Optimal design of organic Rankine cycle recovering LNG cold energy with finite heat exchanger size
An optimization study, under a size constraint, was carried out for an organic Rankine cycle (ORC) combined with an LNG regasification plant for recovering LNG cold energy. Typically, many researchers approached to an optimization problem by assuming pinch point or minimum approach temperature diffe...
Saved in:
Published in | Energy (Oxford) Vol. 217; p. 119268 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
15.02.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An optimization study, under a size constraint, was carried out for an organic Rankine cycle (ORC) combined with an LNG regasification plant for recovering LNG cold energy. Typically, many researchers approached to an optimization problem by assuming pinch point or minimum approach temperature difference. As a different point of view, the size constraint was considered in that resources such as thermal energy and equipment size are limited in a real problem. Given this situation, adequate allocation of finite resources is an important issue for the system to maximize performance. Thus, the aim of this study is to understand how to properly utilize the resources when LNG cold energy and total conductance of heat exchangers are limited. Accordingly, the influences of heat duty allocation, UA allocation, and superheating a turbine’s intake on net power were mainly taken into account. Results indicate that, when total conductance for system design increases, the ORC should take more heat duty and total conductance should be weighted to an evaporator. In most cases, the size of heat exchangers should be weighted in the order of evaporator, condenser, and trim heater, provided that total conductance for system design is sufficiently available.
•The ORC combined with LNG regasification plant was optimized under size constraint.•We examined trade-off among performance related to heat duty and UA allocations.•A trend of optimal allocations was observed subject to a change of size constraint.•Seven types of refrigerants were taken into account under size constraint. |
---|---|
AbstractList | An optimization study, under a size constraint, was carried out for an organic Rankine cycle (ORC) combined with an LNG regasification plant for recovering LNG cold energy. Typically, many researchers approached to an optimization problem by assuming pinch point or minimum approach temperature difference. As a different point of view, the size constraint was considered in that resources such as thermal energy and equipment size are limited in a real problem. Given this situation, adequate allocation of finite resources is an important issue for the system to maximize performance. Thus, the aim of this study is to understand how to properly utilize the resources when LNG cold energy and total conductance of heat exchangers are limited. Accordingly, the influences of heat duty allocation, UA allocation, and superheating a turbine’s intake on net power were mainly taken into account. Results indicate that, when total conductance for system design increases, the ORC should take more heat duty and total conductance should be weighted to an evaporator. In most cases, the size of heat exchangers should be weighted in the order of evaporator, condenser, and trim heater, provided that total conductance for system design is sufficiently available.
•The ORC combined with LNG regasification plant was optimized under size constraint.•We examined trade-off among performance related to heat duty and UA allocations.•A trend of optimal allocations was observed subject to a change of size constraint.•Seven types of refrigerants were taken into account under size constraint. An optimization study, under a size constraint, was carried out for an organic Rankine cycle (ORC) combined with an LNG regasification plant for recovering LNG cold energy. Typically, many researchers approached to an optimization problem by assuming pinch point or minimum approach temperature difference. As a different point of view, the size constraint was considered in that resources such as thermal energy and equipment size are limited in a real problem. Given this situation, adequate allocation of finite resources is an important issue for the system to maximize performance. Thus, the aim of this study is to understand how to properly utilize the resources when LNG cold energy and total conductance of heat exchangers are limited. Accordingly, the influences of heat duty allocation, UA allocation, and superheating a turbine’s intake on net power were mainly taken into account. Results indicate that, when total conductance for system design increases, the ORC should take more heat duty and total conductance should be weighted to an evaporator. In most cases, the size of heat exchangers should be weighted in the order of evaporator, condenser, and trim heater, provided that total conductance for system design is sufficiently available. |
ArticleNumber | 119268 |
Author | Choi, Hong Wone Chung, Yoong Kim, Min Soo Na, Sun-Ik Hong, Sung Bin Kim, Dong Kyu |
Author_xml | – sequence: 1 givenname: Hong Wone orcidid: 0000-0003-2814-2214 surname: Choi fullname: Choi, Hong Wone organization: Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea – sequence: 2 givenname: Sun-Ik surname: Na fullname: Na, Sun-Ik organization: Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea – sequence: 3 givenname: Sung Bin surname: Hong fullname: Hong, Sung Bin organization: Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea – sequence: 4 givenname: Yoong orcidid: 0000-0003-0500-8207 surname: Chung fullname: Chung, Yoong organization: Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea – sequence: 5 givenname: Dong Kyu surname: Kim fullname: Kim, Dong Kyu organization: School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea – sequence: 6 givenname: Min Soo surname: Kim fullname: Kim, Min Soo email: minskim@snu.ac.kr organization: Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea |
BookMark | eNqFkU1v1DAQhi1UJLaFf8DBEhcuWez4Iw4HJFSVFmlFJQRnyzsZZ72k9mJ7C8uvb6pw6gFOI43eZ2b0zDk5iykiIa85W3PG9bv9GiPm8bRuWTu3eN9q84ysuOlEozujzsiKCc0aJWX7gpyXsmeMKdP3K7K9PdRw5yY6YAljpMnTlEcXA9CvLv4IESmcYEKaEdI95hBHuvlyTSFNA1220l-h7qgPMVSkO3SV4m_YuThipiX8wZfkuXdTwVd_6wX5_unq2-VNs7m9_nz5cdOA0F1tpO-F5sCZYdtB-q020IIHA1K5QWnRd8A79HpA3ikvpFasQ2WUUtr1sjXigrxd5h5y-nnEUu1dKIDT5CKmY7Gt6qQwjEk-R988ie7TMcf5OttK0wvWay7m1PslBTmVktFbCNXVkGLNLkyWM_uo3-7tIsI-6reL_hmWT-BDnkXn0_-wDwuGs6n7gNkWCBgBhzB_oNohhX8PeAA57KKJ |
CitedBy_id | crossref_primary_10_1016_j_energy_2024_133629 crossref_primary_10_3390_pr11020517 crossref_primary_10_1016_j_energy_2023_126648 crossref_primary_10_1016_j_ijrefrig_2021_11_002 crossref_primary_10_1016_j_applthermaleng_2024_123024 crossref_primary_10_1016_j_apenergy_2024_123735 crossref_primary_10_1016_j_jclepro_2021_129493 crossref_primary_10_1016_j_cryogenics_2022_103599 crossref_primary_10_1016_j_enconman_2025_119554 crossref_primary_10_1063_5_0202719 crossref_primary_10_1016_j_enconman_2023_117157 crossref_primary_10_1016_j_jclepro_2022_131517 crossref_primary_10_1016_j_ijhydene_2023_04_239 crossref_primary_10_1016_j_rser_2024_114833 crossref_primary_10_1016_j_applthermaleng_2023_120903 crossref_primary_10_1016_j_energy_2022_123620 crossref_primary_10_1002_ese3_1457 crossref_primary_10_1016_j_enconman_2021_113972 crossref_primary_10_18186_thermal_1429974 crossref_primary_10_1016_j_procs_2023_03_129 crossref_primary_10_3390_jmse12101850 crossref_primary_10_1016_j_enconman_2021_114360 crossref_primary_10_1016_j_jclepro_2023_138405 crossref_primary_10_1016_j_enconman_2021_114141 crossref_primary_10_1080_01430750_2023_2231461 crossref_primary_10_1016_j_renene_2022_10_114 crossref_primary_10_1016_j_seppur_2022_120755 crossref_primary_10_1007_s11708_023_0863_y crossref_primary_10_1016_j_csite_2025_105952 |
Cites_doi | 10.1016/0360-5442(92)90055-5 10.1016/j.energy.2017.03.127 10.1016/j.energy.2005.05.006 10.1016/j.apenergy.2011.06.035 10.1016/j.energy.2015.05.047 10.1115/1.3446314 10.1016/j.energy.2020.117479 10.1016/j.energy.2012.11.034 10.1016/j.energy.2010.08.013 10.1016/j.applthermaleng.2008.06.028 10.1016/j.energy.2009.06.019 10.1016/j.applthermaleng.2019.114326 10.1016/j.energy.2018.12.170 10.1016/j.apenergy.2019.03.087 10.1016/j.energy.2018.09.042 10.1016/j.energy.2020.117353 10.1016/j.enconman.2020.112938 10.1016/j.energy.2016.10.118 10.1016/j.geothermics.2016.09.004 10.1016/j.enconman.2019.111876 10.1016/j.applthermaleng.2013.05.048 10.1016/j.rser.2014.07.029 10.1016/j.applthermaleng.2017.04.082 10.1016/j.apenergy.2009.06.026 10.1016/j.energy.2018.01.085 10.1016/j.egypro.2017.09.227 10.1016/j.enconman.2008.10.015 10.1016/j.renene.2012.08.055 10.1016/j.rser.2011.07.024 10.1504/IJEX.2010.035516 10.1016/j.energy.2009.02.015 10.1016/j.enconman.2020.113079 10.1016/j.energy.2013.12.036 10.1016/j.applthermaleng.2015.07.039 10.1016/j.energy.2015.09.020 10.1016/j.applthermaleng.2016.02.102 10.1016/j.rser.2013.03.040 10.1016/j.jngse.2011.02.002 10.1016/j.renene.2019.10.063 10.1016/j.energy.2018.11.021 10.1016/j.energy.2013.08.047 10.1016/j.energy.2011.12.022 10.1016/j.energy.2012.02.035 10.3390/en10081185 10.1016/j.energy.2017.03.064 10.1016/j.energy.2013.11.056 10.1016/j.energy.2017.12.161 10.1016/j.energy.2011.02.024 10.1016/j.enconman.2019.112002 10.1016/S0360-5442(96)00165-X 10.1002/er.804 10.1016/j.enconman.2019.01.040 10.1063/1.362674 10.1016/j.apenergy.2016.12.026 10.1016/j.apenergy.2020.115049 |
ContentType | Journal Article |
Copyright | 2020 Copyright Elsevier BV Feb 15, 2021 |
Copyright_xml | – notice: 2020 – notice: Copyright Elsevier BV Feb 15, 2021 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
DOI | 10.1016/j.energy.2020.119268 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 1873-6785 |
ExternalDocumentID | 10_1016_j_energy_2020_119268 S0360544220323756 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SEW SSH WUQ 7SP 7ST 7TB 8FD C1K EFKBS F28 FR3 KR7 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c367t-4f9361c1080bd4fb68c2cfc8c45ad56397c17ef6de175f346507e585556a94283 |
IEDL.DBID | .~1 |
ISSN | 0360-5442 |
IngestDate | Thu Jul 10 22:31:01 EDT 2025 Wed Aug 13 05:53:41 EDT 2025 Tue Jul 01 00:43:34 EDT 2025 Thu Apr 24 22:51:53 EDT 2025 Fri Feb 23 02:48:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | LNG cold Energy Size constraint Working fluid Optimal allocation Organic Rankine cycle |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-4f9361c1080bd4fb68c2cfc8c45ad56397c17ef6de175f346507e585556a94283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0500-8207 0000-0003-2814-2214 |
PQID | 2489309613 |
PQPubID | 2045484 |
ParticipantIDs | proquest_miscellaneous_2574380041 proquest_journals_2489309613 crossref_citationtrail_10_1016_j_energy_2020_119268 crossref_primary_10_1016_j_energy_2020_119268 elsevier_sciencedirect_doi_10_1016_j_energy_2020_119268 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-15 |
PublicationDateYYYYMMDD | 2021-02-15 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Jenkins (bib57) 2020 Turton, Shaeiwitz, Bhattacharyya, Whiting (bib58) 2018 Ghorbani, Mahyari, Mehrpooya, Hamedi (bib20) 2020; 148 Lee (bib26) 2017; 118 Kim, Lee, Kim, Han (bib18) 2015; 88 Bejan (bib41) 1996; 79 Kim, Cho, Kim, Kim (bib10) 2018; 147 Quoilin (bib27) 2015 Mehrpooya, Ashouri, Mohammadi (bib29) 2017; 126 Bejan (bib42) 2002; 26 Messineo, Panno (bib6) 2011; 3 Choi, Lee, Seo, Chang (bib14) 2013; 61 Bao, Zhao (bib63) 2013; 24 Tchanche, Lambrinos, Frangoudakis, Papadakis (bib52) 2011; 15 Dai, Zhu, Wang, Sun, Liu (bib17) 2019; 197 Schuster, Karellas, Aumann (bib47) 2010; 35 Kim, Lee, Kim, Kim, Kim (bib9) 2017; 189 Gregory, Guy, Lamb, Marsland, Johnston, Summers (bib60) 1992 Sun, Lai, Wang, Wang (bib28) 2018; 147 Ferreira, Catarino, Vaz (bib39) 2017; 121 He, Chang, Zhang, Shu, Duan (bib19) 2015; 90 Liu, Guo (bib35) 2011; 36 Zeleny, Vodicka, Novotny, Mascuch (bib54) 2017; 129 Angelino (bib12) 1978; 100 Gómez, Garcia, Gómez, Carril (bib7) 2014; 38 Na, Kim, Baik, Kim (bib44) 2019; 199 Yao, Zhang, Yu (bib21) 2018; 164 Li, Liu, Zhang, Yang (bib25) 2020; 199 Quoilin, Lemort, Lebrun (bib55) 2010; 87 Astolfi, Romano, Bombarda, Macchi (bib48) 2014; 66 Wang, Shi, Che (bib34) 2013; 59 Lee, Kim (bib49) 1992; 17 Loh, Lyons, White (bib59) 2002 Roy, Mishra, Misra (bib65) 2010; 35 Lee, You (bib16) 2019; 242 Kim, Kim, Kim (bib11) 2020; 198 Lemmon, Bell, Huber, McLinden (bib51) 2018 Bao, Yuan, Zhang, Zhang, Zhang, He (bib40) 2019; 184 Mosaffa, Mokarram, Farshi (bib33) 2017; 65 Lu, K S (bib36) 2009; 29 Feng, Chen, Chen, Tang (bib61) 2020; 220 Dudley (bib2) 2019 Sung, Kim (bib38) 2016; 100 Yu, Kim, Gundersen (bib32) 2019; 167 He, Liu, Gao, Xie, Li, Wu, Xu (bib46) 2012; 38 Mehrpooya, Sharifzadeh (bib22) 2017; 127 Kang (bib53) 2012; 41 Gómez, Garcia, Gómez, Carril (bib37) 2014; 66 He, Chong, Zheng, Ju, Linga (bib4) 2019; 170 Kang (bib1) 2019 Szargut, Szczygiel (bib50) 2009; 34 Bejan (bib43) 1997 Jansen, Woudstra (bib5) 2010; 7 Zhang, Liang, Yang, Zhang, Yang (bib24) 2020; 216 Invernizzi, Iora (bib62) 2016; 105 Kim, Choi, Kim (bib8) 2019; 163 Wang, Yan, Wang, Dai (bib30) 2013; 50 Shi, Che (bib15) 2009; 50 Kumar, Kwon, Choi, Lim, Cho, Tak, Moon (bib3) 2011; 88 Baik, Kim, Chang, Lee, Yoon (bib45) 2013; 54 Kim, Lee, Kim, Han (bib31) 2015; 88 Qi, Park, Kim, Lee, Moon (bib23) 2020; 269 Gao, Liu (bib56) 2017; 10 Hung, Shai, Wang (bib64) 1997; 22 Zhang, Lior (bib13) 2006; 31 Kumar (10.1016/j.energy.2020.119268_bib3) 2011; 88 Zhang (10.1016/j.energy.2020.119268_bib13) 2006; 31 Quoilin (10.1016/j.energy.2020.119268_bib55) 2010; 87 Lu (10.1016/j.energy.2020.119268_bib36) 2009; 29 Ferreira (10.1016/j.energy.2020.119268_bib39) 2017; 121 Turton (10.1016/j.energy.2020.119268_bib58) 2018 Mehrpooya (10.1016/j.energy.2020.119268_bib29) 2017; 126 Invernizzi (10.1016/j.energy.2020.119268_bib62) 2016; 105 Messineo (10.1016/j.energy.2020.119268_bib6) 2011; 3 Schuster (10.1016/j.energy.2020.119268_bib47) 2010; 35 Baik (10.1016/j.energy.2020.119268_bib45) 2013; 54 Lemmon (10.1016/j.energy.2020.119268_bib51) 2018 Kim (10.1016/j.energy.2020.119268_bib10) 2018; 147 Mosaffa (10.1016/j.energy.2020.119268_bib33) 2017; 65 Jenkins (10.1016/j.energy.2020.119268_bib57) 2020 He (10.1016/j.energy.2020.119268_bib19) 2015; 90 Quoilin (10.1016/j.energy.2020.119268_bib27) 2015 Dai (10.1016/j.energy.2020.119268_bib17) 2019; 197 Li (10.1016/j.energy.2020.119268_bib25) 2020; 199 Wang (10.1016/j.energy.2020.119268_bib30) 2013; 50 Sun (10.1016/j.energy.2020.119268_bib28) 2018; 147 He (10.1016/j.energy.2020.119268_bib4) 2019; 170 Kim (10.1016/j.energy.2020.119268_bib31) 2015; 88 Lee (10.1016/j.energy.2020.119268_bib49) 1992; 17 Wang (10.1016/j.energy.2020.119268_bib34) 2013; 59 Bao (10.1016/j.energy.2020.119268_bib63) 2013; 24 Gómez (10.1016/j.energy.2020.119268_bib37) 2014; 66 Kim (10.1016/j.energy.2020.119268_bib8) 2019; 163 Bejan (10.1016/j.energy.2020.119268_bib42) 2002; 26 Roy (10.1016/j.energy.2020.119268_bib65) 2010; 35 Na (10.1016/j.energy.2020.119268_bib44) 2019; 199 Ghorbani (10.1016/j.energy.2020.119268_bib20) 2020; 148 Shi (10.1016/j.energy.2020.119268_bib15) 2009; 50 Hung (10.1016/j.energy.2020.119268_bib64) 1997; 22 Kim (10.1016/j.energy.2020.119268_bib18) 2015; 88 Kang (10.1016/j.energy.2020.119268_bib53) 2012; 41 Qi (10.1016/j.energy.2020.119268_bib23) 2020; 269 Sung (10.1016/j.energy.2020.119268_bib38) 2016; 100 Zeleny (10.1016/j.energy.2020.119268_bib54) 2017; 129 Feng (10.1016/j.energy.2020.119268_bib61) 2020; 220 Astolfi (10.1016/j.energy.2020.119268_bib48) 2014; 66 Mehrpooya (10.1016/j.energy.2020.119268_bib22) 2017; 127 Yao (10.1016/j.energy.2020.119268_bib21) 2018; 164 Szargut (10.1016/j.energy.2020.119268_bib50) 2009; 34 Lee (10.1016/j.energy.2020.119268_bib26) 2017; 118 Bao (10.1016/j.energy.2020.119268_bib40) 2019; 184 Dudley (10.1016/j.energy.2020.119268_bib2) 2019 Lee (10.1016/j.energy.2020.119268_bib16) 2019; 242 Bejan (10.1016/j.energy.2020.119268_bib43) 1997 Angelino (10.1016/j.energy.2020.119268_bib12) 1978; 100 Tchanche (10.1016/j.energy.2020.119268_bib52) 2011; 15 Gregory (10.1016/j.energy.2020.119268_bib60) 1992 Gao (10.1016/j.energy.2020.119268_bib56) 2017; 10 Jansen (10.1016/j.energy.2020.119268_bib5) 2010; 7 Kim (10.1016/j.energy.2020.119268_bib11) 2020; 198 Yu (10.1016/j.energy.2020.119268_bib32) 2019; 167 Liu (10.1016/j.energy.2020.119268_bib35) 2011; 36 Bejan (10.1016/j.energy.2020.119268_bib41) 1996; 79 Zhang (10.1016/j.energy.2020.119268_bib24) 2020; 216 Kim (10.1016/j.energy.2020.119268_bib9) 2017; 189 Kang (10.1016/j.energy.2020.119268_bib1) 2019 Loh (10.1016/j.energy.2020.119268_bib59) 2002 Gómez (10.1016/j.energy.2020.119268_bib7) 2014; 38 He (10.1016/j.energy.2020.119268_bib46) 2012; 38 Choi (10.1016/j.energy.2020.119268_bib14) 2013; 61 |
References_xml | – volume: 59 start-page: 490 year: 2013 end-page: 497 ident: bib34 article-title: Thermodynamic optimization of the operating parameters for a combined power cycle utilizing low-temperature waste heat and LNG cold energy publication-title: Appl Therm Eng – year: 2018 ident: bib51 article-title: NIST standard reference database 23: reference fluid thermodynamic and transport properties-REFPROP version 10.0 – volume: 66 start-page: 423 year: 2014 end-page: 434 ident: bib48 article-title: Binary ORC (organic Rankine cycles) power plants for the exploitation of medium–low temperature geothermal sources – Part A: thermodynamic optimization publication-title: Energy – volume: 22 start-page: 661 year: 1997 end-page: 667 ident: bib64 article-title: A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat publication-title: Energy – volume: 50 start-page: 513 year: 2013 end-page: 522 ident: bib30 article-title: Thermodynamic analysis and optimization of an ammonia-water power system with LNG (liquefied natural gas) as its heat sink publication-title: Energy – volume: 100 start-page: 1031 year: 2016 end-page: 1041 ident: bib38 article-title: Thermodynamic analysis of a novel dual-loop organic Rankine cycle for engine waste heat and LNG cold publication-title: Appl Therm Eng – volume: 34 start-page: 827 year: 2009 end-page: 837 ident: bib50 article-title: Utilization of the cryogenic exergy of liquid natural gas (LNG) for the production of electricity publication-title: Energy – volume: 54 start-page: 78 year: 2013 end-page: 84 ident: bib45 article-title: A comparative study of power optimization in low-temperature geothermal heat source driven R125 transcritical cycle and HFC organic Rankine cycles publication-title: Renew Energy – volume: 50 start-page: 567 year: 2009 end-page: 575 ident: bib15 article-title: A combined power cycle utilizing low-temperature waste heat and LNG cold energy publication-title: Energy Convers Manag – volume: 24 start-page: 325 year: 2013 end-page: 342 ident: bib63 article-title: A review of working fluid and expander selections for organic Rankine cycle publication-title: Renew Sustain Energy Rev – year: 2020 ident: bib57 article-title: 2019 chemical engineering plant cost index annual average – volume: 88 start-page: 4264 year: 2011 end-page: 4273 ident: bib3 article-title: An eco-friendly cryogenic fuel for sustainable development publication-title: Appl Energy – volume: 127 start-page: 516 year: 2017 end-page: 533 ident: bib22 article-title: Conceptual and basic design of a novel integrated cogeneration power plant energy system publication-title: Energy – volume: 184 start-page: 107 year: 2019 end-page: 126 ident: bib40 article-title: Comparative study of liquefied natural gas (LNG) cold energy power generation systems in series and parallel publication-title: Energy Convers Manag – volume: 199 start-page: 112002 year: 2019 ident: bib44 article-title: Optimal allocation of heat exchangers in a Supercritical carbon dioxide power cycle for waste heat recovery publication-title: Energy Convers Manag – volume: 167 start-page: 730 year: 2019 end-page: 739 ident: bib32 article-title: A study of working fluids for Organic Rankine Cycles (ORCs) operating across and below ambient temperature to utilize Liquefied Natural Gas (LNG) cold energy publication-title: Energy – volume: 121 start-page: 887 year: 2017 end-page: 896 ident: bib39 article-title: Thermodynamic analysis for working fluids comparison in Rankine-type cycles exploiting the cryogenic exergy in Liquefied Natural Gas (LNG) regasification publication-title: Appl Therm Eng – volume: 163 start-page: 114326 year: 2019 ident: bib8 article-title: Design of a rotary expander as an expansion device integrated into organic Rankine cycle (ORC) to recover low-grade waste heat publication-title: Appl Therm Eng – volume: 198 start-page: 117353 year: 2020 ident: bib11 article-title: Parametric study and optimization of closed Brayton power cycle considering the charge amount of working fluid publication-title: Energy – volume: 17 start-page: 275 year: 1992 end-page: 281 ident: bib49 article-title: The maximum power from a finite reservoir for a Lorentz cycle publication-title: Energy – volume: 100 start-page: 169 year: 1978 end-page: 177 ident: bib12 article-title: The use of liquid natural gas as heat sink for power cycles publication-title: J. Eng. Power – volume: 147 start-page: 1216 year: 2018 end-page: 1226 ident: bib10 article-title: Characteristics and optimization of supercritical CO2 recompression power cycle and the influence of pinch point temperature difference of recuperators publication-title: Energy – volume: 65 start-page: 113 year: 2017 end-page: 125 ident: bib33 article-title: Thermo-economic analysis of combined different ORCs geothermal power plants and LNG cold energy publication-title: Geothermics – volume: 197 start-page: 15 year: 2019 ident: bib17 article-title: Evaluation of organic Rankine cycle by using hydrocarbons as working fluids: advanced exergy and advanced exergoeconomic analyses publication-title: Energy Convers Manag – volume: 41 start-page: 514 year: 2012 end-page: 524 ident: bib53 article-title: Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid publication-title: Energy – volume: 88 start-page: 304 year: 2015 end-page: 313 ident: bib18 article-title: Design and optimization of cascade organic Rankine cycle for recovering cryogenic energy from liquefied natural gas using binary working fluid publication-title: Energy – volume: 170 start-page: 557 year: 2019 end-page: 568 ident: bib4 article-title: LNG cold energy utilization: prospects and challenges publication-title: Energy – volume: 126 start-page: 899 year: 2017 end-page: 914 ident: bib29 article-title: Thermoeconomic analysis and optimization of a regenerative two-stage organic Rankine cycle coupled with liquefied natural gas and solar energy publication-title: Energy – year: 2019 ident: bib1 article-title: 2019 world LNG report – volume: 90 start-page: 579 year: 2015 end-page: 589 ident: bib19 article-title: Working fluid selection for an Organic Rankine Cycle utilizing high and low temperature energy of an LNG engine publication-title: Appl Therm Eng – volume: 118 start-page: 776 year: 2017 end-page: 782 ident: bib26 article-title: Multi-parameter optimization of cold energy recovery in cascade Rankine cycle for LNG regasification using genetic algorithm publication-title: Energy – year: 2015 ident: bib27 article-title: Keynote Lecture: past and current research trends in ORC power systems – volume: 216 start-page: 112938 year: 2020 ident: bib24 article-title: Advanced exergy analysis of an integrated energy storage system based on transcritical CO2 energy storage and Organic Rankine Cycle publication-title: Energy Convers Manag – volume: 147 start-page: 688 year: 2018 end-page: 700 ident: bib28 article-title: Thermodynamic optimization and comparative study of different ORC configurations utilizing the exergies of LNG and low grade heat of different temperatures publication-title: Energy – volume: 26 start-page: 545 year: 2002 end-page: 565 ident: bib42 article-title: Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture publication-title: Int J Energy Res – volume: 3 start-page: 356 year: 2011 end-page: 363 ident: bib6 article-title: LNG cold energy use in agro-food industry: a case study in Sicily publication-title: J Nat Gas Sci Eng – volume: 38 start-page: 781 year: 2014 end-page: 795 ident: bib7 article-title: Review of thermal cycles exploiting the exergy of liquefied natural gas in the regasification process publication-title: Renew Sustain Energy Rev – volume: 7 start-page: 693 year: 2010 end-page: 713 ident: bib5 article-title: Understanding the exergy of cold: theory and practical examples publication-title: Int J Exergy – volume: 36 start-page: 2828 year: 2011 end-page: 2833 ident: bib35 article-title: A novel cryogenic power cycle for LNG cold energy recovery publication-title: Energy – volume: 105 start-page: 2 year: 2016 end-page: 15 ident: bib62 article-title: The exploitation of the physical exergy of liquid natural gas by closed power thermodynamic cycles. An overview publication-title: Energy – volume: 88 start-page: 304 year: 2015 end-page: 313 ident: bib31 article-title: Design and optimization of cascade organic Rankine cycle for recovering cryogenic energy from liquefied natural gas using binary working fluid publication-title: Energy – volume: 269 start-page: 115049 year: 2020 ident: bib23 article-title: Advanced integration of LNG regasification power plant with liquid air energy storage: enhancements in flexibility, safety, and power generation publication-title: Appl Energy – volume: 164 start-page: 602 year: 2018 end-page: 614 ident: bib21 article-title: Thermo-economic analysis of a novel power generation system integrating a natural gas expansion plant with a geothermal ORC in Tianjin, China publication-title: Energy – volume: 129 start-page: 1002 year: 2017 end-page: 1009 ident: bib54 article-title: Gear pump for low power output ORC – an efficiency analysis publication-title: Energy Procedia – year: 1992 ident: bib60 article-title: ESDU 92013 - selection and costnig of heat exchangers – volume: 242 start-page: 168 year: 2019 end-page: 180 ident: bib16 article-title: Systems design and analysis of liquid air energy storage from liquefied natural gas cold energy publication-title: Appl Energy – volume: 220 start-page: 113079 year: 2020 ident: bib61 article-title: Power and efficiency optimizations of an irreversible regenerative organic Rankine cycle publication-title: Energy Convers Manag – volume: 189 start-page: 55 year: 2017 end-page: 65 ident: bib9 article-title: Parametric study and performance evaluation of an organic Rankine cycle (ORC) system using low-grade heat at temperatures below 80°C publication-title: Appl Energy – year: 2002 ident: bib59 article-title: Process equipment cost estimation final report – year: 1997 ident: bib43 article-title: Advanced engineering thermodynamics – volume: 31 start-page: 1666 year: 2006 end-page: 1679 ident: bib13 article-title: A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization publication-title: Energy – volume: 10 start-page: 1185 year: 2017 ident: bib56 article-title: Off-design performances of subcritical and supercritical organic rankine cycles in geothermal power systems under an optimal control strategy publication-title: Energies – volume: 61 start-page: 179 year: 2013 end-page: 195 ident: bib14 article-title: Analysis and optimization of cascade Rankine cycle for liquefied natural gas cold energy recovery publication-title: Energy – volume: 87 start-page: 1260 year: 2010 end-page: 1268 ident: bib55 article-title: Experimental study and modeling of an Organic Rankine Cycle using scroll expander publication-title: Appl Energy – volume: 35 start-page: 5049 year: 2010 end-page: 5062 ident: bib65 article-title: Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle publication-title: Energy – volume: 29 start-page: 1478 year: 2009 end-page: 1484 ident: bib36 article-title: Analysis and optimization of a cascading power cycle with liquefied natural gas (LNG) cold energy recovery publication-title: Appl Therm Eng – volume: 66 start-page: 927 year: 2014 end-page: 937 ident: bib37 article-title: Thermodynamic analysis of a Brayton cycle and Rankine cycle arranged in series exploiting the cold exergy of LNG (liquefied natural gas) publication-title: Energy – volume: 79 start-page: 1191 year: 1996 end-page: 1218 ident: bib41 article-title: Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes publication-title: J Appl Phys – volume: 38 start-page: 136 year: 2012 end-page: 143 ident: bib46 article-title: The optimal evaporation temperature and working fluids for subcritical organic Rankine cycle publication-title: Energy – year: 2018 ident: bib58 article-title: Analysis, synthesis, and design of chemical processes – volume: 148 start-page: 1227 year: 2020 end-page: 1243 ident: bib20 article-title: Introducing a hybrid renewable energy system for production of power and fresh water using parabolic trough solar collectors and LNG cold energy recovery publication-title: Renew Energy – volume: 15 start-page: 3963 year: 2011 end-page: 3979 ident: bib52 article-title: Low-grade heat conversion into power using organic Rankine cycles – a review of various applications publication-title: Renew Sustain Energy Rev – volume: 199 start-page: 117479 year: 2020 ident: bib25 article-title: Thermodynamic analysis of a novel combined cooling and power system utilizing liquefied natural gas (LNG) cryogenic energy and low-temperature waste heat publication-title: Energy – year: 2019 ident: bib2 article-title: BP energy outlook 2019 edition – volume: 35 start-page: 1033 year: 2010 end-page: 1039 ident: bib47 article-title: Efficiency optimization potential in supercritical organic rankine cycles publication-title: Energy – volume: 17 start-page: 275 issue: 3 year: 1992 ident: 10.1016/j.energy.2020.119268_bib49 article-title: The maximum power from a finite reservoir for a Lorentz cycle publication-title: Energy doi: 10.1016/0360-5442(92)90055-5 – volume: 127 start-page: 516 year: 2017 ident: 10.1016/j.energy.2020.119268_bib22 article-title: Conceptual and basic design of a novel integrated cogeneration power plant energy system publication-title: Energy doi: 10.1016/j.energy.2017.03.127 – year: 2018 ident: 10.1016/j.energy.2020.119268_bib51 – volume: 31 start-page: 1666 issue: 10 year: 2006 ident: 10.1016/j.energy.2020.119268_bib13 article-title: A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization publication-title: Energy doi: 10.1016/j.energy.2005.05.006 – volume: 88 start-page: 4264 issue: 12 year: 2011 ident: 10.1016/j.energy.2020.119268_bib3 article-title: An eco-friendly cryogenic fuel for sustainable development publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.06.035 – volume: 88 start-page: 304 year: 2015 ident: 10.1016/j.energy.2020.119268_bib18 article-title: Design and optimization of cascade organic Rankine cycle for recovering cryogenic energy from liquefied natural gas using binary working fluid publication-title: Energy doi: 10.1016/j.energy.2015.05.047 – volume: 100 start-page: 169 issue: 1 year: 1978 ident: 10.1016/j.energy.2020.119268_bib12 article-title: The use of liquid natural gas as heat sink for power cycles publication-title: J. Eng. Power doi: 10.1115/1.3446314 – volume: 199 start-page: 117479 year: 2020 ident: 10.1016/j.energy.2020.119268_bib25 article-title: Thermodynamic analysis of a novel combined cooling and power system utilizing liquefied natural gas (LNG) cryogenic energy and low-temperature waste heat publication-title: Energy doi: 10.1016/j.energy.2020.117479 – volume: 50 start-page: 513 year: 2013 ident: 10.1016/j.energy.2020.119268_bib30 article-title: Thermodynamic analysis and optimization of an ammonia-water power system with LNG (liquefied natural gas) as its heat sink publication-title: Energy doi: 10.1016/j.energy.2012.11.034 – volume: 35 start-page: 5049 issue: 12 year: 2010 ident: 10.1016/j.energy.2020.119268_bib65 article-title: Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle publication-title: Energy doi: 10.1016/j.energy.2010.08.013 – volume: 29 start-page: 1478 issue: 8 year: 2009 ident: 10.1016/j.energy.2020.119268_bib36 article-title: Analysis and optimization of a cascading power cycle with liquefied natural gas (LNG) cold energy recovery publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2008.06.028 – volume: 35 start-page: 1033 issue: 2 year: 2010 ident: 10.1016/j.energy.2020.119268_bib47 article-title: Efficiency optimization potential in supercritical organic rankine cycles publication-title: Energy doi: 10.1016/j.energy.2009.06.019 – volume: 163 start-page: 114326 year: 2019 ident: 10.1016/j.energy.2020.119268_bib8 article-title: Design of a rotary expander as an expansion device integrated into organic Rankine cycle (ORC) to recover low-grade waste heat publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2019.114326 – volume: 170 start-page: 557 year: 2019 ident: 10.1016/j.energy.2020.119268_bib4 article-title: LNG cold energy utilization: prospects and challenges publication-title: Energy doi: 10.1016/j.energy.2018.12.170 – volume: 242 start-page: 168 year: 2019 ident: 10.1016/j.energy.2020.119268_bib16 article-title: Systems design and analysis of liquid air energy storage from liquefied natural gas cold energy publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.03.087 – volume: 164 start-page: 602 year: 2018 ident: 10.1016/j.energy.2020.119268_bib21 article-title: Thermo-economic analysis of a novel power generation system integrating a natural gas expansion plant with a geothermal ORC in Tianjin, China publication-title: Energy doi: 10.1016/j.energy.2018.09.042 – volume: 198 start-page: 117353 year: 2020 ident: 10.1016/j.energy.2020.119268_bib11 article-title: Parametric study and optimization of closed Brayton power cycle considering the charge amount of working fluid publication-title: Energy doi: 10.1016/j.energy.2020.117353 – volume: 216 start-page: 112938 year: 2020 ident: 10.1016/j.energy.2020.119268_bib24 article-title: Advanced exergy analysis of an integrated energy storage system based on transcritical CO2 energy storage and Organic Rankine Cycle publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.112938 – year: 2002 ident: 10.1016/j.energy.2020.119268_bib59 – volume: 118 start-page: 776 year: 2017 ident: 10.1016/j.energy.2020.119268_bib26 article-title: Multi-parameter optimization of cold energy recovery in cascade Rankine cycle for LNG regasification using genetic algorithm publication-title: Energy doi: 10.1016/j.energy.2016.10.118 – volume: 65 start-page: 113 year: 2017 ident: 10.1016/j.energy.2020.119268_bib33 article-title: Thermo-economic analysis of combined different ORCs geothermal power plants and LNG cold energy publication-title: Geothermics doi: 10.1016/j.geothermics.2016.09.004 – volume: 197 start-page: 15 year: 2019 ident: 10.1016/j.energy.2020.119268_bib17 article-title: Evaluation of organic Rankine cycle by using hydrocarbons as working fluids: advanced exergy and advanced exergoeconomic analyses publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.111876 – volume: 59 start-page: 490 issue: 1 year: 2013 ident: 10.1016/j.energy.2020.119268_bib34 article-title: Thermodynamic optimization of the operating parameters for a combined power cycle utilizing low-temperature waste heat and LNG cold energy publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2013.05.048 – volume: 38 start-page: 781 year: 2014 ident: 10.1016/j.energy.2020.119268_bib7 article-title: Review of thermal cycles exploiting the exergy of liquefied natural gas in the regasification process publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.07.029 – volume: 121 start-page: 887 year: 2017 ident: 10.1016/j.energy.2020.119268_bib39 article-title: Thermodynamic analysis for working fluids comparison in Rankine-type cycles exploiting the cryogenic exergy in Liquefied Natural Gas (LNG) regasification publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2017.04.082 – volume: 87 start-page: 1260 issue: 4 year: 2010 ident: 10.1016/j.energy.2020.119268_bib55 article-title: Experimental study and modeling of an Organic Rankine Cycle using scroll expander publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.06.026 – volume: 147 start-page: 688 year: 2018 ident: 10.1016/j.energy.2020.119268_bib28 article-title: Thermodynamic optimization and comparative study of different ORC configurations utilizing the exergies of LNG and low grade heat of different temperatures publication-title: Energy doi: 10.1016/j.energy.2018.01.085 – volume: 129 start-page: 1002 year: 2017 ident: 10.1016/j.energy.2020.119268_bib54 article-title: Gear pump for low power output ORC – an efficiency analysis publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.09.227 – volume: 50 start-page: 567 issue: 3 year: 2009 ident: 10.1016/j.energy.2020.119268_bib15 article-title: A combined power cycle utilizing low-temperature waste heat and LNG cold energy publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2008.10.015 – volume: 54 start-page: 78 year: 2013 ident: 10.1016/j.energy.2020.119268_bib45 article-title: A comparative study of power optimization in low-temperature geothermal heat source driven R125 transcritical cycle and HFC organic Rankine cycles publication-title: Renew Energy doi: 10.1016/j.renene.2012.08.055 – volume: 15 start-page: 3963 issue: 8 year: 2011 ident: 10.1016/j.energy.2020.119268_bib52 article-title: Low-grade heat conversion into power using organic Rankine cycles – a review of various applications publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2011.07.024 – volume: 7 start-page: 693 issue: 6 year: 2010 ident: 10.1016/j.energy.2020.119268_bib5 article-title: Understanding the exergy of cold: theory and practical examples publication-title: Int J Exergy doi: 10.1504/IJEX.2010.035516 – volume: 34 start-page: 827 issue: 7 year: 2009 ident: 10.1016/j.energy.2020.119268_bib50 article-title: Utilization of the cryogenic exergy of liquid natural gas (LNG) for the production of electricity publication-title: Energy doi: 10.1016/j.energy.2009.02.015 – volume: 220 start-page: 113079 year: 2020 ident: 10.1016/j.energy.2020.119268_bib61 article-title: Power and efficiency optimizations of an irreversible regenerative organic Rankine cycle publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.113079 – volume: 66 start-page: 927 year: 2014 ident: 10.1016/j.energy.2020.119268_bib37 article-title: Thermodynamic analysis of a Brayton cycle and Rankine cycle arranged in series exploiting the cold exergy of LNG (liquefied natural gas) publication-title: Energy doi: 10.1016/j.energy.2013.12.036 – volume: 90 start-page: 579 year: 2015 ident: 10.1016/j.energy.2020.119268_bib19 article-title: Working fluid selection for an Organic Rankine Cycle utilizing high and low temperature energy of an LNG engine publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2015.07.039 – volume: 105 start-page: 2 year: 2016 ident: 10.1016/j.energy.2020.119268_bib62 article-title: The exploitation of the physical exergy of liquid natural gas by closed power thermodynamic cycles. An overview publication-title: Energy doi: 10.1016/j.energy.2015.09.020 – volume: 100 start-page: 1031 year: 2016 ident: 10.1016/j.energy.2020.119268_bib38 article-title: Thermodynamic analysis of a novel dual-loop organic Rankine cycle for engine waste heat and LNG cold publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2016.02.102 – volume: 24 start-page: 325 year: 2013 ident: 10.1016/j.energy.2020.119268_bib63 article-title: A review of working fluid and expander selections for organic Rankine cycle publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2013.03.040 – year: 1992 ident: 10.1016/j.energy.2020.119268_bib60 – volume: 3 start-page: 356 issue: 1 year: 2011 ident: 10.1016/j.energy.2020.119268_bib6 article-title: LNG cold energy use in agro-food industry: a case study in Sicily publication-title: J Nat Gas Sci Eng doi: 10.1016/j.jngse.2011.02.002 – year: 1997 ident: 10.1016/j.energy.2020.119268_bib43 – volume: 148 start-page: 1227 year: 2020 ident: 10.1016/j.energy.2020.119268_bib20 article-title: Introducing a hybrid renewable energy system for production of power and fresh water using parabolic trough solar collectors and LNG cold energy recovery publication-title: Renew Energy doi: 10.1016/j.renene.2019.10.063 – volume: 167 start-page: 730 year: 2019 ident: 10.1016/j.energy.2020.119268_bib32 article-title: A study of working fluids for Organic Rankine Cycles (ORCs) operating across and below ambient temperature to utilize Liquefied Natural Gas (LNG) cold energy publication-title: Energy doi: 10.1016/j.energy.2018.11.021 – volume: 88 start-page: 304 year: 2015 ident: 10.1016/j.energy.2020.119268_bib31 article-title: Design and optimization of cascade organic Rankine cycle for recovering cryogenic energy from liquefied natural gas using binary working fluid publication-title: Energy doi: 10.1016/j.energy.2015.05.047 – volume: 61 start-page: 179 year: 2013 ident: 10.1016/j.energy.2020.119268_bib14 article-title: Analysis and optimization of cascade Rankine cycle for liquefied natural gas cold energy recovery publication-title: Energy doi: 10.1016/j.energy.2013.08.047 – volume: 38 start-page: 136 issue: 1 year: 2012 ident: 10.1016/j.energy.2020.119268_bib46 article-title: The optimal evaporation temperature and working fluids for subcritical organic Rankine cycle publication-title: Energy doi: 10.1016/j.energy.2011.12.022 – volume: 41 start-page: 514 issue: 1 year: 2012 ident: 10.1016/j.energy.2020.119268_bib53 article-title: Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid publication-title: Energy doi: 10.1016/j.energy.2012.02.035 – year: 2019 ident: 10.1016/j.energy.2020.119268_bib2 – volume: 10 start-page: 1185 issue: 8 year: 2017 ident: 10.1016/j.energy.2020.119268_bib56 article-title: Off-design performances of subcritical and supercritical organic rankine cycles in geothermal power systems under an optimal control strategy publication-title: Energies doi: 10.3390/en10081185 – volume: 126 start-page: 899 year: 2017 ident: 10.1016/j.energy.2020.119268_bib29 article-title: Thermoeconomic analysis and optimization of a regenerative two-stage organic Rankine cycle coupled with liquefied natural gas and solar energy publication-title: Energy doi: 10.1016/j.energy.2017.03.064 – volume: 66 start-page: 423 year: 2014 ident: 10.1016/j.energy.2020.119268_bib48 article-title: Binary ORC (organic Rankine cycles) power plants for the exploitation of medium–low temperature geothermal sources – Part A: thermodynamic optimization publication-title: Energy doi: 10.1016/j.energy.2013.11.056 – year: 2019 ident: 10.1016/j.energy.2020.119268_bib1 – volume: 147 start-page: 1216 year: 2018 ident: 10.1016/j.energy.2020.119268_bib10 article-title: Characteristics and optimization of supercritical CO2 recompression power cycle and the influence of pinch point temperature difference of recuperators publication-title: Energy doi: 10.1016/j.energy.2017.12.161 – volume: 36 start-page: 2828 issue: 5 year: 2011 ident: 10.1016/j.energy.2020.119268_bib35 article-title: A novel cryogenic power cycle for LNG cold energy recovery publication-title: Energy doi: 10.1016/j.energy.2011.02.024 – year: 2018 ident: 10.1016/j.energy.2020.119268_bib58 – volume: 199 start-page: 112002 year: 2019 ident: 10.1016/j.energy.2020.119268_bib44 article-title: Optimal allocation of heat exchangers in a Supercritical carbon dioxide power cycle for waste heat recovery publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.112002 – volume: 22 start-page: 661 issue: 7 year: 1997 ident: 10.1016/j.energy.2020.119268_bib64 article-title: A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat publication-title: Energy doi: 10.1016/S0360-5442(96)00165-X – volume: 26 start-page: 545 issue: 7 year: 2002 ident: 10.1016/j.energy.2020.119268_bib42 article-title: Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture publication-title: Int J Energy Res doi: 10.1002/er.804 – volume: 184 start-page: 107 year: 2019 ident: 10.1016/j.energy.2020.119268_bib40 article-title: Comparative study of liquefied natural gas (LNG) cold energy power generation systems in series and parallel publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.01.040 – volume: 79 start-page: 1191 issue: 3 year: 1996 ident: 10.1016/j.energy.2020.119268_bib41 article-title: Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes publication-title: J Appl Phys doi: 10.1063/1.362674 – volume: 189 start-page: 55 year: 2017 ident: 10.1016/j.energy.2020.119268_bib9 article-title: Parametric study and performance evaluation of an organic Rankine cycle (ORC) system using low-grade heat at temperatures below 80°C publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.12.026 – year: 2020 ident: 10.1016/j.energy.2020.119268_bib57 – volume: 269 start-page: 115049 year: 2020 ident: 10.1016/j.energy.2020.119268_bib23 article-title: Advanced integration of LNG regasification power plant with liquid air energy storage: enhancements in flexibility, safety, and power generation publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115049 – year: 2015 ident: 10.1016/j.energy.2020.119268_bib27 |
SSID | ssj0005899 |
Score | 2.4714756 |
Snippet | An optimization study, under a size constraint, was carried out for an organic Rankine cycle (ORC) combined with an LNG regasification plant for recovering LNG... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 119268 |
SubjectTerms | cold Conductance Evaporators gasification Heat Heat exchangers Heat recovery Liquefied natural gas LNG cold Energy Optimal allocation Optimization Organic Rankine cycle Rankine cycle Resistance Size constraint Superheating system optimization Systems design systems engineering temperature Thermal energy Turbines Working fluid |
Title | Optimal design of organic Rankine cycle recovering LNG cold energy with finite heat exchanger size |
URI | https://dx.doi.org/10.1016/j.energy.2020.119268 https://www.proquest.com/docview/2489309613 https://www.proquest.com/docview/2574380041 |
Volume | 217 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8h9rC9IMZAKwNkpL2aNokdp49VBXTr1kkwNN6s-EsqgrZaCwIe-Nu5Sxy-hITEUyTnnDi-8905vvsdwHcXQsf5LOfSFCUXhU14F-0gR9taWCelqRFvfo_ywYn4eSpPl6Df5MJQWGXU_bVOr7R1bGnH2WzPxuP2Mepe9DdESjXAMyUJdlsIRVK-d_ckzKOoakgSMSfqJn2uivHyVX4d7hJT0h3dlABXXzdPLxR1ZX0OVmEluo2sV4_sMyz5yRp8bLKK52uwsf-YsYaEccnOv4D5g0rhAptcFavBpoHVlZwsOyqpboJn9gafyWhrfFUBE7Jfo0OGAuJYPXJGP2tZGJN7ykh5M38dE4bZfHzr1-HkYP9vf8BjYQVus1wtuAjdLE8shRcaJ4LJC5vaYAsrZOkkHfXZRPmQO4_ORcgEenHK475CyrzsEkLbBixPphP_FRjl7UphMiW8EwQ04GzHSm-NckkoStOCrJlPbSPqOBW_ONdNeNmZrr9FExd0zYUW8Idesxp14w161bBKP5MejYbhjZ5bDWd1XL1znRIiD9XCyVqw-3Ab1x0dppQTP71EGqkIrL8jks13v_wbfEopRIbqy8gtWF78v_Tb6OMszE4lxDvwofdjOBjRdXj0b3gPfEn9kA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PehFfOL6jOA17LZN2u5RRF11XcEHeAvNC1Z0V9xV1F_vTJsqiiB4bSdtmkm-mTQz3wDsWe_b1iUplzovuMhNxDtoBzna1txYKXXFeHPeT7s34vRW3k7BQZ0LQ2GVAfsrTC_ROlxphdFsPQ4GrSvEXvQ3REw1wJNMptMwQ-xUsgEz-ydn3f5XpEdelpEkeU4N6gy6MszLlSl2uFGMCT46MXGu_m6hfmB1aYCOFmA-eI5sv-rcIky54RLM1onF4yVYPfxKWkPBsGrHy6AvEBce8JItwzXYyLOqmJNhlwWVTnDMvOEzGe2OX0puQtbrHzOcI5ZVPWf0v5b5AXmojPCbudeQM8zGg3e3AjdHh9cHXR5qK3CTpNmEC99J0shQhKG2wus0N7HxJjdCFlbSaZ-JMudT69C_8IlARy5zuLWQMi06RNK2Co3haOjWgFHqrhQ6yYSzgrgGrGkb6YzObOTzQjchqcdTmUA8TvUv7lUdYXanqm9RpAVVaaEJ_LPVY0W88Yd8VqtKfZtACm3DHy03a82qsIDHKiZSHiqHkzRh9_M2Lj06TymGbvSMMjIjvv62iNb__fIdmO1en_dU76R_tgFzMUXMULkZuQmNydOz20KXZ6K3w5T-ADRN_p4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+of+organic+Rankine+cycle+recovering+LNG+cold+energy+with+finite+heat+exchanger+size&rft.jtitle=Energy+%28Oxford%29&rft.au=Choi%2C+Hong+Wone&rft.au=Na%2C+Sun-Ik&rft.au=Hong%2C+Sung+Bin&rft.au=Chung%2C+Yoong&rft.date=2021-02-15&rft.issn=0360-5442&rft.volume=217+p.119268-&rft_id=info:doi/10.1016%2Fj.energy.2020.119268&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |