Piezoelectric energy harvesting from human walking using a two-stage amplification mechanism

This paper presents the design, modeling and experimental tests of a novel piezoelectric energy harvester with a two-stage force-amplification compliant mechanism for scavenging energy from human walking. The harvester consists of four units of two-stage force amplification piezoelectric transducers...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 189; p. 116140
Main Authors Qian, Feng, Xu, Tian-Bing, Zuo, Lei
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.12.2019
Elsevier BV
Subjects
Online AccessGet full text
ISSN0360-5442
1873-6785
DOI10.1016/j.energy.2019.116140

Cover

Loading…
Abstract This paper presents the design, modeling and experimental tests of a novel piezoelectric energy harvester with a two-stage force-amplification compliant mechanism for scavenging energy from human walking. The harvester consists of four units of two-stage force amplification piezoelectric transducers sandwiched between two heel-shaped plates. The dynamic reaction force at a heel is amplified twice by the two-stage force amplification frames before applied to the 33-mode piezoelectric stacks and therefore a large power output is achieved. Experiments were performed on the prototype of the two-stage piezoelectric energy harvester over different load levels and frequencies. Numerical simulation results based on a simplified single degree-of-freedom model agreed well with the experiment results. An average power of 34.3 mW and a peak power of 110.2 mW were obtained from the simulation under the dynamic force with the amplitude of 500 N and frequency of 3 Hz. At 2 Hz and 1.0 Hz, the average power outputs of 23.9 mW and 11.0 mW, peak power outputs of 65.8 mW and 31.7 mW were experimentally achieved. Numerical simulations show that the average power output of 12.8 mW and peak power output of 204.7 mW could be obtained at the walking speed of 3.5 mph (5.6 km/h) from a male subject with the body weight of 84 kg and height of 172 cm. Comparison study demonstrated that the proposed two-stage piezoelectric harvester has a larger power output than the reported results in literature. •A heel-shaped energy harvester is designed, fabricated, tested and modeled.•The input force of the harvester is amplified twice by the two-stage force amplification mechanism.•The proposed two-stage piezoelectric harvester has a larger power output than the reported results in literature.•An average power of 24 mW and a peak power of 66 mW were experimentally achieved.
AbstractList This paper presents the design, modeling and experimental tests of a novel piezoelectric energy harvester with a two-stage force-amplification compliant mechanism for scavenging energy from human walking. The harvester consists of four units of two-stage force amplification piezoelectric transducers sandwiched between two heel-shaped plates. The dynamic reaction force at a heel is amplified twice by the two-stage force amplification frames before applied to the 33-mode piezoelectric stacks and therefore a large power output is achieved. Experiments were performed on the prototype of the two-stage piezoelectric energy harvester over different load levels and frequencies. Numerical simulation results based on a simplified single degree-of-freedom model agreed well with the experiment results. An average power of 34.3 mW and a peak power of 110.2 mW were obtained from the simulation under the dynamic force with the amplitude of 500 N and frequency of 3 Hz. At 2 Hz and 1.0 Hz, the average power outputs of 23.9 mW and 11.0 mW, peak power outputs of 65.8 mW and 31.7 mW were experimentally achieved. Numerical simulations show that the average power output of 12.8 mW and peak power output of 204.7 mW could be obtained at the walking speed of 3.5 mph (5.6 km/h) from a male subject with the body weight of 84 kg and height of 172 cm. Comparison study demonstrated that the proposed two-stage piezoelectric harvester has a larger power output than the reported results in literature.
This paper presents the design, modeling and experimental tests of a novel piezoelectric energy harvester with a two-stage force-amplification compliant mechanism for scavenging energy from human walking. The harvester consists of four units of two-stage force amplification piezoelectric transducers sandwiched between two heel-shaped plates. The dynamic reaction force at a heel is amplified twice by the two-stage force amplification frames before applied to the 33-mode piezoelectric stacks and therefore a large power output is achieved. Experiments were performed on the prototype of the two-stage piezoelectric energy harvester over different load levels and frequencies. Numerical simulation results based on a simplified single degree-of-freedom model agreed well with the experiment results. An average power of 34.3 mW and a peak power of 110.2 mW were obtained from the simulation under the dynamic force with the amplitude of 500 N and frequency of 3 Hz. At 2 Hz and 1.0 Hz, the average power outputs of 23.9 mW and 11.0 mW, peak power outputs of 65.8 mW and 31.7 mW were experimentally achieved. Numerical simulations show that the average power output of 12.8 mW and peak power output of 204.7 mW could be obtained at the walking speed of 3.5 mph (5.6 km/h) from a male subject with the body weight of 84 kg and height of 172 cm. Comparison study demonstrated that the proposed two-stage piezoelectric harvester has a larger power output than the reported results in literature. •A heel-shaped energy harvester is designed, fabricated, tested and modeled.•The input force of the harvester is amplified twice by the two-stage force amplification mechanism.•The proposed two-stage piezoelectric harvester has a larger power output than the reported results in literature.•An average power of 24 mW and a peak power of 66 mW were experimentally achieved.
ArticleNumber 116140
Author Zuo, Lei
Xu, Tian-Bing
Qian, Feng
Author_xml – sequence: 1
  givenname: Feng
  orcidid: 0000-0002-4199-2697
  surname: Qian
  fullname: Qian, Feng
  organization: Department of Mechanical Engineering, Center for Energy Harvesting Materials and Systems, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
– sequence: 2
  givenname: Tian-Bing
  surname: Xu
  fullname: Xu, Tian-Bing
  email: txxu@odu.edu
  organization: Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA, 23529, USA
– sequence: 3
  givenname: Lei
  orcidid: 0000-0002-7172-7667
  surname: Zuo
  fullname: Zuo, Lei
  email: leizuo@vt.edu
  organization: Department of Mechanical Engineering, Center for Energy Harvesting Materials and Systems, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
BookMark eNqFkU1LxDAQhoMouH78Aw8FL166Jk2ath4EEb9gQQ96E8KYnexmbZM1aV3019taTx70MoHhfV6GJ3tk23mHhBwxOmWUydPVFB2Gxcc0o6yaMiaZoFtkwsqCp7Io820yoVzSNBci2yV7Ma4opXlZVRPy_GDx02ONug1WJ2NPsoTwjrG1bpGY4Jtk2TXgkg3Ur8Oqi8OEpN34NLawwASadW2N1dBa75IG9RKcjc0B2TFQRzz8effJ0_XV4-VtOru_ubu8mKWay6JNRSmzUmQoKjkvJJRCgzBzMJKxzEipEXhZFFDmOeScCQSN0kgh9IsuuKmA75OTsXcd_FvXH64aGzXWNTj0XVQZZ3k2oFUfPf4VXfkuuP66PsVFRgsuRJ8SY0oHH2NAo9bBNhA-FKNqUK5WalSlBuVqVN5jZ78wbdtvJ20AW_8Hn48w9qbeLQYVtUWncW5D_ztq7u3fBV9zYaIy
CitedBy_id crossref_primary_10_1088_1361_6463_aceb01
crossref_primary_10_1002_admt_202000872
crossref_primary_10_3390_s23249673
crossref_primary_10_1016_j_euromechsol_2024_105325
crossref_primary_10_30518_jav_1590262
crossref_primary_10_1016_j_apenergy_2020_115726
crossref_primary_10_1002_adma_202002208
crossref_primary_10_1016_j_enconman_2021_114129
crossref_primary_10_1016_j_ymssp_2022_109268
crossref_primary_10_1088_1361_665X_ad1deb
crossref_primary_10_1016_j_enconman_2022_115305
crossref_primary_10_3390_en16041681
crossref_primary_10_1002_pat_5773
crossref_primary_10_1016_j_ijmecsci_2023_108779
crossref_primary_10_1016_j_sna_2020_112322
crossref_primary_10_3390_s24154943
crossref_primary_10_1007_s11664_020_08401_6
crossref_primary_10_1016_j_energy_2021_120523
crossref_primary_10_1063_5_0182563
crossref_primary_10_1177_1045389X251321972
crossref_primary_10_1016_j_enconman_2020_112958
crossref_primary_10_1016_j_ifacol_2022_10_522
crossref_primary_10_1002_mame_202200442
crossref_primary_10_1016_j_isci_2023_108663
crossref_primary_10_1016_j_mtsust_2022_100233
crossref_primary_10_1016_j_tsf_2023_139761
crossref_primary_10_1007_s11071_020_05732_1
crossref_primary_10_1088_1361_665X_acdf31
crossref_primary_10_1016_j_ijmecsci_2020_105418
crossref_primary_10_1142_S0219455425500257
crossref_primary_10_1002_aenm_202103076
crossref_primary_10_1007_s11431_023_2535_0
crossref_primary_10_3390_en16042000
crossref_primary_10_1016_j_energy_2021_120591
crossref_primary_10_1177_1045389X241280896
crossref_primary_10_1016_j_ijmecsci_2022_107235
crossref_primary_10_1016_j_apenergy_2022_119379
crossref_primary_10_1016_j_sna_2020_112530
crossref_primary_10_1080_15376494_2023_2243674
crossref_primary_10_3389_fmats_2023_1290501
crossref_primary_10_1016_j_ymssp_2022_110034
crossref_primary_10_1016_j_apenergy_2021_117331
crossref_primary_10_1016_j_energy_2022_123769
crossref_primary_10_1109_JSEN_2021_3064235
crossref_primary_10_1016_j_ymssp_2024_111360
crossref_primary_10_1088_1361_6463_ac0842
crossref_primary_10_3390_s22197399
crossref_primary_10_1088_1361_665X_ad5b30
crossref_primary_10_1177_16878132221131177
crossref_primary_10_1002_nano_202000242
crossref_primary_10_1016_j_ymssp_2024_111714
crossref_primary_10_1016_j_enconman_2022_115523
crossref_primary_10_1063_5_0073705
crossref_primary_10_1016_j_energy_2021_120264
crossref_primary_10_1016_j_sna_2024_116185
crossref_primary_10_1051_e3sconf_202560100019
crossref_primary_10_1109_TUFFC_2019_2956773
crossref_primary_10_1109_ACCESS_2020_3037827
crossref_primary_10_1016_j_euromechsol_2022_104619
crossref_primary_10_3390_machines11100977
crossref_primary_10_35234_fumbd_1279082
crossref_primary_10_1016_j_sna_2020_112148
crossref_primary_10_3390_machines10100848
crossref_primary_10_1016_j_energy_2023_128266
crossref_primary_10_1016_j_enconman_2023_116687
crossref_primary_10_1016_j_renene_2021_03_064
crossref_primary_10_1016_j_jksues_2020_11_003
crossref_primary_10_1142_S1758825124500480
crossref_primary_10_1109_TMECH_2023_3328312
crossref_primary_10_1016_j_mechmachtheory_2023_105347
crossref_primary_10_3390_mi15091170
crossref_primary_10_3390_s23135841
crossref_primary_10_1016_j_enconman_2024_119093
crossref_primary_10_1016_j_ijmecsci_2022_107652
crossref_primary_10_1016_j_energy_2021_122833
crossref_primary_10_1088_1361_665X_ad8823
crossref_primary_10_3390_app11093868
crossref_primary_10_3390_act11070187
crossref_primary_10_1016_j_joule_2022_06_013
crossref_primary_10_13168_cs_2024_0044
crossref_primary_10_33333_rp_vol54n1_06
crossref_primary_10_3390_electronics10161887
Cites_doi 10.1016/j.energy.2017.12.159
10.1088/1361-665X/aaed66
10.1016/j.engstruct.2018.06.076
10.1016/j.enconman.2018.06.069
10.1177/1045389X17689943
10.1002/ente.201500429
10.1016/j.sna.2016.11.035
10.3390/s140712497
10.1177/1045389X18783075
10.1088/0964-1726/22/6/065015
10.1177/1045389X16667551
10.1109/JSEN.2018.2820221
10.1016/j.ymssp.2018.12.026
10.1088/0964-1726/19/11/115011
10.1088/0964-1726/25/8/085029
10.1016/j.apenergy.2016.04.031
10.1016/j.apenergy.2018.05.040
10.1063/1.4941736
10.1016/j.ymssp.2007.09.015
10.1088/1361-6463/aa7b28
10.1016/j.enconman.2014.09.026
10.1088/0964-1726/24/2/025029
10.1016/j.enconman.2016.11.026
10.1016/j.energy.2018.08.067
10.1109/TSMCC.2009.2032660
10.1088/1361-665X/aa6cec
10.1109/40.928763
10.5188/ijsmer.10.34
10.1088/0964-1726/24/10/105017
10.1177/1045389X16642536
10.3390/s16091502
10.1016/j.energy.2016.12.035
10.1016/j.energy.2018.09.122
10.1016/j.energy.2018.04.123
10.1016/j.energy.2015.04.009
10.1063/1.4979832
ContentType Journal Article
Copyright 2019
Copyright Elsevier BV Dec 15, 2019
Copyright_xml – notice: 2019
– notice: Copyright Elsevier BV Dec 15, 2019
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2019.116140
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
ExternalDocumentID 10_1016_j_energy_2019_116140
S0360544219318353
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
SSH
WUQ
7SP
7ST
7TB
8FD
C1K
EFKBS
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c367t-4862842e496d76a84ca4fdaf6112f66cea3877a855a5314eace6f644cbc73f9a3
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Mon Jul 21 11:52:04 EDT 2025
Wed Aug 13 06:40:24 EDT 2025
Thu Apr 24 23:10:12 EDT 2025
Tue Jul 01 00:43:15 EDT 2025
Fri Feb 23 02:49:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Energy harvesting
Human walking
Force amplification
Piezoelectric stack
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-4862842e496d76a84ca4fdaf6112f66cea3877a855a5314eace6f644cbc73f9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4199-2697
0000-0002-7172-7667
PQID 2334207344
PQPubID 2045484
ParticipantIDs proquest_miscellaneous_2315253149
proquest_journals_2334207344
crossref_primary_10_1016_j_energy_2019_116140
crossref_citationtrail_10_1016_j_energy_2019_116140
elsevier_sciencedirect_doi_10_1016_j_energy_2019_116140
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-15
PublicationDateYYYYMMDD 2019-12-15
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-15
  day: 15
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Cai, Liao, Cao (bib4) 2018; 28
Kuang, Daniels, Zhu (bib33) 2017; 50
Zhao, You (bib18) 2014; 14
Luo, Liu, Zhu, Liu, Ye (bib34) 2018; 29
Gui, Deng, Liang, Cai, Chen (bib10) 2018; 154
Xie, Wang (bib23) 2015; 86
Xiong, Wang (bib24) 2016; 174
Qian, Xu, Zuo (bib9) 2018; 171
Wang, Shi, Xiang, Song (bib25) 2015; 24
Turkmen, Celik (bib36) 2018; 150
Yang, Zu (bib27) 2014; 88
(bib38) 2016
Han, Cao, Zhao, Yin, Ye, Wang, You (bib19) 2016; 16
Xu TB, Siochi EJ, Zuo L, Jiang X, Kang JH. Ultra-high power density piezoelectric energy harvesters. U. S. patent 2015; 9048759. .
Mule, Dudem, Yu (bib12) 2018; 165
Xin, Tian, Guo, Li, Sun, Wang, Qian, Wang, Wang (bib6) 2016; 87
Pantelopoulos, Bourbakis (bib39) 2010; 40
Kuang, Ruan, Chew, Zhu (bib2) 2017; 254
Ylli, Hoffmann, Willmann, Becker, Folkmer, Manoli (bib8) 2015; 24
Jasim, Yesner, Wang, Safari, Maher, Basily (bib32) 2018; 224
Wen, Xu, Zi (bib30) 2018; 18
Wang, Cao, Zhang, Lin, Liao (bib3) 2017; 132
Chen, Chau, Liao (bib5) 2017; 26
Shenck, Paradiso (bib16) 2001; 21
Xu, Siochi, Kang, Zuo, Zhou, Tang, Jiang (bib37) 2013; 22
Feenstra, Granstrom, Sodano (bib22) 2008; 22
Luo, Liu, Zhu, Ye (bib35) 2017; 28
González, Rubio, Moll (bib21) 2002; 10
Yang, Zu, Luo, Peng (bib26) 2017; 28
Wang, Chen, Zhou, Xu, Zuo (bib28) 2016; 28
Harman, Han, Frykman (bib40) 2000; 5
Kuang, Yang, Zhu (bib13) 2016; 25
Leinonen, Juuti, Jantunen, Palosaari (bib20) 2016; 4
Moro, Benasciutti (bib7) 2010; 19
Qian, Xu, Zuo (bib14) 2018; 173
Wu, Xu (bib31) 2019; 122
Viet, Wang (bib1) 2018; 162
Wang, Cao, Bowen, Zhou, Lin (bib11) 2017; 118
Kymissis, Kendall, Paradiso, Gershenfeld (bib15) 1998
Fan, Liu, Liu, Wang, Zhu, Yu (bib17) 2017; 110
Shenck (10.1016/j.energy.2019.116140_bib16) 2001; 21
Xiong (10.1016/j.energy.2019.116140_bib24) 2016; 174
Wang (10.1016/j.energy.2019.116140_bib11) 2017; 118
Luo (10.1016/j.energy.2019.116140_bib35) 2017; 28
Ylli (10.1016/j.energy.2019.116140_bib8) 2015; 24
Harman (10.1016/j.energy.2019.116140_bib40) 2000; 5
Moro (10.1016/j.energy.2019.116140_bib7) 2010; 19
Kuang (10.1016/j.energy.2019.116140_bib13) 2016; 25
Kymissis (10.1016/j.energy.2019.116140_bib15) 1998
Leinonen (10.1016/j.energy.2019.116140_bib20) 2016; 4
Qian (10.1016/j.energy.2019.116140_bib9) 2018; 171
Jasim (10.1016/j.energy.2019.116140_bib32) 2018; 224
Xin (10.1016/j.energy.2019.116140_bib6) 2016; 87
Han (10.1016/j.energy.2019.116140_bib19) 2016; 16
Viet (10.1016/j.energy.2019.116140_bib1) 2018; 162
Turkmen (10.1016/j.energy.2019.116140_bib36) 2018; 150
Pantelopoulos (10.1016/j.energy.2019.116140_bib39) 2010; 40
(10.1016/j.energy.2019.116140_bib38) 2016
Xu (10.1016/j.energy.2019.116140_bib37) 2013; 22
Wen (10.1016/j.energy.2019.116140_bib30) 2018; 18
Wu (10.1016/j.energy.2019.116140_bib31) 2019; 122
Wang (10.1016/j.energy.2019.116140_bib25) 2015; 24
Luo (10.1016/j.energy.2019.116140_bib34) 2018; 29
Cai (10.1016/j.energy.2019.116140_bib4) 2018; 28
Fan (10.1016/j.energy.2019.116140_bib17) 2017; 110
Kuang (10.1016/j.energy.2019.116140_bib33) 2017; 50
Wang (10.1016/j.energy.2019.116140_bib28) 2016; 28
Mule (10.1016/j.energy.2019.116140_bib12) 2018; 165
Gui (10.1016/j.energy.2019.116140_bib10) 2018; 154
Yang (10.1016/j.energy.2019.116140_bib26) 2017; 28
Qian (10.1016/j.energy.2019.116140_bib14) 2018; 173
Yang (10.1016/j.energy.2019.116140_bib27) 2014; 88
Wang (10.1016/j.energy.2019.116140_bib3) 2017; 132
Chen (10.1016/j.energy.2019.116140_bib5) 2017; 26
Xie (10.1016/j.energy.2019.116140_bib23) 2015; 86
10.1016/j.energy.2019.116140_bib29
Kuang (10.1016/j.energy.2019.116140_bib2) 2017; 254
Zhao (10.1016/j.energy.2019.116140_bib18) 2014; 14
González (10.1016/j.energy.2019.116140_bib21) 2002; 10
Feenstra (10.1016/j.energy.2019.116140_bib22) 2008; 22
References_xml – volume: 28
  start-page: 357
  year: 2017
  end-page: 366
  ident: bib26
  article-title: Modeling and parametric study of a force-amplified compressive-mode piezoelectric energy harvester
  publication-title: J Intell Mater Syst Struct
– volume: 118
  start-page: 221
  year: 2017
  end-page: 230
  ident: bib11
  article-title: Optimum resistance analysis and experimental verification of nonlinear piezoelectric energy harvesting from human motions
  publication-title: Energy
– volume: 22
  start-page: 721
  year: 2008
  end-page: 734
  ident: bib22
  article-title: Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack
  publication-title: Mech Syst Signal Process
– volume: 24
  year: 2015
  ident: bib8
  article-title: Energy harvesting from human motion: exploiting swing and shock excitations
  publication-title: Smart Mater Struct
– volume: 150
  start-page: 556
  year: 2018
  end-page: 564
  ident: bib36
  article-title: Energy harvesting with the piezoelectric material integrated shoe
  publication-title: Energy
– start-page: 132
  year: 1998
  end-page: 139
  ident: bib15
  publication-title: Parasitic power harvesting in shoes 2nd IEEE Int. Conf. on wearable computers (cat. No. 98EX215)
– volume: 110
  start-page: 143902
  year: 2017
  ident: bib17
  article-title: Scavenging energy from human walking through a shoe-mounted piezoelectric harvester
  publication-title: Appl Phys Lett
– volume: 14
  start-page: 12497
  year: 2014
  end-page: 12510
  ident: bib18
  article-title: A shoe-embedded piezoelectric energy harvester for wearable sensors
  publication-title: Sensors
– volume: 132
  start-page: 189
  year: 2017
  end-page: 197
  ident: bib3
  article-title: Magnetic-spring based energy harvesting from human motions: design, modeling and experiments
  publication-title: Energy Convers Manag
– volume: 174
  start-page: 101
  year: 2016
  end-page: 107
  ident: bib24
  article-title: Piezoelectric energy harvester for public roadway: on-site installation and evaluation
  publication-title: Appl Energy
– volume: 28
  year: 2018
  ident: bib4
  article-title: A smart harvester for capturing energy from human ankle dorsiflexion with reduced user effort
  publication-title: Smart Mater Struct
– volume: 28
  start-page: 1175
  year: 2016
  end-page: 1187
  ident: bib28
  article-title: Piezoelectric vibration energy harvester with two-stage force amplification
  publication-title: J Intell Mater Syst Struct
– volume: 254
  start-page: 69
  year: 2017
  end-page: 77
  ident: bib2
  article-title: Energy harvesting during human walking to power a wireless sensor node
  publication-title: Sens. Actuators A
– volume: 16
  start-page: 1502
  year: 2016
  ident: bib19
  article-title: A self-powered insole for human motion recognition
  publication-title: Sensors
– volume: 19
  start-page: 115011
  year: 2010
  ident: bib7
  article-title: Harvested power and sensitivity analysis of vibrating shoe-mounted piezoelectric cantilevers
  publication-title: Smart Mater Struct
– reference: Xu TB, Siochi EJ, Zuo L, Jiang X, Kang JH. Ultra-high power density piezoelectric energy harvesters. U. S. patent 2015; 9048759. .
– volume: 24
  start-page: 105017
  year: 2015
  ident: bib25
  article-title: Modeling on energy harvesting from a railway system using piezoelectric transducers
  publication-title: Smart Mater Struct
– volume: 4
  start-page: 620
  year: 2016
  end-page: 624
  ident: bib20
  article-title: Energy harvesting with a bimorph type piezoelectric diaphragm multilayer structure and mechanically induced pre-stress
  publication-title: Energy Technol
– volume: 122
  start-page: 139
  year: 2019
  end-page: 151
  ident: bib31
  article-title: Design and testing of a novel bidirectional energy harvester with single piezoelectric stack
  publication-title: Mech Syst Signal Process
– volume: 5
  start-page: 1
  year: 2000
  end-page: 16
  ident: bib40
  article-title: Load-speed interaction effects on the biomechanics of backpack load carriage
  publication-title: RTO Human Fact Med Panel
– volume: 18
  start-page: 3989
  year: 2018
  end-page: 4000
  ident: bib30
  article-title: Design of a new piezoelectric energy harvester based on compound two-stage force amplification frame
  publication-title: IEEE Sens J
– volume: 171
  start-page: 1352
  year: 2018
  ident: bib9
  article-title: Design, optimization, modeling and testing of a piezoelectric footwear energy harvester
  publication-title: Energy Convers Manag
– volume: 26
  year: 2017
  ident: bib5
  article-title: A knee-mounted biomechanical energy harvester with enhanced efficiency and safety
  publication-title: Smart Mater Struct
– volume: 28
  start-page: 2528
  year: 2017
  end-page: 2538
  ident: bib35
  article-title: Metamodel-assisted design optimization of piezoelectric flex transducer for maximal bio-kinetic energy conversion
  publication-title: J Intell Mater Syst Struct
– volume: 87
  year: 2016
  ident: bib6
  article-title: A biomimetic tactile sensing system based on polyvinylidene fluoride film
  publication-title: Rev Sci Instrum
– volume: 10
  start-page: 34
  year: 2002
  end-page: 40
  ident: bib21
  article-title: Human powered piezoelectric batteries to supply power to wearable electronic devices
  publication-title: Int J Soc Mater Eng Resour
– volume: 22
  year: 2013
  ident: bib37
  article-title: Energy harvesting using a PZT ceramic multilayer stack
  publication-title: Smart Mater Struct
– volume: 154
  start-page: 365
  year: 2018
  end-page: 373
  ident: bib10
  article-title: Micro linear generator for harvesting mechanical energy from the human gait
  publication-title: Energy
– volume: 88
  start-page: 829
  year: 2014
  end-page: 833
  ident: bib27
  article-title: High-efficiency compressive-mode energy harvester enhanced by a multi-stage force amplification mechanism
  publication-title: Energy Convers Manag
– volume: 40
  start-page: 1
  year: 2010
  ident: bib39
  article-title: A survey on wearable sensor-based systems for health monitoring and prognosis
  publication-title: IEEE Trans Syst Man CybernC Appl Rev
– volume: 173
  start-page: 191
  year: 2018
  end-page: 202
  ident: bib14
  article-title: A distributed parameter model for the piezoelectric stack harvester subjected to general periodic and random excitations
  publication-title: Eng Struct
– volume: 29
  start-page: 3097
  year: 2018
  end-page: 3107
  ident: bib34
  article-title: Maximum energy conversion from human motion using piezoelectric flex transducer: a multi-level surrogate modeling strategy
  publication-title: J Intell Mater Syst Struct
– volume: 162
  start-page: 603
  year: 2018
  end-page: 617
  ident: bib1
  article-title: Ocean wave energy pitching harvester with a frequency tuning capability
  publication-title: Energy
– volume: 165
  start-page: 677
  year: 2018
  end-page: 684
  ident: bib12
  article-title: High-performance and cost-effective triboelectric nanogenerators by sandpaper-assisted micropatterned polytetrafluoroethylene
  publication-title: Energy
– volume: 50
  start-page: 345501
  year: 2017
  ident: bib33
  article-title: A sandwiched piezoelectric transducer with flex end-caps for energy harvesting in large force environments
  publication-title: J Phys D Appl Phys
– volume: 86
  start-page: 385
  year: 2015
  end-page: 392
  ident: bib23
  article-title: Energy harvesting from a vehicle suspension system
  publication-title: Energy
– year: 2016
  ident: bib38
  article-title: Mechanical APDL advanced analysis guide, 9. User-programmable features SAS
– volume: 21
  start-page: 30
  year: 2001
  end-page: 42
  ident: bib16
  article-title: Energy scavenging with shoe-mounted piezoelectrics
  publication-title: IEEE Micro
– volume: 224
  start-page: 438
  year: 2018
  end-page: 447
  ident: bib32
  article-title: Laboratory testing and numerical simulation of piezoelectric energy harvester for roadway applications
  publication-title: Appl Energy
– volume: 25
  year: 2016
  ident: bib13
  article-title: Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking
  publication-title: Smart Mater Struct
– volume: 5
  start-page: 1
  year: 2000
  ident: 10.1016/j.energy.2019.116140_bib40
  article-title: Load-speed interaction effects on the biomechanics of backpack load carriage
  publication-title: RTO Human Fact Med Panel
– volume: 150
  start-page: 556
  year: 2018
  ident: 10.1016/j.energy.2019.116140_bib36
  article-title: Energy harvesting with the piezoelectric material integrated shoe
  publication-title: Energy
  doi: 10.1016/j.energy.2017.12.159
– volume: 28
  issue: 1
  year: 2018
  ident: 10.1016/j.energy.2019.116140_bib4
  article-title: A smart harvester for capturing energy from human ankle dorsiflexion with reduced user effort
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/aaed66
– volume: 173
  start-page: 191
  year: 2018
  ident: 10.1016/j.energy.2019.116140_bib14
  article-title: A distributed parameter model for the piezoelectric stack harvester subjected to general periodic and random excitations
  publication-title: Eng Struct
  doi: 10.1016/j.engstruct.2018.06.076
– volume: 171
  start-page: 1352
  year: 2018
  ident: 10.1016/j.energy.2019.116140_bib9
  article-title: Design, optimization, modeling and testing of a piezoelectric footwear energy harvester
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.06.069
– volume: 28
  start-page: 2528
  issue: 18
  year: 2017
  ident: 10.1016/j.energy.2019.116140_bib35
  article-title: Metamodel-assisted design optimization of piezoelectric flex transducer for maximal bio-kinetic energy conversion
  publication-title: J Intell Mater Syst Struct
  doi: 10.1177/1045389X17689943
– volume: 4
  start-page: 620
  issue: 5
  year: 2016
  ident: 10.1016/j.energy.2019.116140_bib20
  article-title: Energy harvesting with a bimorph type piezoelectric diaphragm multilayer structure and mechanically induced pre-stress
  publication-title: Energy Technol
  doi: 10.1002/ente.201500429
– volume: 254
  start-page: 69
  year: 2017
  ident: 10.1016/j.energy.2019.116140_bib2
  article-title: Energy harvesting during human walking to power a wireless sensor node
  publication-title: Sens. Actuators A
  doi: 10.1016/j.sna.2016.11.035
– volume: 14
  start-page: 12497
  year: 2014
  ident: 10.1016/j.energy.2019.116140_bib18
  article-title: A shoe-embedded piezoelectric energy harvester for wearable sensors
  publication-title: Sensors
  doi: 10.3390/s140712497
– volume: 29
  start-page: 3097
  issue: 15
  year: 2018
  ident: 10.1016/j.energy.2019.116140_bib34
  article-title: Maximum energy conversion from human motion using piezoelectric flex transducer: a multi-level surrogate modeling strategy
  publication-title: J Intell Mater Syst Struct
  doi: 10.1177/1045389X18783075
– volume: 22
  year: 2013
  ident: 10.1016/j.energy.2019.116140_bib37
  article-title: Energy harvesting using a PZT ceramic multilayer stack
  publication-title: Smart Mater Struct
  doi: 10.1088/0964-1726/22/6/065015
– volume: 28
  start-page: 1175
  year: 2016
  ident: 10.1016/j.energy.2019.116140_bib28
  article-title: Piezoelectric vibration energy harvester with two-stage force amplification
  publication-title: J Intell Mater Syst Struct
  doi: 10.1177/1045389X16667551
– volume: 18
  start-page: 3989
  issue: 10
  year: 2018
  ident: 10.1016/j.energy.2019.116140_bib30
  article-title: Design of a new piezoelectric energy harvester based on compound two-stage force amplification frame
  publication-title: IEEE Sens J
  doi: 10.1109/JSEN.2018.2820221
– volume: 122
  start-page: 139
  year: 2019
  ident: 10.1016/j.energy.2019.116140_bib31
  article-title: Design and testing of a novel bidirectional energy harvester with single piezoelectric stack
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2018.12.026
– volume: 19
  start-page: 115011
  issue: 11
  year: 2010
  ident: 10.1016/j.energy.2019.116140_bib7
  article-title: Harvested power and sensitivity analysis of vibrating shoe-mounted piezoelectric cantilevers
  publication-title: Smart Mater Struct
  doi: 10.1088/0964-1726/19/11/115011
– volume: 25
  issue: 8
  year: 2016
  ident: 10.1016/j.energy.2019.116140_bib13
  article-title: Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking
  publication-title: Smart Mater Struct
  doi: 10.1088/0964-1726/25/8/085029
– volume: 174
  start-page: 101
  year: 2016
  ident: 10.1016/j.energy.2019.116140_bib24
  article-title: Piezoelectric energy harvester for public roadway: on-site installation and evaluation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.04.031
– volume: 224
  start-page: 438
  year: 2018
  ident: 10.1016/j.energy.2019.116140_bib32
  article-title: Laboratory testing and numerical simulation of piezoelectric energy harvester for roadway applications
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.05.040
– volume: 87
  issue: 2
  year: 2016
  ident: 10.1016/j.energy.2019.116140_bib6
  article-title: A biomimetic tactile sensing system based on polyvinylidene fluoride film
  publication-title: Rev Sci Instrum
  doi: 10.1063/1.4941736
– volume: 22
  start-page: 721
  year: 2008
  ident: 10.1016/j.energy.2019.116140_bib22
  article-title: Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack
  publication-title: Mech Syst Signal Process
  doi: 10.1016/j.ymssp.2007.09.015
– volume: 50
  start-page: 345501
  year: 2017
  ident: 10.1016/j.energy.2019.116140_bib33
  article-title: A sandwiched piezoelectric transducer with flex end-caps for energy harvesting in large force environments
  publication-title: J Phys D Appl Phys
  doi: 10.1088/1361-6463/aa7b28
– volume: 88
  start-page: 829
  year: 2014
  ident: 10.1016/j.energy.2019.116140_bib27
  article-title: High-efficiency compressive-mode energy harvester enhanced by a multi-stage force amplification mechanism
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2014.09.026
– volume: 24
  issue: 2
  year: 2015
  ident: 10.1016/j.energy.2019.116140_bib8
  article-title: Energy harvesting from human motion: exploiting swing and shock excitations
  publication-title: Smart Mater Struct
  doi: 10.1088/0964-1726/24/2/025029
– volume: 132
  start-page: 189
  year: 2017
  ident: 10.1016/j.energy.2019.116140_bib3
  article-title: Magnetic-spring based energy harvesting from human motions: design, modeling and experiments
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.11.026
– volume: 162
  start-page: 603
  year: 2018
  ident: 10.1016/j.energy.2019.116140_bib1
  article-title: Ocean wave energy pitching harvester with a frequency tuning capability
  publication-title: Energy
  doi: 10.1016/j.energy.2018.08.067
– volume: 40
  start-page: 1
  year: 2010
  ident: 10.1016/j.energy.2019.116140_bib39
  article-title: A survey on wearable sensor-based systems for health monitoring and prognosis
  publication-title: IEEE Trans Syst Man CybernC Appl Rev
  doi: 10.1109/TSMCC.2009.2032660
– volume: 26
  issue: 6
  year: 2017
  ident: 10.1016/j.energy.2019.116140_bib5
  article-title: A knee-mounted biomechanical energy harvester with enhanced efficiency and safety
  publication-title: Smart Mater Struct
  doi: 10.1088/1361-665X/aa6cec
– volume: 21
  start-page: 30
  year: 2001
  ident: 10.1016/j.energy.2019.116140_bib16
  article-title: Energy scavenging with shoe-mounted piezoelectrics
  publication-title: IEEE Micro
  doi: 10.1109/40.928763
– volume: 10
  start-page: 34
  issue: 1
  year: 2002
  ident: 10.1016/j.energy.2019.116140_bib21
  article-title: Human powered piezoelectric batteries to supply power to wearable electronic devices
  publication-title: Int J Soc Mater Eng Resour
  doi: 10.5188/ijsmer.10.34
– ident: 10.1016/j.energy.2019.116140_bib29
– start-page: 132
  year: 1998
  ident: 10.1016/j.energy.2019.116140_bib15
– volume: 24
  start-page: 105017
  year: 2015
  ident: 10.1016/j.energy.2019.116140_bib25
  article-title: Modeling on energy harvesting from a railway system using piezoelectric transducers
  publication-title: Smart Mater Struct
  doi: 10.1088/0964-1726/24/10/105017
– volume: 28
  start-page: 357
  issue: 3
  year: 2017
  ident: 10.1016/j.energy.2019.116140_bib26
  article-title: Modeling and parametric study of a force-amplified compressive-mode piezoelectric energy harvester
  publication-title: J Intell Mater Syst Struct
  doi: 10.1177/1045389X16642536
– volume: 16
  start-page: 1502
  issue: 9
  year: 2016
  ident: 10.1016/j.energy.2019.116140_bib19
  article-title: A self-powered insole for human motion recognition
  publication-title: Sensors
  doi: 10.3390/s16091502
– volume: 118
  start-page: 221
  year: 2017
  ident: 10.1016/j.energy.2019.116140_bib11
  article-title: Optimum resistance analysis and experimental verification of nonlinear piezoelectric energy harvesting from human motions
  publication-title: Energy
  doi: 10.1016/j.energy.2016.12.035
– volume: 165
  start-page: 677
  year: 2018
  ident: 10.1016/j.energy.2019.116140_bib12
  article-title: High-performance and cost-effective triboelectric nanogenerators by sandpaper-assisted micropatterned polytetrafluoroethylene
  publication-title: Energy
  doi: 10.1016/j.energy.2018.09.122
– volume: 154
  start-page: 365
  year: 2018
  ident: 10.1016/j.energy.2019.116140_bib10
  article-title: Micro linear generator for harvesting mechanical energy from the human gait
  publication-title: Energy
  doi: 10.1016/j.energy.2018.04.123
– volume: 86
  start-page: 385
  year: 2015
  ident: 10.1016/j.energy.2019.116140_bib23
  article-title: Energy harvesting from a vehicle suspension system
  publication-title: Energy
  doi: 10.1016/j.energy.2015.04.009
– year: 2016
  ident: 10.1016/j.energy.2019.116140_bib38
– volume: 110
  start-page: 143902
  issue: 14
  year: 2017
  ident: 10.1016/j.energy.2019.116140_bib17
  article-title: Scavenging energy from human walking through a shoe-mounted piezoelectric harvester
  publication-title: Appl Phys Lett
  doi: 10.1063/1.4979832
SSID ssj0005899
Score 2.5698047
Snippet This paper presents the design, modeling and experimental tests of a novel piezoelectric energy harvester with a two-stage force-amplification compliant...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116140
SubjectTerms Amplification
Body weight
Computer simulation
Energy
Energy harvesting
Force amplification
Human walking
humans
males
Mathematical models
Piezoelectric stack
Piezoelectric transducers
Piezoelectricity
prototypes
Scavenging
Transducers
Walking
Title Piezoelectric energy harvesting from human walking using a two-stage amplification mechanism
URI https://dx.doi.org/10.1016/j.energy.2019.116140
https://www.proquest.com/docview/2334207344
https://www.proquest.com/docview/2315253149
Volume 189
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KfdAX0WrxtJYVfI3Xu539yGMpLWcPi6jFPgjL3mb3TGlzpXel4IN_uzPJpq0FKfgUkkzIZnY-fruZD4D3ZWWVrSwWo4qLas8SkkqhLDDuzKxXoygD70N-OtKTYzw8USdrsNfnwnBYZbb9nU1vrXW-MszcHF7U9fAr2V7CG0gqx3KpuOInomEp__D7TpiHbXtIMnHB1H36XBvjFdv8Og7wKsl2kKfa-Zd7umeoW-9z8AyeZtgodruRPYe12GzA4z6reLkBm_u3GWtEmFV2-QJ-fK7jr0XX7aYOohuL-Okv2_oazVxwgoloW_WJa3_GO-eCg-HnwovV9aIg9DiPwnPgecr7e-I8cr5wvTx_CccH-9_2JkVuqVAEqc2qQFrAWBxHLHVltLcYPKbKJ02wK2kdopfWGG-V8qScSFY56kSQKcyCkan0chPWm0UTX4HQBL1MGNF6J9IaJhovERMSflAhKV2WA5A9J13I9ca57cWZ6wPLTl33zY757zr-D6C4eeqiq7fxAL3pJ8n9JTeOXMIDT271c-qy3i7dWEock9VDHMC7m9ukcfwbxTdxccU03DOKuFO-_u-Xv4EnfMZxMSO1Beury6v4ltDNarbdiu82PNr9OJ0c8XH65fv0D86G-6o
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_s-WBfirWVXrVtCn1dzrtMstlHEeX8OgpV8KEQctnkuqJ74p0I_vXO7GaVFkTo6yZhs5PMb37JzgfAj6I0ypQGs2HJSbWnEUmlUGYYdqbGqWGQnu8hTyd6fI5HF-piBfa6WBh2q0zY32J6g9bpySBJc3BTVYNfhL3EN5BUjvelkm9glbNTqR6s7h4ejyfPnh6mKSPJ_TMe0EXQNW5eoQmxYx-vguCDjNXOSxbqH6xuDNDBOrxLzFHstpN7Dyuh3oC1LrB4sQGb-89Ba9Qxae3iA_z-WYWHeVvwpvKinYv4426bFBv1THCMiWiq9Yl7d8WX54L94WfCieX9PCMCOQvCse95TFd84jpwyHC1uP4I5wf7Z3vjLFVVyLzU-TJDOsMYHAUsdJlrZ9A7jKWLmphX1NoHJ02eO6OUI_1EAuagI7EmP_W5jIWTm9Cr53X4BEIT-8r9kI48gY4xIXcSMSJRCOWj0kXRB9lJ0vqUcpwrX1zZzrfs0rbfbFn-tpV_H7KnUTdtyo1X-ufdItm_to4lq_DKyO1uTW1S3YUdSYkjAj7EPnx_aial4z8prg7zO-7DZaNIOsXn_375N1gbn52e2JPDyfEWvOUWdpMZqm3oLW_vwhciO8vp17SZHwGE4Py4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezoelectric+energy+harvesting+from+human+walking+using+a+two-stage+amplification+mechanism&rft.jtitle=Energy+%28Oxford%29&rft.au=Qian%2C+Feng&rft.au=Xu%2C+Tian-Bing&rft.au=Zuo%2C+Lei&rft.date=2019-12-15&rft.issn=0360-5442&rft.volume=189+p.116140-&rft_id=info:doi/10.1016%2Fj.energy.2019.116140&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon