Piezoelectric energy harvesting from human walking using a two-stage amplification mechanism
This paper presents the design, modeling and experimental tests of a novel piezoelectric energy harvester with a two-stage force-amplification compliant mechanism for scavenging energy from human walking. The harvester consists of four units of two-stage force amplification piezoelectric transducers...
Saved in:
Published in | Energy (Oxford) Vol. 189; p. 116140 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
15.12.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0360-5442 1873-6785 |
DOI | 10.1016/j.energy.2019.116140 |
Cover
Loading…
Abstract | This paper presents the design, modeling and experimental tests of a novel piezoelectric energy harvester with a two-stage force-amplification compliant mechanism for scavenging energy from human walking. The harvester consists of four units of two-stage force amplification piezoelectric transducers sandwiched between two heel-shaped plates. The dynamic reaction force at a heel is amplified twice by the two-stage force amplification frames before applied to the 33-mode piezoelectric stacks and therefore a large power output is achieved. Experiments were performed on the prototype of the two-stage piezoelectric energy harvester over different load levels and frequencies. Numerical simulation results based on a simplified single degree-of-freedom model agreed well with the experiment results. An average power of 34.3 mW and a peak power of 110.2 mW were obtained from the simulation under the dynamic force with the amplitude of 500 N and frequency of 3 Hz. At 2 Hz and 1.0 Hz, the average power outputs of 23.9 mW and 11.0 mW, peak power outputs of 65.8 mW and 31.7 mW were experimentally achieved. Numerical simulations show that the average power output of 12.8 mW and peak power output of 204.7 mW could be obtained at the walking speed of 3.5 mph (5.6 km/h) from a male subject with the body weight of 84 kg and height of 172 cm. Comparison study demonstrated that the proposed two-stage piezoelectric harvester has a larger power output than the reported results in literature.
•A heel-shaped energy harvester is designed, fabricated, tested and modeled.•The input force of the harvester is amplified twice by the two-stage force amplification mechanism.•The proposed two-stage piezoelectric harvester has a larger power output than the reported results in literature.•An average power of 24 mW and a peak power of 66 mW were experimentally achieved. |
---|---|
AbstractList | This paper presents the design, modeling and experimental tests of a novel piezoelectric energy harvester with a two-stage force-amplification compliant mechanism for scavenging energy from human walking. The harvester consists of four units of two-stage force amplification piezoelectric transducers sandwiched between two heel-shaped plates. The dynamic reaction force at a heel is amplified twice by the two-stage force amplification frames before applied to the 33-mode piezoelectric stacks and therefore a large power output is achieved. Experiments were performed on the prototype of the two-stage piezoelectric energy harvester over different load levels and frequencies. Numerical simulation results based on a simplified single degree-of-freedom model agreed well with the experiment results. An average power of 34.3 mW and a peak power of 110.2 mW were obtained from the simulation under the dynamic force with the amplitude of 500 N and frequency of 3 Hz. At 2 Hz and 1.0 Hz, the average power outputs of 23.9 mW and 11.0 mW, peak power outputs of 65.8 mW and 31.7 mW were experimentally achieved. Numerical simulations show that the average power output of 12.8 mW and peak power output of 204.7 mW could be obtained at the walking speed of 3.5 mph (5.6 km/h) from a male subject with the body weight of 84 kg and height of 172 cm. Comparison study demonstrated that the proposed two-stage piezoelectric harvester has a larger power output than the reported results in literature. This paper presents the design, modeling and experimental tests of a novel piezoelectric energy harvester with a two-stage force-amplification compliant mechanism for scavenging energy from human walking. The harvester consists of four units of two-stage force amplification piezoelectric transducers sandwiched between two heel-shaped plates. The dynamic reaction force at a heel is amplified twice by the two-stage force amplification frames before applied to the 33-mode piezoelectric stacks and therefore a large power output is achieved. Experiments were performed on the prototype of the two-stage piezoelectric energy harvester over different load levels and frequencies. Numerical simulation results based on a simplified single degree-of-freedom model agreed well with the experiment results. An average power of 34.3 mW and a peak power of 110.2 mW were obtained from the simulation under the dynamic force with the amplitude of 500 N and frequency of 3 Hz. At 2 Hz and 1.0 Hz, the average power outputs of 23.9 mW and 11.0 mW, peak power outputs of 65.8 mW and 31.7 mW were experimentally achieved. Numerical simulations show that the average power output of 12.8 mW and peak power output of 204.7 mW could be obtained at the walking speed of 3.5 mph (5.6 km/h) from a male subject with the body weight of 84 kg and height of 172 cm. Comparison study demonstrated that the proposed two-stage piezoelectric harvester has a larger power output than the reported results in literature. •A heel-shaped energy harvester is designed, fabricated, tested and modeled.•The input force of the harvester is amplified twice by the two-stage force amplification mechanism.•The proposed two-stage piezoelectric harvester has a larger power output than the reported results in literature.•An average power of 24 mW and a peak power of 66 mW were experimentally achieved. |
ArticleNumber | 116140 |
Author | Zuo, Lei Xu, Tian-Bing Qian, Feng |
Author_xml | – sequence: 1 givenname: Feng orcidid: 0000-0002-4199-2697 surname: Qian fullname: Qian, Feng organization: Department of Mechanical Engineering, Center for Energy Harvesting Materials and Systems, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA – sequence: 2 givenname: Tian-Bing surname: Xu fullname: Xu, Tian-Bing email: txxu@odu.edu organization: Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA, 23529, USA – sequence: 3 givenname: Lei orcidid: 0000-0002-7172-7667 surname: Zuo fullname: Zuo, Lei email: leizuo@vt.edu organization: Department of Mechanical Engineering, Center for Energy Harvesting Materials and Systems, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA |
BookMark | eNqFkU1LxDAQhoMouH78Aw8FL166Jk2ath4EEb9gQQ96E8KYnexmbZM1aV3019taTx70MoHhfV6GJ3tk23mHhBwxOmWUydPVFB2Gxcc0o6yaMiaZoFtkwsqCp7Io820yoVzSNBci2yV7Ma4opXlZVRPy_GDx02ONug1WJ2NPsoTwjrG1bpGY4Jtk2TXgkg3Ur8Oqi8OEpN34NLawwASadW2N1dBa75IG9RKcjc0B2TFQRzz8effJ0_XV4-VtOru_ubu8mKWay6JNRSmzUmQoKjkvJJRCgzBzMJKxzEipEXhZFFDmOeScCQSN0kgh9IsuuKmA75OTsXcd_FvXH64aGzXWNTj0XVQZZ3k2oFUfPf4VXfkuuP66PsVFRgsuRJ8SY0oHH2NAo9bBNhA-FKNqUK5WalSlBuVqVN5jZ78wbdtvJ20AW_8Hn48w9qbeLQYVtUWncW5D_ztq7u3fBV9zYaIy |
CitedBy_id | crossref_primary_10_1088_1361_6463_aceb01 crossref_primary_10_1002_admt_202000872 crossref_primary_10_3390_s23249673 crossref_primary_10_1016_j_euromechsol_2024_105325 crossref_primary_10_30518_jav_1590262 crossref_primary_10_1016_j_apenergy_2020_115726 crossref_primary_10_1002_adma_202002208 crossref_primary_10_1016_j_enconman_2021_114129 crossref_primary_10_1016_j_ymssp_2022_109268 crossref_primary_10_1088_1361_665X_ad1deb crossref_primary_10_1016_j_enconman_2022_115305 crossref_primary_10_3390_en16041681 crossref_primary_10_1002_pat_5773 crossref_primary_10_1016_j_ijmecsci_2023_108779 crossref_primary_10_1016_j_sna_2020_112322 crossref_primary_10_3390_s24154943 crossref_primary_10_1007_s11664_020_08401_6 crossref_primary_10_1016_j_energy_2021_120523 crossref_primary_10_1063_5_0182563 crossref_primary_10_1177_1045389X251321972 crossref_primary_10_1016_j_enconman_2020_112958 crossref_primary_10_1016_j_ifacol_2022_10_522 crossref_primary_10_1002_mame_202200442 crossref_primary_10_1016_j_isci_2023_108663 crossref_primary_10_1016_j_mtsust_2022_100233 crossref_primary_10_1016_j_tsf_2023_139761 crossref_primary_10_1007_s11071_020_05732_1 crossref_primary_10_1088_1361_665X_acdf31 crossref_primary_10_1016_j_ijmecsci_2020_105418 crossref_primary_10_1142_S0219455425500257 crossref_primary_10_1002_aenm_202103076 crossref_primary_10_1007_s11431_023_2535_0 crossref_primary_10_3390_en16042000 crossref_primary_10_1016_j_energy_2021_120591 crossref_primary_10_1177_1045389X241280896 crossref_primary_10_1016_j_ijmecsci_2022_107235 crossref_primary_10_1016_j_apenergy_2022_119379 crossref_primary_10_1016_j_sna_2020_112530 crossref_primary_10_1080_15376494_2023_2243674 crossref_primary_10_3389_fmats_2023_1290501 crossref_primary_10_1016_j_ymssp_2022_110034 crossref_primary_10_1016_j_apenergy_2021_117331 crossref_primary_10_1016_j_energy_2022_123769 crossref_primary_10_1109_JSEN_2021_3064235 crossref_primary_10_1016_j_ymssp_2024_111360 crossref_primary_10_1088_1361_6463_ac0842 crossref_primary_10_3390_s22197399 crossref_primary_10_1088_1361_665X_ad5b30 crossref_primary_10_1177_16878132221131177 crossref_primary_10_1002_nano_202000242 crossref_primary_10_1016_j_ymssp_2024_111714 crossref_primary_10_1016_j_enconman_2022_115523 crossref_primary_10_1063_5_0073705 crossref_primary_10_1016_j_energy_2021_120264 crossref_primary_10_1016_j_sna_2024_116185 crossref_primary_10_1051_e3sconf_202560100019 crossref_primary_10_1109_TUFFC_2019_2956773 crossref_primary_10_1109_ACCESS_2020_3037827 crossref_primary_10_1016_j_euromechsol_2022_104619 crossref_primary_10_3390_machines11100977 crossref_primary_10_35234_fumbd_1279082 crossref_primary_10_1016_j_sna_2020_112148 crossref_primary_10_3390_machines10100848 crossref_primary_10_1016_j_energy_2023_128266 crossref_primary_10_1016_j_enconman_2023_116687 crossref_primary_10_1016_j_renene_2021_03_064 crossref_primary_10_1016_j_jksues_2020_11_003 crossref_primary_10_1142_S1758825124500480 crossref_primary_10_1109_TMECH_2023_3328312 crossref_primary_10_1016_j_mechmachtheory_2023_105347 crossref_primary_10_3390_mi15091170 crossref_primary_10_3390_s23135841 crossref_primary_10_1016_j_enconman_2024_119093 crossref_primary_10_1016_j_ijmecsci_2022_107652 crossref_primary_10_1016_j_energy_2021_122833 crossref_primary_10_1088_1361_665X_ad8823 crossref_primary_10_3390_app11093868 crossref_primary_10_3390_act11070187 crossref_primary_10_1016_j_joule_2022_06_013 crossref_primary_10_13168_cs_2024_0044 crossref_primary_10_33333_rp_vol54n1_06 crossref_primary_10_3390_electronics10161887 |
Cites_doi | 10.1016/j.energy.2017.12.159 10.1088/1361-665X/aaed66 10.1016/j.engstruct.2018.06.076 10.1016/j.enconman.2018.06.069 10.1177/1045389X17689943 10.1002/ente.201500429 10.1016/j.sna.2016.11.035 10.3390/s140712497 10.1177/1045389X18783075 10.1088/0964-1726/22/6/065015 10.1177/1045389X16667551 10.1109/JSEN.2018.2820221 10.1016/j.ymssp.2018.12.026 10.1088/0964-1726/19/11/115011 10.1088/0964-1726/25/8/085029 10.1016/j.apenergy.2016.04.031 10.1016/j.apenergy.2018.05.040 10.1063/1.4941736 10.1016/j.ymssp.2007.09.015 10.1088/1361-6463/aa7b28 10.1016/j.enconman.2014.09.026 10.1088/0964-1726/24/2/025029 10.1016/j.enconman.2016.11.026 10.1016/j.energy.2018.08.067 10.1109/TSMCC.2009.2032660 10.1088/1361-665X/aa6cec 10.1109/40.928763 10.5188/ijsmer.10.34 10.1088/0964-1726/24/10/105017 10.1177/1045389X16642536 10.3390/s16091502 10.1016/j.energy.2016.12.035 10.1016/j.energy.2018.09.122 10.1016/j.energy.2018.04.123 10.1016/j.energy.2015.04.009 10.1063/1.4979832 |
ContentType | Journal Article |
Copyright | 2019 Copyright Elsevier BV Dec 15, 2019 |
Copyright_xml | – notice: 2019 – notice: Copyright Elsevier BV Dec 15, 2019 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
DOI | 10.1016/j.energy.2019.116140 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 1873-6785 |
ExternalDocumentID | 10_1016_j_energy_2019_116140 S0360544219318353 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW SSH WUQ 7SP 7ST 7TB 8FD C1K EFKBS F28 FR3 KR7 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c367t-4862842e496d76a84ca4fdaf6112f66cea3877a855a5314eace6f644cbc73f9a3 |
IEDL.DBID | .~1 |
ISSN | 0360-5442 |
IngestDate | Mon Jul 21 11:52:04 EDT 2025 Wed Aug 13 06:40:24 EDT 2025 Thu Apr 24 23:10:12 EDT 2025 Tue Jul 01 00:43:15 EDT 2025 Fri Feb 23 02:49:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Energy harvesting Human walking Force amplification Piezoelectric stack |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-4862842e496d76a84ca4fdaf6112f66cea3877a855a5314eace6f644cbc73f9a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4199-2697 0000-0002-7172-7667 |
PQID | 2334207344 |
PQPubID | 2045484 |
ParticipantIDs | proquest_miscellaneous_2315253149 proquest_journals_2334207344 crossref_primary_10_1016_j_energy_2019_116140 crossref_citationtrail_10_1016_j_energy_2019_116140 elsevier_sciencedirect_doi_10_1016_j_energy_2019_116140 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-15 |
PublicationDateYYYYMMDD | 2019-12-15 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2019 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Cai, Liao, Cao (bib4) 2018; 28 Kuang, Daniels, Zhu (bib33) 2017; 50 Zhao, You (bib18) 2014; 14 Luo, Liu, Zhu, Liu, Ye (bib34) 2018; 29 Gui, Deng, Liang, Cai, Chen (bib10) 2018; 154 Xie, Wang (bib23) 2015; 86 Xiong, Wang (bib24) 2016; 174 Qian, Xu, Zuo (bib9) 2018; 171 Wang, Shi, Xiang, Song (bib25) 2015; 24 Turkmen, Celik (bib36) 2018; 150 Yang, Zu (bib27) 2014; 88 (bib38) 2016 Han, Cao, Zhao, Yin, Ye, Wang, You (bib19) 2016; 16 Xu TB, Siochi EJ, Zuo L, Jiang X, Kang JH. Ultra-high power density piezoelectric energy harvesters. U. S. patent 2015; 9048759. . Mule, Dudem, Yu (bib12) 2018; 165 Xin, Tian, Guo, Li, Sun, Wang, Qian, Wang, Wang (bib6) 2016; 87 Pantelopoulos, Bourbakis (bib39) 2010; 40 Kuang, Ruan, Chew, Zhu (bib2) 2017; 254 Ylli, Hoffmann, Willmann, Becker, Folkmer, Manoli (bib8) 2015; 24 Jasim, Yesner, Wang, Safari, Maher, Basily (bib32) 2018; 224 Wen, Xu, Zi (bib30) 2018; 18 Wang, Cao, Zhang, Lin, Liao (bib3) 2017; 132 Chen, Chau, Liao (bib5) 2017; 26 Shenck, Paradiso (bib16) 2001; 21 Xu, Siochi, Kang, Zuo, Zhou, Tang, Jiang (bib37) 2013; 22 Feenstra, Granstrom, Sodano (bib22) 2008; 22 Luo, Liu, Zhu, Ye (bib35) 2017; 28 González, Rubio, Moll (bib21) 2002; 10 Yang, Zu, Luo, Peng (bib26) 2017; 28 Wang, Chen, Zhou, Xu, Zuo (bib28) 2016; 28 Harman, Han, Frykman (bib40) 2000; 5 Kuang, Yang, Zhu (bib13) 2016; 25 Leinonen, Juuti, Jantunen, Palosaari (bib20) 2016; 4 Moro, Benasciutti (bib7) 2010; 19 Qian, Xu, Zuo (bib14) 2018; 173 Wu, Xu (bib31) 2019; 122 Viet, Wang (bib1) 2018; 162 Wang, Cao, Bowen, Zhou, Lin (bib11) 2017; 118 Kymissis, Kendall, Paradiso, Gershenfeld (bib15) 1998 Fan, Liu, Liu, Wang, Zhu, Yu (bib17) 2017; 110 Shenck (10.1016/j.energy.2019.116140_bib16) 2001; 21 Xiong (10.1016/j.energy.2019.116140_bib24) 2016; 174 Wang (10.1016/j.energy.2019.116140_bib11) 2017; 118 Luo (10.1016/j.energy.2019.116140_bib35) 2017; 28 Ylli (10.1016/j.energy.2019.116140_bib8) 2015; 24 Harman (10.1016/j.energy.2019.116140_bib40) 2000; 5 Moro (10.1016/j.energy.2019.116140_bib7) 2010; 19 Kuang (10.1016/j.energy.2019.116140_bib13) 2016; 25 Kymissis (10.1016/j.energy.2019.116140_bib15) 1998 Leinonen (10.1016/j.energy.2019.116140_bib20) 2016; 4 Qian (10.1016/j.energy.2019.116140_bib9) 2018; 171 Jasim (10.1016/j.energy.2019.116140_bib32) 2018; 224 Xin (10.1016/j.energy.2019.116140_bib6) 2016; 87 Han (10.1016/j.energy.2019.116140_bib19) 2016; 16 Viet (10.1016/j.energy.2019.116140_bib1) 2018; 162 Turkmen (10.1016/j.energy.2019.116140_bib36) 2018; 150 Pantelopoulos (10.1016/j.energy.2019.116140_bib39) 2010; 40 (10.1016/j.energy.2019.116140_bib38) 2016 Xu (10.1016/j.energy.2019.116140_bib37) 2013; 22 Wen (10.1016/j.energy.2019.116140_bib30) 2018; 18 Wu (10.1016/j.energy.2019.116140_bib31) 2019; 122 Wang (10.1016/j.energy.2019.116140_bib25) 2015; 24 Luo (10.1016/j.energy.2019.116140_bib34) 2018; 29 Cai (10.1016/j.energy.2019.116140_bib4) 2018; 28 Fan (10.1016/j.energy.2019.116140_bib17) 2017; 110 Kuang (10.1016/j.energy.2019.116140_bib33) 2017; 50 Wang (10.1016/j.energy.2019.116140_bib28) 2016; 28 Mule (10.1016/j.energy.2019.116140_bib12) 2018; 165 Gui (10.1016/j.energy.2019.116140_bib10) 2018; 154 Yang (10.1016/j.energy.2019.116140_bib26) 2017; 28 Qian (10.1016/j.energy.2019.116140_bib14) 2018; 173 Yang (10.1016/j.energy.2019.116140_bib27) 2014; 88 Wang (10.1016/j.energy.2019.116140_bib3) 2017; 132 Chen (10.1016/j.energy.2019.116140_bib5) 2017; 26 Xie (10.1016/j.energy.2019.116140_bib23) 2015; 86 10.1016/j.energy.2019.116140_bib29 Kuang (10.1016/j.energy.2019.116140_bib2) 2017; 254 Zhao (10.1016/j.energy.2019.116140_bib18) 2014; 14 González (10.1016/j.energy.2019.116140_bib21) 2002; 10 Feenstra (10.1016/j.energy.2019.116140_bib22) 2008; 22 |
References_xml | – volume: 28 start-page: 357 year: 2017 end-page: 366 ident: bib26 article-title: Modeling and parametric study of a force-amplified compressive-mode piezoelectric energy harvester publication-title: J Intell Mater Syst Struct – volume: 118 start-page: 221 year: 2017 end-page: 230 ident: bib11 article-title: Optimum resistance analysis and experimental verification of nonlinear piezoelectric energy harvesting from human motions publication-title: Energy – volume: 22 start-page: 721 year: 2008 end-page: 734 ident: bib22 article-title: Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack publication-title: Mech Syst Signal Process – volume: 24 year: 2015 ident: bib8 article-title: Energy harvesting from human motion: exploiting swing and shock excitations publication-title: Smart Mater Struct – volume: 150 start-page: 556 year: 2018 end-page: 564 ident: bib36 article-title: Energy harvesting with the piezoelectric material integrated shoe publication-title: Energy – start-page: 132 year: 1998 end-page: 139 ident: bib15 publication-title: Parasitic power harvesting in shoes 2nd IEEE Int. Conf. on wearable computers (cat. No. 98EX215) – volume: 110 start-page: 143902 year: 2017 ident: bib17 article-title: Scavenging energy from human walking through a shoe-mounted piezoelectric harvester publication-title: Appl Phys Lett – volume: 14 start-page: 12497 year: 2014 end-page: 12510 ident: bib18 article-title: A shoe-embedded piezoelectric energy harvester for wearable sensors publication-title: Sensors – volume: 132 start-page: 189 year: 2017 end-page: 197 ident: bib3 article-title: Magnetic-spring based energy harvesting from human motions: design, modeling and experiments publication-title: Energy Convers Manag – volume: 174 start-page: 101 year: 2016 end-page: 107 ident: bib24 article-title: Piezoelectric energy harvester for public roadway: on-site installation and evaluation publication-title: Appl Energy – volume: 28 year: 2018 ident: bib4 article-title: A smart harvester for capturing energy from human ankle dorsiflexion with reduced user effort publication-title: Smart Mater Struct – volume: 28 start-page: 1175 year: 2016 end-page: 1187 ident: bib28 article-title: Piezoelectric vibration energy harvester with two-stage force amplification publication-title: J Intell Mater Syst Struct – volume: 254 start-page: 69 year: 2017 end-page: 77 ident: bib2 article-title: Energy harvesting during human walking to power a wireless sensor node publication-title: Sens. Actuators A – volume: 16 start-page: 1502 year: 2016 ident: bib19 article-title: A self-powered insole for human motion recognition publication-title: Sensors – volume: 19 start-page: 115011 year: 2010 ident: bib7 article-title: Harvested power and sensitivity analysis of vibrating shoe-mounted piezoelectric cantilevers publication-title: Smart Mater Struct – reference: Xu TB, Siochi EJ, Zuo L, Jiang X, Kang JH. Ultra-high power density piezoelectric energy harvesters. U. S. patent 2015; 9048759. . – volume: 24 start-page: 105017 year: 2015 ident: bib25 article-title: Modeling on energy harvesting from a railway system using piezoelectric transducers publication-title: Smart Mater Struct – volume: 4 start-page: 620 year: 2016 end-page: 624 ident: bib20 article-title: Energy harvesting with a bimorph type piezoelectric diaphragm multilayer structure and mechanically induced pre-stress publication-title: Energy Technol – volume: 122 start-page: 139 year: 2019 end-page: 151 ident: bib31 article-title: Design and testing of a novel bidirectional energy harvester with single piezoelectric stack publication-title: Mech Syst Signal Process – volume: 5 start-page: 1 year: 2000 end-page: 16 ident: bib40 article-title: Load-speed interaction effects on the biomechanics of backpack load carriage publication-title: RTO Human Fact Med Panel – volume: 18 start-page: 3989 year: 2018 end-page: 4000 ident: bib30 article-title: Design of a new piezoelectric energy harvester based on compound two-stage force amplification frame publication-title: IEEE Sens J – volume: 171 start-page: 1352 year: 2018 ident: bib9 article-title: Design, optimization, modeling and testing of a piezoelectric footwear energy harvester publication-title: Energy Convers Manag – volume: 26 year: 2017 ident: bib5 article-title: A knee-mounted biomechanical energy harvester with enhanced efficiency and safety publication-title: Smart Mater Struct – volume: 28 start-page: 2528 year: 2017 end-page: 2538 ident: bib35 article-title: Metamodel-assisted design optimization of piezoelectric flex transducer for maximal bio-kinetic energy conversion publication-title: J Intell Mater Syst Struct – volume: 87 year: 2016 ident: bib6 article-title: A biomimetic tactile sensing system based on polyvinylidene fluoride film publication-title: Rev Sci Instrum – volume: 10 start-page: 34 year: 2002 end-page: 40 ident: bib21 article-title: Human powered piezoelectric batteries to supply power to wearable electronic devices publication-title: Int J Soc Mater Eng Resour – volume: 22 year: 2013 ident: bib37 article-title: Energy harvesting using a PZT ceramic multilayer stack publication-title: Smart Mater Struct – volume: 154 start-page: 365 year: 2018 end-page: 373 ident: bib10 article-title: Micro linear generator for harvesting mechanical energy from the human gait publication-title: Energy – volume: 88 start-page: 829 year: 2014 end-page: 833 ident: bib27 article-title: High-efficiency compressive-mode energy harvester enhanced by a multi-stage force amplification mechanism publication-title: Energy Convers Manag – volume: 40 start-page: 1 year: 2010 ident: bib39 article-title: A survey on wearable sensor-based systems for health monitoring and prognosis publication-title: IEEE Trans Syst Man CybernC Appl Rev – volume: 173 start-page: 191 year: 2018 end-page: 202 ident: bib14 article-title: A distributed parameter model for the piezoelectric stack harvester subjected to general periodic and random excitations publication-title: Eng Struct – volume: 29 start-page: 3097 year: 2018 end-page: 3107 ident: bib34 article-title: Maximum energy conversion from human motion using piezoelectric flex transducer: a multi-level surrogate modeling strategy publication-title: J Intell Mater Syst Struct – volume: 162 start-page: 603 year: 2018 end-page: 617 ident: bib1 article-title: Ocean wave energy pitching harvester with a frequency tuning capability publication-title: Energy – volume: 165 start-page: 677 year: 2018 end-page: 684 ident: bib12 article-title: High-performance and cost-effective triboelectric nanogenerators by sandpaper-assisted micropatterned polytetrafluoroethylene publication-title: Energy – volume: 50 start-page: 345501 year: 2017 ident: bib33 article-title: A sandwiched piezoelectric transducer with flex end-caps for energy harvesting in large force environments publication-title: J Phys D Appl Phys – volume: 86 start-page: 385 year: 2015 end-page: 392 ident: bib23 article-title: Energy harvesting from a vehicle suspension system publication-title: Energy – year: 2016 ident: bib38 article-title: Mechanical APDL advanced analysis guide, 9. User-programmable features SAS – volume: 21 start-page: 30 year: 2001 end-page: 42 ident: bib16 article-title: Energy scavenging with shoe-mounted piezoelectrics publication-title: IEEE Micro – volume: 224 start-page: 438 year: 2018 end-page: 447 ident: bib32 article-title: Laboratory testing and numerical simulation of piezoelectric energy harvester for roadway applications publication-title: Appl Energy – volume: 25 year: 2016 ident: bib13 article-title: Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking publication-title: Smart Mater Struct – volume: 5 start-page: 1 year: 2000 ident: 10.1016/j.energy.2019.116140_bib40 article-title: Load-speed interaction effects on the biomechanics of backpack load carriage publication-title: RTO Human Fact Med Panel – volume: 150 start-page: 556 year: 2018 ident: 10.1016/j.energy.2019.116140_bib36 article-title: Energy harvesting with the piezoelectric material integrated shoe publication-title: Energy doi: 10.1016/j.energy.2017.12.159 – volume: 28 issue: 1 year: 2018 ident: 10.1016/j.energy.2019.116140_bib4 article-title: A smart harvester for capturing energy from human ankle dorsiflexion with reduced user effort publication-title: Smart Mater Struct doi: 10.1088/1361-665X/aaed66 – volume: 173 start-page: 191 year: 2018 ident: 10.1016/j.energy.2019.116140_bib14 article-title: A distributed parameter model for the piezoelectric stack harvester subjected to general periodic and random excitations publication-title: Eng Struct doi: 10.1016/j.engstruct.2018.06.076 – volume: 171 start-page: 1352 year: 2018 ident: 10.1016/j.energy.2019.116140_bib9 article-title: Design, optimization, modeling and testing of a piezoelectric footwear energy harvester publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.06.069 – volume: 28 start-page: 2528 issue: 18 year: 2017 ident: 10.1016/j.energy.2019.116140_bib35 article-title: Metamodel-assisted design optimization of piezoelectric flex transducer for maximal bio-kinetic energy conversion publication-title: J Intell Mater Syst Struct doi: 10.1177/1045389X17689943 – volume: 4 start-page: 620 issue: 5 year: 2016 ident: 10.1016/j.energy.2019.116140_bib20 article-title: Energy harvesting with a bimorph type piezoelectric diaphragm multilayer structure and mechanically induced pre-stress publication-title: Energy Technol doi: 10.1002/ente.201500429 – volume: 254 start-page: 69 year: 2017 ident: 10.1016/j.energy.2019.116140_bib2 article-title: Energy harvesting during human walking to power a wireless sensor node publication-title: Sens. Actuators A doi: 10.1016/j.sna.2016.11.035 – volume: 14 start-page: 12497 year: 2014 ident: 10.1016/j.energy.2019.116140_bib18 article-title: A shoe-embedded piezoelectric energy harvester for wearable sensors publication-title: Sensors doi: 10.3390/s140712497 – volume: 29 start-page: 3097 issue: 15 year: 2018 ident: 10.1016/j.energy.2019.116140_bib34 article-title: Maximum energy conversion from human motion using piezoelectric flex transducer: a multi-level surrogate modeling strategy publication-title: J Intell Mater Syst Struct doi: 10.1177/1045389X18783075 – volume: 22 year: 2013 ident: 10.1016/j.energy.2019.116140_bib37 article-title: Energy harvesting using a PZT ceramic multilayer stack publication-title: Smart Mater Struct doi: 10.1088/0964-1726/22/6/065015 – volume: 28 start-page: 1175 year: 2016 ident: 10.1016/j.energy.2019.116140_bib28 article-title: Piezoelectric vibration energy harvester with two-stage force amplification publication-title: J Intell Mater Syst Struct doi: 10.1177/1045389X16667551 – volume: 18 start-page: 3989 issue: 10 year: 2018 ident: 10.1016/j.energy.2019.116140_bib30 article-title: Design of a new piezoelectric energy harvester based on compound two-stage force amplification frame publication-title: IEEE Sens J doi: 10.1109/JSEN.2018.2820221 – volume: 122 start-page: 139 year: 2019 ident: 10.1016/j.energy.2019.116140_bib31 article-title: Design and testing of a novel bidirectional energy harvester with single piezoelectric stack publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2018.12.026 – volume: 19 start-page: 115011 issue: 11 year: 2010 ident: 10.1016/j.energy.2019.116140_bib7 article-title: Harvested power and sensitivity analysis of vibrating shoe-mounted piezoelectric cantilevers publication-title: Smart Mater Struct doi: 10.1088/0964-1726/19/11/115011 – volume: 25 issue: 8 year: 2016 ident: 10.1016/j.energy.2019.116140_bib13 article-title: Design and characterisation of a piezoelectric knee-joint energy harvester with frequency up-conversion through magnetic plucking publication-title: Smart Mater Struct doi: 10.1088/0964-1726/25/8/085029 – volume: 174 start-page: 101 year: 2016 ident: 10.1016/j.energy.2019.116140_bib24 article-title: Piezoelectric energy harvester for public roadway: on-site installation and evaluation publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.04.031 – volume: 224 start-page: 438 year: 2018 ident: 10.1016/j.energy.2019.116140_bib32 article-title: Laboratory testing and numerical simulation of piezoelectric energy harvester for roadway applications publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.05.040 – volume: 87 issue: 2 year: 2016 ident: 10.1016/j.energy.2019.116140_bib6 article-title: A biomimetic tactile sensing system based on polyvinylidene fluoride film publication-title: Rev Sci Instrum doi: 10.1063/1.4941736 – volume: 22 start-page: 721 year: 2008 ident: 10.1016/j.energy.2019.116140_bib22 article-title: Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack publication-title: Mech Syst Signal Process doi: 10.1016/j.ymssp.2007.09.015 – volume: 50 start-page: 345501 year: 2017 ident: 10.1016/j.energy.2019.116140_bib33 article-title: A sandwiched piezoelectric transducer with flex end-caps for energy harvesting in large force environments publication-title: J Phys D Appl Phys doi: 10.1088/1361-6463/aa7b28 – volume: 88 start-page: 829 year: 2014 ident: 10.1016/j.energy.2019.116140_bib27 article-title: High-efficiency compressive-mode energy harvester enhanced by a multi-stage force amplification mechanism publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2014.09.026 – volume: 24 issue: 2 year: 2015 ident: 10.1016/j.energy.2019.116140_bib8 article-title: Energy harvesting from human motion: exploiting swing and shock excitations publication-title: Smart Mater Struct doi: 10.1088/0964-1726/24/2/025029 – volume: 132 start-page: 189 year: 2017 ident: 10.1016/j.energy.2019.116140_bib3 article-title: Magnetic-spring based energy harvesting from human motions: design, modeling and experiments publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.11.026 – volume: 162 start-page: 603 year: 2018 ident: 10.1016/j.energy.2019.116140_bib1 article-title: Ocean wave energy pitching harvester with a frequency tuning capability publication-title: Energy doi: 10.1016/j.energy.2018.08.067 – volume: 40 start-page: 1 year: 2010 ident: 10.1016/j.energy.2019.116140_bib39 article-title: A survey on wearable sensor-based systems for health monitoring and prognosis publication-title: IEEE Trans Syst Man CybernC Appl Rev doi: 10.1109/TSMCC.2009.2032660 – volume: 26 issue: 6 year: 2017 ident: 10.1016/j.energy.2019.116140_bib5 article-title: A knee-mounted biomechanical energy harvester with enhanced efficiency and safety publication-title: Smart Mater Struct doi: 10.1088/1361-665X/aa6cec – volume: 21 start-page: 30 year: 2001 ident: 10.1016/j.energy.2019.116140_bib16 article-title: Energy scavenging with shoe-mounted piezoelectrics publication-title: IEEE Micro doi: 10.1109/40.928763 – volume: 10 start-page: 34 issue: 1 year: 2002 ident: 10.1016/j.energy.2019.116140_bib21 article-title: Human powered piezoelectric batteries to supply power to wearable electronic devices publication-title: Int J Soc Mater Eng Resour doi: 10.5188/ijsmer.10.34 – ident: 10.1016/j.energy.2019.116140_bib29 – start-page: 132 year: 1998 ident: 10.1016/j.energy.2019.116140_bib15 – volume: 24 start-page: 105017 year: 2015 ident: 10.1016/j.energy.2019.116140_bib25 article-title: Modeling on energy harvesting from a railway system using piezoelectric transducers publication-title: Smart Mater Struct doi: 10.1088/0964-1726/24/10/105017 – volume: 28 start-page: 357 issue: 3 year: 2017 ident: 10.1016/j.energy.2019.116140_bib26 article-title: Modeling and parametric study of a force-amplified compressive-mode piezoelectric energy harvester publication-title: J Intell Mater Syst Struct doi: 10.1177/1045389X16642536 – volume: 16 start-page: 1502 issue: 9 year: 2016 ident: 10.1016/j.energy.2019.116140_bib19 article-title: A self-powered insole for human motion recognition publication-title: Sensors doi: 10.3390/s16091502 – volume: 118 start-page: 221 year: 2017 ident: 10.1016/j.energy.2019.116140_bib11 article-title: Optimum resistance analysis and experimental verification of nonlinear piezoelectric energy harvesting from human motions publication-title: Energy doi: 10.1016/j.energy.2016.12.035 – volume: 165 start-page: 677 year: 2018 ident: 10.1016/j.energy.2019.116140_bib12 article-title: High-performance and cost-effective triboelectric nanogenerators by sandpaper-assisted micropatterned polytetrafluoroethylene publication-title: Energy doi: 10.1016/j.energy.2018.09.122 – volume: 154 start-page: 365 year: 2018 ident: 10.1016/j.energy.2019.116140_bib10 article-title: Micro linear generator for harvesting mechanical energy from the human gait publication-title: Energy doi: 10.1016/j.energy.2018.04.123 – volume: 86 start-page: 385 year: 2015 ident: 10.1016/j.energy.2019.116140_bib23 article-title: Energy harvesting from a vehicle suspension system publication-title: Energy doi: 10.1016/j.energy.2015.04.009 – year: 2016 ident: 10.1016/j.energy.2019.116140_bib38 – volume: 110 start-page: 143902 issue: 14 year: 2017 ident: 10.1016/j.energy.2019.116140_bib17 article-title: Scavenging energy from human walking through a shoe-mounted piezoelectric harvester publication-title: Appl Phys Lett doi: 10.1063/1.4979832 |
SSID | ssj0005899 |
Score | 2.5698047 |
Snippet | This paper presents the design, modeling and experimental tests of a novel piezoelectric energy harvester with a two-stage force-amplification compliant... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 116140 |
SubjectTerms | Amplification Body weight Computer simulation Energy Energy harvesting Force amplification Human walking humans males Mathematical models Piezoelectric stack Piezoelectric transducers Piezoelectricity prototypes Scavenging Transducers Walking |
Title | Piezoelectric energy harvesting from human walking using a two-stage amplification mechanism |
URI | https://dx.doi.org/10.1016/j.energy.2019.116140 https://www.proquest.com/docview/2334207344 https://www.proquest.com/docview/2315253149 |
Volume | 189 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9KfdAX0WrxtJYVfI3Xu539yGMpLWcPi6jFPgjL3mb3TGlzpXel4IN_uzPJpq0FKfgUkkzIZnY-fruZD4D3ZWWVrSwWo4qLas8SkkqhLDDuzKxXoygD70N-OtKTYzw8USdrsNfnwnBYZbb9nU1vrXW-MszcHF7U9fAr2V7CG0gqx3KpuOInomEp__D7TpiHbXtIMnHB1H36XBvjFdv8Og7wKsl2kKfa-Zd7umeoW-9z8AyeZtgodruRPYe12GzA4z6reLkBm_u3GWtEmFV2-QJ-fK7jr0XX7aYOohuL-Okv2_oazVxwgoloW_WJa3_GO-eCg-HnwovV9aIg9DiPwnPgecr7e-I8cr5wvTx_CccH-9_2JkVuqVAEqc2qQFrAWBxHLHVltLcYPKbKJ02wK2kdopfWGG-V8qScSFY56kSQKcyCkan0chPWm0UTX4HQBL1MGNF6J9IaJhovERMSflAhKV2WA5A9J13I9ca57cWZ6wPLTl33zY757zr-D6C4eeqiq7fxAL3pJ8n9JTeOXMIDT271c-qy3i7dWEock9VDHMC7m9ukcfwbxTdxccU03DOKuFO-_u-Xv4EnfMZxMSO1Beury6v4ltDNarbdiu82PNr9OJ0c8XH65fv0D86G-6o |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_s-WBfirWVXrVtCn1dzrtMstlHEeX8OgpV8KEQctnkuqJ74p0I_vXO7GaVFkTo6yZhs5PMb37JzgfAj6I0ypQGs2HJSbWnEUmlUGYYdqbGqWGQnu8hTyd6fI5HF-piBfa6WBh2q0zY32J6g9bpySBJc3BTVYNfhL3EN5BUjvelkm9glbNTqR6s7h4ejyfPnh6mKSPJ_TMe0EXQNW5eoQmxYx-vguCDjNXOSxbqH6xuDNDBOrxLzFHstpN7Dyuh3oC1LrB4sQGb-89Ba9Qxae3iA_z-WYWHeVvwpvKinYv4426bFBv1THCMiWiq9Yl7d8WX54L94WfCieX9PCMCOQvCse95TFd84jpwyHC1uP4I5wf7Z3vjLFVVyLzU-TJDOsMYHAUsdJlrZ9A7jKWLmphX1NoHJ02eO6OUI_1EAuagI7EmP_W5jIWTm9Cr53X4BEIT-8r9kI48gY4xIXcSMSJRCOWj0kXRB9lJ0vqUcpwrX1zZzrfs0rbfbFn-tpV_H7KnUTdtyo1X-ufdItm_to4lq_DKyO1uTW1S3YUdSYkjAj7EPnx_aial4z8prg7zO-7DZaNIOsXn_375N1gbn52e2JPDyfEWvOUWdpMZqm3oLW_vwhciO8vp17SZHwGE4Py4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezoelectric+energy+harvesting+from+human+walking+using+a+two-stage+amplification+mechanism&rft.jtitle=Energy+%28Oxford%29&rft.au=Qian%2C+Feng&rft.au=Xu%2C+Tian-Bing&rft.au=Zuo%2C+Lei&rft.date=2019-12-15&rft.issn=0360-5442&rft.volume=189+p.116140-&rft_id=info:doi/10.1016%2Fj.energy.2019.116140&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |