Optimal design of organic Rankine cycle recovering LNG cold energy with finite heat exchanger size

An optimization study, under a size constraint, was carried out for an organic Rankine cycle (ORC) combined with an LNG regasification plant for recovering LNG cold energy. Typically, many researchers approached to an optimization problem by assuming pinch point or minimum approach temperature diffe...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 217; p. 119268
Main Authors Choi, Hong Wone, Na, Sun-Ik, Hong, Sung Bin, Chung, Yoong, Kim, Dong Kyu, Kim, Min Soo
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.02.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An optimization study, under a size constraint, was carried out for an organic Rankine cycle (ORC) combined with an LNG regasification plant for recovering LNG cold energy. Typically, many researchers approached to an optimization problem by assuming pinch point or minimum approach temperature difference. As a different point of view, the size constraint was considered in that resources such as thermal energy and equipment size are limited in a real problem. Given this situation, adequate allocation of finite resources is an important issue for the system to maximize performance. Thus, the aim of this study is to understand how to properly utilize the resources when LNG cold energy and total conductance of heat exchangers are limited. Accordingly, the influences of heat duty allocation, UA allocation, and superheating a turbine’s intake on net power were mainly taken into account. Results indicate that, when total conductance for system design increases, the ORC should take more heat duty and total conductance should be weighted to an evaporator. In most cases, the size of heat exchangers should be weighted in the order of evaporator, condenser, and trim heater, provided that total conductance for system design is sufficiently available. •The ORC combined with LNG regasification plant was optimized under size constraint.•We examined trade-off among performance related to heat duty and UA allocations.•A trend of optimal allocations was observed subject to a change of size constraint.•Seven types of refrigerants were taken into account under size constraint.
AbstractList An optimization study, under a size constraint, was carried out for an organic Rankine cycle (ORC) combined with an LNG regasification plant for recovering LNG cold energy. Typically, many researchers approached to an optimization problem by assuming pinch point or minimum approach temperature difference. As a different point of view, the size constraint was considered in that resources such as thermal energy and equipment size are limited in a real problem. Given this situation, adequate allocation of finite resources is an important issue for the system to maximize performance. Thus, the aim of this study is to understand how to properly utilize the resources when LNG cold energy and total conductance of heat exchangers are limited. Accordingly, the influences of heat duty allocation, UA allocation, and superheating a turbine’s intake on net power were mainly taken into account. Results indicate that, when total conductance for system design increases, the ORC should take more heat duty and total conductance should be weighted to an evaporator. In most cases, the size of heat exchangers should be weighted in the order of evaporator, condenser, and trim heater, provided that total conductance for system design is sufficiently available. •The ORC combined with LNG regasification plant was optimized under size constraint.•We examined trade-off among performance related to heat duty and UA allocations.•A trend of optimal allocations was observed subject to a change of size constraint.•Seven types of refrigerants were taken into account under size constraint.
An optimization study, under a size constraint, was carried out for an organic Rankine cycle (ORC) combined with an LNG regasification plant for recovering LNG cold energy. Typically, many researchers approached to an optimization problem by assuming pinch point or minimum approach temperature difference. As a different point of view, the size constraint was considered in that resources such as thermal energy and equipment size are limited in a real problem. Given this situation, adequate allocation of finite resources is an important issue for the system to maximize performance. Thus, the aim of this study is to understand how to properly utilize the resources when LNG cold energy and total conductance of heat exchangers are limited. Accordingly, the influences of heat duty allocation, UA allocation, and superheating a turbine’s intake on net power were mainly taken into account. Results indicate that, when total conductance for system design increases, the ORC should take more heat duty and total conductance should be weighted to an evaporator. In most cases, the size of heat exchangers should be weighted in the order of evaporator, condenser, and trim heater, provided that total conductance for system design is sufficiently available.
ArticleNumber 119268
Author Choi, Hong Wone
Chung, Yoong
Kim, Min Soo
Na, Sun-Ik
Hong, Sung Bin
Kim, Dong Kyu
Author_xml – sequence: 1
  givenname: Hong Wone
  orcidid: 0000-0003-2814-2214
  surname: Choi
  fullname: Choi, Hong Wone
  organization: Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
– sequence: 2
  givenname: Sun-Ik
  surname: Na
  fullname: Na, Sun-Ik
  organization: Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
– sequence: 3
  givenname: Sung Bin
  surname: Hong
  fullname: Hong, Sung Bin
  organization: Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
– sequence: 4
  givenname: Yoong
  orcidid: 0000-0003-0500-8207
  surname: Chung
  fullname: Chung, Yoong
  organization: Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
– sequence: 5
  givenname: Dong Kyu
  surname: Kim
  fullname: Kim, Dong Kyu
  organization: School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
– sequence: 6
  givenname: Min Soo
  surname: Kim
  fullname: Kim, Min Soo
  email: minskim@snu.ac.kr
  organization: Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
BookMark eNqFkU1v1DAQhi1UJLaFf8DBEhcuWez4Iw4HJFSVFmlFJQRnyzsZZ72k9mJ7C8uvb6pw6gFOI43eZ2b0zDk5iykiIa85W3PG9bv9GiPm8bRuWTu3eN9q84ysuOlEozujzsiKCc0aJWX7gpyXsmeMKdP3K7K9PdRw5yY6YAljpMnTlEcXA9CvLv4IESmcYEKaEdI95hBHuvlyTSFNA1220l-h7qgPMVSkO3SV4m_YuThipiX8wZfkuXdTwVd_6wX5_unq2-VNs7m9_nz5cdOA0F1tpO-F5sCZYdtB-q020IIHA1K5QWnRd8A79HpA3ikvpFasQ2WUUtr1sjXigrxd5h5y-nnEUu1dKIDT5CKmY7Gt6qQwjEk-R988ie7TMcf5OttK0wvWay7m1PslBTmVktFbCNXVkGLNLkyWM_uo3-7tIsI-6reL_hmWT-BDnkXn0_-wDwuGs6n7gNkWCBgBhzB_oNohhX8PeAA57KKJ
CitedBy_id crossref_primary_10_1016_j_energy_2024_133629
crossref_primary_10_3390_pr11020517
crossref_primary_10_1016_j_energy_2023_126648
crossref_primary_10_1016_j_ijrefrig_2021_11_002
crossref_primary_10_1016_j_applthermaleng_2024_123024
crossref_primary_10_1016_j_apenergy_2024_123735
crossref_primary_10_1016_j_jclepro_2021_129493
crossref_primary_10_1016_j_cryogenics_2022_103599
crossref_primary_10_1016_j_enconman_2025_119554
crossref_primary_10_1063_5_0202719
crossref_primary_10_1016_j_enconman_2023_117157
crossref_primary_10_1016_j_jclepro_2022_131517
crossref_primary_10_1016_j_ijhydene_2023_04_239
crossref_primary_10_1016_j_rser_2024_114833
crossref_primary_10_1016_j_applthermaleng_2023_120903
crossref_primary_10_1016_j_energy_2022_123620
crossref_primary_10_1002_ese3_1457
crossref_primary_10_1016_j_enconman_2021_113972
crossref_primary_10_18186_thermal_1429974
crossref_primary_10_1016_j_procs_2023_03_129
crossref_primary_10_3390_jmse12101850
crossref_primary_10_1016_j_enconman_2021_114360
crossref_primary_10_1016_j_jclepro_2023_138405
crossref_primary_10_1016_j_enconman_2021_114141
crossref_primary_10_1080_01430750_2023_2231461
crossref_primary_10_1016_j_renene_2022_10_114
crossref_primary_10_1016_j_seppur_2022_120755
crossref_primary_10_1007_s11708_023_0863_y
crossref_primary_10_1016_j_csite_2025_105952
Cites_doi 10.1016/0360-5442(92)90055-5
10.1016/j.energy.2017.03.127
10.1016/j.energy.2005.05.006
10.1016/j.apenergy.2011.06.035
10.1016/j.energy.2015.05.047
10.1115/1.3446314
10.1016/j.energy.2020.117479
10.1016/j.energy.2012.11.034
10.1016/j.energy.2010.08.013
10.1016/j.applthermaleng.2008.06.028
10.1016/j.energy.2009.06.019
10.1016/j.applthermaleng.2019.114326
10.1016/j.energy.2018.12.170
10.1016/j.apenergy.2019.03.087
10.1016/j.energy.2018.09.042
10.1016/j.energy.2020.117353
10.1016/j.enconman.2020.112938
10.1016/j.energy.2016.10.118
10.1016/j.geothermics.2016.09.004
10.1016/j.enconman.2019.111876
10.1016/j.applthermaleng.2013.05.048
10.1016/j.rser.2014.07.029
10.1016/j.applthermaleng.2017.04.082
10.1016/j.apenergy.2009.06.026
10.1016/j.energy.2018.01.085
10.1016/j.egypro.2017.09.227
10.1016/j.enconman.2008.10.015
10.1016/j.renene.2012.08.055
10.1016/j.rser.2011.07.024
10.1504/IJEX.2010.035516
10.1016/j.energy.2009.02.015
10.1016/j.enconman.2020.113079
10.1016/j.energy.2013.12.036
10.1016/j.applthermaleng.2015.07.039
10.1016/j.energy.2015.09.020
10.1016/j.applthermaleng.2016.02.102
10.1016/j.rser.2013.03.040
10.1016/j.jngse.2011.02.002
10.1016/j.renene.2019.10.063
10.1016/j.energy.2018.11.021
10.1016/j.energy.2013.08.047
10.1016/j.energy.2011.12.022
10.1016/j.energy.2012.02.035
10.3390/en10081185
10.1016/j.energy.2017.03.064
10.1016/j.energy.2013.11.056
10.1016/j.energy.2017.12.161
10.1016/j.energy.2011.02.024
10.1016/j.enconman.2019.112002
10.1016/S0360-5442(96)00165-X
10.1002/er.804
10.1016/j.enconman.2019.01.040
10.1063/1.362674
10.1016/j.apenergy.2016.12.026
10.1016/j.apenergy.2020.115049
ContentType Journal Article
Copyright 2020
Copyright Elsevier BV Feb 15, 2021
Copyright_xml – notice: 2020
– notice: Copyright Elsevier BV Feb 15, 2021
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2020.119268
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
ExternalDocumentID 10_1016_j_energy_2020_119268
S0360544220323756
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SEW
SSH
WUQ
7SP
7ST
7TB
8FD
C1K
EFKBS
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c367t-4f9361c1080bd4fb68c2cfc8c45ad56397c17ef6de175f346507e585556a94283
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Thu Jul 10 22:31:01 EDT 2025
Wed Aug 13 05:53:41 EDT 2025
Tue Jul 01 00:43:34 EDT 2025
Thu Apr 24 22:51:53 EDT 2025
Fri Feb 23 02:48:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords LNG cold Energy
Size constraint
Working fluid
Optimal allocation
Organic Rankine cycle
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-4f9361c1080bd4fb68c2cfc8c45ad56397c17ef6de175f346507e585556a94283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0500-8207
0000-0003-2814-2214
PQID 2489309613
PQPubID 2045484
ParticipantIDs proquest_miscellaneous_2574380041
proquest_journals_2489309613
crossref_citationtrail_10_1016_j_energy_2020_119268
crossref_primary_10_1016_j_energy_2020_119268
elsevier_sciencedirect_doi_10_1016_j_energy_2020_119268
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-15
PublicationDateYYYYMMDD 2021-02-15
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-15
  day: 15
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Jenkins (bib57) 2020
Turton, Shaeiwitz, Bhattacharyya, Whiting (bib58) 2018
Ghorbani, Mahyari, Mehrpooya, Hamedi (bib20) 2020; 148
Lee (bib26) 2017; 118
Kim, Lee, Kim, Han (bib18) 2015; 88
Bejan (bib41) 1996; 79
Kim, Cho, Kim, Kim (bib10) 2018; 147
Quoilin (bib27) 2015
Mehrpooya, Ashouri, Mohammadi (bib29) 2017; 126
Bejan (bib42) 2002; 26
Messineo, Panno (bib6) 2011; 3
Choi, Lee, Seo, Chang (bib14) 2013; 61
Bao, Zhao (bib63) 2013; 24
Tchanche, Lambrinos, Frangoudakis, Papadakis (bib52) 2011; 15
Dai, Zhu, Wang, Sun, Liu (bib17) 2019; 197
Schuster, Karellas, Aumann (bib47) 2010; 35
Kim, Lee, Kim, Kim, Kim (bib9) 2017; 189
Gregory, Guy, Lamb, Marsland, Johnston, Summers (bib60) 1992
Sun, Lai, Wang, Wang (bib28) 2018; 147
Ferreira, Catarino, Vaz (bib39) 2017; 121
He, Chang, Zhang, Shu, Duan (bib19) 2015; 90
Liu, Guo (bib35) 2011; 36
Zeleny, Vodicka, Novotny, Mascuch (bib54) 2017; 129
Angelino (bib12) 1978; 100
Gómez, Garcia, Gómez, Carril (bib7) 2014; 38
Na, Kim, Baik, Kim (bib44) 2019; 199
Yao, Zhang, Yu (bib21) 2018; 164
Li, Liu, Zhang, Yang (bib25) 2020; 199
Quoilin, Lemort, Lebrun (bib55) 2010; 87
Astolfi, Romano, Bombarda, Macchi (bib48) 2014; 66
Wang, Shi, Che (bib34) 2013; 59
Lee, Kim (bib49) 1992; 17
Loh, Lyons, White (bib59) 2002
Roy, Mishra, Misra (bib65) 2010; 35
Lee, You (bib16) 2019; 242
Kim, Kim, Kim (bib11) 2020; 198
Lemmon, Bell, Huber, McLinden (bib51) 2018
Bao, Yuan, Zhang, Zhang, Zhang, He (bib40) 2019; 184
Mosaffa, Mokarram, Farshi (bib33) 2017; 65
Lu, K S (bib36) 2009; 29
Feng, Chen, Chen, Tang (bib61) 2020; 220
Dudley (bib2) 2019
Sung, Kim (bib38) 2016; 100
Yu, Kim, Gundersen (bib32) 2019; 167
He, Liu, Gao, Xie, Li, Wu, Xu (bib46) 2012; 38
Mehrpooya, Sharifzadeh (bib22) 2017; 127
Kang (bib53) 2012; 41
Gómez, Garcia, Gómez, Carril (bib37) 2014; 66
He, Chong, Zheng, Ju, Linga (bib4) 2019; 170
Kang (bib1) 2019
Szargut, Szczygiel (bib50) 2009; 34
Bejan (bib43) 1997
Jansen, Woudstra (bib5) 2010; 7
Zhang, Liang, Yang, Zhang, Yang (bib24) 2020; 216
Invernizzi, Iora (bib62) 2016; 105
Kim, Choi, Kim (bib8) 2019; 163
Wang, Yan, Wang, Dai (bib30) 2013; 50
Shi, Che (bib15) 2009; 50
Kumar, Kwon, Choi, Lim, Cho, Tak, Moon (bib3) 2011; 88
Baik, Kim, Chang, Lee, Yoon (bib45) 2013; 54
Kim, Lee, Kim, Han (bib31) 2015; 88
Qi, Park, Kim, Lee, Moon (bib23) 2020; 269
Gao, Liu (bib56) 2017; 10
Hung, Shai, Wang (bib64) 1997; 22
Zhang, Lior (bib13) 2006; 31
Kumar (10.1016/j.energy.2020.119268_bib3) 2011; 88
Zhang (10.1016/j.energy.2020.119268_bib13) 2006; 31
Quoilin (10.1016/j.energy.2020.119268_bib55) 2010; 87
Lu (10.1016/j.energy.2020.119268_bib36) 2009; 29
Ferreira (10.1016/j.energy.2020.119268_bib39) 2017; 121
Turton (10.1016/j.energy.2020.119268_bib58) 2018
Mehrpooya (10.1016/j.energy.2020.119268_bib29) 2017; 126
Invernizzi (10.1016/j.energy.2020.119268_bib62) 2016; 105
Messineo (10.1016/j.energy.2020.119268_bib6) 2011; 3
Schuster (10.1016/j.energy.2020.119268_bib47) 2010; 35
Baik (10.1016/j.energy.2020.119268_bib45) 2013; 54
Lemmon (10.1016/j.energy.2020.119268_bib51) 2018
Kim (10.1016/j.energy.2020.119268_bib10) 2018; 147
Mosaffa (10.1016/j.energy.2020.119268_bib33) 2017; 65
Jenkins (10.1016/j.energy.2020.119268_bib57) 2020
He (10.1016/j.energy.2020.119268_bib19) 2015; 90
Quoilin (10.1016/j.energy.2020.119268_bib27) 2015
Dai (10.1016/j.energy.2020.119268_bib17) 2019; 197
Li (10.1016/j.energy.2020.119268_bib25) 2020; 199
Wang (10.1016/j.energy.2020.119268_bib30) 2013; 50
Sun (10.1016/j.energy.2020.119268_bib28) 2018; 147
He (10.1016/j.energy.2020.119268_bib4) 2019; 170
Kim (10.1016/j.energy.2020.119268_bib31) 2015; 88
Lee (10.1016/j.energy.2020.119268_bib49) 1992; 17
Wang (10.1016/j.energy.2020.119268_bib34) 2013; 59
Bao (10.1016/j.energy.2020.119268_bib63) 2013; 24
Gómez (10.1016/j.energy.2020.119268_bib37) 2014; 66
Kim (10.1016/j.energy.2020.119268_bib8) 2019; 163
Bejan (10.1016/j.energy.2020.119268_bib42) 2002; 26
Roy (10.1016/j.energy.2020.119268_bib65) 2010; 35
Na (10.1016/j.energy.2020.119268_bib44) 2019; 199
Ghorbani (10.1016/j.energy.2020.119268_bib20) 2020; 148
Shi (10.1016/j.energy.2020.119268_bib15) 2009; 50
Hung (10.1016/j.energy.2020.119268_bib64) 1997; 22
Kim (10.1016/j.energy.2020.119268_bib18) 2015; 88
Kang (10.1016/j.energy.2020.119268_bib53) 2012; 41
Qi (10.1016/j.energy.2020.119268_bib23) 2020; 269
Sung (10.1016/j.energy.2020.119268_bib38) 2016; 100
Zeleny (10.1016/j.energy.2020.119268_bib54) 2017; 129
Feng (10.1016/j.energy.2020.119268_bib61) 2020; 220
Astolfi (10.1016/j.energy.2020.119268_bib48) 2014; 66
Mehrpooya (10.1016/j.energy.2020.119268_bib22) 2017; 127
Yao (10.1016/j.energy.2020.119268_bib21) 2018; 164
Szargut (10.1016/j.energy.2020.119268_bib50) 2009; 34
Lee (10.1016/j.energy.2020.119268_bib26) 2017; 118
Bao (10.1016/j.energy.2020.119268_bib40) 2019; 184
Dudley (10.1016/j.energy.2020.119268_bib2) 2019
Lee (10.1016/j.energy.2020.119268_bib16) 2019; 242
Bejan (10.1016/j.energy.2020.119268_bib43) 1997
Angelino (10.1016/j.energy.2020.119268_bib12) 1978; 100
Tchanche (10.1016/j.energy.2020.119268_bib52) 2011; 15
Gregory (10.1016/j.energy.2020.119268_bib60) 1992
Gao (10.1016/j.energy.2020.119268_bib56) 2017; 10
Jansen (10.1016/j.energy.2020.119268_bib5) 2010; 7
Kim (10.1016/j.energy.2020.119268_bib11) 2020; 198
Yu (10.1016/j.energy.2020.119268_bib32) 2019; 167
Liu (10.1016/j.energy.2020.119268_bib35) 2011; 36
Bejan (10.1016/j.energy.2020.119268_bib41) 1996; 79
Zhang (10.1016/j.energy.2020.119268_bib24) 2020; 216
Kim (10.1016/j.energy.2020.119268_bib9) 2017; 189
Kang (10.1016/j.energy.2020.119268_bib1) 2019
Loh (10.1016/j.energy.2020.119268_bib59) 2002
Gómez (10.1016/j.energy.2020.119268_bib7) 2014; 38
He (10.1016/j.energy.2020.119268_bib46) 2012; 38
Choi (10.1016/j.energy.2020.119268_bib14) 2013; 61
References_xml – volume: 59
  start-page: 490
  year: 2013
  end-page: 497
  ident: bib34
  article-title: Thermodynamic optimization of the operating parameters for a combined power cycle utilizing low-temperature waste heat and LNG cold energy
  publication-title: Appl Therm Eng
– year: 2018
  ident: bib51
  article-title: NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP version 10.0
– volume: 66
  start-page: 423
  year: 2014
  end-page: 434
  ident: bib48
  article-title: Binary ORC (organic Rankine cycles) power plants for the exploitation of medium–low temperature geothermal sources – Part A: thermodynamic optimization
  publication-title: Energy
– volume: 22
  start-page: 661
  year: 1997
  end-page: 667
  ident: bib64
  article-title: A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat
  publication-title: Energy
– volume: 50
  start-page: 513
  year: 2013
  end-page: 522
  ident: bib30
  article-title: Thermodynamic analysis and optimization of an ammonia-water power system with LNG (liquefied natural gas) as its heat sink
  publication-title: Energy
– volume: 100
  start-page: 1031
  year: 2016
  end-page: 1041
  ident: bib38
  article-title: Thermodynamic analysis of a novel dual-loop organic Rankine cycle for engine waste heat and LNG cold
  publication-title: Appl Therm Eng
– volume: 34
  start-page: 827
  year: 2009
  end-page: 837
  ident: bib50
  article-title: Utilization of the cryogenic exergy of liquid natural gas (LNG) for the production of electricity
  publication-title: Energy
– volume: 54
  start-page: 78
  year: 2013
  end-page: 84
  ident: bib45
  article-title: A comparative study of power optimization in low-temperature geothermal heat source driven R125 transcritical cycle and HFC organic Rankine cycles
  publication-title: Renew Energy
– volume: 50
  start-page: 567
  year: 2009
  end-page: 575
  ident: bib15
  article-title: A combined power cycle utilizing low-temperature waste heat and LNG cold energy
  publication-title: Energy Convers Manag
– volume: 24
  start-page: 325
  year: 2013
  end-page: 342
  ident: bib63
  article-title: A review of working fluid and expander selections for organic Rankine cycle
  publication-title: Renew Sustain Energy Rev
– year: 2020
  ident: bib57
  article-title: 2019 chemical engineering plant cost index annual average
– volume: 88
  start-page: 4264
  year: 2011
  end-page: 4273
  ident: bib3
  article-title: An eco-friendly cryogenic fuel for sustainable development
  publication-title: Appl Energy
– volume: 127
  start-page: 516
  year: 2017
  end-page: 533
  ident: bib22
  article-title: Conceptual and basic design of a novel integrated cogeneration power plant energy system
  publication-title: Energy
– volume: 184
  start-page: 107
  year: 2019
  end-page: 126
  ident: bib40
  article-title: Comparative study of liquefied natural gas (LNG) cold energy power generation systems in series and parallel
  publication-title: Energy Convers Manag
– volume: 199
  start-page: 112002
  year: 2019
  ident: bib44
  article-title: Optimal allocation of heat exchangers in a Supercritical carbon dioxide power cycle for waste heat recovery
  publication-title: Energy Convers Manag
– volume: 167
  start-page: 730
  year: 2019
  end-page: 739
  ident: bib32
  article-title: A study of working fluids for Organic Rankine Cycles (ORCs) operating across and below ambient temperature to utilize Liquefied Natural Gas (LNG) cold energy
  publication-title: Energy
– volume: 121
  start-page: 887
  year: 2017
  end-page: 896
  ident: bib39
  article-title: Thermodynamic analysis for working fluids comparison in Rankine-type cycles exploiting the cryogenic exergy in Liquefied Natural Gas (LNG) regasification
  publication-title: Appl Therm Eng
– volume: 163
  start-page: 114326
  year: 2019
  ident: bib8
  article-title: Design of a rotary expander as an expansion device integrated into organic Rankine cycle (ORC) to recover low-grade waste heat
  publication-title: Appl Therm Eng
– volume: 198
  start-page: 117353
  year: 2020
  ident: bib11
  article-title: Parametric study and optimization of closed Brayton power cycle considering the charge amount of working fluid
  publication-title: Energy
– volume: 17
  start-page: 275
  year: 1992
  end-page: 281
  ident: bib49
  article-title: The maximum power from a finite reservoir for a Lorentz cycle
  publication-title: Energy
– volume: 100
  start-page: 169
  year: 1978
  end-page: 177
  ident: bib12
  article-title: The use of liquid natural gas as heat sink for power cycles
  publication-title: J. Eng. Power
– volume: 147
  start-page: 1216
  year: 2018
  end-page: 1226
  ident: bib10
  article-title: Characteristics and optimization of supercritical CO2 recompression power cycle and the influence of pinch point temperature difference of recuperators
  publication-title: Energy
– volume: 65
  start-page: 113
  year: 2017
  end-page: 125
  ident: bib33
  article-title: Thermo-economic analysis of combined different ORCs geothermal power plants and LNG cold energy
  publication-title: Geothermics
– volume: 197
  start-page: 15
  year: 2019
  ident: bib17
  article-title: Evaluation of organic Rankine cycle by using hydrocarbons as working fluids: advanced exergy and advanced exergoeconomic analyses
  publication-title: Energy Convers Manag
– volume: 41
  start-page: 514
  year: 2012
  end-page: 524
  ident: bib53
  article-title: Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid
  publication-title: Energy
– volume: 88
  start-page: 304
  year: 2015
  end-page: 313
  ident: bib18
  article-title: Design and optimization of cascade organic Rankine cycle for recovering cryogenic energy from liquefied natural gas using binary working fluid
  publication-title: Energy
– volume: 170
  start-page: 557
  year: 2019
  end-page: 568
  ident: bib4
  article-title: LNG cold energy utilization: prospects and challenges
  publication-title: Energy
– volume: 126
  start-page: 899
  year: 2017
  end-page: 914
  ident: bib29
  article-title: Thermoeconomic analysis and optimization of a regenerative two-stage organic Rankine cycle coupled with liquefied natural gas and solar energy
  publication-title: Energy
– year: 2019
  ident: bib1
  article-title: 2019 world LNG report
– volume: 90
  start-page: 579
  year: 2015
  end-page: 589
  ident: bib19
  article-title: Working fluid selection for an Organic Rankine Cycle utilizing high and low temperature energy of an LNG engine
  publication-title: Appl Therm Eng
– volume: 118
  start-page: 776
  year: 2017
  end-page: 782
  ident: bib26
  article-title: Multi-parameter optimization of cold energy recovery in cascade Rankine cycle for LNG regasification using genetic algorithm
  publication-title: Energy
– year: 2015
  ident: bib27
  article-title: Keynote Lecture: past and current research trends in ORC power systems
– volume: 216
  start-page: 112938
  year: 2020
  ident: bib24
  article-title: Advanced exergy analysis of an integrated energy storage system based on transcritical CO2 energy storage and Organic Rankine Cycle
  publication-title: Energy Convers Manag
– volume: 147
  start-page: 688
  year: 2018
  end-page: 700
  ident: bib28
  article-title: Thermodynamic optimization and comparative study of different ORC configurations utilizing the exergies of LNG and low grade heat of different temperatures
  publication-title: Energy
– volume: 26
  start-page: 545
  year: 2002
  end-page: 565
  ident: bib42
  article-title: Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture
  publication-title: Int J Energy Res
– volume: 3
  start-page: 356
  year: 2011
  end-page: 363
  ident: bib6
  article-title: LNG cold energy use in agro-food industry: a case study in Sicily
  publication-title: J Nat Gas Sci Eng
– volume: 38
  start-page: 781
  year: 2014
  end-page: 795
  ident: bib7
  article-title: Review of thermal cycles exploiting the exergy of liquefied natural gas in the regasification process
  publication-title: Renew Sustain Energy Rev
– volume: 7
  start-page: 693
  year: 2010
  end-page: 713
  ident: bib5
  article-title: Understanding the exergy of cold: theory and practical examples
  publication-title: Int J Exergy
– volume: 36
  start-page: 2828
  year: 2011
  end-page: 2833
  ident: bib35
  article-title: A novel cryogenic power cycle for LNG cold energy recovery
  publication-title: Energy
– volume: 105
  start-page: 2
  year: 2016
  end-page: 15
  ident: bib62
  article-title: The exploitation of the physical exergy of liquid natural gas by closed power thermodynamic cycles. An overview
  publication-title: Energy
– volume: 88
  start-page: 304
  year: 2015
  end-page: 313
  ident: bib31
  article-title: Design and optimization of cascade organic Rankine cycle for recovering cryogenic energy from liquefied natural gas using binary working fluid
  publication-title: Energy
– volume: 269
  start-page: 115049
  year: 2020
  ident: bib23
  article-title: Advanced integration of LNG regasification power plant with liquid air energy storage: enhancements in flexibility, safety, and power generation
  publication-title: Appl Energy
– volume: 164
  start-page: 602
  year: 2018
  end-page: 614
  ident: bib21
  article-title: Thermo-economic analysis of a novel power generation system integrating a natural gas expansion plant with a geothermal ORC in Tianjin, China
  publication-title: Energy
– volume: 129
  start-page: 1002
  year: 2017
  end-page: 1009
  ident: bib54
  article-title: Gear pump for low power output ORC – an efficiency analysis
  publication-title: Energy Procedia
– year: 1992
  ident: bib60
  article-title: ESDU 92013 - selection and costnig of heat exchangers
– volume: 242
  start-page: 168
  year: 2019
  end-page: 180
  ident: bib16
  article-title: Systems design and analysis of liquid air energy storage from liquefied natural gas cold energy
  publication-title: Appl Energy
– volume: 220
  start-page: 113079
  year: 2020
  ident: bib61
  article-title: Power and efficiency optimizations of an irreversible regenerative organic Rankine cycle
  publication-title: Energy Convers Manag
– volume: 189
  start-page: 55
  year: 2017
  end-page: 65
  ident: bib9
  article-title: Parametric study and performance evaluation of an organic Rankine cycle (ORC) system using low-grade heat at temperatures below 80°C
  publication-title: Appl Energy
– year: 2002
  ident: bib59
  article-title: Process equipment cost estimation final report
– year: 1997
  ident: bib43
  article-title: Advanced engineering thermodynamics
– volume: 31
  start-page: 1666
  year: 2006
  end-page: 1679
  ident: bib13
  article-title: A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization
  publication-title: Energy
– volume: 10
  start-page: 1185
  year: 2017
  ident: bib56
  article-title: Off-design performances of subcritical and supercritical organic rankine cycles in geothermal power systems under an optimal control strategy
  publication-title: Energies
– volume: 61
  start-page: 179
  year: 2013
  end-page: 195
  ident: bib14
  article-title: Analysis and optimization of cascade Rankine cycle for liquefied natural gas cold energy recovery
  publication-title: Energy
– volume: 87
  start-page: 1260
  year: 2010
  end-page: 1268
  ident: bib55
  article-title: Experimental study and modeling of an Organic Rankine Cycle using scroll expander
  publication-title: Appl Energy
– volume: 35
  start-page: 5049
  year: 2010
  end-page: 5062
  ident: bib65
  article-title: Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle
  publication-title: Energy
– volume: 29
  start-page: 1478
  year: 2009
  end-page: 1484
  ident: bib36
  article-title: Analysis and optimization of a cascading power cycle with liquefied natural gas (LNG) cold energy recovery
  publication-title: Appl Therm Eng
– volume: 66
  start-page: 927
  year: 2014
  end-page: 937
  ident: bib37
  article-title: Thermodynamic analysis of a Brayton cycle and Rankine cycle arranged in series exploiting the cold exergy of LNG (liquefied natural gas)
  publication-title: Energy
– volume: 79
  start-page: 1191
  year: 1996
  end-page: 1218
  ident: bib41
  article-title: Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes
  publication-title: J Appl Phys
– volume: 38
  start-page: 136
  year: 2012
  end-page: 143
  ident: bib46
  article-title: The optimal evaporation temperature and working fluids for subcritical organic Rankine cycle
  publication-title: Energy
– year: 2018
  ident: bib58
  article-title: Analysis, synthesis, and design of chemical processes
– volume: 148
  start-page: 1227
  year: 2020
  end-page: 1243
  ident: bib20
  article-title: Introducing a hybrid renewable energy system for production of power and fresh water using parabolic trough solar collectors and LNG cold energy recovery
  publication-title: Renew Energy
– volume: 15
  start-page: 3963
  year: 2011
  end-page: 3979
  ident: bib52
  article-title: Low-grade heat conversion into power using organic Rankine cycles – a review of various applications
  publication-title: Renew Sustain Energy Rev
– volume: 199
  start-page: 117479
  year: 2020
  ident: bib25
  article-title: Thermodynamic analysis of a novel combined cooling and power system utilizing liquefied natural gas (LNG) cryogenic energy and low-temperature waste heat
  publication-title: Energy
– year: 2019
  ident: bib2
  article-title: BP energy outlook 2019 edition
– volume: 35
  start-page: 1033
  year: 2010
  end-page: 1039
  ident: bib47
  article-title: Efficiency optimization potential in supercritical organic rankine cycles
  publication-title: Energy
– volume: 17
  start-page: 275
  issue: 3
  year: 1992
  ident: 10.1016/j.energy.2020.119268_bib49
  article-title: The maximum power from a finite reservoir for a Lorentz cycle
  publication-title: Energy
  doi: 10.1016/0360-5442(92)90055-5
– volume: 127
  start-page: 516
  year: 2017
  ident: 10.1016/j.energy.2020.119268_bib22
  article-title: Conceptual and basic design of a novel integrated cogeneration power plant energy system
  publication-title: Energy
  doi: 10.1016/j.energy.2017.03.127
– year: 2018
  ident: 10.1016/j.energy.2020.119268_bib51
– volume: 31
  start-page: 1666
  issue: 10
  year: 2006
  ident: 10.1016/j.energy.2020.119268_bib13
  article-title: A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization
  publication-title: Energy
  doi: 10.1016/j.energy.2005.05.006
– volume: 88
  start-page: 4264
  issue: 12
  year: 2011
  ident: 10.1016/j.energy.2020.119268_bib3
  article-title: An eco-friendly cryogenic fuel for sustainable development
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.06.035
– volume: 88
  start-page: 304
  year: 2015
  ident: 10.1016/j.energy.2020.119268_bib18
  article-title: Design and optimization of cascade organic Rankine cycle for recovering cryogenic energy from liquefied natural gas using binary working fluid
  publication-title: Energy
  doi: 10.1016/j.energy.2015.05.047
– volume: 100
  start-page: 169
  issue: 1
  year: 1978
  ident: 10.1016/j.energy.2020.119268_bib12
  article-title: The use of liquid natural gas as heat sink for power cycles
  publication-title: J. Eng. Power
  doi: 10.1115/1.3446314
– volume: 199
  start-page: 117479
  year: 2020
  ident: 10.1016/j.energy.2020.119268_bib25
  article-title: Thermodynamic analysis of a novel combined cooling and power system utilizing liquefied natural gas (LNG) cryogenic energy and low-temperature waste heat
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117479
– volume: 50
  start-page: 513
  year: 2013
  ident: 10.1016/j.energy.2020.119268_bib30
  article-title: Thermodynamic analysis and optimization of an ammonia-water power system with LNG (liquefied natural gas) as its heat sink
  publication-title: Energy
  doi: 10.1016/j.energy.2012.11.034
– volume: 35
  start-page: 5049
  issue: 12
  year: 2010
  ident: 10.1016/j.energy.2020.119268_bib65
  article-title: Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle
  publication-title: Energy
  doi: 10.1016/j.energy.2010.08.013
– volume: 29
  start-page: 1478
  issue: 8
  year: 2009
  ident: 10.1016/j.energy.2020.119268_bib36
  article-title: Analysis and optimization of a cascading power cycle with liquefied natural gas (LNG) cold energy recovery
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2008.06.028
– volume: 35
  start-page: 1033
  issue: 2
  year: 2010
  ident: 10.1016/j.energy.2020.119268_bib47
  article-title: Efficiency optimization potential in supercritical organic rankine cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2009.06.019
– volume: 163
  start-page: 114326
  year: 2019
  ident: 10.1016/j.energy.2020.119268_bib8
  article-title: Design of a rotary expander as an expansion device integrated into organic Rankine cycle (ORC) to recover low-grade waste heat
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2019.114326
– volume: 170
  start-page: 557
  year: 2019
  ident: 10.1016/j.energy.2020.119268_bib4
  article-title: LNG cold energy utilization: prospects and challenges
  publication-title: Energy
  doi: 10.1016/j.energy.2018.12.170
– volume: 242
  start-page: 168
  year: 2019
  ident: 10.1016/j.energy.2020.119268_bib16
  article-title: Systems design and analysis of liquid air energy storage from liquefied natural gas cold energy
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.03.087
– volume: 164
  start-page: 602
  year: 2018
  ident: 10.1016/j.energy.2020.119268_bib21
  article-title: Thermo-economic analysis of a novel power generation system integrating a natural gas expansion plant with a geothermal ORC in Tianjin, China
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.042
– volume: 198
  start-page: 117353
  year: 2020
  ident: 10.1016/j.energy.2020.119268_bib11
  article-title: Parametric study and optimization of closed Brayton power cycle considering the charge amount of working fluid
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117353
– volume: 216
  start-page: 112938
  year: 2020
  ident: 10.1016/j.energy.2020.119268_bib24
  article-title: Advanced exergy analysis of an integrated energy storage system based on transcritical CO2 energy storage and Organic Rankine Cycle
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2020.112938
– year: 2002
  ident: 10.1016/j.energy.2020.119268_bib59
– volume: 118
  start-page: 776
  year: 2017
  ident: 10.1016/j.energy.2020.119268_bib26
  article-title: Multi-parameter optimization of cold energy recovery in cascade Rankine cycle for LNG regasification using genetic algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2016.10.118
– volume: 65
  start-page: 113
  year: 2017
  ident: 10.1016/j.energy.2020.119268_bib33
  article-title: Thermo-economic analysis of combined different ORCs geothermal power plants and LNG cold energy
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2016.09.004
– volume: 197
  start-page: 15
  year: 2019
  ident: 10.1016/j.energy.2020.119268_bib17
  article-title: Evaluation of organic Rankine cycle by using hydrocarbons as working fluids: advanced exergy and advanced exergoeconomic analyses
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.111876
– volume: 59
  start-page: 490
  issue: 1
  year: 2013
  ident: 10.1016/j.energy.2020.119268_bib34
  article-title: Thermodynamic optimization of the operating parameters for a combined power cycle utilizing low-temperature waste heat and LNG cold energy
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2013.05.048
– volume: 38
  start-page: 781
  year: 2014
  ident: 10.1016/j.energy.2020.119268_bib7
  article-title: Review of thermal cycles exploiting the exergy of liquefied natural gas in the regasification process
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.07.029
– volume: 121
  start-page: 887
  year: 2017
  ident: 10.1016/j.energy.2020.119268_bib39
  article-title: Thermodynamic analysis for working fluids comparison in Rankine-type cycles exploiting the cryogenic exergy in Liquefied Natural Gas (LNG) regasification
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2017.04.082
– volume: 87
  start-page: 1260
  issue: 4
  year: 2010
  ident: 10.1016/j.energy.2020.119268_bib55
  article-title: Experimental study and modeling of an Organic Rankine Cycle using scroll expander
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.06.026
– volume: 147
  start-page: 688
  year: 2018
  ident: 10.1016/j.energy.2020.119268_bib28
  article-title: Thermodynamic optimization and comparative study of different ORC configurations utilizing the exergies of LNG and low grade heat of different temperatures
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.085
– volume: 129
  start-page: 1002
  year: 2017
  ident: 10.1016/j.energy.2020.119268_bib54
  article-title: Gear pump for low power output ORC – an efficiency analysis
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.09.227
– volume: 50
  start-page: 567
  issue: 3
  year: 2009
  ident: 10.1016/j.energy.2020.119268_bib15
  article-title: A combined power cycle utilizing low-temperature waste heat and LNG cold energy
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2008.10.015
– volume: 54
  start-page: 78
  year: 2013
  ident: 10.1016/j.energy.2020.119268_bib45
  article-title: A comparative study of power optimization in low-temperature geothermal heat source driven R125 transcritical cycle and HFC organic Rankine cycles
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2012.08.055
– volume: 15
  start-page: 3963
  issue: 8
  year: 2011
  ident: 10.1016/j.energy.2020.119268_bib52
  article-title: Low-grade heat conversion into power using organic Rankine cycles – a review of various applications
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2011.07.024
– volume: 7
  start-page: 693
  issue: 6
  year: 2010
  ident: 10.1016/j.energy.2020.119268_bib5
  article-title: Understanding the exergy of cold: theory and practical examples
  publication-title: Int J Exergy
  doi: 10.1504/IJEX.2010.035516
– volume: 34
  start-page: 827
  issue: 7
  year: 2009
  ident: 10.1016/j.energy.2020.119268_bib50
  article-title: Utilization of the cryogenic exergy of liquid natural gas (LNG) for the production of electricity
  publication-title: Energy
  doi: 10.1016/j.energy.2009.02.015
– volume: 220
  start-page: 113079
  year: 2020
  ident: 10.1016/j.energy.2020.119268_bib61
  article-title: Power and efficiency optimizations of an irreversible regenerative organic Rankine cycle
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2020.113079
– volume: 66
  start-page: 927
  year: 2014
  ident: 10.1016/j.energy.2020.119268_bib37
  article-title: Thermodynamic analysis of a Brayton cycle and Rankine cycle arranged in series exploiting the cold exergy of LNG (liquefied natural gas)
  publication-title: Energy
  doi: 10.1016/j.energy.2013.12.036
– volume: 90
  start-page: 579
  year: 2015
  ident: 10.1016/j.energy.2020.119268_bib19
  article-title: Working fluid selection for an Organic Rankine Cycle utilizing high and low temperature energy of an LNG engine
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2015.07.039
– volume: 105
  start-page: 2
  year: 2016
  ident: 10.1016/j.energy.2020.119268_bib62
  article-title: The exploitation of the physical exergy of liquid natural gas by closed power thermodynamic cycles. An overview
  publication-title: Energy
  doi: 10.1016/j.energy.2015.09.020
– volume: 100
  start-page: 1031
  year: 2016
  ident: 10.1016/j.energy.2020.119268_bib38
  article-title: Thermodynamic analysis of a novel dual-loop organic Rankine cycle for engine waste heat and LNG cold
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2016.02.102
– volume: 24
  start-page: 325
  year: 2013
  ident: 10.1016/j.energy.2020.119268_bib63
  article-title: A review of working fluid and expander selections for organic Rankine cycle
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2013.03.040
– year: 1992
  ident: 10.1016/j.energy.2020.119268_bib60
– volume: 3
  start-page: 356
  issue: 1
  year: 2011
  ident: 10.1016/j.energy.2020.119268_bib6
  article-title: LNG cold energy use in agro-food industry: a case study in Sicily
  publication-title: J Nat Gas Sci Eng
  doi: 10.1016/j.jngse.2011.02.002
– year: 1997
  ident: 10.1016/j.energy.2020.119268_bib43
– volume: 148
  start-page: 1227
  year: 2020
  ident: 10.1016/j.energy.2020.119268_bib20
  article-title: Introducing a hybrid renewable energy system for production of power and fresh water using parabolic trough solar collectors and LNG cold energy recovery
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.10.063
– volume: 167
  start-page: 730
  year: 2019
  ident: 10.1016/j.energy.2020.119268_bib32
  article-title: A study of working fluids for Organic Rankine Cycles (ORCs) operating across and below ambient temperature to utilize Liquefied Natural Gas (LNG) cold energy
  publication-title: Energy
  doi: 10.1016/j.energy.2018.11.021
– volume: 88
  start-page: 304
  year: 2015
  ident: 10.1016/j.energy.2020.119268_bib31
  article-title: Design and optimization of cascade organic Rankine cycle for recovering cryogenic energy from liquefied natural gas using binary working fluid
  publication-title: Energy
  doi: 10.1016/j.energy.2015.05.047
– volume: 61
  start-page: 179
  year: 2013
  ident: 10.1016/j.energy.2020.119268_bib14
  article-title: Analysis and optimization of cascade Rankine cycle for liquefied natural gas cold energy recovery
  publication-title: Energy
  doi: 10.1016/j.energy.2013.08.047
– volume: 38
  start-page: 136
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2020.119268_bib46
  article-title: The optimal evaporation temperature and working fluids for subcritical organic Rankine cycle
  publication-title: Energy
  doi: 10.1016/j.energy.2011.12.022
– volume: 41
  start-page: 514
  issue: 1
  year: 2012
  ident: 10.1016/j.energy.2020.119268_bib53
  article-title: Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid
  publication-title: Energy
  doi: 10.1016/j.energy.2012.02.035
– year: 2019
  ident: 10.1016/j.energy.2020.119268_bib2
– volume: 10
  start-page: 1185
  issue: 8
  year: 2017
  ident: 10.1016/j.energy.2020.119268_bib56
  article-title: Off-design performances of subcritical and supercritical organic rankine cycles in geothermal power systems under an optimal control strategy
  publication-title: Energies
  doi: 10.3390/en10081185
– volume: 126
  start-page: 899
  year: 2017
  ident: 10.1016/j.energy.2020.119268_bib29
  article-title: Thermoeconomic analysis and optimization of a regenerative two-stage organic Rankine cycle coupled with liquefied natural gas and solar energy
  publication-title: Energy
  doi: 10.1016/j.energy.2017.03.064
– volume: 66
  start-page: 423
  year: 2014
  ident: 10.1016/j.energy.2020.119268_bib48
  article-title: Binary ORC (organic Rankine cycles) power plants for the exploitation of medium–low temperature geothermal sources – Part A: thermodynamic optimization
  publication-title: Energy
  doi: 10.1016/j.energy.2013.11.056
– year: 2019
  ident: 10.1016/j.energy.2020.119268_bib1
– volume: 147
  start-page: 1216
  year: 2018
  ident: 10.1016/j.energy.2020.119268_bib10
  article-title: Characteristics and optimization of supercritical CO2 recompression power cycle and the influence of pinch point temperature difference of recuperators
  publication-title: Energy
  doi: 10.1016/j.energy.2017.12.161
– volume: 36
  start-page: 2828
  issue: 5
  year: 2011
  ident: 10.1016/j.energy.2020.119268_bib35
  article-title: A novel cryogenic power cycle for LNG cold energy recovery
  publication-title: Energy
  doi: 10.1016/j.energy.2011.02.024
– year: 2018
  ident: 10.1016/j.energy.2020.119268_bib58
– volume: 199
  start-page: 112002
  year: 2019
  ident: 10.1016/j.energy.2020.119268_bib44
  article-title: Optimal allocation of heat exchangers in a Supercritical carbon dioxide power cycle for waste heat recovery
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.112002
– volume: 22
  start-page: 661
  issue: 7
  year: 1997
  ident: 10.1016/j.energy.2020.119268_bib64
  article-title: A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat
  publication-title: Energy
  doi: 10.1016/S0360-5442(96)00165-X
– volume: 26
  start-page: 545
  issue: 7
  year: 2002
  ident: 10.1016/j.energy.2020.119268_bib42
  article-title: Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture
  publication-title: Int J Energy Res
  doi: 10.1002/er.804
– volume: 184
  start-page: 107
  year: 2019
  ident: 10.1016/j.energy.2020.119268_bib40
  article-title: Comparative study of liquefied natural gas (LNG) cold energy power generation systems in series and parallel
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.01.040
– volume: 79
  start-page: 1191
  issue: 3
  year: 1996
  ident: 10.1016/j.energy.2020.119268_bib41
  article-title: Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes
  publication-title: J Appl Phys
  doi: 10.1063/1.362674
– volume: 189
  start-page: 55
  year: 2017
  ident: 10.1016/j.energy.2020.119268_bib9
  article-title: Parametric study and performance evaluation of an organic Rankine cycle (ORC) system using low-grade heat at temperatures below 80°C
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.12.026
– year: 2020
  ident: 10.1016/j.energy.2020.119268_bib57
– volume: 269
  start-page: 115049
  year: 2020
  ident: 10.1016/j.energy.2020.119268_bib23
  article-title: Advanced integration of LNG regasification power plant with liquid air energy storage: enhancements in flexibility, safety, and power generation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115049
– year: 2015
  ident: 10.1016/j.energy.2020.119268_bib27
SSID ssj0005899
Score 2.4714756
Snippet An optimization study, under a size constraint, was carried out for an organic Rankine cycle (ORC) combined with an LNG regasification plant for recovering LNG...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119268
SubjectTerms cold
Conductance
Evaporators
gasification
Heat
Heat exchangers
Heat recovery
Liquefied natural gas
LNG cold Energy
Optimal allocation
Optimization
Organic Rankine cycle
Rankine cycle
Resistance
Size constraint
Superheating
system optimization
Systems design
systems engineering
temperature
Thermal energy
Turbines
Working fluid
Title Optimal design of organic Rankine cycle recovering LNG cold energy with finite heat exchanger size
URI https://dx.doi.org/10.1016/j.energy.2020.119268
https://www.proquest.com/docview/2489309613
https://www.proquest.com/docview/2574380041
Volume 217
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8h9rC9IMZAKwNkpL2aNokdp49VBXTr1kkwNN6s-EsqgrZaCwIe-Nu5Sxy-hITEUyTnnDi-8905vvsdwHcXQsf5LOfSFCUXhU14F-0gR9taWCelqRFvfo_ywYn4eSpPl6Df5MJQWGXU_bVOr7R1bGnH2WzPxuP2Mepe9DdESjXAMyUJdlsIRVK-d_ckzKOoakgSMSfqJn2uivHyVX4d7hJT0h3dlABXXzdPLxR1ZX0OVmEluo2sV4_sMyz5yRp8bLKK52uwsf-YsYaEccnOv4D5g0rhAptcFavBpoHVlZwsOyqpboJn9gafyWhrfFUBE7Jfo0OGAuJYPXJGP2tZGJN7ykh5M38dE4bZfHzr1-HkYP9vf8BjYQVus1wtuAjdLE8shRcaJ4LJC5vaYAsrZOkkHfXZRPmQO4_ORcgEenHK475CyrzsEkLbBixPphP_FRjl7UphMiW8EwQ04GzHSm-NckkoStOCrJlPbSPqOBW_ONdNeNmZrr9FExd0zYUW8Idesxp14w161bBKP5MejYbhjZ5bDWd1XL1znRIiD9XCyVqw-3Ab1x0dppQTP71EGqkIrL8jks13v_wbfEopRIbqy8gtWF78v_Tb6OMszE4lxDvwofdjOBjRdXj0b3gPfEn9kA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PehFfOL6jOA17LZN2u5RRF11XcEHeAvNC1Z0V9xV1F_vTJsqiiB4bSdtmkm-mTQz3wDsWe_b1iUplzovuMhNxDtoBzna1txYKXXFeHPeT7s34vRW3k7BQZ0LQ2GVAfsrTC_ROlxphdFsPQ4GrSvEXvQ3REw1wJNMptMwQ-xUsgEz-ydn3f5XpEdelpEkeU4N6gy6MszLlSl2uFGMCT46MXGu_m6hfmB1aYCOFmA-eI5sv-rcIky54RLM1onF4yVYPfxKWkPBsGrHy6AvEBce8JItwzXYyLOqmJNhlwWVTnDMvOEzGe2OX0puQtbrHzOcI5ZVPWf0v5b5AXmojPCbudeQM8zGg3e3AjdHh9cHXR5qK3CTpNmEC99J0shQhKG2wus0N7HxJjdCFlbSaZ-JMudT69C_8IlARy5zuLWQMi06RNK2Co3haOjWgFHqrhQ6yYSzgrgGrGkb6YzObOTzQjchqcdTmUA8TvUv7lUdYXanqm9RpAVVaaEJ_LPVY0W88Yd8VqtKfZtACm3DHy03a82qsIDHKiZSHiqHkzRh9_M2Lj06TymGbvSMMjIjvv62iNb__fIdmO1en_dU76R_tgFzMUXMULkZuQmNydOz20KXZ6K3w5T-ADRN_p4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+of+organic+Rankine+cycle+recovering+LNG+cold+energy+with+finite+heat+exchanger+size&rft.jtitle=Energy+%28Oxford%29&rft.au=Choi%2C+Hong+Wone&rft.au=Na%2C+Sun-Ik&rft.au=Hong%2C+Sung+Bin&rft.au=Chung%2C+Yoong&rft.date=2021-02-15&rft.issn=0360-5442&rft.volume=217+p.119268-&rft_id=info:doi/10.1016%2Fj.energy.2020.119268&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon