67cgpVaovz5cwvWHorJe9Vjsg0fgVUKk9agH58XhgzGRTml45yGPT4cgfjMcjRytWoS6SBeWYIXg6DZ5UXr6GPYGMXmm7S04xG5TX2BeflE8JZ0gxRP_Z8m6YWqS7cD992Lu_MrWosoUMNlPKWRsJlFqEKjyyjOM-EPwjjmopkQccvERqQCURzXjcZlWmlphc5zoRlzIrK55LuwVI5LtwekxQxvS6ZSL3gUm1RzobiT1uKTLM9dA05mZk1eK66MBHMMb_5k3vwN6Hibf_fxDNehAf2e1H5P_vJ7Aw5nHkvqz26SMIwobe450fb_Y4wDWGW-hCUU6hzC0vTt3R3hGmSaNWFRdS-bsNy56A9ummHyfQHZd9p6 |
link.rule.ids | 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,43614,43819,74371,74638 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fTxQxEJ4gPCAPBlDjIWgf9LHhrp3t7j4ZMBwncoQoKG-b3bZ7LsntAnck8t870-uhxsS3_ZlNpt35ZqbT7wN4RzG8q7KERiCzSmLuUWZlZaQqc--UI4j1vKI7PjOjSzy5Sq5iwW0W2yqXPjE4atdZrpHvK5osA810Vx9ubiWrRvHqapTQeAJrqAloeKf48PixxsKcl5TALPrdNWX3-831pGGONEL67C8kCoT9__jjADLDTXgWo0NxsBjOLVjx7TasR6HyHw_bsPGtmd0vnpg9h5-BW4pS16AiXzdWnHdNO5ddLUOlj74gOL-cTn3UThKHhFpO0MF5UO5i6Tr5PZRH6fKXsnXdVHwtuc28nQg6FcMgyBN3a4px6L30L-ByeHTxcSSjlIK02qRzmaCrHAEWmd4kaV0hL4dpykgrxLRvU4slEpZT9Gh9lWe5cZjXNeZKeUxcbfRLWG271r8C0VdWD4zKSpY9Sm2Za8y0N87Rm6qufQ_eL81a3CwYMwrKNNj8xZ_m78Eh2_zxGea5Dhe6u0kRf5tCk1dwOncDjxQoGWazI5-ERvUtJmXmerC7HLEi_nyz4vdU2fn_7bewProYnxann84-v4anittVQlPOLqzO7-79HsUb8-pNmFS_AGm70_s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BkXgcEC1UbCngQzlau2s7jnNCFAgtfWgFFHqLEj-WIG3SdrdS-ffMeL0tCKm3xHEUacael7_MB7CDMbxrTIYaMFZwVXjFTd1oLurCO-HQxXo60T061nsn6vNpdprwT_MEq1zZxGioXW-pRj4UuFjGktpdDUOCRUw-lG_PzjkxSNFJa6LTuAv30CvmtElN-em63kL9LzGZWWLfJWb6w_bXtKV-aej1zT9eKTbv_882R4dTPoHHKVJk75aqXYc7vtuAB4m0_OfvDXj0vZ1fLmfMn8JV7DOFaWxklA-tZZO-7Ra8DzxW_fALjHLN2cwnHiW2ix7MMbyYRBYvorHjP2KpFIe_1J3rZ-xrTZDzbsrwlpWRnCf9ucmOIg7TP4OT8uO393s80SpwK3W-4JlyjUPnhWrQWR4aRUdjErPTRql8ZHOraoV-HSNJ65vCFNqpIgRVCOFV5oKWm7DW9Z1_DmwkrBxrYWqiQMptXUhlpNfO4ZsiBD-ANyuxVmfL7hkVZh0k_upv8Q9gl2R-PYd6XseB_mJapS1USbQQThZu7BUGTZo626F9UlqMrMpq4wawvdJYlTbivLpZNlu3P34N93E9VYf7xwcv4KEg5ErE52zD2uLi0r_E0GPRvIpr6g8vANgw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Context-Specific+Point-of-Interest+Recommendation+Based+on+Popularity-Weighted+Random+Sampling+and+Factorization+Machine&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Yu%2C+Dongjin&rft.au=Shen%2C+Yi&rft.au=Xu%2C+Kaihui&rft.au=Xu%2C+Yihang&rft.date=2021-04-01&rft.issn=2220-9964&rft.eissn=2220-9964&rft.volume=10&rft.issue=4&rft.spage=258&rft_id=info:doi/10.3390%2Fijgi10040258&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijgi10040258 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon |