Object-Based Automatic Mapping of Winter Wheat Based on Temporal Phenology Patterns Derived from Multitemporal Sentinel-1 and Sentinel-2 Imagery

Although winter wheat has been mapped by remote sensing in several studies, such mapping efforts did not sufficiently utilize contextual information to reduce the noise and still depended heavily on optical imagery and exhausting classification approaches. Furthermore, the influence of similarity me...

Full description

Saved in:
Bibliographic Details
Published inISPRS international journal of geo-information Vol. 11; no. 8; p. 424
Main Authors Wang, Limei, Jin, Guowang, Xiong, Xin, Zhang, Hongmin, Wu, Ke
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although winter wheat has been mapped by remote sensing in several studies, such mapping efforts did not sufficiently utilize contextual information to reduce the noise and still depended heavily on optical imagery and exhausting classification approaches. Furthermore, the influence of similarity measures on winter wheat identification remains unclear. To overcome these limitations, this study developed an object-based automatic approach to map winter wheat using multitemporal Sentinel-1 (S1) and Sentinel-2 (S2) imagery. First, after S1 and S2 images were preprocessed, the Simple Non-Iterative Clustering (SNIC) algorithm was used to conduct image segmentation to obtain homogeneous spatial objects with a fusion of S1 and S2 bands. Second, the temporal phenology patterns (TPP) of winter wheat and other typical land covers were derived from object-level S1 and S2 imagery based on the collected ground truth samples, and two improved distance measures (i.e., a composite of Euclidean distance and Spectral Angle Distance, (ESD) and the difference–similarity factor distance (DSF)) were built to evaluate the similarity between two TPPs. Third, winter wheat objects were automatically identified from the segmented spatial objects by the maximum between-class variance method (OTSU) with distance measures based on the unique TPP of winter wheat. According to ground truth data, the DSF measure was superior to other distance measures in winter wheat mapping, since it achieved the best overall accuracy (OA), best kappa coefficient (Kappa) and more spatial details for each feasible band (i.e., NDVI, VV, and VH/VV), or it obtained results comparable to those for the best one (e.g., NDVI + VV). The resultant winter wheat maps derived from the NDVI band with the DSF measure achieved the best accuracy and more details, and had an average OA and Kappa of 92% and 84%, respectively. The VV polarization with the DSF measure produced the second best winter wheat maps with an average OA and Kappa of 91% and 80%, respectively. The results indicate the great potential of the proposed object-based approach for automatic winter wheat mapping for both optical and Synthetic Aperture Radar (SAR) imagery.
AbstractList Although winter wheat has been mapped by remote sensing in several studies, such mapping efforts did not sufficiently utilize contextual information to reduce the noise and still depended heavily on optical imagery and exhausting classification approaches. Furthermore, the influence of similarity measures on winter wheat identification remains unclear. To overcome these limitations, this study developed an object-based automatic approach to map winter wheat using multitemporal Sentinel-1 (S1) and Sentinel-2 (S2) imagery. First, after S1 and S2 images were preprocessed, the Simple Non-Iterative Clustering (SNIC) algorithm was used to conduct image segmentation to obtain homogeneous spatial objects with a fusion of S1 and S2 bands. Second, the temporal phenology patterns (TPP) of winter wheat and other typical land covers were derived from object-level S1 and S2 imagery based on the collected ground truth samples, and two improved distance measures (i.e., a composite of Euclidean distance and Spectral Angle Distance, (ESD) and the difference–similarity factor distance (DSF)) were built to evaluate the similarity between two TPPs. Third, winter wheat objects were automatically identified from the segmented spatial objects by the maximum between-class variance method (OTSU) with distance measures based on the unique TPP of winter wheat. According to ground truth data, the DSF measure was superior to other distance measures in winter wheat mapping, since it achieved the best overall accuracy (OA), best kappa coefficient (Kappa) and more spatial details for each feasible band (i.e., NDVI, VV, and VH/VV), or it obtained results comparable to those for the best one (e.g., NDVI + VV). The resultant winter wheat maps derived from the NDVI band with the DSF measure achieved the best accuracy and more details, and had an average OA and Kappa of 92% and 84%, respectively. The VV polarization with the DSF measure produced the second best winter wheat maps with an average OA and Kappa of 91% and 80%, respectively. The results indicate the great potential of the proposed object-based approach for automatic winter wheat mapping for both optical and Synthetic Aperture Radar (SAR) imagery.
Author Jin, Guowang
Zhang, Hongmin
Xiong, Xin
Wu, Ke
Wang, Limei
Author_xml – sequence: 1
  givenname: Limei
  orcidid: 0000-0002-9312-3514
  surname: Wang
  fullname: Wang, Limei
– sequence: 2
  givenname: Guowang
  surname: Jin
  fullname: Jin, Guowang
– sequence: 3
  givenname: Xin
  surname: Xiong
  fullname: Xiong, Xin
– sequence: 4
  givenname: Hongmin
  surname: Zhang
  fullname: Zhang, Hongmin
– sequence: 5
  givenname: Ke
  surname: Wu
  fullname: Wu, Ke
BookMark eNpNkdtO3DAQhq0KpHK64wEs9bYpPq29vqRAy0qLWAkQl5YTj4OjxE4dL9K-RR-5abctzM3MP_r0z2jmGB3EFAGhc0q-cK7JRejaQClZEsHEB3TEGCOV1lIcvKs_orNp6sgcmvKlIEfo533dQVOqr3YChy-3JQ22hAbf2XEMscXJ4-cQC2T8_AK24D2XIn6EYUzZ9njzAjH1qd3hjS0zGCd8DTm8zpjPacB3276E8o9-gFhChL6i2Eb3JhleDbaFvDtFh972E5z9zSfo6dvN49Vttb7_vrq6XFcNl6pUAmoq-LIhspbAJQgh2EJprcTCSaWkA2CklsTpxivPqRfc1Zp7CqR2FBQ_Qau9r0u2M2MOg807k2wwfxopt8bm-RI9mJpyy6xifsGYkHypla5n2UinhBWKz16f9l5jTj-2MBXTpW2O8_qGKSIZFUzRmfq8p5qcpimD_z-VEvP7heb9C_kvG3OQag
CitedBy_id crossref_primary_10_1371_journal_pone_0302882
crossref_primary_10_3390_s23010509
crossref_primary_10_1080_01431161_2024_2318773
crossref_primary_10_1016_j_ecolind_2023_110904
crossref_primary_10_3390_ijgi11120606
crossref_primary_10_1117_1_JRS_18_024514
Cites_doi 10.1016/j.isprsjprs.2016.05.014
10.1080/01431160701250390
10.1016/j.isprsjprs.2014.06.014
10.1016/j.jag.2007.11.002
10.1016/S2095-3119(15)61304-1
10.11648/j.ajrs.20190701.13
10.1016/j.cmpb.2021.106449
10.1016/j.agrformet.2020.108153
10.1016/j.jag.2021.102446
10.5958/2320-642X.2015.00003.4
10.1016/j.rse.2017.08.036
10.1088/1755-1315/427/1/012010
10.1038/s41437-020-0320-1
10.1016/S2095-3119(19)62615-8
10.1007/s12665-019-8654-9
10.1016/j.rse.2015.04.019
10.1016/j.isprsjprs.2015.05.011
10.3390/rs11010031
10.3390/s20113246
10.1016/j.rse.2018.09.008
10.3390/rs13173433
10.3390/rs13061148
10.3390/rs14020284
10.3390/agronomy10060845
10.3390/rs70505347
10.3390/rs11010053
10.3390/ijgi9110648
10.3390/app112110104
10.1109/JSTARS.2020.3026724
10.1109/CVPR.2017.520
10.1016/j.fcr.2018.02.029
10.3390/rs13101954
10.3390/rs13122299
10.3390/rs12111735
10.1134/S1064230714040169
10.3390/rs13040561
10.1175/1520-0442(2001)014<2790:CODMIC>2.0.CO;2
10.1007/978-3-662-09366-5_12
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
H96
HCIFZ
JQ2
KR7
L.G
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/ijgi11080424
DatabaseName CrossRef
Computer and Information Systems Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Engineering Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Visual Arts
EISSN 2220-9964
ExternalDocumentID oai_doaj_org_article_b13a2a72f5224638979ba72c6d74a473
10_3390_ijgi11080424
GeographicLocations China
Henan China
GeographicLocations_xml – name: China
– name: Henan China
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PIMPY
PROAC
PTHSS
RIG
ZBA
7SC
7UA
8FD
ABUWG
AZQEC
C1K
DWQXO
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c367t-4eb1438c06b6e36e44425799745d6776dee20b60d9cf7f31f43db93f1e0bd1e73
IEDL.DBID 8FG
ISSN 2220-9964
IngestDate Tue Oct 22 15:04:55 EDT 2024
Tue Nov 05 13:27:21 EST 2024
Thu Sep 26 21:00:39 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-4eb1438c06b6e36e44425799745d6776dee20b60d9cf7f31f43db93f1e0bd1e73
ORCID 0000-0002-9312-3514
OpenAccessLink https://www.proquest.com/docview/2706214271?pq-origsite=%requestingapplication%
PQID 2706214271
PQPubID 2032387
ParticipantIDs doaj_primary_oai_doaj_org_article_b13a2a72f5224638979ba72c6d74a473
proquest_journals_2706214271
crossref_primary_10_3390_ijgi11080424
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle ISPRS international journal of geo-information
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Walker (ref_11) 2015; 165
Hao (ref_33) 2015; 7
ref_35
ref_34
Urban (ref_4) 2018; 223
Simonneaux (ref_10) 2008; 29
Cho (ref_24) 2010; 48
Zhao (ref_36) 2021; 11
Hyles (ref_3) 2020; 125
ref_19
Yang (ref_22) 2021; 102
Mcnairn (ref_37) 2009; 2
Vizilter (ref_30) 2014; 53
ref_16
Zhang (ref_38) 2019; 18
ref_15
Muthukumarasamy (ref_17) 2019; 78
Zhang (ref_27) 2017; 201
Xu (ref_28) 2018; 218
Modh (ref_32) 2012; 1
Jiao (ref_20) 2014; 96
Mimmack (ref_31) 2010; 14
Tao (ref_41) 2017; 16
Bajaj (ref_1) 1994; Volume 29
Yan (ref_48) 2019; 7
Tian (ref_5) 2020; 294
Zuo (ref_39) 2019; 49
Zhong (ref_13) 2016; 119
Pique (ref_8) 2021; 4
ref_47
Deb (ref_9) 2015; 3
ref_45
ref_44
Zxa (ref_46) 2021; 212
ref_21
ref_43
ref_40
Gong (ref_7) 1995; 1
ref_29
Zhou (ref_42) 2017; 33
Sheykhmousa (ref_23) 2020; 13
Abbas (ref_26) 2016; 48
Zhang (ref_14) 2008; 10
Chureesampant (ref_18) 2008; 5
Li (ref_2) 2020; 427
Zhang (ref_12) 2016; 106
ref_6
Verrelst (ref_25) 2021; 13
References_xml – volume: 119
  start-page: 151
  year: 2016
  ident: ref_13
  article-title: Automated Mapping of Soybean and Corn Using Phenology
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.05.014
  contributor:
    fullname: Zhong
– volume: 29
  start-page: 95
  year: 2008
  ident: ref_10
  article-title: The Use of High-Resolution Image Time Series for Crop Classification and Evapotranspiration Estimate over an Irrigated Area in Central Morocco
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701250390
  contributor:
    fullname: Simonneaux
– volume: 96
  start-page: 38
  year: 2014
  ident: ref_20
  article-title: Object-Oriented Crop Mapping and Monitoring using Multi-Temporal Polarimetric Radarsat-2 Data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.06.014
  contributor:
    fullname: Jiao
– volume: 4
  start-page: 15
  year: 2021
  ident: ref_8
  article-title: Estimation of Crop Production and CO2 Fluxes Using Remote Sensing: Application to a Winter Wheat/Sunflower Rotation
  publication-title: Environ. Sci. Proc.
  contributor:
    fullname: Pique
– volume: 10
  start-page: 476
  year: 2008
  ident: ref_14
  article-title: Crop Discrimination in Northern China with Double Cropping Systems using Fourier Analysis of Time-Series MODIS Data
  publication-title: Int. J. Appl. Earth Observ. Geoinform.
  doi: 10.1016/j.jag.2007.11.002
  contributor:
    fullname: Zhang
– volume: 16
  start-page: 348
  year: 2017
  ident: ref_41
  article-title: Mapping Winter Wheat Using Phenological Feature of Peak Before Winter on the North China Plain Based on Time-Series MODIS Data
  publication-title: J. Integr. Agr.
  doi: 10.1016/S2095-3119(15)61304-1
  contributor:
    fullname: Tao
– volume: 7
  start-page: 13
  year: 2019
  ident: ref_48
  article-title: A Microwave Scattering Model for Simulating the C-Band SAR Backscatter of Wheat Canopy
  publication-title: Ame. J. Remote Sens.
  doi: 10.11648/j.ajrs.20190701.13
  contributor:
    fullname: Yan
– volume: 212
  start-page: 106449
  year: 2021
  ident: ref_46
  article-title: Estimators and Confidence Intervals of f2 Using Bootstrap Methodology for the Comparison of Dissolution Profiles
  publication-title: Comput. Meth. Prog. Biomed.
  doi: 10.1016/j.cmpb.2021.106449
  contributor:
    fullname: Zxa
– volume: 294
  start-page: 108153
  year: 2020
  ident: ref_5
  article-title: Investigating the Urban-Induced Microclimate Effects on Winter Wheat Spring Phenology Using Sentinel-2 Time Series
  publication-title: Agric. Forest Meteorol.
  doi: 10.1016/j.agrformet.2020.108153
  contributor:
    fullname: Tian
– volume: 102
  start-page: 102446
  year: 2021
  ident: ref_22
  article-title: AGTOC: A Novel Approach to Winter Wheat Mapping by Automatic Generation of Training Samples and One-Class Classification on Google Earth Engine
  publication-title: Int. J. Appl. Earth Observ. Geoinform.
  doi: 10.1016/j.jag.2021.102446
  contributor:
    fullname: Yang
– volume: 3
  start-page: 26
  year: 2015
  ident: ref_9
  article-title: Soil Organic Carbon: Towards Better Soil Health, Productivity and Climate Change Mitigation
  publication-title: Clim. Chang. Environ. Sustain.
  doi: 10.5958/2320-642X.2015.00003.4
  contributor:
    fullname: Deb
– volume: 201
  start-page: 99
  year: 2017
  ident: ref_27
  article-title: An Evaluation of Monthly Impervious Surface Dynamics by Fusing Landsat and MODIS Time Series in the Pearl River Delta, China, from 2000 To 2015
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.08.036
  contributor:
    fullname: Zhang
– volume: 49
  start-page: 9
  year: 2019
  ident: ref_39
  article-title: Area Extraction and Interannual Variation Monitoring of Winter Wheat in Counties Based on GF-1 Satellite
  publication-title: J. Henan Univ. (Nat. Sci.)
  contributor:
    fullname: Zuo
– volume: 427
  start-page: 012010
  year: 2020
  ident: ref_2
  article-title: Analysis of Climatic Potential Productivity and Wheat Production in Different Producing Areas of the Northern Hemisphere
  publication-title: IOP Conf. Ser. Earth Environ. Sci.
  doi: 10.1088/1755-1315/427/1/012010
  contributor:
    fullname: Li
– volume: 125
  start-page: 417
  year: 2020
  ident: ref_3
  article-title: Phenology and Related Traits for Wheat Adaptation
  publication-title: Heredity
  doi: 10.1038/s41437-020-0320-1
  contributor:
    fullname: Hyles
– volume: 2
  start-page: 11150411
  year: 2009
  ident: ref_37
  article-title: Terrasar-X and Radarsat-2 for Crop Classification and Acreage Estimation
  publication-title: IGARSS
  contributor:
    fullname: Mcnairn
– volume: 18
  start-page: 2628
  year: 2019
  ident: ref_38
  article-title: Winter Wheat Identification by Integrating Spectral and Temporal Information Derived from Multi-Resolution Remote Sensing Data
  publication-title: J. Integr. Agr.
  doi: 10.1016/S2095-3119(19)62615-8
  contributor:
    fullname: Zhang
– volume: 78
  start-page: 643
  year: 2019
  ident: ref_17
  article-title: Incorporation of Textural Information with SAR and Optical Imagery for Improved Land Cover Mapping
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-019-8654-9
  contributor:
    fullname: Muthukumarasamy
– volume: 48
  start-page: 4133
  year: 2010
  ident: ref_24
  article-title: Improving Discrimination of Savanna Tree Species Through a Multiple-Endmember Spectral Angle Mapper Approach: Canopy-Level Analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  contributor:
    fullname: Cho
– volume: 1
  start-page: 61
  year: 1995
  ident: ref_7
  article-title: A Soil Layered Water Budget Model for Winter Wheat and Summer Maize
  publication-title: Acta Agric. Univ. Pekin.
  contributor:
    fullname: Gong
– volume: 165
  start-page: 42
  year: 2015
  ident: ref_11
  article-title: Land Surface Phenology along Urban to Rural Gradients in the U.S. Great Plains
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.04.019
  contributor:
    fullname: Walker
– volume: 48
  start-page: 315
  year: 2016
  ident: ref_26
  article-title: K-Means and ISODATA Clustering Algorithms for Landcover Classification using Remote Sensing
  publication-title: Sindh Univ. Res. J.
  contributor:
    fullname: Abbas
– volume: 106
  start-page: 157
  year: 2016
  ident: ref_12
  article-title: Mapping Paddy Rice Planting Areas Through Time Series Analysis of MODIS Land Surface Temperature and Vegetation Index Data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.05.011
  contributor:
    fullname: Zhang
– ident: ref_47
  doi: 10.3390/rs11010031
– ident: ref_6
– ident: ref_15
  doi: 10.3390/s20113246
– volume: 218
  start-page: 13
  year: 2018
  ident: ref_28
  article-title: Tracking Annual Cropland Changes from 1984 to 2016 using Time-Series Landsat Images with a Change-Detection and Post-Classification Approach: Experiments from Three Sites in Africa
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.09.008
  contributor:
    fullname: Xu
– volume: 13
  start-page: 3433
  year: 2021
  ident: ref_25
  article-title: Classification of Plant Ecological Units in Heterogeneous Semi-Steppe Rangelands: Performance Assessment of Four Classification Algorithms
  publication-title: Remote Sens.
  doi: 10.3390/rs13173433
  contributor:
    fullname: Verrelst
– ident: ref_45
  doi: 10.3390/rs13061148
– ident: ref_40
  doi: 10.3390/rs14020284
– ident: ref_16
  doi: 10.3390/agronomy10060845
– volume: 7
  start-page: 5347
  year: 2015
  ident: ref_33
  article-title: Feature Selection of Time Series MODIS Data for Early Crop Classification using Random Forest: A Case Study in Kansas, USA
  publication-title: Remote Sens.
  doi: 10.3390/rs70505347
  contributor:
    fullname: Hao
– ident: ref_29
  doi: 10.3390/rs11010053
– ident: ref_35
  doi: 10.3390/ijgi9110648
– volume: 11
  start-page: 10104
  year: 2021
  ident: ref_36
  article-title: Integration of Sentinel 1 and Sentinel 2 Satellite Images for Crop Mapping
  publication-title: Appl. Sci.
  doi: 10.3390/app112110104
  contributor:
    fullname: Zhao
– volume: 13
  start-page: 6308
  year: 2020
  ident: ref_23
  article-title: Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta–Analysis And Systematic Review
  publication-title: IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.3026724
  contributor:
    fullname: Sheykhmousa
– volume: 1
  start-page: 27
  year: 2012
  ident: ref_32
  article-title: A New K-mean Color Image Segmentation with Cosine Distance for Satellite Images
  publication-title: IJEAT
  contributor:
    fullname: Modh
– volume: 33
  start-page: 7
  year: 2017
  ident: ref_42
  article-title: Planting Area Extraction of Winter Wheat Based on Multi-Temporal SAR Data and Optical Imagery
  publication-title: Trans. CSAE
  contributor:
    fullname: Zhou
– ident: ref_44
  doi: 10.1109/CVPR.2017.520
– volume: 223
  start-page: 137
  year: 2018
  ident: ref_4
  article-title: Combined Effects of Drought and High Temperature on Photosynthetic Characteristics in Four Winter Wheat Genotypes
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2018.02.029
  contributor:
    fullname: Urban
– ident: ref_43
  doi: 10.3390/rs13101954
– ident: ref_21
  doi: 10.3390/rs13122299
– ident: ref_34
  doi: 10.3390/rs12111735
– volume: 53
  start-page: 542
  year: 2014
  ident: ref_30
  article-title: Similarity Measures and Comparison Metrics for Image Shapes
  publication-title: J. Comput. Syst. Sci. Int.
  doi: 10.1134/S1064230714040169
  contributor:
    fullname: Vizilter
– volume: 5
  start-page: 1183
  year: 2008
  ident: ref_18
  article-title: Multi-temporal SAR and Optical Data Fusion with Texture Measures for Landcover Classification Based on the Bayesian Theory
  publication-title: ISPRS. SC. Newlett.
  contributor:
    fullname: Chureesampant
– ident: ref_19
  doi: 10.3390/rs13040561
– volume: 14
  start-page: 2790
  year: 2010
  ident: ref_31
  article-title: Choice of Distance Matrices in Cluster Analysis: Defining Regions
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(2001)014<2790:CODMIC>2.0.CO;2
  contributor:
    fullname: Mimmack
– volume: Volume 29
  start-page: 161
  year: 1994
  ident: ref_1
  article-title: Regeneration of Plants from Protoplasts of Triticum aestivum L. (Wheat)
  publication-title: Plant Protoplasts and Genetic Engineering
  doi: 10.1007/978-3-662-09366-5_12
  contributor:
    fullname: Bajaj
SSID ssj0000913840
Score 2.314442
Snippet Although winter wheat has been mapped by remote sensing in several studies, such mapping efforts did not sufficiently utilize contextual information to reduce...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
StartPage 424
SubjectTerms Accuracy
Algorithms
Classification
Clustering
Crops
Decision trees
Distance
Euclidean geometry
Field study
Food security
Food supply
Ground truth
Image classification
Image processing
Image segmentation
Imagery
Information processing
Kalman filters
Mapping
multitemporal remote sensing images
Noise
Noise reduction
object-based approach
OTSU
Phenology
Radar imaging
Remote sensing
SAR (radar)
Similarity
similarity measure
Similarity measures
Synthetic aperture radar
Triticum aestivum
Vegetation
Wavelet transforms
Wheat
Winter
Winter wheat
winter wheat mapping
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwELUQF-CAWEXZ5AMcI-LYtfGxZVFBAiqx3qI4tqEIUkRbJP6CT2bGTqGIAxeOjkZK5DeexZl5Q8iOcQV49dImzVSaRDjjE0ibbaJTb5gx6b4tsMH57Fx2rsXpXfNuYtQX1oRFeuC4cXuG8SIrVOabSH0G7lVpA8tSWiUKoSLPZ6onkqlggzXjkLrESncOef1e7_G-hyXv-Kvvhw8KVP2_LHFwL8cLZL6OC2krfs8imXLVEpmpR5Q_vC-RuZveYBQlBsvk48LgBUrSBidkaWs07AfqVXpWIN_CPe17eotMEK80WFsa5foVvYpUVE-0--DilTrtBorNakAPQRvfQAxbTmjszB1LX2JRUeWeEkaLyn4vM3ryjCwY7yvk-vjo6qCT1MMVkpJLNURYcPJ5CRBJx6UTAk-vhvSiaaVS0jqXpUamVpdeec684NZo7plLjWVO8VUyXfUrt0Yog5CmFJkRXmuIb6z2otQe4lBmCi8da5Dd8XbnL5FDI4fcA2HJJ2FpkDZi8SWDzNfhAehDXutD_pc-NMjmGMm8Po6DPFOpRG45xdb_4x0bZDbDLohQB7hJpoevI7cFscnQbAc1_ATae-Hi
  priority: 102
  providerName: Directory of Open Access Journals
Title Object-Based Automatic Mapping of Winter Wheat Based on Temporal Phenology Patterns Derived from Multitemporal Sentinel-1 and Sentinel-2 Imagery
URI https://www.proquest.com/docview/2706214271
https://doaj.org/article/b13a2a72f5224638979ba72c6d74a473
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB0VOBQOVUtBLNCVD_RoEcdeG58QS9nSSsCqhcItimN7WQQJbHYr8S_4yfU4WWhViaOTOfnZ8-WZNwA7xuXBqheW9hJpqHDG0xA2W6oTb5gxyZ7NscH55FQeX4jvV72rNuFWt2WVc50YFbWtCsyR76YqkUgPptj-_QPFqVH4utqO0FiAJZYqhcHX3uDrc44FOS9DANPUu_MQ3e-Ob0ZjLHzHB79_LFEk7P9PH0cjM3gP71rvkBw0cH6AN65chbftoPLrx1VY-TWuZ41E_RGezgymUWg_mCJLDmbTKhKwkpMcWRdGpPLkEvkgJiTqXNLIVSU5bwipbsnw2jWJdTKMRJtlTb6EM_k7iGHjCWn6c-fSP7G0qHS3lJG8tC_LlHy7Qy6MxzW4GBydHx7TdsQCLbhUUwQH558XASjpuHRC4B3WIcjoWamUtM6liZGJ1YVXnjMvuDWae-YSY5lTfB0Wy6p0G0BYcGwKkRrhtQ5ejtVeFNoHb5SZ3EvHOvB5vt3ZfcOkkYUIBGHJ_oalA33E4lkG-a_jh2oyytrrlBnG8zRXqe8hIV5wupQ2YVlIq0QuFO_A9hzJrL2UdfZyhDZf_70Fyyl2OcQ6v21YnE5m7lPwPaamGw9YF5b6R6fDH90Ywf8BpA7c5A
link.rule.ids 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74369,74636
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BORQOCAqoCwV8gKPVOPba-IRaYNlCt1RiC71FcWxvF5WkbHaR-i_4ycw42RaExNHJnPzs-fLMG4AXLpRo1SvPh5l2XAUXOYbNntssOuFc9sqX1OA8OdLjE_XhdHjaJ9zavqxyrROTovZNRTny3dxkmujBjHh98YPT1Ch6Xe1HaNyEW0qiraZO8dH7qxwLcV5iANPVu0uM7nfn32ZzKnynB7-_LFEi7P9HHycjM7oHd3vvkO11cN6HG6Hegs1-UPnZ5Rbc-TJvV51E-wB-fXKURuH7aIo821stm0TAyiYlsS7MWBPZV-KDWLCkc1kn19Rs2hFSnbPjs9Al1tlxItqsW_YWz-RPFKPGE9b1566lP1NpUR3OuWBl7a-XOTv4TlwYlw_hZPRu-mbM-xELvJLaLAkcmn9eIVA6SB2UojtsMcgYem2M9iHkmdOZt1U0UYqopHdWRhEy50Uw8hFs1E0dtoEJdGwqlTsVrUUvx9uoKhvRGxWujDqIAbxcb3dx0TFpFBiBECzFn7AMYJ-wuJIh_uv0oVnMiv46FU7IMi9NHodEiIdOl7EOl5X2RpXKyAHsrJEs-kvZFtdH6PH_fz-HzfF0clgcHhx9fAK3c-p4SDV_O7CxXKzCU_RDlu5ZOmy_AexQ3Tc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6NToLxgGAwrTCYH-DRahy79vyEVrZqG6xUsMHeoji226KRbE2LtP-CPxlf4m5MSDwmuad85_vlu-8A3hqXB69eWNpPpKHCGU9D2mypTrxhxiR7NscB59ORPDoXJxf9i9j_VMe2ypVNbAy1rQqskfdSlUikB1Os52NbxPhg-P7qmuIGKbxpjes0HsC6QhasDqwPDkfjL7cVF2TADOlM2_3OQ67fm_2YzLANHq__7vmlhr7_H-vcuJzhU3gSY0Wy34L7DNZcuQmP4try6c0mPP42q5etRP0cfn82WFShg-CYLNlfLqqGjpWc5sjBMCGVJ9-RHWJOGgtMWrmqJGctPdUlGU9dW2Yn44Z2s6zJQdDQX0EMx1BIO627kv6KjUalu6SM5KW9e0zJ8U9kxrh5AefDw7MPRzQuXKAFl2qBUOE29CLAJh2XTgg80TqkHH0rlZLWuTQxMrG68Mpz5gW3RnPPXGIsc4pvQaesSrcNhIUwpxCpEV7rEPNY7UWhfYhNmcm9dKwL71a_O7tqeTWykI8gLNnfsHRhgFjcyiAbdvOimk-yeLgyw3ie5ir1faTHCyGY0iY8FtIqkQvFu7CzQjKLR7TO7hTq5f8_78LDoGnZp-PRx1ewkeL4Q9MAuAOdxXzpXoegZGHeRG37AwCr4to
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Object-Based+Automatic+Mapping+of+Winter+Wheat+Based+on+Temporal+Phenology+Patterns+Derived+from+Multitemporal+Sentinel-1+and+Sentinel-2+Imagery&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Wang%2C+Limei&rft.au=Jin%2C+Guowang&rft.au=Xiong%2C+Xin&rft.au=Zhang%2C+Hongmin&rft.date=2022-08-01&rft.issn=2220-9964&rft.eissn=2220-9964&rft.volume=11&rft.issue=8&rft.spage=424&rft_id=info:doi/10.3390%2Fijgi11080424&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijgi11080424
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon