Object-Based Automatic Mapping of Winter Wheat Based on Temporal Phenology Patterns Derived from Multitemporal Sentinel-1 and Sentinel-2 Imagery
Although winter wheat has been mapped by remote sensing in several studies, such mapping efforts did not sufficiently utilize contextual information to reduce the noise and still depended heavily on optical imagery and exhausting classification approaches. Furthermore, the influence of similarity me...
Saved in:
Published in | ISPRS international journal of geo-information Vol. 11; no. 8; p. 424 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although winter wheat has been mapped by remote sensing in several studies, such mapping efforts did not sufficiently utilize contextual information to reduce the noise and still depended heavily on optical imagery and exhausting classification approaches. Furthermore, the influence of similarity measures on winter wheat identification remains unclear. To overcome these limitations, this study developed an object-based automatic approach to map winter wheat using multitemporal Sentinel-1 (S1) and Sentinel-2 (S2) imagery. First, after S1 and S2 images were preprocessed, the Simple Non-Iterative Clustering (SNIC) algorithm was used to conduct image segmentation to obtain homogeneous spatial objects with a fusion of S1 and S2 bands. Second, the temporal phenology patterns (TPP) of winter wheat and other typical land covers were derived from object-level S1 and S2 imagery based on the collected ground truth samples, and two improved distance measures (i.e., a composite of Euclidean distance and Spectral Angle Distance, (ESD) and the difference–similarity factor distance (DSF)) were built to evaluate the similarity between two TPPs. Third, winter wheat objects were automatically identified from the segmented spatial objects by the maximum between-class variance method (OTSU) with distance measures based on the unique TPP of winter wheat. According to ground truth data, the DSF measure was superior to other distance measures in winter wheat mapping, since it achieved the best overall accuracy (OA), best kappa coefficient (Kappa) and more spatial details for each feasible band (i.e., NDVI, VV, and VH/VV), or it obtained results comparable to those for the best one (e.g., NDVI + VV). The resultant winter wheat maps derived from the NDVI band with the DSF measure achieved the best accuracy and more details, and had an average OA and Kappa of 92% and 84%, respectively. The VV polarization with the DSF measure produced the second best winter wheat maps with an average OA and Kappa of 91% and 80%, respectively. The results indicate the great potential of the proposed object-based approach for automatic winter wheat mapping for both optical and Synthetic Aperture Radar (SAR) imagery. |
---|---|
AbstractList | Although winter wheat has been mapped by remote sensing in several studies, such mapping efforts did not sufficiently utilize contextual information to reduce the noise and still depended heavily on optical imagery and exhausting classification approaches. Furthermore, the influence of similarity measures on winter wheat identification remains unclear. To overcome these limitations, this study developed an object-based automatic approach to map winter wheat using multitemporal Sentinel-1 (S1) and Sentinel-2 (S2) imagery. First, after S1 and S2 images were preprocessed, the Simple Non-Iterative Clustering (SNIC) algorithm was used to conduct image segmentation to obtain homogeneous spatial objects with a fusion of S1 and S2 bands. Second, the temporal phenology patterns (TPP) of winter wheat and other typical land covers were derived from object-level S1 and S2 imagery based on the collected ground truth samples, and two improved distance measures (i.e., a composite of Euclidean distance and Spectral Angle Distance, (ESD) and the difference–similarity factor distance (DSF)) were built to evaluate the similarity between two TPPs. Third, winter wheat objects were automatically identified from the segmented spatial objects by the maximum between-class variance method (OTSU) with distance measures based on the unique TPP of winter wheat. According to ground truth data, the DSF measure was superior to other distance measures in winter wheat mapping, since it achieved the best overall accuracy (OA), best kappa coefficient (Kappa) and more spatial details for each feasible band (i.e., NDVI, VV, and VH/VV), or it obtained results comparable to those for the best one (e.g., NDVI + VV). The resultant winter wheat maps derived from the NDVI band with the DSF measure achieved the best accuracy and more details, and had an average OA and Kappa of 92% and 84%, respectively. The VV polarization with the DSF measure produced the second best winter wheat maps with an average OA and Kappa of 91% and 80%, respectively. The results indicate the great potential of the proposed object-based approach for automatic winter wheat mapping for both optical and Synthetic Aperture Radar (SAR) imagery. |
Author | Jin, Guowang Zhang, Hongmin Xiong, Xin Wu, Ke Wang, Limei |
Author_xml | – sequence: 1 givenname: Limei orcidid: 0000-0002-9312-3514 surname: Wang fullname: Wang, Limei – sequence: 2 givenname: Guowang surname: Jin fullname: Jin, Guowang – sequence: 3 givenname: Xin surname: Xiong fullname: Xiong, Xin – sequence: 4 givenname: Hongmin surname: Zhang fullname: Zhang, Hongmin – sequence: 5 givenname: Ke surname: Wu fullname: Wu, Ke |
BookMark | eNpNkdtO3DAQhq0KpHK64wEs9bYpPq29vqRAy0qLWAkQl5YTj4OjxE4dL9K-RR-5abctzM3MP_r0z2jmGB3EFAGhc0q-cK7JRejaQClZEsHEB3TEGCOV1lIcvKs_orNp6sgcmvKlIEfo533dQVOqr3YChy-3JQ22hAbf2XEMscXJ4-cQC2T8_AK24D2XIn6EYUzZ9njzAjH1qd3hjS0zGCd8DTm8zpjPacB3276E8o9-gFhChL6i2Eb3JhleDbaFvDtFh972E5z9zSfo6dvN49Vttb7_vrq6XFcNl6pUAmoq-LIhspbAJQgh2EJprcTCSaWkA2CklsTpxivPqRfc1Zp7CqR2FBQ_Qau9r0u2M2MOg807k2wwfxopt8bm-RI9mJpyy6xifsGYkHypla5n2UinhBWKz16f9l5jTj-2MBXTpW2O8_qGKSIZFUzRmfq8p5qcpimD_z-VEvP7heb9C_kvG3OQag |
CitedBy_id | crossref_primary_10_1371_journal_pone_0302882 crossref_primary_10_3390_s23010509 crossref_primary_10_1080_01431161_2024_2318773 crossref_primary_10_1016_j_ecolind_2023_110904 crossref_primary_10_3390_ijgi11120606 crossref_primary_10_1117_1_JRS_18_024514 |
Cites_doi | 10.1016/j.isprsjprs.2016.05.014 10.1080/01431160701250390 10.1016/j.isprsjprs.2014.06.014 10.1016/j.jag.2007.11.002 10.1016/S2095-3119(15)61304-1 10.11648/j.ajrs.20190701.13 10.1016/j.cmpb.2021.106449 10.1016/j.agrformet.2020.108153 10.1016/j.jag.2021.102446 10.5958/2320-642X.2015.00003.4 10.1016/j.rse.2017.08.036 10.1088/1755-1315/427/1/012010 10.1038/s41437-020-0320-1 10.1016/S2095-3119(19)62615-8 10.1007/s12665-019-8654-9 10.1016/j.rse.2015.04.019 10.1016/j.isprsjprs.2015.05.011 10.3390/rs11010031 10.3390/s20113246 10.1016/j.rse.2018.09.008 10.3390/rs13173433 10.3390/rs13061148 10.3390/rs14020284 10.3390/agronomy10060845 10.3390/rs70505347 10.3390/rs11010053 10.3390/ijgi9110648 10.3390/app112110104 10.1109/JSTARS.2020.3026724 10.1109/CVPR.2017.520 10.1016/j.fcr.2018.02.029 10.3390/rs13101954 10.3390/rs13122299 10.3390/rs12111735 10.1134/S1064230714040169 10.3390/rs13040561 10.1175/1520-0442(2001)014<2790:CODMIC>2.0.CO;2 10.1007/978-3-662-09366-5_12 |
ContentType | Journal Article |
Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SC 7UA 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 H96 HCIFZ JQ2 KR7 L.G L6V L7M L~C L~D M7S P5Z P62 PCBAR PIMPY PQEST PQQKQ PQUKI PTHSS DOA |
DOI | 10.3390/ijgi11080424 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Engineering Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Visual Arts |
EISSN | 2220-9964 |
ExternalDocumentID | oai_doaj_org_article_b13a2a72f5224638979ba72c6d74a473 10_3390_ijgi11080424 |
GeographicLocations | China Henan China |
GeographicLocations_xml | – name: China – name: Henan China |
GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION GROUPED_DOAJ HCIFZ IAO KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PIMPY PROAC PTHSS RIG ZBA 7SC 7UA 8FD ABUWG AZQEC C1K DWQXO F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c367t-4eb1438c06b6e36e44425799745d6776dee20b60d9cf7f31f43db93f1e0bd1e73 |
IEDL.DBID | 8FG |
ISSN | 2220-9964 |
IngestDate | Tue Oct 22 15:04:55 EDT 2024 Tue Nov 05 13:27:21 EST 2024 Thu Sep 26 21:00:39 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-4eb1438c06b6e36e44425799745d6776dee20b60d9cf7f31f43db93f1e0bd1e73 |
ORCID | 0000-0002-9312-3514 |
OpenAccessLink | https://www.proquest.com/docview/2706214271?pq-origsite=%requestingapplication% |
PQID | 2706214271 |
PQPubID | 2032387 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b13a2a72f5224638979ba72c6d74a473 proquest_journals_2706214271 crossref_primary_10_3390_ijgi11080424 |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | ISPRS international journal of geo-information |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Walker (ref_11) 2015; 165 Hao (ref_33) 2015; 7 ref_35 ref_34 Urban (ref_4) 2018; 223 Simonneaux (ref_10) 2008; 29 Cho (ref_24) 2010; 48 Zhao (ref_36) 2021; 11 Hyles (ref_3) 2020; 125 ref_19 Yang (ref_22) 2021; 102 Mcnairn (ref_37) 2009; 2 Vizilter (ref_30) 2014; 53 ref_16 Zhang (ref_38) 2019; 18 ref_15 Muthukumarasamy (ref_17) 2019; 78 Zhang (ref_27) 2017; 201 Xu (ref_28) 2018; 218 Modh (ref_32) 2012; 1 Jiao (ref_20) 2014; 96 Mimmack (ref_31) 2010; 14 Tao (ref_41) 2017; 16 Bajaj (ref_1) 1994; Volume 29 Yan (ref_48) 2019; 7 Tian (ref_5) 2020; 294 Zuo (ref_39) 2019; 49 Zhong (ref_13) 2016; 119 Pique (ref_8) 2021; 4 ref_47 Deb (ref_9) 2015; 3 ref_45 ref_44 Zxa (ref_46) 2021; 212 ref_21 ref_43 ref_40 Gong (ref_7) 1995; 1 ref_29 Zhou (ref_42) 2017; 33 Sheykhmousa (ref_23) 2020; 13 Abbas (ref_26) 2016; 48 Zhang (ref_14) 2008; 10 Chureesampant (ref_18) 2008; 5 Li (ref_2) 2020; 427 Zhang (ref_12) 2016; 106 ref_6 Verrelst (ref_25) 2021; 13 |
References_xml | – volume: 119 start-page: 151 year: 2016 ident: ref_13 article-title: Automated Mapping of Soybean and Corn Using Phenology publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.05.014 contributor: fullname: Zhong – volume: 29 start-page: 95 year: 2008 ident: ref_10 article-title: The Use of High-Resolution Image Time Series for Crop Classification and Evapotranspiration Estimate over an Irrigated Area in Central Morocco publication-title: Int. J. Remote Sens. doi: 10.1080/01431160701250390 contributor: fullname: Simonneaux – volume: 96 start-page: 38 year: 2014 ident: ref_20 article-title: Object-Oriented Crop Mapping and Monitoring using Multi-Temporal Polarimetric Radarsat-2 Data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.06.014 contributor: fullname: Jiao – volume: 4 start-page: 15 year: 2021 ident: ref_8 article-title: Estimation of Crop Production and CO2 Fluxes Using Remote Sensing: Application to a Winter Wheat/Sunflower Rotation publication-title: Environ. Sci. Proc. contributor: fullname: Pique – volume: 10 start-page: 476 year: 2008 ident: ref_14 article-title: Crop Discrimination in Northern China with Double Cropping Systems using Fourier Analysis of Time-Series MODIS Data publication-title: Int. J. Appl. Earth Observ. Geoinform. doi: 10.1016/j.jag.2007.11.002 contributor: fullname: Zhang – volume: 16 start-page: 348 year: 2017 ident: ref_41 article-title: Mapping Winter Wheat Using Phenological Feature of Peak Before Winter on the North China Plain Based on Time-Series MODIS Data publication-title: J. Integr. Agr. doi: 10.1016/S2095-3119(15)61304-1 contributor: fullname: Tao – volume: 7 start-page: 13 year: 2019 ident: ref_48 article-title: A Microwave Scattering Model for Simulating the C-Band SAR Backscatter of Wheat Canopy publication-title: Ame. J. Remote Sens. doi: 10.11648/j.ajrs.20190701.13 contributor: fullname: Yan – volume: 212 start-page: 106449 year: 2021 ident: ref_46 article-title: Estimators and Confidence Intervals of f2 Using Bootstrap Methodology for the Comparison of Dissolution Profiles publication-title: Comput. Meth. Prog. Biomed. doi: 10.1016/j.cmpb.2021.106449 contributor: fullname: Zxa – volume: 294 start-page: 108153 year: 2020 ident: ref_5 article-title: Investigating the Urban-Induced Microclimate Effects on Winter Wheat Spring Phenology Using Sentinel-2 Time Series publication-title: Agric. Forest Meteorol. doi: 10.1016/j.agrformet.2020.108153 contributor: fullname: Tian – volume: 102 start-page: 102446 year: 2021 ident: ref_22 article-title: AGTOC: A Novel Approach to Winter Wheat Mapping by Automatic Generation of Training Samples and One-Class Classification on Google Earth Engine publication-title: Int. J. Appl. Earth Observ. Geoinform. doi: 10.1016/j.jag.2021.102446 contributor: fullname: Yang – volume: 3 start-page: 26 year: 2015 ident: ref_9 article-title: Soil Organic Carbon: Towards Better Soil Health, Productivity and Climate Change Mitigation publication-title: Clim. Chang. Environ. Sustain. doi: 10.5958/2320-642X.2015.00003.4 contributor: fullname: Deb – volume: 201 start-page: 99 year: 2017 ident: ref_27 article-title: An Evaluation of Monthly Impervious Surface Dynamics by Fusing Landsat and MODIS Time Series in the Pearl River Delta, China, from 2000 To 2015 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.08.036 contributor: fullname: Zhang – volume: 49 start-page: 9 year: 2019 ident: ref_39 article-title: Area Extraction and Interannual Variation Monitoring of Winter Wheat in Counties Based on GF-1 Satellite publication-title: J. Henan Univ. (Nat. Sci.) contributor: fullname: Zuo – volume: 427 start-page: 012010 year: 2020 ident: ref_2 article-title: Analysis of Climatic Potential Productivity and Wheat Production in Different Producing Areas of the Northern Hemisphere publication-title: IOP Conf. Ser. Earth Environ. Sci. doi: 10.1088/1755-1315/427/1/012010 contributor: fullname: Li – volume: 125 start-page: 417 year: 2020 ident: ref_3 article-title: Phenology and Related Traits for Wheat Adaptation publication-title: Heredity doi: 10.1038/s41437-020-0320-1 contributor: fullname: Hyles – volume: 2 start-page: 11150411 year: 2009 ident: ref_37 article-title: Terrasar-X and Radarsat-2 for Crop Classification and Acreage Estimation publication-title: IGARSS contributor: fullname: Mcnairn – volume: 18 start-page: 2628 year: 2019 ident: ref_38 article-title: Winter Wheat Identification by Integrating Spectral and Temporal Information Derived from Multi-Resolution Remote Sensing Data publication-title: J. Integr. Agr. doi: 10.1016/S2095-3119(19)62615-8 contributor: fullname: Zhang – volume: 78 start-page: 643 year: 2019 ident: ref_17 article-title: Incorporation of Textural Information with SAR and Optical Imagery for Improved Land Cover Mapping publication-title: Environ. Earth Sci. doi: 10.1007/s12665-019-8654-9 contributor: fullname: Muthukumarasamy – volume: 48 start-page: 4133 year: 2010 ident: ref_24 article-title: Improving Discrimination of Savanna Tree Species Through a Multiple-Endmember Spectral Angle Mapper Approach: Canopy-Level Analysis publication-title: IEEE Trans. Geosci. Remote Sens. contributor: fullname: Cho – volume: 1 start-page: 61 year: 1995 ident: ref_7 article-title: A Soil Layered Water Budget Model for Winter Wheat and Summer Maize publication-title: Acta Agric. Univ. Pekin. contributor: fullname: Gong – volume: 165 start-page: 42 year: 2015 ident: ref_11 article-title: Land Surface Phenology along Urban to Rural Gradients in the U.S. Great Plains publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.04.019 contributor: fullname: Walker – volume: 48 start-page: 315 year: 2016 ident: ref_26 article-title: K-Means and ISODATA Clustering Algorithms for Landcover Classification using Remote Sensing publication-title: Sindh Univ. Res. J. contributor: fullname: Abbas – volume: 106 start-page: 157 year: 2016 ident: ref_12 article-title: Mapping Paddy Rice Planting Areas Through Time Series Analysis of MODIS Land Surface Temperature and Vegetation Index Data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.05.011 contributor: fullname: Zhang – ident: ref_47 doi: 10.3390/rs11010031 – ident: ref_6 – ident: ref_15 doi: 10.3390/s20113246 – volume: 218 start-page: 13 year: 2018 ident: ref_28 article-title: Tracking Annual Cropland Changes from 1984 to 2016 using Time-Series Landsat Images with a Change-Detection and Post-Classification Approach: Experiments from Three Sites in Africa publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.09.008 contributor: fullname: Xu – volume: 13 start-page: 3433 year: 2021 ident: ref_25 article-title: Classification of Plant Ecological Units in Heterogeneous Semi-Steppe Rangelands: Performance Assessment of Four Classification Algorithms publication-title: Remote Sens. doi: 10.3390/rs13173433 contributor: fullname: Verrelst – ident: ref_45 doi: 10.3390/rs13061148 – ident: ref_40 doi: 10.3390/rs14020284 – ident: ref_16 doi: 10.3390/agronomy10060845 – volume: 7 start-page: 5347 year: 2015 ident: ref_33 article-title: Feature Selection of Time Series MODIS Data for Early Crop Classification using Random Forest: A Case Study in Kansas, USA publication-title: Remote Sens. doi: 10.3390/rs70505347 contributor: fullname: Hao – ident: ref_29 doi: 10.3390/rs11010053 – ident: ref_35 doi: 10.3390/ijgi9110648 – volume: 11 start-page: 10104 year: 2021 ident: ref_36 article-title: Integration of Sentinel 1 and Sentinel 2 Satellite Images for Crop Mapping publication-title: Appl. Sci. doi: 10.3390/app112110104 contributor: fullname: Zhao – volume: 13 start-page: 6308 year: 2020 ident: ref_23 article-title: Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta–Analysis And Systematic Review publication-title: IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.3026724 contributor: fullname: Sheykhmousa – volume: 1 start-page: 27 year: 2012 ident: ref_32 article-title: A New K-mean Color Image Segmentation with Cosine Distance for Satellite Images publication-title: IJEAT contributor: fullname: Modh – volume: 33 start-page: 7 year: 2017 ident: ref_42 article-title: Planting Area Extraction of Winter Wheat Based on Multi-Temporal SAR Data and Optical Imagery publication-title: Trans. CSAE contributor: fullname: Zhou – ident: ref_44 doi: 10.1109/CVPR.2017.520 – volume: 223 start-page: 137 year: 2018 ident: ref_4 article-title: Combined Effects of Drought and High Temperature on Photosynthetic Characteristics in Four Winter Wheat Genotypes publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2018.02.029 contributor: fullname: Urban – ident: ref_43 doi: 10.3390/rs13101954 – ident: ref_21 doi: 10.3390/rs13122299 – ident: ref_34 doi: 10.3390/rs12111735 – volume: 53 start-page: 542 year: 2014 ident: ref_30 article-title: Similarity Measures and Comparison Metrics for Image Shapes publication-title: J. Comput. Syst. Sci. Int. doi: 10.1134/S1064230714040169 contributor: fullname: Vizilter – volume: 5 start-page: 1183 year: 2008 ident: ref_18 article-title: Multi-temporal SAR and Optical Data Fusion with Texture Measures for Landcover Classification Based on the Bayesian Theory publication-title: ISPRS. SC. Newlett. contributor: fullname: Chureesampant – ident: ref_19 doi: 10.3390/rs13040561 – volume: 14 start-page: 2790 year: 2010 ident: ref_31 article-title: Choice of Distance Matrices in Cluster Analysis: Defining Regions publication-title: J. Clim. doi: 10.1175/1520-0442(2001)014<2790:CODMIC>2.0.CO;2 contributor: fullname: Mimmack – volume: Volume 29 start-page: 161 year: 1994 ident: ref_1 article-title: Regeneration of Plants from Protoplasts of Triticum aestivum L. (Wheat) publication-title: Plant Protoplasts and Genetic Engineering doi: 10.1007/978-3-662-09366-5_12 contributor: fullname: Bajaj |
SSID | ssj0000913840 |
Score | 2.314442 |
Snippet | Although winter wheat has been mapped by remote sensing in several studies, such mapping efforts did not sufficiently utilize contextual information to reduce... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database |
StartPage | 424 |
SubjectTerms | Accuracy Algorithms Classification Clustering Crops Decision trees Distance Euclidean geometry Field study Food security Food supply Ground truth Image classification Image processing Image segmentation Imagery Information processing Kalman filters Mapping multitemporal remote sensing images Noise Noise reduction object-based approach OTSU Phenology Radar imaging Remote sensing SAR (radar) Similarity similarity measure Similarity measures Synthetic aperture radar Triticum aestivum Vegetation Wavelet transforms Wheat Winter Winter wheat winter wheat mapping |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELUQF-CAWEXZ5AMcI-LYtfGxZVFBAiqx3qI4tqEIUkRbJP6CT2bGTqGIAxeOjkZK5DeexZl5Q8iOcQV49dImzVSaRDjjE0ibbaJTb5gx6b4tsMH57Fx2rsXpXfNuYtQX1oRFeuC4cXuG8SIrVOabSH0G7lVpA8tSWiUKoSLPZ6onkqlggzXjkLrESncOef1e7_G-hyXv-Kvvhw8KVP2_LHFwL8cLZL6OC2krfs8imXLVEpmpR5Q_vC-RuZveYBQlBsvk48LgBUrSBidkaWs07AfqVXpWIN_CPe17eotMEK80WFsa5foVvYpUVE-0--DilTrtBorNakAPQRvfQAxbTmjszB1LX2JRUeWeEkaLyn4vM3ryjCwY7yvk-vjo6qCT1MMVkpJLNURYcPJ5CRBJx6UTAk-vhvSiaaVS0jqXpUamVpdeec684NZo7plLjWVO8VUyXfUrt0Yog5CmFJkRXmuIb6z2otQe4lBmCi8da5Dd8XbnL5FDI4fcA2HJJ2FpkDZi8SWDzNfhAehDXutD_pc-NMjmGMm8Po6DPFOpRG45xdb_4x0bZDbDLohQB7hJpoevI7cFscnQbAc1_ATae-Hi priority: 102 providerName: Directory of Open Access Journals |
Title | Object-Based Automatic Mapping of Winter Wheat Based on Temporal Phenology Patterns Derived from Multitemporal Sentinel-1 and Sentinel-2 Imagery |
URI | https://www.proquest.com/docview/2706214271 https://doaj.org/article/b13a2a72f5224638979ba72c6d74a473 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB0VOBQOVUtBLNCVD_RoEcdeG58QS9nSSsCqhcItimN7WQQJbHYr8S_4yfU4WWhViaOTOfnZ8-WZNwA7xuXBqheW9hJpqHDG0xA2W6oTb5gxyZ7NscH55FQeX4jvV72rNuFWt2WVc50YFbWtCsyR76YqkUgPptj-_QPFqVH4utqO0FiAJZYqhcHX3uDrc44FOS9DANPUu_MQ3e-Ob0ZjLHzHB79_LFEk7P9PH0cjM3gP71rvkBw0cH6AN65chbftoPLrx1VY-TWuZ41E_RGezgymUWg_mCJLDmbTKhKwkpMcWRdGpPLkEvkgJiTqXNLIVSU5bwipbsnw2jWJdTKMRJtlTb6EM_k7iGHjCWn6c-fSP7G0qHS3lJG8tC_LlHy7Qy6MxzW4GBydHx7TdsQCLbhUUwQH558XASjpuHRC4B3WIcjoWamUtM6liZGJ1YVXnjMvuDWae-YSY5lTfB0Wy6p0G0BYcGwKkRrhtQ5ejtVeFNoHb5SZ3EvHOvB5vt3ZfcOkkYUIBGHJ_oalA33E4lkG-a_jh2oyytrrlBnG8zRXqe8hIV5wupQ2YVlIq0QuFO_A9hzJrL2UdfZyhDZf_70Fyyl2OcQ6v21YnE5m7lPwPaamGw9YF5b6R6fDH90Ywf8BpA7c5A |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74369,74636 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BORQOCAqoCwV8gKPVOPba-IRaYNlCt1RiC71FcWxvF5WkbHaR-i_4ycw42RaExNHJnPzs-fLMG4AXLpRo1SvPh5l2XAUXOYbNntssOuFc9sqX1OA8OdLjE_XhdHjaJ9zavqxyrROTovZNRTny3dxkmujBjHh98YPT1Ch6Xe1HaNyEW0qiraZO8dH7qxwLcV5iANPVu0uM7nfn32ZzKnynB7-_LFEi7P9HHycjM7oHd3vvkO11cN6HG6Hegs1-UPnZ5Rbc-TJvV51E-wB-fXKURuH7aIo821stm0TAyiYlsS7MWBPZV-KDWLCkc1kn19Rs2hFSnbPjs9Al1tlxItqsW_YWz-RPFKPGE9b1566lP1NpUR3OuWBl7a-XOTv4TlwYlw_hZPRu-mbM-xELvJLaLAkcmn9eIVA6SB2UojtsMcgYem2M9iHkmdOZt1U0UYqopHdWRhEy50Uw8hFs1E0dtoEJdGwqlTsVrUUvx9uoKhvRGxWujDqIAbxcb3dx0TFpFBiBECzFn7AMYJ-wuJIh_uv0oVnMiv46FU7IMi9NHodEiIdOl7EOl5X2RpXKyAHsrJEs-kvZFtdH6PH_fz-HzfF0clgcHhx9fAK3c-p4SDV_O7CxXKzCU_RDlu5ZOmy_AexQ3Tc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6NToLxgGAwrTCYH-DRahy79vyEVrZqG6xUsMHeoji226KRbE2LtP-CPxlf4m5MSDwmuad85_vlu-8A3hqXB69eWNpPpKHCGU9D2mypTrxhxiR7NscB59ORPDoXJxf9i9j_VMe2ypVNbAy1rQqskfdSlUikB1Os52NbxPhg-P7qmuIGKbxpjes0HsC6QhasDqwPDkfjL7cVF2TADOlM2_3OQ67fm_2YzLANHq__7vmlhr7_H-vcuJzhU3gSY0Wy34L7DNZcuQmP4try6c0mPP42q5etRP0cfn82WFShg-CYLNlfLqqGjpWc5sjBMCGVJ9-RHWJOGgtMWrmqJGctPdUlGU9dW2Yn44Z2s6zJQdDQX0EMx1BIO627kv6KjUalu6SM5KW9e0zJ8U9kxrh5AefDw7MPRzQuXKAFl2qBUOE29CLAJh2XTgg80TqkHH0rlZLWuTQxMrG68Mpz5gW3RnPPXGIsc4pvQaesSrcNhIUwpxCpEV7rEPNY7UWhfYhNmcm9dKwL71a_O7tqeTWykI8gLNnfsHRhgFjcyiAbdvOimk-yeLgyw3ie5ir1faTHCyGY0iY8FtIqkQvFu7CzQjKLR7TO7hTq5f8_78LDoGnZp-PRx1ewkeL4Q9MAuAOdxXzpXoegZGHeRG37AwCr4to |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object-Based+Automatic+Mapping+of+Winter+Wheat+Based+on+Temporal+Phenology+Patterns+Derived+from+Multitemporal+Sentinel-1+and+Sentinel-2+Imagery&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Wang%2C+Limei&rft.au=Jin%2C+Guowang&rft.au=Xiong%2C+Xin&rft.au=Zhang%2C+Hongmin&rft.date=2022-08-01&rft.issn=2220-9964&rft.eissn=2220-9964&rft.volume=11&rft.issue=8&rft.spage=424&rft_id=info:doi/10.3390%2Fijgi11080424&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijgi11080424 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon |