An in vivo target mutagenesis system for multiple hosts

In vivo targeted mutagenesis technology can enable the gene of interest to generate genetic diversity within the host cell without human intervention.We developed an in vivo targeted mutagenesis system applicable to multiple hosts, effectively addressing the key gap of in vivo mutagenesis tools for...

Full description

Saved in:
Bibliographic Details
Published inTrends in biotechnology (Regular ed.) Vol. 43; no. 8; pp. 2049 - 2072
Main Authors Yin, Dong, Pang, Qingxiao, Yuan, Yingbo, Su, Tianyuan, Liu, Mengmeng, Wang, Qian, Hou, Jin, Qi, Qingsheng
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.08.2025
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In vivo targeted mutagenesis technology can enable the gene of interest to generate genetic diversity within the host cell without human intervention.We developed an in vivo targeted mutagenesis system applicable to multiple hosts, effectively addressing the key gap of in vivo mutagenesis tools for unconventional hosts.This system features a longer evolution window, enabling the simultaneous evolution of multiple proteins.This system has extensive potential in unconventional host applications, facilitating more efficient enzyme engineering and metabolic optimization in industrial settings. In vivo target mutagenesis is a powerful approach to accelerate protein evolution. However, current approaches have been primarily developed in conventional organisms, limiting their capacity to evolve proteins with subtle variations across non-conventional host species. Here, we design an in vivo target mutagenesis system for multiple hosts (ITMU) utilizing the broad host-range plasmid RSF1010 replication element. The ITMU, which is based on a deaminase–helicase fusion and a primase error-prone DNA polymerase I fusion, induces all types of mutation in the target plasmid harboring the RSF1010 replicon, at a mutation rate 1.18 × 105-fold higher than that of the host genome. We show that ITMU-based in vivo continuous evolution is effective in Escherichia coli, Pseudomonas putida, Corynebacterium glutamicum, and Yarrowia lipolytica. This demonstrates that the ITMU is applicable to multiple microbial chassis and provides a viable alternative to in vivo continuous evolution systems. [Display omitted] Targeted evolution in vivo has been studied for decades; however, the extension of this technique to non-conventional hosts remains a significant challenge. This study reports an in vivo target mutagenesis system for multiple hosts (ITMU) that is applicable to both conventional and non-conventional hosts. The ITMU uses the fusion of the replication element from the broad host-range plasmid RSF1010 with DNA-modifying enzymes to achieve high frequency mutation of the target plasmid. ITMU-based in vivo continuous evolution was proved to be effective in Escherichia coli, Pseudomonas putida, Corynebacterium glutamicum, and Yarrowia lipolytica. Therefore, we assess the Technology Readiness Level (TRL) of this technology to be between 4 and 5. To facilitate the full-scale implementation of ITMU, it will be necessary to further explore and optimize DNA-modifying enzymes utilizing advanced techniques such as big data analysis and machine learning. With the recognition of the potential for non-conventional hosts to serve as the next-generation cell factory, we anticipate that ITMU will accelerate the development of novel enzymes and high-value compounds in non-conventional hosts. This study developed an in vivo targeted mutagenesis system for multiple hosts based on replication elements of broad host-range plasmids. This system is designed to accelerate the rapid evolution of proteins and metabolic pathways, further leveraging the performance advantages of unconventional hosts.
AbstractList In vivo target mutagenesis is a powerful approach to accelerate protein evolution. However, current approaches have been primarily developed in conventional organisms, limiting their capacity to evolve proteins with subtle variations across non-conventional host species. Here, we design an in vivo target mutagenesis system for multiple hosts (ITMU) utilizing the broad host-range plasmid RSF1010 replication element. The ITMU, which is based on a deaminase–helicase fusion and a primase error-prone DNA polymerase I fusion, induces all types of mutation in the target plasmid harboring the RSF1010 replicon, at a mutation rate 1.18 × 10 5-fold higher than that of the host genome. We show that ITMU-based in vivo continuous evolution is effective in Escherichia coli, Pseudomonas putida, Corynebacterium glutamicum, and Yarrowia lipolytica. This demonstrates that the ITMU is applicable to multiple microbial chassis and provides a viable alternative to in vivo continuous evolution systems.
In vivo target mutagenesis is a powerful approach to accelerate protein evolution. However, current approaches have been primarily developed in conventional organisms, limiting their capacity to evolve proteins with subtle variations across non-conventional host species. Here, we design an in vivo target mutagenesis system for multiple hosts (ITMU) utilizing the broad host-range plasmid RSF1010 replication element. The ITMU, which is based on a deaminase-helicase fusion and a primase error-prone DNA polymerase I fusion, induces all types of mutation in the target plasmid harboring the RSF1010 replicon, at a mutation rate 1.18 × 105-fold higher than that of the host genome. We show that ITMU-based in vivo continuous evolution is effective in Escherichia coli, Pseudomonas putida, Corynebacterium glutamicum, and Yarrowia lipolytica. This demonstrates that the ITMU is applicable to multiple microbial chassis and provides a viable alternative to in vivo continuous evolution systems.In vivo target mutagenesis is a powerful approach to accelerate protein evolution. However, current approaches have been primarily developed in conventional organisms, limiting their capacity to evolve proteins with subtle variations across non-conventional host species. Here, we design an in vivo target mutagenesis system for multiple hosts (ITMU) utilizing the broad host-range plasmid RSF1010 replication element. The ITMU, which is based on a deaminase-helicase fusion and a primase error-prone DNA polymerase I fusion, induces all types of mutation in the target plasmid harboring the RSF1010 replicon, at a mutation rate 1.18 × 105-fold higher than that of the host genome. We show that ITMU-based in vivo continuous evolution is effective in Escherichia coli, Pseudomonas putida, Corynebacterium glutamicum, and Yarrowia lipolytica. This demonstrates that the ITMU is applicable to multiple microbial chassis and provides a viable alternative to in vivo continuous evolution systems.
In vivo targeted mutagenesis technology can enable the gene of interest to generate genetic diversity within the host cell without human intervention.We developed an in vivo targeted mutagenesis system applicable to multiple hosts, effectively addressing the key gap of in vivo mutagenesis tools for unconventional hosts.This system features a longer evolution window, enabling the simultaneous evolution of multiple proteins.This system has extensive potential in unconventional host applications, facilitating more efficient enzyme engineering and metabolic optimization in industrial settings. In vivo target mutagenesis is a powerful approach to accelerate protein evolution. However, current approaches have been primarily developed in conventional organisms, limiting their capacity to evolve proteins with subtle variations across non-conventional host species. Here, we design an in vivo target mutagenesis system for multiple hosts (ITMU) utilizing the broad host-range plasmid RSF1010 replication element. The ITMU, which is based on a deaminase–helicase fusion and a primase error-prone DNA polymerase I fusion, induces all types of mutation in the target plasmid harboring the RSF1010 replicon, at a mutation rate 1.18 × 105-fold higher than that of the host genome. We show that ITMU-based in vivo continuous evolution is effective in Escherichia coli, Pseudomonas putida, Corynebacterium glutamicum, and Yarrowia lipolytica. This demonstrates that the ITMU is applicable to multiple microbial chassis and provides a viable alternative to in vivo continuous evolution systems. [Display omitted] Targeted evolution in vivo has been studied for decades; however, the extension of this technique to non-conventional hosts remains a significant challenge. This study reports an in vivo target mutagenesis system for multiple hosts (ITMU) that is applicable to both conventional and non-conventional hosts. The ITMU uses the fusion of the replication element from the broad host-range plasmid RSF1010 with DNA-modifying enzymes to achieve high frequency mutation of the target plasmid. ITMU-based in vivo continuous evolution was proved to be effective in Escherichia coli, Pseudomonas putida, Corynebacterium glutamicum, and Yarrowia lipolytica. Therefore, we assess the Technology Readiness Level (TRL) of this technology to be between 4 and 5. To facilitate the full-scale implementation of ITMU, it will be necessary to further explore and optimize DNA-modifying enzymes utilizing advanced techniques such as big data analysis and machine learning. With the recognition of the potential for non-conventional hosts to serve as the next-generation cell factory, we anticipate that ITMU will accelerate the development of novel enzymes and high-value compounds in non-conventional hosts. This study developed an in vivo targeted mutagenesis system for multiple hosts based on replication elements of broad host-range plasmids. This system is designed to accelerate the rapid evolution of proteins and metabolic pathways, further leveraging the performance advantages of unconventional hosts.
HighlightsIn vivo targeted mutagenesis technology can enable the gene of interest to generate genetic diversity within the host cell without human intervention. We developed an in vivo targeted mutagenesis system applicable to multiple hosts, effectively addressing the key gap of in vivo mutagenesis tools for unconventional hosts. This system features a longer evolution window, enabling the simultaneous evolution of multiple proteins. This system has extensive potential in unconventional host applications, facilitating more efficient enzyme engineering and metabolic optimization in industrial settings.
In vivo target mutagenesis is a powerful approach to accelerate protein evolution. However, current approaches have been primarily developed in conventional organisms, limiting their capacity to evolve proteins with subtle variations across non-conventional host species. Here, we design an in vivo target mutagenesis system for multiple hosts (ITMU) utilizing the broad host-range plasmid RSF1010 replication element. The ITMU, which is based on a deaminase-helicase fusion and a primase error-prone DNA polymerase I fusion, induces all types of mutation in the target plasmid harboring the RSF1010 replicon, at a mutation rate 1.18 × 10 -fold higher than that of the host genome. We show that ITMU-based in vivo continuous evolution is effective in Escherichia coli, Pseudomonas putida, Corynebacterium glutamicum, and Yarrowia lipolytica. This demonstrates that the ITMU is applicable to multiple microbial chassis and provides a viable alternative to in vivo continuous evolution systems.
Author Hou, Jin
Liu, Mengmeng
Su, Tianyuan
Wang, Qian
Yin, Dong
Yuan, Yingbo
Qi, Qingsheng
Pang, Qingxiao
Author_xml – sequence: 1
  givenname: Dong
  surname: Yin
  fullname: Yin, Dong
  organization: State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
– sequence: 2
  givenname: Qingxiao
  surname: Pang
  fullname: Pang, Qingxiao
  organization: State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
– sequence: 3
  givenname: Yingbo
  surname: Yuan
  fullname: Yuan, Yingbo
  organization: State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
– sequence: 4
  givenname: Tianyuan
  surname: Su
  fullname: Su, Tianyuan
  organization: State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
– sequence: 5
  givenname: Mengmeng
  surname: Liu
  fullname: Liu, Mengmeng
  organization: State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
– sequence: 6
  givenname: Qian
  surname: Wang
  fullname: Wang, Qian
  organization: National Glycoengineering Research Center, Shandong University, Qingdao, 266237, People's Republic of China
– sequence: 7
  givenname: Jin
  surname: Hou
  fullname: Hou, Jin
  organization: State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
– sequence: 8
  givenname: Qingsheng
  orcidid: 0000-0001-9015-4561
  surname: Qi
  fullname: Qi, Qingsheng
  email: qiqingsheng@sdu.edu.cn
  organization: State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40345898$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1r3DAQhkVJaTZpf0KLoZde7I4k25IObQihXxDooe1ZyPI40da2tpK8sP--MrvNIVDa08DwzMvMMxfkbPYzEvKSQkWBtm-3VXJdQntfMWBNBXUF0DwhGyqFKjmo9oxsMidKIZQ6JxcxbgGAC0WfkfMaeN1IJTdEXM-Fm4u92_simXCHqZiWZO5wxuhiEQ8x4VQMPuT2mNxuxOLexxSfk6eDGSO-ONVL8uPjh-83n8vbr5--3Fzflpa3IpVcNtwgdoPtB9VDxxuj7DCgHNrasJ7VLQWQvKZIpeJGdj0y2fcoleEMWsEvyZtj7i74XwvGpCcXLY6jmdEvUWeK1UCBy4y-foRu_RLmvF2muKg5pYJn6tWJWroJe70LbjLhoP8oyUBzBGzwMQYcHhAKelWvt_qkXq_qNdQ6q89zV8c5zDr2DoOO1uFssXcBbdK9d_9MeP8owY5udtaMP_GA8eEaqiPToL-t712_yxoAytka8O7vAf-xwG_Yq7ba
Cites_doi 10.1038/s41587-023-02050-w
10.1016/j.biotechadv.2013.08.021
10.1038/s41467-023-44245-4
10.1021/acssynbio.0c00149
10.1126/sciadv.abg8712
10.1073/pnas.0902910106
10.1021/acssynbio.6b00052
10.1016/j.ymben.2020.01.002
10.1021/acssynbio.1c00031
10.1073/pnas.81.3.654
10.1038/ncomms9425
10.1093/nar/gkad003
10.1038/s41467-024-46574-4
10.1038/s41589-019-0452-x
10.1128/mbio.02296-22
10.1016/S1568-7864(03)00024-7
10.1007/s00203-007-0276-z
10.1016/j.dnarep.2013.08.003
10.1038/s41589-023-01387-2
10.1073/pnas.120163297
10.1021/jacs.8b04001
10.1038/s41587-020-0562-8
10.1093/bioinformatics/btp253
10.1002/jcc.21334
10.1016/S0076-6879(05)09012-9
10.1016/j.ymthe.2022.07.010
10.1038/s41589-021-00832-4
10.1093/nar/gkh271
10.1529/biophysj.105.071837
10.1038/s41467-021-21876-z
10.1038/s41564-017-0102-6
10.1038/s41586-019-1923-7
10.1016/j.ymben.2024.05.004
10.1016/j.copbio.2023.103025
10.1093/nar/19.6.1203
10.1093/nar/gkae577
10.1016/j.dnarep.2018.02.005
10.1093/nar/gkad266
10.1038/s41586-018-0384-8
10.1016/j.csbj.2021.12.042
10.1016/S0378-1135(96)01294-1
10.1128/jb.173.21.6705-6708.1991
10.1021/acscatal.4c00400
10.1128/jb.133.3.1527-1529.1978
10.1073/pnas.1333928100
10.1016/j.jbc.2021.100558
10.1016/j.biortech.2024.131806
10.1038/s41587-022-01533-6
10.1038/s41589-018-0121-5
10.1016/j.tibtech.2024.05.005
10.1007/BF00455118
10.1016/j.plasmid.2013.04.001
10.1186/s12934-023-02197-w
10.1186/s13068-020-01747-3
10.1002/anie.201409470
10.1016/j.tibtech.2022.07.006
10.1038/s41580-024-00718-y
10.1128/jb.134.3.1117-1122.1978
10.1021/acssynbio.2c00689
10.1021/acssynbio.0c00135
10.1007/s00253-013-5359-y
10.1038/s41467-023-39087-z
10.1016/j.tim.2024.02.006
10.1016/j.cbpa.2014.09.040
10.1007/BF00173989
10.1016/j.cell.2018.10.021
10.1093/nar/gkad602
10.1016/j.isci.2019.09.002
10.1016/S1567-1356(03)00141-7
10.1038/s41596-020-00410-3
10.1126/science.adk1281
10.1016/j.jbiotec.2014.09.023
10.1128/jb.177.17.4890-4899.1995
10.1093/nar/gkab1244
10.1007/s00253-014-5676-9
10.1002/anie.202303112
10.1016/j.cbpa.2020.03.004
10.1016/j.ymben.2018.07.008
10.1039/D1CC04635G
10.1128/aem.63.11.4604-4607.1997
10.1016/j.biortech.2019.122337
10.1007/s00253-020-10811-9
10.1016/j.copbio.2009.08.005
10.1006/jmbi.1998.1780
10.1038/s43586-022-00119-5
10.1007/s00253-018-9294-9
10.1016/j.biotechadv.2021.107695
10.1038/313818a0
10.2174/138920310790274617
10.1038/s41587-023-01994-3
10.1111/j.1432-1033.1985.tb08761.x
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Elsevier Ltd
Copyright © 2025 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2025 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2025 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1016/j.tibtech.2025.04.005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic



MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1879-3096
EndPage 2072
ExternalDocumentID 40345898
10_1016_j_tibtech_2025_04_005
S0167779925001325
1_s2_0_S0167779925001325
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
7-5
71M
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAHBH
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAMRU
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABDPE
ABFNM
ABFRF
ABGSF
ABJCF
ABJNI
ABLJU
ABMAC
ABNUV
ABUDA
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIWK
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADFRT
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEUYN
AEVXI
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHMBA
AHPOS
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJUYK
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AQUVI
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKOJK
BLXMC
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HLW
HMCUK
HVGLF
HZ~
IHE
J1W
KOM
L6V
LK8
LX3
M0T
M1P
M2O
M41
M7P
M7S
MO0
MVM
N9A
O-L
O9-
O9.
OAUVE
OK~
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
Q38
R2-
RNS
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSU
SSZ
T5K
TAE
TN5
UKHRP
WUQ
XPP
Y6R
Z5R
ZGI
ZMT
~02
~G-
~KM
AFCTW
AGRNS
ALIPV
BNPGV
RIG
SSH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c367t-3853aeebfcdf9d0b35a9cffe8f64a2d2461008341e1893a8bde28dde89a320673
IEDL.DBID .~1
ISSN 0167-7799
1879-3096
IngestDate Fri Jul 11 18:06:46 EDT 2025
Sat Aug 23 13:14:27 EDT 2025
Sun Aug 10 01:31:56 EDT 2025
Thu Aug 14 00:10:38 EDT 2025
Sat Aug 30 17:14:24 EDT 2025
Fri May 23 00:02:47 EDT 2025
Tue Aug 26 19:34:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords in vivo target mutagenesis
synthetic biology
multiple hosts
Language English
License Copyright © 2025 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-3853aeebfcdf9d0b35a9cffe8f64a2d2461008341e1893a8bde28dde89a320673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9015-4561
PMID 40345898
PQID 3237431173
PQPubID 2031074
PageCount 24
ParticipantIDs proquest_miscellaneous_3202401038
proquest_journals_3237431173
pubmed_primary_40345898
crossref_primary_10_1016_j_tibtech_2025_04_005
elsevier_sciencedirect_doi_10_1016_j_tibtech_2025_04_005
elsevier_clinicalkeyesjournals_1_s2_0_S0167779925001325
elsevier_clinicalkey_doi_10_1016_j_tibtech_2025_04_005
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Trends in biotechnology (Regular ed.)
PublicationTitleAlternate Trends Biotechnol
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Senior (bb0295) 2020; 577
Zhong (bb0090) 2020; 9
Listov (bb0360) 2024; 25
Tian (bb0095) 2024; 383
Martínez-García, de Lorenzo (bb0135) 2024; 85
Tou (bb0205) 2020; 9
Trott, Olson (bb0300) 2010; 31
Zimmermann (bb0120) 2023; 14
Scherzinger (bb0150) 1991; 19
Ollis (bb0245) 1985; 313
Chen (bb0345) 2023; 9
Prabhu (bb0335) 2020; 13
Nagahari, Sakaguchi (bb0420) 1978; 133
Fernández-Cabezón (bb0055) 2021; 10
Moore (bb0070) 2018; 140
Patra (bb0395) 2021; 47
Foster (bb0160) 2006; 409
Weimer (bb0270) 2020; 104
Scherzinger (bb0140) 1984; 81
Hall (bb0470) 2009; 25
Yang (bb0475) 2023; 11
Cai (bb0050) 2023; 51
Orsi (bb0405) 2024; 15
Xiao (bb0415) 2024; 42
Obranić (bb0290) 2013; 70
Ye (bb0410) 2024; 42
Binns (bb0435) 1995; 177
Yook (bb0340) 2025; 416
Park, Ledesma-Amaro (bb0325) 2023; 41
Jagtap, Rao (bb0330) 2018; 102
Liu (bb0355) 2014; 14
Wolk (bb0465) 2007; 188
Camps (bb0225) 2003; 100
Kuyper (bb0350) 2003; 4
Dougherty, Arnold (bb0010) 2009; 20
Yang (bb0255) 2020; 296
Li (bb0305) 2023; 405
Rosenthal (bb0240) 2023; 62
Su (bb0220) 2018; 64
Li (bb0260) 2016; 5
Eom (bb0065) 2022; 50
Lee, Henk (bb0450) 1997; 54
Nesvera (bb0460) 1994; 40
Yi (bb0190) 2021; 7
Wang (bb0005) 2018; 14
Tu (bb0180) 2022; 30
Sun, Alper (bb0380) 2020; 59
Wellner (bb0075) 2021; 17
Badran, Liu (bb0200) 2015; 6
Wang (bb0060) 2024; 52
Matano (bb0315) 2014; 98
Datta (bb0235) 2006; 90
Renata (bb0020) 2015; 54
Thorwall (bb0385) 2020; 16
Gruber (bb0445) 2014; 192 Pt B
Neugebauer (bb0185) 2023; 41
Buckel (bb0280) 1977; 158
Zimmermann (bb0400) 2024; 32
Tangy (bb0285) 1985; 147
Pan, Kortemme (bb0365) 2021; 296
Heider (bb0320) 2014; 98
Pang (bb0015) 2020; 59
Ravikumar (bb0080) 2018; 175
Labrou (bb0025) 2010; 11
Geibel (bb0145) 2009; 106
Seo (bb0125) 2023; 51
Garibyan (bb0195) 2003; 2
Gormley, Davies (bb0425) 1991; 173
Miller (bb0045) 2020; 15
Tee, Wong (bb0030) 2013; 31
Davies (bb0275) 1998; 279
Palmer (bb0455) 1997; 63
Cui (bb0130) 2023; 14
Badran, Liu (bb0040) 2015; 24
Tian (bb0100) 2023; 19
Vanella (bb0035) 2022; 58
Shelake (bb0170) 2023; 14
Vo (bb0265) 2024; 84
Halperin (bb0105) 2018; 560
Wang (bb0230) 2004; 32
Cravens (bb0115) 2021; 12
Molina (bb0085) 2022; 2
Gu (bb0250) 2023; 22
Lee (bb0215) 2013; 12
de Graaff (bb0430) 1978; 134
Mengiste (bb0110) 2023; 51
Datsenko, Wanner (bb0155) 2000; 97
Richter (bb0175) 2020; 38
Bishé (bb0440) 2019; 20
Banno (bb0165) 2018; 3
Li (bb0370) 2022; 20
Binan (bb0390) 2024; 42
Becker (bb0310) 2018; 50
Zheng (bb0375) 2024; 14
Gossing (bb0210) 2023; 12
Martínez-García (10.1016/j.tibtech.2025.04.005_bb0135) 2024; 85
Labrou (10.1016/j.tibtech.2025.04.005_bb0025) 2010; 11
Miller (10.1016/j.tibtech.2025.04.005_bb0045) 2020; 15
Cravens (10.1016/j.tibtech.2025.04.005_bb0115) 2021; 12
Garibyan (10.1016/j.tibtech.2025.04.005_bb0195) 2003; 2
Thorwall (10.1016/j.tibtech.2025.04.005_bb0385) 2020; 16
Dougherty (10.1016/j.tibtech.2025.04.005_bb0010) 2009; 20
Lee (10.1016/j.tibtech.2025.04.005_bb0215) 2013; 12
Palmer (10.1016/j.tibtech.2025.04.005_bb0455) 1997; 63
Obranić (10.1016/j.tibtech.2025.04.005_bb0290) 2013; 70
Zheng (10.1016/j.tibtech.2025.04.005_bb0375) 2024; 14
Tee (10.1016/j.tibtech.2025.04.005_bb0030) 2013; 31
Wellner (10.1016/j.tibtech.2025.04.005_bb0075) 2021; 17
Ollis (10.1016/j.tibtech.2025.04.005_bb0245) 1985; 313
Zhong (10.1016/j.tibtech.2025.04.005_bb0090) 2020; 9
Davies (10.1016/j.tibtech.2025.04.005_bb0275) 1998; 279
Gormley (10.1016/j.tibtech.2025.04.005_bb0425) 1991; 173
Buckel (10.1016/j.tibtech.2025.04.005_bb0280) 1977; 158
Yi (10.1016/j.tibtech.2025.04.005_bb0190) 2021; 7
Camps (10.1016/j.tibtech.2025.04.005_bb0225) 2003; 100
Vo (10.1016/j.tibtech.2025.04.005_bb0265) 2024; 84
Ye (10.1016/j.tibtech.2025.04.005_bb0410) 2024; 42
Gruber (10.1016/j.tibtech.2025.04.005_bb0445) 2014; 192 Pt B
Bishé (10.1016/j.tibtech.2025.04.005_bb0440) 2019; 20
Chen (10.1016/j.tibtech.2025.04.005_bb0345) 2023; 9
Wolk (10.1016/j.tibtech.2025.04.005_bb0465) 2007; 188
Tian (10.1016/j.tibtech.2025.04.005_bb0095) 2024; 383
Binan (10.1016/j.tibtech.2025.04.005_bb0390) 2024; 42
Wang (10.1016/j.tibtech.2025.04.005_bb0060) 2024; 52
Moore (10.1016/j.tibtech.2025.04.005_bb0070) 2018; 140
Richter (10.1016/j.tibtech.2025.04.005_bb0175) 2020; 38
Tangy (10.1016/j.tibtech.2025.04.005_bb0285) 1985; 147
Shelake (10.1016/j.tibtech.2025.04.005_bb0170) 2023; 14
Senior (10.1016/j.tibtech.2025.04.005_bb0295) 2020; 577
Liu (10.1016/j.tibtech.2025.04.005_bb0355) 2014; 14
Mengiste (10.1016/j.tibtech.2025.04.005_bb0110) 2023; 51
Scherzinger (10.1016/j.tibtech.2025.04.005_bb0150) 1991; 19
Badran (10.1016/j.tibtech.2025.04.005_bb0200) 2015; 6
Su (10.1016/j.tibtech.2025.04.005_bb0220) 2018; 64
Li (10.1016/j.tibtech.2025.04.005_bb0260) 2016; 5
Matano (10.1016/j.tibtech.2025.04.005_bb0315) 2014; 98
Banno (10.1016/j.tibtech.2025.04.005_bb0165) 2018; 3
Vanella (10.1016/j.tibtech.2025.04.005_bb0035) 2022; 58
Badran (10.1016/j.tibtech.2025.04.005_bb0040) 2015; 24
Eom (10.1016/j.tibtech.2025.04.005_bb0065) 2022; 50
Foster (10.1016/j.tibtech.2025.04.005_bb0160) 2006; 409
Neugebauer (10.1016/j.tibtech.2025.04.005_bb0185) 2023; 41
Tian (10.1016/j.tibtech.2025.04.005_bb0100) 2023; 19
Wang (10.1016/j.tibtech.2025.04.005_bb0230) 2004; 32
Cai (10.1016/j.tibtech.2025.04.005_bb0050) 2023; 51
Jagtap (10.1016/j.tibtech.2025.04.005_bb0330) 2018; 102
Ravikumar (10.1016/j.tibtech.2025.04.005_bb0080) 2018; 175
Datta (10.1016/j.tibtech.2025.04.005_bb0235) 2006; 90
Binns (10.1016/j.tibtech.2025.04.005_bb0435) 1995; 177
Scherzinger (10.1016/j.tibtech.2025.04.005_bb0140) 1984; 81
Weimer (10.1016/j.tibtech.2025.04.005_bb0270) 2020; 104
Heider (10.1016/j.tibtech.2025.04.005_bb0320) 2014; 98
Nesvera (10.1016/j.tibtech.2025.04.005_bb0460) 1994; 40
Zimmermann (10.1016/j.tibtech.2025.04.005_bb0120) 2023; 14
Yook (10.1016/j.tibtech.2025.04.005_bb0340) 2025; 416
Cui (10.1016/j.tibtech.2025.04.005_bb0130) 2023; 14
Wang (10.1016/j.tibtech.2025.04.005_bb0005) 2018; 14
Halperin (10.1016/j.tibtech.2025.04.005_bb0105) 2018; 560
Tu (10.1016/j.tibtech.2025.04.005_bb0180) 2022; 30
Molina (10.1016/j.tibtech.2025.04.005_bb0085) 2022; 2
Prabhu (10.1016/j.tibtech.2025.04.005_bb0335) 2020; 13
Patra (10.1016/j.tibtech.2025.04.005_bb0395) 2021; 47
Xiao (10.1016/j.tibtech.2025.04.005_bb0415) 2024; 42
Nagahari (10.1016/j.tibtech.2025.04.005_bb0420) 1978; 133
Hall (10.1016/j.tibtech.2025.04.005_bb0470) 2009; 25
Yang (10.1016/j.tibtech.2025.04.005_bb0255) 2020; 296
Lee (10.1016/j.tibtech.2025.04.005_bb0450) 1997; 54
Kuyper (10.1016/j.tibtech.2025.04.005_bb0350) 2003; 4
Gu (10.1016/j.tibtech.2025.04.005_bb0250) 2023; 22
Li (10.1016/j.tibtech.2025.04.005_bb0370) 2022; 20
Geibel (10.1016/j.tibtech.2025.04.005_bb0145) 2009; 106
Fernández-Cabezón (10.1016/j.tibtech.2025.04.005_bb0055) 2021; 10
Pan (10.1016/j.tibtech.2025.04.005_bb0365) 2021; 296
Gossing (10.1016/j.tibtech.2025.04.005_bb0210) 2023; 12
Rosenthal (10.1016/j.tibtech.2025.04.005_bb0240) 2023; 62
de Graaff (10.1016/j.tibtech.2025.04.005_bb0430) 1978; 134
Park (10.1016/j.tibtech.2025.04.005_bb0325) 2023; 41
Becker (10.1016/j.tibtech.2025.04.005_bb0310) 2018; 50
Yang (10.1016/j.tibtech.2025.04.005_bb0475) 2023; 11
Datsenko (10.1016/j.tibtech.2025.04.005_bb0155) 2000; 97
Orsi (10.1016/j.tibtech.2025.04.005_bb0405) 2024; 15
Seo (10.1016/j.tibtech.2025.04.005_bb0125) 2023; 51
Li (10.1016/j.tibtech.2025.04.005_bb0305) 2023; 405
Renata (10.1016/j.tibtech.2025.04.005_bb0020) 2015; 54
Tou (10.1016/j.tibtech.2025.04.005_bb0205) 2020; 9
Trott (10.1016/j.tibtech.2025.04.005_bb0300) 2010; 31
Listov (10.1016/j.tibtech.2025.04.005_bb0360) 2024; 25
Pang (10.1016/j.tibtech.2025.04.005_bb0015) 2020; 59
Sun (10.1016/j.tibtech.2025.04.005_bb0380) 2020; 59
Zimmermann (10.1016/j.tibtech.2025.04.005_bb0400) 2024; 32
References_xml – volume: 175
  start-page: 1946
  year: 2018
  end-page: 1957
  ident: bb0080
  article-title: Scalable, continuous evolution of genes at mutation rates above genomic error thresholds
  publication-title: Cell
– volume: 38
  start-page: 901
  year: 2020
  ident: bb0175
  article-title: Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity
  publication-title: Nat. Biotechnol.
– volume: 32
  start-page: 1197
  year: 2004
  end-page: 1207
  ident: bb0230
  article-title: A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance
  publication-title: Nucleic Acids Res.
– volume: 50
  start-page: 122
  year: 2018
  end-page: 141
  ident: bb0310
  article-title: Metabolically engineered
  publication-title: Metab. Eng.
– volume: 12
  start-page: 2271
  year: 2023
  end-page: 2277
  ident: bb0210
  article-title: Multiplexed guide RNA expression leads to increased mutation frequency in targeted window using a CRISPR-guided error-prone DNA polymerase in
  publication-title: ACS Synth. Biol.
– volume: 405
  year: 2023
  ident: bb0305
  article-title: Recent technological strategies for enhancing the stability of lycopene in processing and production
  publication-title: Food Chem.
– volume: 12
  start-page: 1579
  year: 2021
  ident: bb0115
  article-title: Polymerase-guided base editing enables
  publication-title: Nat. Commun.
– volume: 192 Pt B
  start-page: 410
  year: 2014
  end-page: 418
  ident: bb0445
  article-title: Reprint of ‘versatile and stable vectors for efficient gene expression in
  publication-title: J. Biotechnol.
– volume: 81
  start-page: 654
  year: 1984
  end-page: 658
  ident: bb0140
  article-title: Replication of the broad host range plasmid RSF1010-requirement for 3 plasmid-encoded proteins
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 140
  start-page: 11560
  year: 2018
  end-page: 11564
  ident: bb0070
  article-title: A processive protein chimera introduces mutations across defined DNA regions
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 1057
  year: 2021
  end-page: 1064
  ident: bb0075
  article-title: Rapid generation of potent antibodies by autonomous hypermutation in yeast
  publication-title: Nat. Chem. Biol.
– volume: 14
  start-page: 3389
  year: 2023
  ident: bb0120
  article-title: A Cas3-base editing tool for targetable
  publication-title: Nat. Commun.
– volume: 42
  start-page: 1442
  year: 2024
  end-page: 1453
  ident: bb0415
  article-title: An adenine base editor variant expands context compatibility
  publication-title: Nat. Biotechnol.
– volume: 52
  start-page: 8609
  year: 2024
  end-page: 8627
  ident: bb0060
  article-title: Dual genetic level modification engineering accelerate genome evolution of
  publication-title: Nucleic Acids Res.
– volume: 25
  start-page: 1564
  year: 2009
  end-page: 1565
  ident: bb0470
  article-title: Fluctuation analysis CalculatOR: a web tool for the determination of mutation rate using Luria-Delbruck fluctuation analysis
  publication-title: Bioinformatics
– volume: 296
  year: 2021
  ident: bb0365
  article-title: Recent advances in
  publication-title: J. Biol. Chem.
– volume: 9
  year: 2023
  ident: bb0345
  article-title: Big data mining, rational modification, and ancestral sequence reconstruction inferred multiple xylose isomerases for biorefinery
  publication-title: Sci. Adv.
– volume: 20
  start-page: 459
  year: 2022
  end-page: 470
  ident: bb0370
  article-title: Computational design of a cutinase for plastic biodegradation by mining molecular dynamics simulations trajectories
  publication-title: Comput. Struct. Biotechnol. J.
– volume: 11
  year: 2023
  ident: bb0475
  article-title: Design and application of artificial rare L-lysine codons in
  publication-title: Front. Bioeng. Biotechnol.
– volume: 25
  start-page: 639
  year: 2024
  end-page: 653
  ident: bb0360
  article-title: Opportunities and challenges in design and optimization of protein function
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 10
  start-page: 1214
  year: 2021
  end-page: 1226
  ident: bb0055
  article-title: Spatiotemporal manipulation of the mismatch repair system of
  publication-title: ACS Synth. Biol.
– volume: 14
  start-page: 3627
  year: 2024
  end-page: 3639
  ident: bb0375
  article-title: Dynamic docking-assisted engineering of hydrolases for efficient PET depolymerization
  publication-title: ACS Catal.
– volume: 19
  start-page: 1504
  year: 2023
  end-page: 1512
  ident: bb0100
  article-title: Engineered bacterial orthogonal DNA replication system for continuous evolution
  publication-title: Nat. Chem. Biol.
– volume: 5
  start-page: 1299
  year: 2016
  end-page: 1307
  ident: bb0260
  article-title: Production of succinate from acetate by metabolically engineered
  publication-title: ACS Synth. Biol.
– volume: 47
  year: 2021
  ident: bb0395
  article-title: Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts
  publication-title: Biotechnol. Adv.
– volume: 50
  year: 2022
  ident: bb0065
  article-title: Development of a genome-targeting mutator for the adaptive evolution of microbial cells
  publication-title: Nucleic Acids Res.
– volume: 51
  year: 2023
  ident: bb0110
  article-title: Expanded MutaT7 toolkit efficiently and simultaneously accesses all possible transition mutations in bacteria
  publication-title: Nucleic Acids Res.
– volume: 31
  start-page: 1707
  year: 2013
  end-page: 1721
  ident: bb0030
  article-title: Polishing the craft of genetic diversity creation in directed evolution
  publication-title: Biotechnol. Adv.
– volume: 15
  start-page: 4101
  year: 2020
  end-page: 4127
  ident: bb0045
  article-title: Phage-assisted continuous and non-continuous evolution
  publication-title: Nat. Protoc.
– volume: 147
  start-page: 381
  year: 1985
  end-page: 386
  ident: bb0285
  article-title: Mechanism of action of gentamicin components - characteristics of their binding to
  publication-title: Eur. J. Biochem.
– volume: 133
  start-page: 1527
  year: 1978
  end-page: 1529
  ident: bb0420
  article-title: RSF1010 plasmid as a potentially useful vector in
  publication-title: J. Bacteriol.
– volume: 560
  start-page: 248
  year: 2018
  end-page: 252
  ident: bb0105
  article-title: CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window
  publication-title: Nature
– volume: 409
  start-page: 195
  year: 2006
  end-page: 213
  ident: bb0160
  article-title: Methods for determining spontaneous mutation rates
  publication-title: Methods Enzymol.
– volume: 102
  start-page: 9015
  year: 2018
  end-page: 9036
  ident: bb0330
  article-title: Microbial conversion of xylose into useful bioproducts
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 30
  start-page: 2933
  year: 2022
  end-page: 2941
  ident: bb0180
  article-title: A precise and efficient adenine base editor
  publication-title: Mol. Ther.
– volume: 98
  start-page: 5633
  year: 2014
  end-page: 5643
  ident: bb0315
  article-title: Engineering of
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 12
  start-page: 899
  year: 2013
  end-page: 911
  ident: bb0215
  article-title: The excision of 3' penultimate errors by DNA polymerase I and its role in endonuclease V-mediated DNA repair
  publication-title: DNA Repair
– volume: 70
  start-page: 263
  year: 2013
  end-page: 267
  ident: bb0290
  article-title: Improvement of pBBR1MCS plasmids, a very useful series of broad-host-range cloning vectors
  publication-title: Plasmid
– volume: 177
  start-page: 4890
  year: 1995
  end-page: 4899
  ident: bb0435
  article-title: Inhibition of VirB-mediated transfer of diverse substrates from
  publication-title: J. Bacteriol.
– volume: 577
  start-page: 706
  year: 2020
  end-page: 710
  ident: bb0295
  article-title: Improved protein structure prediction using potentials from deep learning
  publication-title: Nature
– volume: 41
  start-page: 673
  year: 2023
  end-page: 685
  ident: bb0185
  article-title: Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity
  publication-title: Nat. Biotechnol.
– volume: 383
  start-page: 421
  year: 2024
  end-page: 426
  ident: bb0095
  article-title: Establishing a synthetic orthogonal replication system enables accelerated evolution in
  publication-title: Science
– volume: 106
  start-page: 7810
  year: 2009
  end-page: 7815
  ident: bb0145
  article-title: Structure and function of primase RepB′ encoded by broad-host-range plasmid RSF1010 that replicates exclusively in leading-strand mode
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 100
  start-page: 9727
  year: 2003
  end-page: 9732
  ident: bb0225
  article-title: Targeted gene evolution in
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 51
  year: 2023
  ident: bb0125
  article-title: A dual gene-specific mutator system installs all transition mutations at similar frequencies
  publication-title: Nucleic Acids Res.
– volume: 42
  start-page: 1551
  year: 2024
  end-page: 1575
  ident: bb0390
  article-title: Efficient genome-editing tools to engineer the recalcitrant non-model industrial microorganism
  publication-title: Trends Biotechnol.
– volume: 42
  start-page: 1538
  year: 2024
  end-page: 1547
  ident: bb0410
  article-title: Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells
  publication-title: Nat. Biotechnol.
– volume: 85
  year: 2024
  ident: bb0135
  article-title: as a synthetic biology chassis and a metabolic engineering platform
  publication-title: Curr. Opin. Biotechnol.
– volume: 59
  start-page: 36
  year: 2020
  end-page: 43
  ident: bb0015
  article-title: evolutionary engineering of riboswitch with high-threshold for
  publication-title: Metab. Eng.
– volume: 20
  start-page: 216
  year: 2019
  end-page: 228
  ident: bb0440
  article-title: Modification of RSF1010-based broad-host-range plasmids for improved conjugation and cyanobacterial bioprospecting
  publication-title: iScience
– volume: 188
  start-page: 551
  year: 2007
  end-page: 563
  ident: bb0465
  article-title: Paired cloning vectors for complementation of mutations in the cyanobacterium
  publication-title: Arch. Microbiol.
– volume: 32
  start-page: 884
  year: 2024
  end-page: 901
  ident: bb0400
  article-title: Mutagenesis techniques for evolutionary engineering of microbes - exploiting CRISPR-Cas, oligonucleotides, recombinases, and polymerases
  publication-title: Trends Microbiol.
– volume: 15
  start-page: 3447
  year: 2024
  ident: bb0405
  article-title: Automated
  publication-title: Nat. Commun.
– volume: 3
  start-page: 423
  year: 2018
  end-page: 429
  ident: bb0165
  article-title: Deaminase-mediated multiplex genome editing in
  publication-title: Nat. Microbiol.
– volume: 24
  start-page: 1
  year: 2015
  end-page: 10
  ident: bb0040
  article-title: continuous directed evolution
  publication-title: Curr. Opin. Chem. Biol.
– volume: 6
  start-page: 8425
  year: 2015
  ident: bb0200
  article-title: Development of potent
  publication-title: Nat. Commun.
– volume: 31
  start-page: 455
  year: 2010
  end-page: 461
  ident: bb0300
  article-title: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
  publication-title: J. Comput. Chem.
– volume: 54
  start-page: 3351
  year: 2015
  end-page: 3367
  ident: bb0020
  article-title: Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution
  publication-title: Angew. Chem. Int. Ed.
– volume: 51
  start-page: 8623
  year: 2023
  end-page: 8642
  ident: bb0050
  article-title: Engineering of the DNA replication and repair machinery to develop binary mutators for rapid genome evolution of
  publication-title: Nucleic Acids Res.
– volume: 2
  start-page: 37
  year: 2022
  ident: bb0085
  article-title: In vivo hypermutation and continuous evolution
  publication-title: Nat. Rev. Methods Primers
– volume: 59
  start-page: 15
  year: 2020
  end-page: 22
  ident: bb0380
  article-title: Non-conventional hosts for the production of fuels and chemicals
  publication-title: Curr. Opin. Chem. Biol.
– volume: 62
  year: 2023
  ident: bb0240
  article-title: Controlled continuous evolution of enzymatic activity screened at ultrahigh throughput using drop-based microfluidics
  publication-title: Angew. Chem. Int. Ed.
– volume: 16
  start-page: 113
  year: 2020
  end-page: 121
  ident: bb0385
  article-title: Stress-tolerant non-conventional microbes enable next-generation chemical biosynthesis
  publication-title: Nat. Chem. Biol.
– volume: 40
  start-page: 864
  year: 1994
  end-page: 866
  ident: bb0460
  article-title: Transfer of the broad-host-range IncQ plasmid RSF1010 and other plasmid vectors to the Gram-positive methylotroph
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 11
  start-page: 91
  year: 2010
  end-page: 100
  ident: bb0025
  article-title: Random mutagenesis methods for
  publication-title: Curr. Protein Pept. Sci.
– volume: 84
  start-page: 13
  year: 2024
  end-page: 22
  ident: bb0265
  article-title: Use of acetate as substrate for sustainable production of homoserine and threonine by
  publication-title: Metab. Eng.
– volume: 104
  start-page: 7745
  year: 2020
  end-page: 7766
  ident: bb0270
  article-title: Industrial biotechnology of
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 296
  year: 2020
  ident: bb0255
  article-title: Efficient isopropanol biosynthesis by engineered
  publication-title: Bioresour. Technol.
– volume: 9
  start-page: 1270
  year: 2020
  end-page: 1276
  ident: bb0090
  article-title: Automated continuous evolution of proteins
  publication-title: ACS Synth. Biol.
– volume: 20
  start-page: 486
  year: 2009
  end-page: 491
  ident: bb0010
  article-title: Directed evolution: new parts and optimized function
  publication-title: Curr. Opin. Biotechnol.
– volume: 279
  start-page: 873
  year: 1998
  end-page: 888
  ident: bb0275
  article-title: Ribosomal proteins S5 and L6: high-resolution crystal structures and roles in protein synthesis and antibiotic resistance
  publication-title: J. Mol. Biol.
– volume: 14
  start-page: 972
  year: 2018
  end-page: 980
  ident: bb0005
  article-title: Continuous directed evolution of proteins with improved soluble expression
  publication-title: Nat. Chem. Biol.
– volume: 158
  start-page: 47
  year: 1977
  end-page: 54
  ident: bb0280
  article-title: Alteration of ribosomal-protein l6 in mutants of
  publication-title: Mol. Gen. Genet.
– volume: 63
  start-page: 4604
  year: 1997
  end-page: 4607
  ident: bb0455
  article-title: A relative of the broad-host-range plasmid RSF1010 detected in
  publication-title: Appl. Environ. Microbiol.
– volume: 58
  start-page: 2455
  year: 2022
  end-page: 2467
  ident: bb0035
  article-title: High-throughput screening, next generation sequencing and machine learning: advanced methods in enzyme engineering
  publication-title: Chem. Commun.
– volume: 9
  start-page: 1911
  year: 2020
  end-page: 1916
  ident: bb0205
  article-title: Targeted diversification in the
  publication-title: ACS Synth. Biol.
– volume: 416
  year: 2025
  ident: bb0340
  article-title: Engineering and evolution of
  publication-title: Bioresour. Technol.
– volume: 19
  start-page: 1203
  year: 1991
  end-page: 1211
  ident: bb0150
  article-title: Plasmid RSF1010 DNA-replication
  publication-title: Nucleic Acids Res.
– volume: 173
  start-page: 6705
  year: 1991
  end-page: 6708
  ident: bb0425
  article-title: Transfer of plasmid RSF1010 by conjugation from
  publication-title: J. Bacteriol.
– volume: 4
  start-page: 69
  year: 2003
  end-page: 78
  ident: bb0350
  article-title: High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by
  publication-title: FEMS Yeast Res.
– volume: 14
  start-page: 1124
  year: 2014
  end-page: 1127
  ident: bb0355
  article-title: Increasing expression level and copy number of a
  publication-title: FEMS Yeast Res.
– volume: 54
  start-page: 369
  year: 1997
  end-page: 374
  ident: bb0450
  article-title: RSF1010-based shuttle vectors for cloning and expression in
  publication-title: Vet. Microbiol.
– volume: 14
  year: 2023
  ident: bb0170
  article-title: Improved dual base editor systems (iACBEs) for simultaneous conversion of adenine and cytosine in the bacterium
  publication-title: mBio
– volume: 14
  start-page: 8480
  year: 2023
  ident: bb0130
  article-title: Reconfiguration of the reductive TCA cycle enables high-level succinic acid production by
  publication-title: Nat. Commun.
– volume: 7
  year: 2021
  ident: bb0190
  article-title: Plasmid hypermutation using a targeted artificial DNA replisome
  publication-title: Sci. Adv.
– volume: 2
  start-page: 593
  year: 2003
  end-page: 608
  ident: bb0195
  article-title: Use of the
  publication-title: DNA Repair
– volume: 134
  start-page: 1117
  year: 1978
  end-page: 1122
  ident: bb0430
  article-title: Replication of the nonconjugative plasmid RSF1010 in
  publication-title: J. Bacteriol.
– volume: 64
  start-page: 59
  year: 2018
  end-page: 67
  ident: bb0220
  article-title: DNA polymerase I proofreading exonuclease activity is required for endonuclease V repair pathway both in vitro and in vivo
  publication-title: DNA Repair
– volume: 90
  start-page: 1739
  year: 2006
  end-page: 1751
  ident: bb0235
  article-title: Temperature dependence and thermodynamics of Klenow polymerase binding to primed-template DNA
  publication-title: Biophys. J.
– volume: 22
  start-page: 196
  year: 2023
  ident: bb0250
  article-title: Synthesis of isobutanol using acetate as sole carbon source in
  publication-title: Microb. Cell Factories
– volume: 313
  start-page: 818
  year: 1985
  end-page: 819
  ident: bb0245
  article-title: Domain of
  publication-title: Nature
– volume: 13
  start-page: 113
  year: 2020
  ident: bb0335
  article-title: Bioproduction of succinic acid from xylose by engineered
  publication-title: Biotechnol. Biofuels
– volume: 97
  start-page: 6640
  year: 2000
  end-page: 6645
  ident: bb0155
  article-title: One-step inactivation of chromosomal genes in
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 41
  start-page: 242
  year: 2023
  end-page: 254
  ident: bb0325
  article-title: What makes
  publication-title: Trends Biotechnol.
– volume: 98
  start-page: 1223
  year: 2014
  end-page: 1235
  ident: bb0320
  article-title: Production and glucosylation of C50 and C 40 carotenoids by metabolically engineered
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 42
  start-page: 1538
  year: 2024
  ident: 10.1016/j.tibtech.2025.04.005_bb0410
  article-title: Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-023-02050-w
– volume: 31
  start-page: 1707
  year: 2013
  ident: 10.1016/j.tibtech.2025.04.005_bb0030
  article-title: Polishing the craft of genetic diversity creation in directed evolution
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2013.08.021
– volume: 14
  start-page: 8480
  year: 2023
  ident: 10.1016/j.tibtech.2025.04.005_bb0130
  article-title: Reconfiguration of the reductive TCA cycle enables high-level succinic acid production by Yarrowia lipolytica
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-44245-4
– volume: 9
  start-page: 1911
  year: 2020
  ident: 10.1016/j.tibtech.2025.04.005_bb0205
  article-title: Targeted diversification in the S. cerevisiae genome with CRISPR-Guided DNA Polymerase I
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.0c00149
– volume: 7
  year: 2021
  ident: 10.1016/j.tibtech.2025.04.005_bb0190
  article-title: Plasmid hypermutation using a targeted artificial DNA replisome
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abg8712
– volume: 106
  start-page: 7810
  year: 2009
  ident: 10.1016/j.tibtech.2025.04.005_bb0145
  article-title: Structure and function of primase RepB′ encoded by broad-host-range plasmid RSF1010 that replicates exclusively in leading-strand mode
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0902910106
– volume: 5
  start-page: 1299
  year: 2016
  ident: 10.1016/j.tibtech.2025.04.005_bb0260
  article-title: Production of succinate from acetate by metabolically engineered Escherichia coli
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.6b00052
– volume: 14
  start-page: 1124
  year: 2014
  ident: 10.1016/j.tibtech.2025.04.005_bb0355
  article-title: Increasing expression level and copy number of a Yarrowia lipolytica plasmid through regulated centromere function
  publication-title: FEMS Yeast Res.
– volume: 59
  start-page: 36
  year: 2020
  ident: 10.1016/j.tibtech.2025.04.005_bb0015
  article-title: In vivo evolutionary engineering of riboswitch with high-threshold for N-acetylneuraminic acid production
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2020.01.002
– volume: 10
  start-page: 1214
  year: 2021
  ident: 10.1016/j.tibtech.2025.04.005_bb0055
  article-title: Spatiotemporal manipulation of the mismatch repair system of Pseudomonas putida accelerates phenotype emergence
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.1c00031
– volume: 81
  start-page: 654
  year: 1984
  ident: 10.1016/j.tibtech.2025.04.005_bb0140
  article-title: Replication of the broad host range plasmid RSF1010-requirement for 3 plasmid-encoded proteins
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.81.3.654
– volume: 6
  start-page: 8425
  year: 2015
  ident: 10.1016/j.tibtech.2025.04.005_bb0200
  article-title: Development of potent in vivo mutagenesis plasmids with broad mutational spectra
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9425
– volume: 51
  year: 2023
  ident: 10.1016/j.tibtech.2025.04.005_bb0110
  article-title: Expanded MutaT7 toolkit efficiently and simultaneously accesses all possible transition mutations in bacteria
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkad003
– volume: 15
  start-page: 3447
  year: 2024
  ident: 10.1016/j.tibtech.2025.04.005_bb0405
  article-title: Automated in vivo enzyme engineering accelerates biocatalyst optimization
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-46574-4
– volume: 16
  start-page: 113
  year: 2020
  ident: 10.1016/j.tibtech.2025.04.005_bb0385
  article-title: Stress-tolerant non-conventional microbes enable next-generation chemical biosynthesis
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-019-0452-x
– volume: 14
  year: 2023
  ident: 10.1016/j.tibtech.2025.04.005_bb0170
  article-title: Improved dual base editor systems (iACBEs) for simultaneous conversion of adenine and cytosine in the bacterium Escherichia coli
  publication-title: mBio
  doi: 10.1128/mbio.02296-22
– volume: 2
  start-page: 593
  year: 2003
  ident: 10.1016/j.tibtech.2025.04.005_bb0195
  article-title: Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome
  publication-title: DNA Repair
  doi: 10.1016/S1568-7864(03)00024-7
– volume: 188
  start-page: 551
  year: 2007
  ident: 10.1016/j.tibtech.2025.04.005_bb0465
  article-title: Paired cloning vectors for complementation of mutations in the cyanobacterium Anabaena sp. strain PCC 7120
  publication-title: Arch. Microbiol.
  doi: 10.1007/s00203-007-0276-z
– volume: 12
  start-page: 899
  year: 2013
  ident: 10.1016/j.tibtech.2025.04.005_bb0215
  article-title: The excision of 3' penultimate errors by DNA polymerase I and its role in endonuclease V-mediated DNA repair
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2013.08.003
– volume: 19
  start-page: 1504
  year: 2023
  ident: 10.1016/j.tibtech.2025.04.005_bb0100
  article-title: Engineered bacterial orthogonal DNA replication system for continuous evolution
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-023-01387-2
– volume: 97
  start-page: 6640
  year: 2000
  ident: 10.1016/j.tibtech.2025.04.005_bb0155
  article-title: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.120163297
– volume: 140
  start-page: 11560
  year: 2018
  ident: 10.1016/j.tibtech.2025.04.005_bb0070
  article-title: A processive protein chimera introduces mutations across defined DNA regions in vivo
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04001
– volume: 38
  start-page: 901
  year: 2020
  ident: 10.1016/j.tibtech.2025.04.005_bb0175
  article-title: Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0562-8
– volume: 25
  start-page: 1564
  year: 2009
  ident: 10.1016/j.tibtech.2025.04.005_bb0470
  article-title: Fluctuation analysis CalculatOR: a web tool for the determination of mutation rate using Luria-Delbruck fluctuation analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp253
– volume: 31
  start-page: 455
  year: 2010
  ident: 10.1016/j.tibtech.2025.04.005_bb0300
  article-title: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21334
– volume: 409
  start-page: 195
  year: 2006
  ident: 10.1016/j.tibtech.2025.04.005_bb0160
  article-title: Methods for determining spontaneous mutation rates
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(05)09012-9
– volume: 30
  start-page: 2933
  year: 2022
  ident: 10.1016/j.tibtech.2025.04.005_bb0180
  article-title: A precise and efficient adenine base editor
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2022.07.010
– volume: 17
  start-page: 1057
  year: 2021
  ident: 10.1016/j.tibtech.2025.04.005_bb0075
  article-title: Rapid generation of potent antibodies by autonomous hypermutation in yeast
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-021-00832-4
– volume: 32
  start-page: 1197
  year: 2004
  ident: 10.1016/j.tibtech.2025.04.005_bb0230
  article-title: A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh271
– volume: 90
  start-page: 1739
  year: 2006
  ident: 10.1016/j.tibtech.2025.04.005_bb0235
  article-title: Temperature dependence and thermodynamics of Klenow polymerase binding to primed-template DNA
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.071837
– volume: 12
  start-page: 1579
  year: 2021
  ident: 10.1016/j.tibtech.2025.04.005_bb0115
  article-title: Polymerase-guided base editing enables in vivo mutagenesis and rapid protein engineering
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21876-z
– volume: 3
  start-page: 423
  year: 2018
  ident: 10.1016/j.tibtech.2025.04.005_bb0165
  article-title: Deaminase-mediated multiplex genome editing in Escherichia coli
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-017-0102-6
– volume: 577
  start-page: 706
  year: 2020
  ident: 10.1016/j.tibtech.2025.04.005_bb0295
  article-title: Improved protein structure prediction using potentials from deep learning
  publication-title: Nature
  doi: 10.1038/s41586-019-1923-7
– volume: 84
  start-page: 13
  year: 2024
  ident: 10.1016/j.tibtech.2025.04.005_bb0265
  article-title: Use of acetate as substrate for sustainable production of homoserine and threonine by Escherichia coli W3110: a modular metabolic engineering approach
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2024.05.004
– volume: 85
  year: 2024
  ident: 10.1016/j.tibtech.2025.04.005_bb0135
  article-title: Pseudomonas putida as a synthetic biology chassis and a metabolic engineering platform
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2023.103025
– volume: 19
  start-page: 1203
  year: 1991
  ident: 10.1016/j.tibtech.2025.04.005_bb0150
  article-title: Plasmid RSF1010 DNA-replication in vitro promoted by purified rsf1010 RepA, RepB and RepC proteins
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/19.6.1203
– volume: 52
  start-page: 8609
  year: 2024
  ident: 10.1016/j.tibtech.2025.04.005_bb0060
  article-title: Dual genetic level modification engineering accelerate genome evolution of Corynebacterium glutamicum
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkae577
– volume: 64
  start-page: 59
  year: 2018
  ident: 10.1016/j.tibtech.2025.04.005_bb0220
  article-title: DNA polymerase I proofreading exonuclease activity is required for endonuclease V repair pathway both in vitro and in vivo
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2018.02.005
– volume: 51
  year: 2023
  ident: 10.1016/j.tibtech.2025.04.005_bb0125
  article-title: A dual gene-specific mutator system installs all transition mutations at similar frequencies in vivo
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkad266
– volume: 560
  start-page: 248
  year: 2018
  ident: 10.1016/j.tibtech.2025.04.005_bb0105
  article-title: CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window
  publication-title: Nature
  doi: 10.1038/s41586-018-0384-8
– volume: 20
  start-page: 459
  year: 2022
  ident: 10.1016/j.tibtech.2025.04.005_bb0370
  article-title: Computational design of a cutinase for plastic biodegradation by mining molecular dynamics simulations trajectories
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2021.12.042
– volume: 54
  start-page: 369
  year: 1997
  ident: 10.1016/j.tibtech.2025.04.005_bb0450
  article-title: RSF1010-based shuttle vectors for cloning and expression in Pasteurella multocida
  publication-title: Vet. Microbiol.
  doi: 10.1016/S0378-1135(96)01294-1
– volume: 173
  start-page: 6705
  year: 1991
  ident: 10.1016/j.tibtech.2025.04.005_bb0425
  article-title: Transfer of plasmid RSF1010 by conjugation from Escherichia coli to Streptomyces lividans and Mycobacterium smegmatis
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.173.21.6705-6708.1991
– volume: 14
  start-page: 3627
  year: 2024
  ident: 10.1016/j.tibtech.2025.04.005_bb0375
  article-title: Dynamic docking-assisted engineering of hydrolases for efficient PET depolymerization
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.4c00400
– volume: 133
  start-page: 1527
  year: 1978
  ident: 10.1016/j.tibtech.2025.04.005_bb0420
  article-title: RSF1010 plasmid as a potentially useful vector in Pseudomonas species
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.133.3.1527-1529.1978
– volume: 100
  start-page: 9727
  year: 2003
  ident: 10.1016/j.tibtech.2025.04.005_bb0225
  article-title: Targeted gene evolution in Escherichia coli using a highly error-prone DNA polymerase I
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1333928100
– volume: 296
  year: 2021
  ident: 10.1016/j.tibtech.2025.04.005_bb0365
  article-title: Recent advances in de novo protein design: principles, methods, and applications
  publication-title: J. Biol. Chem.
  doi: 10.1016/j.jbc.2021.100558
– volume: 416
  year: 2025
  ident: 10.1016/j.tibtech.2025.04.005_bb0340
  article-title: Engineering and evolution of Yarrowia lipolytica for producing lipids from lignocellulosic hydrolysates
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2024.131806
– volume: 41
  start-page: 673
  year: 2023
  ident: 10.1016/j.tibtech.2025.04.005_bb0185
  article-title: Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-022-01533-6
– volume: 14
  start-page: 972
  year: 2018
  ident: 10.1016/j.tibtech.2025.04.005_bb0005
  article-title: Continuous directed evolution of proteins with improved soluble expression
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-018-0121-5
– volume: 42
  start-page: 1551
  year: 2024
  ident: 10.1016/j.tibtech.2025.04.005_bb0390
  article-title: Efficient genome-editing tools to engineer the recalcitrant non-model industrial microorganism Zymomonas mobilis
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2024.05.005
– volume: 158
  start-page: 47
  year: 1977
  ident: 10.1016/j.tibtech.2025.04.005_bb0280
  article-title: Alteration of ribosomal-protein l6 in mutants of Escherichia coli resistant to gentamicin
  publication-title: Mol. Gen. Genet.
  doi: 10.1007/BF00455118
– volume: 70
  start-page: 263
  year: 2013
  ident: 10.1016/j.tibtech.2025.04.005_bb0290
  article-title: Improvement of pBBR1MCS plasmids, a very useful series of broad-host-range cloning vectors
  publication-title: Plasmid
  doi: 10.1016/j.plasmid.2013.04.001
– volume: 22
  start-page: 196
  year: 2023
  ident: 10.1016/j.tibtech.2025.04.005_bb0250
  article-title: Synthesis of isobutanol using acetate as sole carbon source in Escherichia coli
  publication-title: Microb. Cell Factories
  doi: 10.1186/s12934-023-02197-w
– volume: 13
  start-page: 113
  year: 2020
  ident: 10.1016/j.tibtech.2025.04.005_bb0335
  article-title: Bioproduction of succinic acid from xylose by engineered Yarrowia lipolytica without pH control
  publication-title: Biotechnol. Biofuels
  doi: 10.1186/s13068-020-01747-3
– volume: 54
  start-page: 3351
  year: 2015
  ident: 10.1016/j.tibtech.2025.04.005_bb0020
  article-title: Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201409470
– volume: 41
  start-page: 242
  year: 2023
  ident: 10.1016/j.tibtech.2025.04.005_bb0325
  article-title: What makes Yarrowia lipolytica well suited for industry?
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2022.07.006
– volume: 25
  start-page: 639
  year: 2024
  ident: 10.1016/j.tibtech.2025.04.005_bb0360
  article-title: Opportunities and challenges in design and optimization of protein function
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/s41580-024-00718-y
– volume: 134
  start-page: 1117
  year: 1978
  ident: 10.1016/j.tibtech.2025.04.005_bb0430
  article-title: Replication of the nonconjugative plasmid RSF1010 in Escherichia coli K-12
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.134.3.1117-1122.1978
– volume: 12
  start-page: 2271
  year: 2023
  ident: 10.1016/j.tibtech.2025.04.005_bb0210
  article-title: Multiplexed guide RNA expression leads to increased mutation frequency in targeted window using a CRISPR-guided error-prone DNA polymerase in Saccharomyces cerevisiae
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.2c00689
– volume: 9
  start-page: 1270
  year: 2020
  ident: 10.1016/j.tibtech.2025.04.005_bb0090
  article-title: Automated continuous evolution of proteins in vivo
  publication-title: ACS Synth. Biol.
  doi: 10.1021/acssynbio.0c00135
– volume: 98
  start-page: 1223
  year: 2014
  ident: 10.1016/j.tibtech.2025.04.005_bb0320
  article-title: Production and glucosylation of C50 and C 40 carotenoids by metabolically engineered Corynebacterium glutamicum
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-013-5359-y
– volume: 14
  start-page: 3389
  year: 2023
  ident: 10.1016/j.tibtech.2025.04.005_bb0120
  article-title: A Cas3-base editing tool for targetable in vivo mutagenesis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39087-z
– volume: 32
  start-page: 884
  year: 2024
  ident: 10.1016/j.tibtech.2025.04.005_bb0400
  article-title: Mutagenesis techniques for evolutionary engineering of microbes - exploiting CRISPR-Cas, oligonucleotides, recombinases, and polymerases
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2024.02.006
– volume: 24
  start-page: 1
  year: 2015
  ident: 10.1016/j.tibtech.2025.04.005_bb0040
  article-title: In vivo continuous directed evolution
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2014.09.040
– volume: 40
  start-page: 864
  year: 1994
  ident: 10.1016/j.tibtech.2025.04.005_bb0460
  article-title: Transfer of the broad-host-range IncQ plasmid RSF1010 and other plasmid vectors to the Gram-positive methylotroph Brevibacterium methylicum by electrotransformation
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/BF00173989
– volume: 175
  start-page: 1946
  year: 2018
  ident: 10.1016/j.tibtech.2025.04.005_bb0080
  article-title: Scalable, continuous evolution of genes at mutation rates above genomic error thresholds
  publication-title: Cell
  doi: 10.1016/j.cell.2018.10.021
– volume: 51
  start-page: 8623
  year: 2023
  ident: 10.1016/j.tibtech.2025.04.005_bb0050
  article-title: Engineering of the DNA replication and repair machinery to develop binary mutators for rapid genome evolution of Corynebacterium glutamicum
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkad602
– volume: 9
  year: 2023
  ident: 10.1016/j.tibtech.2025.04.005_bb0345
  article-title: Big data mining, rational modification, and ancestral sequence reconstruction inferred multiple xylose isomerases for biorefinery
  publication-title: Sci. Adv.
– volume: 20
  start-page: 216
  year: 2019
  ident: 10.1016/j.tibtech.2025.04.005_bb0440
  article-title: Modification of RSF1010-based broad-host-range plasmids for improved conjugation and cyanobacterial bioprospecting
  publication-title: iScience
  doi: 10.1016/j.isci.2019.09.002
– volume: 4
  start-page: 69
  year: 2003
  ident: 10.1016/j.tibtech.2025.04.005_bb0350
  article-title: High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?
  publication-title: FEMS Yeast Res.
  doi: 10.1016/S1567-1356(03)00141-7
– volume: 15
  start-page: 4101
  year: 2020
  ident: 10.1016/j.tibtech.2025.04.005_bb0045
  article-title: Phage-assisted continuous and non-continuous evolution
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-020-00410-3
– volume: 383
  start-page: 421
  year: 2024
  ident: 10.1016/j.tibtech.2025.04.005_bb0095
  article-title: Establishing a synthetic orthogonal replication system enables accelerated evolution in E. coli
  publication-title: Science
  doi: 10.1126/science.adk1281
– volume: 192 Pt B
  start-page: 410
  year: 2014
  ident: 10.1016/j.tibtech.2025.04.005_bb0445
  article-title: Reprint of ‘versatile and stable vectors for efficient gene expression in Ralstonia eutropha H16’
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2014.09.023
– volume: 177
  start-page: 4890
  year: 1995
  ident: 10.1016/j.tibtech.2025.04.005_bb0435
  article-title: Inhibition of VirB-mediated transfer of diverse substrates from Agrobacterium tumefaciens by the IncQ plasmid RSF1010
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.177.17.4890-4899.1995
– volume: 50
  year: 2022
  ident: 10.1016/j.tibtech.2025.04.005_bb0065
  article-title: Development of a genome-targeting mutator for the adaptive evolution of microbial cells
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab1244
– volume: 98
  start-page: 5633
  year: 2014
  ident: 10.1016/j.tibtech.2025.04.005_bb0315
  article-title: Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-014-5676-9
– volume: 62
  year: 2023
  ident: 10.1016/j.tibtech.2025.04.005_bb0240
  article-title: Controlled continuous evolution of enzymatic activity screened at ultrahigh throughput using drop-based microfluidics
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202303112
– volume: 59
  start-page: 15
  year: 2020
  ident: 10.1016/j.tibtech.2025.04.005_bb0380
  article-title: Non-conventional hosts for the production of fuels and chemicals
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2020.03.004
– volume: 50
  start-page: 122
  year: 2018
  ident: 10.1016/j.tibtech.2025.04.005_bb0310
  article-title: Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products
  publication-title: Metab. Eng.
  doi: 10.1016/j.ymben.2018.07.008
– volume: 58
  start-page: 2455
  year: 2022
  ident: 10.1016/j.tibtech.2025.04.005_bb0035
  article-title: High-throughput screening, next generation sequencing and machine learning: advanced methods in enzyme engineering
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC04635G
– volume: 63
  start-page: 4604
  year: 1997
  ident: 10.1016/j.tibtech.2025.04.005_bb0455
  article-title: A relative of the broad-host-range plasmid RSF1010 detected in Erwinia amylovora
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.63.11.4604-4607.1997
– volume: 296
  year: 2020
  ident: 10.1016/j.tibtech.2025.04.005_bb0255
  article-title: Efficient isopropanol biosynthesis by engineered Escherichia coli using biologically produced acetate from syngas fermentation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.122337
– volume: 104
  start-page: 7745
  year: 2020
  ident: 10.1016/j.tibtech.2025.04.005_bb0270
  article-title: Industrial biotechnology of Pseudomonas putida: advances and prospects
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-020-10811-9
– volume: 20
  start-page: 486
  year: 2009
  ident: 10.1016/j.tibtech.2025.04.005_bb0010
  article-title: Directed evolution: new parts and optimized function
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2009.08.005
– volume: 279
  start-page: 873
  year: 1998
  ident: 10.1016/j.tibtech.2025.04.005_bb0275
  article-title: Ribosomal proteins S5 and L6: high-resolution crystal structures and roles in protein synthesis and antibiotic resistance
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1998.1780
– volume: 2
  start-page: 37
  year: 2022
  ident: 10.1016/j.tibtech.2025.04.005_bb0085
  article-title: In vivo hypermutation and continuous evolution
  publication-title: Nat. Rev. Methods Primers
  doi: 10.1038/s43586-022-00119-5
– volume: 102
  start-page: 9015
  year: 2018
  ident: 10.1016/j.tibtech.2025.04.005_bb0330
  article-title: Microbial conversion of xylose into useful bioproducts
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-018-9294-9
– volume: 47
  year: 2021
  ident: 10.1016/j.tibtech.2025.04.005_bb0395
  article-title: Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2021.107695
– volume: 313
  start-page: 818
  year: 1985
  ident: 10.1016/j.tibtech.2025.04.005_bb0245
  article-title: Domain of E. coli DNA polymerase I showing sequence homology to T7 DNA polymerase
  publication-title: Nature
  doi: 10.1038/313818a0
– volume: 11
  start-page: 91
  year: 2010
  ident: 10.1016/j.tibtech.2025.04.005_bb0025
  article-title: Random mutagenesis methods for in vitro directed enzyme evolution
  publication-title: Curr. Protein Pept. Sci.
  doi: 10.2174/138920310790274617
– volume: 405
  year: 2023
  ident: 10.1016/j.tibtech.2025.04.005_bb0305
  article-title: Recent technological strategies for enhancing the stability of lycopene in processing and production
  publication-title: Food Chem.
– volume: 42
  start-page: 1442
  year: 2024
  ident: 10.1016/j.tibtech.2025.04.005_bb0415
  article-title: An adenine base editor variant expands context compatibility
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-023-01994-3
– volume: 11
  year: 2023
  ident: 10.1016/j.tibtech.2025.04.005_bb0475
  article-title: Design and application of artificial rare L-lysine codons in Corynebacterium glutamicum
  publication-title: Front. Bioeng. Biotechnol.
– volume: 147
  start-page: 381
  year: 1985
  ident: 10.1016/j.tibtech.2025.04.005_bb0285
  article-title: Mechanism of action of gentamicin components - characteristics of their binding to Escherichia coli ribosomes
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1985.tb08761.x
SSID ssj0003791
Score 2.477452
Snippet In vivo targeted mutagenesis technology can enable the gene of interest to generate genetic diversity within the host cell without human intervention.We...
HighlightsIn vivo targeted mutagenesis technology can enable the gene of interest to generate genetic diversity within the host cell without human...
In vivo target mutagenesis is a powerful approach to accelerate protein evolution. However, current approaches have been primarily developed in conventional...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 2049
SubjectTerms Adenosine
Bacteria
Biological evolution
Corynebacterium glutamicum - genetics
Directed Molecular Evolution - methods
DNA helicase
DNA polymerase
DNA primase
DNA-directed DNA polymerase
E coli
Enzymes
Escherichia coli - genetics
Evolution
Genes
Genomes
in vivo target mutagenesis
Internal Medicine
Metabolism
Microorganisms
multiple hosts
Mutagenesis
Mutation
Mutation rates
Plasmids
Plasmids - genetics
Primase
Proteins
Pseudomonas putida
Pseudomonas putida - genetics
synthetic biology
Yarrowia - genetics
Title An in vivo target mutagenesis system for multiple hosts
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0167779925001325
https://www.clinicalkey.es/playcontent/1-s2.0-S0167779925001325
https://dx.doi.org/10.1016/j.tibtech.2025.04.005
https://www.ncbi.nlm.nih.gov/pubmed/40345898
https://www.proquest.com/docview/3237431173
https://www.proquest.com/docview/3202401038
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0heig9oPLRkhaQK3ENm8RO7BxXK9CWFRzaIrhZdmJLQSK7Irsc-e3MbJKFChBVT1ESW7HGk5ln-c0zwFFcop-UPAtz6V0oYiNDUyZE2xFpbgohjKVq5POLbHwpzq7T6zUY9bUwRKvsYn8b05fRunsy6Kw5mFXV4DcR6KXMc0zitGFAheZCSPLy44cnmgeX7al5pO9NrZ-qeAY3mBUsSaXiMjFJl4qndIrd6_npLfy5zEOnn2GzA5Bs2I5xC9ZcvQ0fR_25bdvw6ZnE4A7IYc2qmt1X91PWsr7Z7WKOQQRDXNWwVsiZIXJlPbWQUd1HswuXpyd_RuOwOywhLHgm5yHHvGucs74ofV5GlqcmL7x3ymfCJCXJxhHcErGLEaIYZUuXKIxtKjecJNz5F1ivp7XbA2Yi57xJPSIHLiwhSGWV595mvsTVURHAcW8iPWs1MXRPFrvRnU012VRHQqNNA8h6Q-q-4BNDlMao_V5H-VpH13Q_WqNj3SQ60i-cIQC16vmXP_3LR_f7udar7_CEE9aKJQ_gx-o1ziztr5jaTRfUhgTjSHE-gK-tj6zsIyIuUpWrb_8_ru-wQXct-3Af1ud3C3eAiGhuD5cufwgfhj8n4wu6Tn5dTR4B4kILkg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3R5UB7qCi0NC20rsQ13SR2Yue4WoGWr70UJG6WndhSkMgissvv78zmg1YFFXGNM7I1tt88yzPPAIdxieuk5FmYS-9CERsZmjKhtB2R5qYQwliqRr6YZ7MrcXqdXm_AtK-FobTKDvtbTF-jdfdl3HlzfFdV41-UQC9lnmMQpwuD9A1skjpVOoLNycnZbD4AMpftw3kk8U0Gj4U84xsMDJbUUvGkmKRr0VN6yO7pEPUcBV2HouNteN9xSDZph_kBNly9A1vT_um2HXj3h8rgLshJzaqaPVQPC9YmfrPb1RJxBFGualir5cyQvLI-u5BR6UfzEa6Ojy6ns7B7LyEseCaXIcfQa5yzvih9XkaWpyYvvHfKZ8IkJSnHEeMSsYuRpRhlS5cohDeVG04q7vwTjOpF7T4DM5Fz3qQeyQMXlkiksspzbzNf4gGpCOBn7yJ918pi6D5f7EZ3PtXkUx0JjT4NIOsdqfuaT0QpjcD9P0P5lKFrur3W6Fg3iY70P-shADVY_rWkXtLpfj_XeuiHJ5zoVix5AD-GZpxZumIxtVus6B_SjCPR-QD22jUy-EdEXKQqV19eP67vsDW7vDjX5yfzs6_wllraZMR9GC3vV-4ACdLSfus2wG-h-Qyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+in+vivo+target+mutagenesis+system+for+multiple+hosts&rft.jtitle=Trends+in+biotechnology+%28Regular+ed.%29&rft.au=Yin%2C+Dong&rft.au=Pang%2C+Qingxiao&rft.au=Yuan%2C+Yingbo&rft.au=Su%2C+Tianyuan&rft.date=2025-08-01&rft.eissn=1879-3096&rft.volume=43&rft.issue=8&rft.spage=2049&rft_id=info:doi/10.1016%2Fj.tibtech.2025.04.005&rft_id=info%3Apmid%2F40345898&rft.externalDocID=40345898
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7799&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7799&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7799&client=summon