An in vivo target mutagenesis system for multiple hosts
In vivo targeted mutagenesis technology can enable the gene of interest to generate genetic diversity within the host cell without human intervention.We developed an in vivo targeted mutagenesis system applicable to multiple hosts, effectively addressing the key gap of in vivo mutagenesis tools for...
Saved in:
Published in | Trends in biotechnology (Regular ed.) Vol. 43; no. 8; pp. 2049 - 2072 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.08.2025
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In vivo targeted mutagenesis technology can enable the gene of interest to generate genetic diversity within the host cell without human intervention.We developed an in vivo targeted mutagenesis system applicable to multiple hosts, effectively addressing the key gap of in vivo mutagenesis tools for unconventional hosts.This system features a longer evolution window, enabling the simultaneous evolution of multiple proteins.This system has extensive potential in unconventional host applications, facilitating more efficient enzyme engineering and metabolic optimization in industrial settings.
In vivo target mutagenesis is a powerful approach to accelerate protein evolution. However, current approaches have been primarily developed in conventional organisms, limiting their capacity to evolve proteins with subtle variations across non-conventional host species. Here, we design an in vivo target mutagenesis system for multiple hosts (ITMU) utilizing the broad host-range plasmid RSF1010 replication element. The ITMU, which is based on a deaminase–helicase fusion and a primase error-prone DNA polymerase I fusion, induces all types of mutation in the target plasmid harboring the RSF1010 replicon, at a mutation rate 1.18 × 105-fold higher than that of the host genome. We show that ITMU-based in vivo continuous evolution is effective in Escherichia coli, Pseudomonas putida, Corynebacterium glutamicum, and Yarrowia lipolytica. This demonstrates that the ITMU is applicable to multiple microbial chassis and provides a viable alternative to in vivo continuous evolution systems.
[Display omitted]
Targeted evolution in vivo has been studied for decades; however, the extension of this technique to non-conventional hosts remains a significant challenge. This study reports an in vivo target mutagenesis system for multiple hosts (ITMU) that is applicable to both conventional and non-conventional hosts. The ITMU uses the fusion of the replication element from the broad host-range plasmid RSF1010 with DNA-modifying enzymes to achieve high frequency mutation of the target plasmid. ITMU-based in vivo continuous evolution was proved to be effective in Escherichia coli, Pseudomonas putida, Corynebacterium glutamicum, and Yarrowia lipolytica. Therefore, we assess the Technology Readiness Level (TRL) of this technology to be between 4 and 5. To facilitate the full-scale implementation of ITMU, it will be necessary to further explore and optimize DNA-modifying enzymes utilizing advanced techniques such as big data analysis and machine learning. With the recognition of the potential for non-conventional hosts to serve as the next-generation cell factory, we anticipate that ITMU will accelerate the development of novel enzymes and high-value compounds in non-conventional hosts.
This study developed an in vivo targeted mutagenesis system for multiple hosts based on replication elements of broad host-range plasmids. This system is designed to accelerate the rapid evolution of proteins and metabolic pathways, further leveraging the performance advantages of unconventional hosts. |
---|---|
AbstractList | In vivo target mutagenesis is a powerful approach to accelerate protein evolution. However, current approaches have been primarily developed in conventional organisms, limiting their capacity to evolve proteins with subtle variations across non-conventional host species. Here, we design an in vivo target mutagenesis system for multiple hosts (ITMU) utilizing the broad host-range plasmid RSF1010 replication element. The ITMU, which is based on a deaminase–helicase fusion and a primase error-prone DNA polymerase I fusion, induces all types of mutation in the target plasmid harboring the RSF1010 replicon, at a mutation rate 1.18 × 10 5-fold higher than that of the host genome. We show that ITMU-based in vivo continuous evolution is effective in Escherichia coli, Pseudomonas putida, Corynebacterium glutamicum, and Yarrowia lipolytica. This demonstrates that the ITMU is applicable to multiple microbial chassis and provides a viable alternative to in vivo continuous evolution systems. In vivo target mutagenesis is a powerful approach to accelerate protein evolution. However, current approaches have been primarily developed in conventional organisms, limiting their capacity to evolve proteins with subtle variations across non-conventional host species. Here, we design an in vivo target mutagenesis system for multiple hosts (ITMU) utilizing the broad host-range plasmid RSF1010 replication element. The ITMU, which is based on a deaminase-helicase fusion and a primase error-prone DNA polymerase I fusion, induces all types of mutation in the target plasmid harboring the RSF1010 replicon, at a mutation rate 1.18 × 105-fold higher than that of the host genome. We show that ITMU-based in vivo continuous evolution is effective in Escherichia coli, Pseudomonas putida, Corynebacterium glutamicum, and Yarrowia lipolytica. This demonstrates that the ITMU is applicable to multiple microbial chassis and provides a viable alternative to in vivo continuous evolution systems.In vivo target mutagenesis is a powerful approach to accelerate protein evolution. However, current approaches have been primarily developed in conventional organisms, limiting their capacity to evolve proteins with subtle variations across non-conventional host species. Here, we design an in vivo target mutagenesis system for multiple hosts (ITMU) utilizing the broad host-range plasmid RSF1010 replication element. The ITMU, which is based on a deaminase-helicase fusion and a primase error-prone DNA polymerase I fusion, induces all types of mutation in the target plasmid harboring the RSF1010 replicon, at a mutation rate 1.18 × 105-fold higher than that of the host genome. We show that ITMU-based in vivo continuous evolution is effective in Escherichia coli, Pseudomonas putida, Corynebacterium glutamicum, and Yarrowia lipolytica. This demonstrates that the ITMU is applicable to multiple microbial chassis and provides a viable alternative to in vivo continuous evolution systems. In vivo targeted mutagenesis technology can enable the gene of interest to generate genetic diversity within the host cell without human intervention.We developed an in vivo targeted mutagenesis system applicable to multiple hosts, effectively addressing the key gap of in vivo mutagenesis tools for unconventional hosts.This system features a longer evolution window, enabling the simultaneous evolution of multiple proteins.This system has extensive potential in unconventional host applications, facilitating more efficient enzyme engineering and metabolic optimization in industrial settings. In vivo target mutagenesis is a powerful approach to accelerate protein evolution. However, current approaches have been primarily developed in conventional organisms, limiting their capacity to evolve proteins with subtle variations across non-conventional host species. Here, we design an in vivo target mutagenesis system for multiple hosts (ITMU) utilizing the broad host-range plasmid RSF1010 replication element. The ITMU, which is based on a deaminase–helicase fusion and a primase error-prone DNA polymerase I fusion, induces all types of mutation in the target plasmid harboring the RSF1010 replicon, at a mutation rate 1.18 × 105-fold higher than that of the host genome. We show that ITMU-based in vivo continuous evolution is effective in Escherichia coli, Pseudomonas putida, Corynebacterium glutamicum, and Yarrowia lipolytica. This demonstrates that the ITMU is applicable to multiple microbial chassis and provides a viable alternative to in vivo continuous evolution systems. [Display omitted] Targeted evolution in vivo has been studied for decades; however, the extension of this technique to non-conventional hosts remains a significant challenge. This study reports an in vivo target mutagenesis system for multiple hosts (ITMU) that is applicable to both conventional and non-conventional hosts. The ITMU uses the fusion of the replication element from the broad host-range plasmid RSF1010 with DNA-modifying enzymes to achieve high frequency mutation of the target plasmid. ITMU-based in vivo continuous evolution was proved to be effective in Escherichia coli, Pseudomonas putida, Corynebacterium glutamicum, and Yarrowia lipolytica. Therefore, we assess the Technology Readiness Level (TRL) of this technology to be between 4 and 5. To facilitate the full-scale implementation of ITMU, it will be necessary to further explore and optimize DNA-modifying enzymes utilizing advanced techniques such as big data analysis and machine learning. With the recognition of the potential for non-conventional hosts to serve as the next-generation cell factory, we anticipate that ITMU will accelerate the development of novel enzymes and high-value compounds in non-conventional hosts. This study developed an in vivo targeted mutagenesis system for multiple hosts based on replication elements of broad host-range plasmids. This system is designed to accelerate the rapid evolution of proteins and metabolic pathways, further leveraging the performance advantages of unconventional hosts. HighlightsIn vivo targeted mutagenesis technology can enable the gene of interest to generate genetic diversity within the host cell without human intervention. We developed an in vivo targeted mutagenesis system applicable to multiple hosts, effectively addressing the key gap of in vivo mutagenesis tools for unconventional hosts. This system features a longer evolution window, enabling the simultaneous evolution of multiple proteins. This system has extensive potential in unconventional host applications, facilitating more efficient enzyme engineering and metabolic optimization in industrial settings. In vivo target mutagenesis is a powerful approach to accelerate protein evolution. However, current approaches have been primarily developed in conventional organisms, limiting their capacity to evolve proteins with subtle variations across non-conventional host species. Here, we design an in vivo target mutagenesis system for multiple hosts (ITMU) utilizing the broad host-range plasmid RSF1010 replication element. The ITMU, which is based on a deaminase-helicase fusion and a primase error-prone DNA polymerase I fusion, induces all types of mutation in the target plasmid harboring the RSF1010 replicon, at a mutation rate 1.18 × 10 -fold higher than that of the host genome. We show that ITMU-based in vivo continuous evolution is effective in Escherichia coli, Pseudomonas putida, Corynebacterium glutamicum, and Yarrowia lipolytica. This demonstrates that the ITMU is applicable to multiple microbial chassis and provides a viable alternative to in vivo continuous evolution systems. |
Author | Hou, Jin Liu, Mengmeng Su, Tianyuan Wang, Qian Yin, Dong Yuan, Yingbo Qi, Qingsheng Pang, Qingxiao |
Author_xml | – sequence: 1 givenname: Dong surname: Yin fullname: Yin, Dong organization: State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China – sequence: 2 givenname: Qingxiao surname: Pang fullname: Pang, Qingxiao organization: State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China – sequence: 3 givenname: Yingbo surname: Yuan fullname: Yuan, Yingbo organization: State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China – sequence: 4 givenname: Tianyuan surname: Su fullname: Su, Tianyuan organization: State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China – sequence: 5 givenname: Mengmeng surname: Liu fullname: Liu, Mengmeng organization: State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China – sequence: 6 givenname: Qian surname: Wang fullname: Wang, Qian organization: National Glycoengineering Research Center, Shandong University, Qingdao, 266237, People's Republic of China – sequence: 7 givenname: Jin surname: Hou fullname: Hou, Jin organization: State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China – sequence: 8 givenname: Qingsheng orcidid: 0000-0001-9015-4561 surname: Qi fullname: Qi, Qingsheng email: qiqingsheng@sdu.edu.cn organization: State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40345898$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1r3DAQhkVJaTZpf0KLoZde7I4k25IObQihXxDooe1ZyPI40da2tpK8sP--MrvNIVDa08DwzMvMMxfkbPYzEvKSQkWBtm-3VXJdQntfMWBNBXUF0DwhGyqFKjmo9oxsMidKIZQ6JxcxbgGAC0WfkfMaeN1IJTdEXM-Fm4u92_simXCHqZiWZO5wxuhiEQ8x4VQMPuT2mNxuxOLexxSfk6eDGSO-ONVL8uPjh-83n8vbr5--3Fzflpa3IpVcNtwgdoPtB9VDxxuj7DCgHNrasJ7VLQWQvKZIpeJGdj0y2fcoleEMWsEvyZtj7i74XwvGpCcXLY6jmdEvUWeK1UCBy4y-foRu_RLmvF2muKg5pYJn6tWJWroJe70LbjLhoP8oyUBzBGzwMQYcHhAKelWvt_qkXq_qNdQ6q89zV8c5zDr2DoOO1uFssXcBbdK9d_9MeP8owY5udtaMP_GA8eEaqiPToL-t712_yxoAytka8O7vAf-xwG_Yq7ba |
Cites_doi | 10.1038/s41587-023-02050-w 10.1016/j.biotechadv.2013.08.021 10.1038/s41467-023-44245-4 10.1021/acssynbio.0c00149 10.1126/sciadv.abg8712 10.1073/pnas.0902910106 10.1021/acssynbio.6b00052 10.1016/j.ymben.2020.01.002 10.1021/acssynbio.1c00031 10.1073/pnas.81.3.654 10.1038/ncomms9425 10.1093/nar/gkad003 10.1038/s41467-024-46574-4 10.1038/s41589-019-0452-x 10.1128/mbio.02296-22 10.1016/S1568-7864(03)00024-7 10.1007/s00203-007-0276-z 10.1016/j.dnarep.2013.08.003 10.1038/s41589-023-01387-2 10.1073/pnas.120163297 10.1021/jacs.8b04001 10.1038/s41587-020-0562-8 10.1093/bioinformatics/btp253 10.1002/jcc.21334 10.1016/S0076-6879(05)09012-9 10.1016/j.ymthe.2022.07.010 10.1038/s41589-021-00832-4 10.1093/nar/gkh271 10.1529/biophysj.105.071837 10.1038/s41467-021-21876-z 10.1038/s41564-017-0102-6 10.1038/s41586-019-1923-7 10.1016/j.ymben.2024.05.004 10.1016/j.copbio.2023.103025 10.1093/nar/19.6.1203 10.1093/nar/gkae577 10.1016/j.dnarep.2018.02.005 10.1093/nar/gkad266 10.1038/s41586-018-0384-8 10.1016/j.csbj.2021.12.042 10.1016/S0378-1135(96)01294-1 10.1128/jb.173.21.6705-6708.1991 10.1021/acscatal.4c00400 10.1128/jb.133.3.1527-1529.1978 10.1073/pnas.1333928100 10.1016/j.jbc.2021.100558 10.1016/j.biortech.2024.131806 10.1038/s41587-022-01533-6 10.1038/s41589-018-0121-5 10.1016/j.tibtech.2024.05.005 10.1007/BF00455118 10.1016/j.plasmid.2013.04.001 10.1186/s12934-023-02197-w 10.1186/s13068-020-01747-3 10.1002/anie.201409470 10.1016/j.tibtech.2022.07.006 10.1038/s41580-024-00718-y 10.1128/jb.134.3.1117-1122.1978 10.1021/acssynbio.2c00689 10.1021/acssynbio.0c00135 10.1007/s00253-013-5359-y 10.1038/s41467-023-39087-z 10.1016/j.tim.2024.02.006 10.1016/j.cbpa.2014.09.040 10.1007/BF00173989 10.1016/j.cell.2018.10.021 10.1093/nar/gkad602 10.1016/j.isci.2019.09.002 10.1016/S1567-1356(03)00141-7 10.1038/s41596-020-00410-3 10.1126/science.adk1281 10.1016/j.jbiotec.2014.09.023 10.1128/jb.177.17.4890-4899.1995 10.1093/nar/gkab1244 10.1007/s00253-014-5676-9 10.1002/anie.202303112 10.1016/j.cbpa.2020.03.004 10.1016/j.ymben.2018.07.008 10.1039/D1CC04635G 10.1128/aem.63.11.4604-4607.1997 10.1016/j.biortech.2019.122337 10.1007/s00253-020-10811-9 10.1016/j.copbio.2009.08.005 10.1006/jmbi.1998.1780 10.1038/s43586-022-00119-5 10.1007/s00253-018-9294-9 10.1016/j.biotechadv.2021.107695 10.1038/313818a0 10.2174/138920310790274617 10.1038/s41587-023-01994-3 10.1111/j.1432-1033.1985.tb08761.x |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd Elsevier Ltd Copyright © 2025 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2025 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2025 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1016/j.tibtech.2025.04.005 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1879-3096 |
EndPage | 2072 |
ExternalDocumentID | 40345898 10_1016_j_tibtech_2025_04_005 S0167779925001325 1_s2_0_S0167779925001325 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .1- .DC .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAHBH AAIKC AAIKJ AAKOC AALRI AAMNW AAMRU AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABDPE ABFNM ABFRF ABGSF ABJCF ABJNI ABLJU ABMAC ABNUV ABUDA ABUWG ABWVN ABXDB ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADFRT ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEUYN AEVXI AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AHMBA AHPOS AIEXJ AIGII AIIUN AIKHN AITUG AJUYK AKBMS AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AQUVI ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKOJK BLXMC BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GUQSH HCIFZ HLW HMCUK HVGLF HZ~ IHE J1W KOM L6V LK8 LX3 M0T M1P M2O M41 M7P M7S MO0 MVM N9A O-L O9- O9. OAUVE OK~ OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO Q38 R2- RNS ROL RPZ SBG SCC SDF SDG SDP SES SEW SPC SPCBC SSG SSU SSZ T5K TAE TN5 UKHRP WUQ XPP Y6R Z5R ZGI ZMT ~02 ~G- ~KM AFCTW AGRNS ALIPV BNPGV RIG SSH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c367t-3853aeebfcdf9d0b35a9cffe8f64a2d2461008341e1893a8bde28dde89a320673 |
IEDL.DBID | .~1 |
ISSN | 0167-7799 1879-3096 |
IngestDate | Fri Jul 11 18:06:46 EDT 2025 Sat Aug 23 13:14:27 EDT 2025 Sun Aug 10 01:31:56 EDT 2025 Thu Aug 14 00:10:38 EDT 2025 Sat Aug 30 17:14:24 EDT 2025 Fri May 23 00:02:47 EDT 2025 Tue Aug 26 19:34:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | in vivo target mutagenesis synthetic biology multiple hosts |
Language | English |
License | Copyright © 2025 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-3853aeebfcdf9d0b35a9cffe8f64a2d2461008341e1893a8bde28dde89a320673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9015-4561 |
PMID | 40345898 |
PQID | 3237431173 |
PQPubID | 2031074 |
PageCount | 24 |
ParticipantIDs | proquest_miscellaneous_3202401038 proquest_journals_3237431173 pubmed_primary_40345898 crossref_primary_10_1016_j_tibtech_2025_04_005 elsevier_sciencedirect_doi_10_1016_j_tibtech_2025_04_005 elsevier_clinicalkeyesjournals_1_s2_0_S0167779925001325 elsevier_clinicalkey_doi_10_1016_j_tibtech_2025_04_005 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Trends in biotechnology (Regular ed.) |
PublicationTitleAlternate | Trends Biotechnol |
PublicationYear | 2025 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Senior (bb0295) 2020; 577 Zhong (bb0090) 2020; 9 Listov (bb0360) 2024; 25 Tian (bb0095) 2024; 383 Martínez-García, de Lorenzo (bb0135) 2024; 85 Tou (bb0205) 2020; 9 Trott, Olson (bb0300) 2010; 31 Zimmermann (bb0120) 2023; 14 Scherzinger (bb0150) 1991; 19 Ollis (bb0245) 1985; 313 Chen (bb0345) 2023; 9 Prabhu (bb0335) 2020; 13 Nagahari, Sakaguchi (bb0420) 1978; 133 Fernández-Cabezón (bb0055) 2021; 10 Moore (bb0070) 2018; 140 Patra (bb0395) 2021; 47 Foster (bb0160) 2006; 409 Weimer (bb0270) 2020; 104 Scherzinger (bb0140) 1984; 81 Hall (bb0470) 2009; 25 Yang (bb0475) 2023; 11 Cai (bb0050) 2023; 51 Orsi (bb0405) 2024; 15 Xiao (bb0415) 2024; 42 Obranić (bb0290) 2013; 70 Ye (bb0410) 2024; 42 Binns (bb0435) 1995; 177 Yook (bb0340) 2025; 416 Park, Ledesma-Amaro (bb0325) 2023; 41 Jagtap, Rao (bb0330) 2018; 102 Liu (bb0355) 2014; 14 Wolk (bb0465) 2007; 188 Camps (bb0225) 2003; 100 Kuyper (bb0350) 2003; 4 Dougherty, Arnold (bb0010) 2009; 20 Yang (bb0255) 2020; 296 Li (bb0305) 2023; 405 Rosenthal (bb0240) 2023; 62 Su (bb0220) 2018; 64 Li (bb0260) 2016; 5 Eom (bb0065) 2022; 50 Lee, Henk (bb0450) 1997; 54 Nesvera (bb0460) 1994; 40 Yi (bb0190) 2021; 7 Wang (bb0005) 2018; 14 Tu (bb0180) 2022; 30 Sun, Alper (bb0380) 2020; 59 Wellner (bb0075) 2021; 17 Badran, Liu (bb0200) 2015; 6 Wang (bb0060) 2024; 52 Matano (bb0315) 2014; 98 Datta (bb0235) 2006; 90 Renata (bb0020) 2015; 54 Thorwall (bb0385) 2020; 16 Gruber (bb0445) 2014; 192 Pt B Neugebauer (bb0185) 2023; 41 Buckel (bb0280) 1977; 158 Zimmermann (bb0400) 2024; 32 Tangy (bb0285) 1985; 147 Pan, Kortemme (bb0365) 2021; 296 Heider (bb0320) 2014; 98 Pang (bb0015) 2020; 59 Ravikumar (bb0080) 2018; 175 Labrou (bb0025) 2010; 11 Geibel (bb0145) 2009; 106 Seo (bb0125) 2023; 51 Garibyan (bb0195) 2003; 2 Gormley, Davies (bb0425) 1991; 173 Miller (bb0045) 2020; 15 Tee, Wong (bb0030) 2013; 31 Davies (bb0275) 1998; 279 Palmer (bb0455) 1997; 63 Cui (bb0130) 2023; 14 Badran, Liu (bb0040) 2015; 24 Tian (bb0100) 2023; 19 Vanella (bb0035) 2022; 58 Shelake (bb0170) 2023; 14 Vo (bb0265) 2024; 84 Halperin (bb0105) 2018; 560 Wang (bb0230) 2004; 32 Cravens (bb0115) 2021; 12 Molina (bb0085) 2022; 2 Gu (bb0250) 2023; 22 Lee (bb0215) 2013; 12 de Graaff (bb0430) 1978; 134 Mengiste (bb0110) 2023; 51 Datsenko, Wanner (bb0155) 2000; 97 Richter (bb0175) 2020; 38 Bishé (bb0440) 2019; 20 Banno (bb0165) 2018; 3 Li (bb0370) 2022; 20 Binan (bb0390) 2024; 42 Becker (bb0310) 2018; 50 Zheng (bb0375) 2024; 14 Gossing (bb0210) 2023; 12 Martínez-García (10.1016/j.tibtech.2025.04.005_bb0135) 2024; 85 Labrou (10.1016/j.tibtech.2025.04.005_bb0025) 2010; 11 Miller (10.1016/j.tibtech.2025.04.005_bb0045) 2020; 15 Cravens (10.1016/j.tibtech.2025.04.005_bb0115) 2021; 12 Garibyan (10.1016/j.tibtech.2025.04.005_bb0195) 2003; 2 Thorwall (10.1016/j.tibtech.2025.04.005_bb0385) 2020; 16 Dougherty (10.1016/j.tibtech.2025.04.005_bb0010) 2009; 20 Lee (10.1016/j.tibtech.2025.04.005_bb0215) 2013; 12 Palmer (10.1016/j.tibtech.2025.04.005_bb0455) 1997; 63 Obranić (10.1016/j.tibtech.2025.04.005_bb0290) 2013; 70 Zheng (10.1016/j.tibtech.2025.04.005_bb0375) 2024; 14 Tee (10.1016/j.tibtech.2025.04.005_bb0030) 2013; 31 Wellner (10.1016/j.tibtech.2025.04.005_bb0075) 2021; 17 Ollis (10.1016/j.tibtech.2025.04.005_bb0245) 1985; 313 Zhong (10.1016/j.tibtech.2025.04.005_bb0090) 2020; 9 Davies (10.1016/j.tibtech.2025.04.005_bb0275) 1998; 279 Gormley (10.1016/j.tibtech.2025.04.005_bb0425) 1991; 173 Buckel (10.1016/j.tibtech.2025.04.005_bb0280) 1977; 158 Yi (10.1016/j.tibtech.2025.04.005_bb0190) 2021; 7 Camps (10.1016/j.tibtech.2025.04.005_bb0225) 2003; 100 Vo (10.1016/j.tibtech.2025.04.005_bb0265) 2024; 84 Ye (10.1016/j.tibtech.2025.04.005_bb0410) 2024; 42 Gruber (10.1016/j.tibtech.2025.04.005_bb0445) 2014; 192 Pt B Bishé (10.1016/j.tibtech.2025.04.005_bb0440) 2019; 20 Chen (10.1016/j.tibtech.2025.04.005_bb0345) 2023; 9 Wolk (10.1016/j.tibtech.2025.04.005_bb0465) 2007; 188 Tian (10.1016/j.tibtech.2025.04.005_bb0095) 2024; 383 Binan (10.1016/j.tibtech.2025.04.005_bb0390) 2024; 42 Wang (10.1016/j.tibtech.2025.04.005_bb0060) 2024; 52 Moore (10.1016/j.tibtech.2025.04.005_bb0070) 2018; 140 Richter (10.1016/j.tibtech.2025.04.005_bb0175) 2020; 38 Tangy (10.1016/j.tibtech.2025.04.005_bb0285) 1985; 147 Shelake (10.1016/j.tibtech.2025.04.005_bb0170) 2023; 14 Senior (10.1016/j.tibtech.2025.04.005_bb0295) 2020; 577 Liu (10.1016/j.tibtech.2025.04.005_bb0355) 2014; 14 Mengiste (10.1016/j.tibtech.2025.04.005_bb0110) 2023; 51 Scherzinger (10.1016/j.tibtech.2025.04.005_bb0150) 1991; 19 Badran (10.1016/j.tibtech.2025.04.005_bb0200) 2015; 6 Su (10.1016/j.tibtech.2025.04.005_bb0220) 2018; 64 Li (10.1016/j.tibtech.2025.04.005_bb0260) 2016; 5 Matano (10.1016/j.tibtech.2025.04.005_bb0315) 2014; 98 Banno (10.1016/j.tibtech.2025.04.005_bb0165) 2018; 3 Vanella (10.1016/j.tibtech.2025.04.005_bb0035) 2022; 58 Badran (10.1016/j.tibtech.2025.04.005_bb0040) 2015; 24 Eom (10.1016/j.tibtech.2025.04.005_bb0065) 2022; 50 Foster (10.1016/j.tibtech.2025.04.005_bb0160) 2006; 409 Neugebauer (10.1016/j.tibtech.2025.04.005_bb0185) 2023; 41 Tian (10.1016/j.tibtech.2025.04.005_bb0100) 2023; 19 Wang (10.1016/j.tibtech.2025.04.005_bb0230) 2004; 32 Cai (10.1016/j.tibtech.2025.04.005_bb0050) 2023; 51 Jagtap (10.1016/j.tibtech.2025.04.005_bb0330) 2018; 102 Ravikumar (10.1016/j.tibtech.2025.04.005_bb0080) 2018; 175 Datta (10.1016/j.tibtech.2025.04.005_bb0235) 2006; 90 Binns (10.1016/j.tibtech.2025.04.005_bb0435) 1995; 177 Scherzinger (10.1016/j.tibtech.2025.04.005_bb0140) 1984; 81 Weimer (10.1016/j.tibtech.2025.04.005_bb0270) 2020; 104 Heider (10.1016/j.tibtech.2025.04.005_bb0320) 2014; 98 Nesvera (10.1016/j.tibtech.2025.04.005_bb0460) 1994; 40 Zimmermann (10.1016/j.tibtech.2025.04.005_bb0120) 2023; 14 Yook (10.1016/j.tibtech.2025.04.005_bb0340) 2025; 416 Cui (10.1016/j.tibtech.2025.04.005_bb0130) 2023; 14 Wang (10.1016/j.tibtech.2025.04.005_bb0005) 2018; 14 Halperin (10.1016/j.tibtech.2025.04.005_bb0105) 2018; 560 Tu (10.1016/j.tibtech.2025.04.005_bb0180) 2022; 30 Molina (10.1016/j.tibtech.2025.04.005_bb0085) 2022; 2 Prabhu (10.1016/j.tibtech.2025.04.005_bb0335) 2020; 13 Patra (10.1016/j.tibtech.2025.04.005_bb0395) 2021; 47 Xiao (10.1016/j.tibtech.2025.04.005_bb0415) 2024; 42 Nagahari (10.1016/j.tibtech.2025.04.005_bb0420) 1978; 133 Hall (10.1016/j.tibtech.2025.04.005_bb0470) 2009; 25 Yang (10.1016/j.tibtech.2025.04.005_bb0255) 2020; 296 Lee (10.1016/j.tibtech.2025.04.005_bb0450) 1997; 54 Kuyper (10.1016/j.tibtech.2025.04.005_bb0350) 2003; 4 Gu (10.1016/j.tibtech.2025.04.005_bb0250) 2023; 22 Li (10.1016/j.tibtech.2025.04.005_bb0370) 2022; 20 Geibel (10.1016/j.tibtech.2025.04.005_bb0145) 2009; 106 Fernández-Cabezón (10.1016/j.tibtech.2025.04.005_bb0055) 2021; 10 Pan (10.1016/j.tibtech.2025.04.005_bb0365) 2021; 296 Gossing (10.1016/j.tibtech.2025.04.005_bb0210) 2023; 12 Rosenthal (10.1016/j.tibtech.2025.04.005_bb0240) 2023; 62 de Graaff (10.1016/j.tibtech.2025.04.005_bb0430) 1978; 134 Park (10.1016/j.tibtech.2025.04.005_bb0325) 2023; 41 Becker (10.1016/j.tibtech.2025.04.005_bb0310) 2018; 50 Yang (10.1016/j.tibtech.2025.04.005_bb0475) 2023; 11 Datsenko (10.1016/j.tibtech.2025.04.005_bb0155) 2000; 97 Orsi (10.1016/j.tibtech.2025.04.005_bb0405) 2024; 15 Seo (10.1016/j.tibtech.2025.04.005_bb0125) 2023; 51 Li (10.1016/j.tibtech.2025.04.005_bb0305) 2023; 405 Renata (10.1016/j.tibtech.2025.04.005_bb0020) 2015; 54 Tou (10.1016/j.tibtech.2025.04.005_bb0205) 2020; 9 Trott (10.1016/j.tibtech.2025.04.005_bb0300) 2010; 31 Listov (10.1016/j.tibtech.2025.04.005_bb0360) 2024; 25 Pang (10.1016/j.tibtech.2025.04.005_bb0015) 2020; 59 Sun (10.1016/j.tibtech.2025.04.005_bb0380) 2020; 59 Zimmermann (10.1016/j.tibtech.2025.04.005_bb0400) 2024; 32 |
References_xml | – volume: 175 start-page: 1946 year: 2018 end-page: 1957 ident: bb0080 article-title: Scalable, continuous evolution of genes at mutation rates above genomic error thresholds publication-title: Cell – volume: 38 start-page: 901 year: 2020 ident: bb0175 article-title: Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity publication-title: Nat. Biotechnol. – volume: 32 start-page: 1197 year: 2004 end-page: 1207 ident: bb0230 article-title: A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance publication-title: Nucleic Acids Res. – volume: 50 start-page: 122 year: 2018 end-page: 141 ident: bb0310 article-title: Metabolically engineered publication-title: Metab. Eng. – volume: 12 start-page: 2271 year: 2023 end-page: 2277 ident: bb0210 article-title: Multiplexed guide RNA expression leads to increased mutation frequency in targeted window using a CRISPR-guided error-prone DNA polymerase in publication-title: ACS Synth. Biol. – volume: 405 year: 2023 ident: bb0305 article-title: Recent technological strategies for enhancing the stability of lycopene in processing and production publication-title: Food Chem. – volume: 12 start-page: 1579 year: 2021 ident: bb0115 article-title: Polymerase-guided base editing enables publication-title: Nat. Commun. – volume: 192 Pt B start-page: 410 year: 2014 end-page: 418 ident: bb0445 article-title: Reprint of ‘versatile and stable vectors for efficient gene expression in publication-title: J. Biotechnol. – volume: 81 start-page: 654 year: 1984 end-page: 658 ident: bb0140 article-title: Replication of the broad host range plasmid RSF1010-requirement for 3 plasmid-encoded proteins publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 140 start-page: 11560 year: 2018 end-page: 11564 ident: bb0070 article-title: A processive protein chimera introduces mutations across defined DNA regions publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 1057 year: 2021 end-page: 1064 ident: bb0075 article-title: Rapid generation of potent antibodies by autonomous hypermutation in yeast publication-title: Nat. Chem. Biol. – volume: 14 start-page: 3389 year: 2023 ident: bb0120 article-title: A Cas3-base editing tool for targetable publication-title: Nat. Commun. – volume: 42 start-page: 1442 year: 2024 end-page: 1453 ident: bb0415 article-title: An adenine base editor variant expands context compatibility publication-title: Nat. Biotechnol. – volume: 52 start-page: 8609 year: 2024 end-page: 8627 ident: bb0060 article-title: Dual genetic level modification engineering accelerate genome evolution of publication-title: Nucleic Acids Res. – volume: 25 start-page: 1564 year: 2009 end-page: 1565 ident: bb0470 article-title: Fluctuation analysis CalculatOR: a web tool for the determination of mutation rate using Luria-Delbruck fluctuation analysis publication-title: Bioinformatics – volume: 296 year: 2021 ident: bb0365 article-title: Recent advances in publication-title: J. Biol. Chem. – volume: 9 year: 2023 ident: bb0345 article-title: Big data mining, rational modification, and ancestral sequence reconstruction inferred multiple xylose isomerases for biorefinery publication-title: Sci. Adv. – volume: 20 start-page: 459 year: 2022 end-page: 470 ident: bb0370 article-title: Computational design of a cutinase for plastic biodegradation by mining molecular dynamics simulations trajectories publication-title: Comput. Struct. Biotechnol. J. – volume: 11 year: 2023 ident: bb0475 article-title: Design and application of artificial rare L-lysine codons in publication-title: Front. Bioeng. Biotechnol. – volume: 25 start-page: 639 year: 2024 end-page: 653 ident: bb0360 article-title: Opportunities and challenges in design and optimization of protein function publication-title: Nat. Rev. Mol. Cell Biol. – volume: 10 start-page: 1214 year: 2021 end-page: 1226 ident: bb0055 article-title: Spatiotemporal manipulation of the mismatch repair system of publication-title: ACS Synth. Biol. – volume: 14 start-page: 3627 year: 2024 end-page: 3639 ident: bb0375 article-title: Dynamic docking-assisted engineering of hydrolases for efficient PET depolymerization publication-title: ACS Catal. – volume: 19 start-page: 1504 year: 2023 end-page: 1512 ident: bb0100 article-title: Engineered bacterial orthogonal DNA replication system for continuous evolution publication-title: Nat. Chem. Biol. – volume: 5 start-page: 1299 year: 2016 end-page: 1307 ident: bb0260 article-title: Production of succinate from acetate by metabolically engineered publication-title: ACS Synth. Biol. – volume: 47 year: 2021 ident: bb0395 article-title: Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts publication-title: Biotechnol. Adv. – volume: 50 year: 2022 ident: bb0065 article-title: Development of a genome-targeting mutator for the adaptive evolution of microbial cells publication-title: Nucleic Acids Res. – volume: 51 year: 2023 ident: bb0110 article-title: Expanded MutaT7 toolkit efficiently and simultaneously accesses all possible transition mutations in bacteria publication-title: Nucleic Acids Res. – volume: 31 start-page: 1707 year: 2013 end-page: 1721 ident: bb0030 article-title: Polishing the craft of genetic diversity creation in directed evolution publication-title: Biotechnol. Adv. – volume: 15 start-page: 4101 year: 2020 end-page: 4127 ident: bb0045 article-title: Phage-assisted continuous and non-continuous evolution publication-title: Nat. Protoc. – volume: 147 start-page: 381 year: 1985 end-page: 386 ident: bb0285 article-title: Mechanism of action of gentamicin components - characteristics of their binding to publication-title: Eur. J. Biochem. – volume: 133 start-page: 1527 year: 1978 end-page: 1529 ident: bb0420 article-title: RSF1010 plasmid as a potentially useful vector in publication-title: J. Bacteriol. – volume: 560 start-page: 248 year: 2018 end-page: 252 ident: bb0105 article-title: CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window publication-title: Nature – volume: 409 start-page: 195 year: 2006 end-page: 213 ident: bb0160 article-title: Methods for determining spontaneous mutation rates publication-title: Methods Enzymol. – volume: 102 start-page: 9015 year: 2018 end-page: 9036 ident: bb0330 article-title: Microbial conversion of xylose into useful bioproducts publication-title: Appl. Microbiol. Biotechnol. – volume: 30 start-page: 2933 year: 2022 end-page: 2941 ident: bb0180 article-title: A precise and efficient adenine base editor publication-title: Mol. Ther. – volume: 98 start-page: 5633 year: 2014 end-page: 5643 ident: bb0315 article-title: Engineering of publication-title: Appl. Microbiol. Biotechnol. – volume: 12 start-page: 899 year: 2013 end-page: 911 ident: bb0215 article-title: The excision of 3' penultimate errors by DNA polymerase I and its role in endonuclease V-mediated DNA repair publication-title: DNA Repair – volume: 70 start-page: 263 year: 2013 end-page: 267 ident: bb0290 article-title: Improvement of pBBR1MCS plasmids, a very useful series of broad-host-range cloning vectors publication-title: Plasmid – volume: 177 start-page: 4890 year: 1995 end-page: 4899 ident: bb0435 article-title: Inhibition of VirB-mediated transfer of diverse substrates from publication-title: J. Bacteriol. – volume: 577 start-page: 706 year: 2020 end-page: 710 ident: bb0295 article-title: Improved protein structure prediction using potentials from deep learning publication-title: Nature – volume: 41 start-page: 673 year: 2023 end-page: 685 ident: bb0185 article-title: Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity publication-title: Nat. Biotechnol. – volume: 383 start-page: 421 year: 2024 end-page: 426 ident: bb0095 article-title: Establishing a synthetic orthogonal replication system enables accelerated evolution in publication-title: Science – volume: 106 start-page: 7810 year: 2009 end-page: 7815 ident: bb0145 article-title: Structure and function of primase RepB′ encoded by broad-host-range plasmid RSF1010 that replicates exclusively in leading-strand mode publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 100 start-page: 9727 year: 2003 end-page: 9732 ident: bb0225 article-title: Targeted gene evolution in publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 51 year: 2023 ident: bb0125 article-title: A dual gene-specific mutator system installs all transition mutations at similar frequencies publication-title: Nucleic Acids Res. – volume: 42 start-page: 1551 year: 2024 end-page: 1575 ident: bb0390 article-title: Efficient genome-editing tools to engineer the recalcitrant non-model industrial microorganism publication-title: Trends Biotechnol. – volume: 42 start-page: 1538 year: 2024 end-page: 1547 ident: bb0410 article-title: Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells publication-title: Nat. Biotechnol. – volume: 85 year: 2024 ident: bb0135 article-title: as a synthetic biology chassis and a metabolic engineering platform publication-title: Curr. Opin. Biotechnol. – volume: 59 start-page: 36 year: 2020 end-page: 43 ident: bb0015 article-title: evolutionary engineering of riboswitch with high-threshold for publication-title: Metab. Eng. – volume: 20 start-page: 216 year: 2019 end-page: 228 ident: bb0440 article-title: Modification of RSF1010-based broad-host-range plasmids for improved conjugation and cyanobacterial bioprospecting publication-title: iScience – volume: 188 start-page: 551 year: 2007 end-page: 563 ident: bb0465 article-title: Paired cloning vectors for complementation of mutations in the cyanobacterium publication-title: Arch. Microbiol. – volume: 32 start-page: 884 year: 2024 end-page: 901 ident: bb0400 article-title: Mutagenesis techniques for evolutionary engineering of microbes - exploiting CRISPR-Cas, oligonucleotides, recombinases, and polymerases publication-title: Trends Microbiol. – volume: 15 start-page: 3447 year: 2024 ident: bb0405 article-title: Automated publication-title: Nat. Commun. – volume: 3 start-page: 423 year: 2018 end-page: 429 ident: bb0165 article-title: Deaminase-mediated multiplex genome editing in publication-title: Nat. Microbiol. – volume: 24 start-page: 1 year: 2015 end-page: 10 ident: bb0040 article-title: continuous directed evolution publication-title: Curr. Opin. Chem. Biol. – volume: 6 start-page: 8425 year: 2015 ident: bb0200 article-title: Development of potent publication-title: Nat. Commun. – volume: 31 start-page: 455 year: 2010 end-page: 461 ident: bb0300 article-title: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading publication-title: J. Comput. Chem. – volume: 54 start-page: 3351 year: 2015 end-page: 3367 ident: bb0020 article-title: Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution publication-title: Angew. Chem. Int. Ed. – volume: 51 start-page: 8623 year: 2023 end-page: 8642 ident: bb0050 article-title: Engineering of the DNA replication and repair machinery to develop binary mutators for rapid genome evolution of publication-title: Nucleic Acids Res. – volume: 2 start-page: 37 year: 2022 ident: bb0085 article-title: In vivo hypermutation and continuous evolution publication-title: Nat. Rev. Methods Primers – volume: 59 start-page: 15 year: 2020 end-page: 22 ident: bb0380 article-title: Non-conventional hosts for the production of fuels and chemicals publication-title: Curr. Opin. Chem. Biol. – volume: 62 year: 2023 ident: bb0240 article-title: Controlled continuous evolution of enzymatic activity screened at ultrahigh throughput using drop-based microfluidics publication-title: Angew. Chem. Int. Ed. – volume: 16 start-page: 113 year: 2020 end-page: 121 ident: bb0385 article-title: Stress-tolerant non-conventional microbes enable next-generation chemical biosynthesis publication-title: Nat. Chem. Biol. – volume: 40 start-page: 864 year: 1994 end-page: 866 ident: bb0460 article-title: Transfer of the broad-host-range IncQ plasmid RSF1010 and other plasmid vectors to the Gram-positive methylotroph publication-title: Appl. Microbiol. Biotechnol. – volume: 11 start-page: 91 year: 2010 end-page: 100 ident: bb0025 article-title: Random mutagenesis methods for publication-title: Curr. Protein Pept. Sci. – volume: 84 start-page: 13 year: 2024 end-page: 22 ident: bb0265 article-title: Use of acetate as substrate for sustainable production of homoserine and threonine by publication-title: Metab. Eng. – volume: 104 start-page: 7745 year: 2020 end-page: 7766 ident: bb0270 article-title: Industrial biotechnology of publication-title: Appl. Microbiol. Biotechnol. – volume: 296 year: 2020 ident: bb0255 article-title: Efficient isopropanol biosynthesis by engineered publication-title: Bioresour. Technol. – volume: 9 start-page: 1270 year: 2020 end-page: 1276 ident: bb0090 article-title: Automated continuous evolution of proteins publication-title: ACS Synth. Biol. – volume: 20 start-page: 486 year: 2009 end-page: 491 ident: bb0010 article-title: Directed evolution: new parts and optimized function publication-title: Curr. Opin. Biotechnol. – volume: 279 start-page: 873 year: 1998 end-page: 888 ident: bb0275 article-title: Ribosomal proteins S5 and L6: high-resolution crystal structures and roles in protein synthesis and antibiotic resistance publication-title: J. Mol. Biol. – volume: 14 start-page: 972 year: 2018 end-page: 980 ident: bb0005 article-title: Continuous directed evolution of proteins with improved soluble expression publication-title: Nat. Chem. Biol. – volume: 158 start-page: 47 year: 1977 end-page: 54 ident: bb0280 article-title: Alteration of ribosomal-protein l6 in mutants of publication-title: Mol. Gen. Genet. – volume: 63 start-page: 4604 year: 1997 end-page: 4607 ident: bb0455 article-title: A relative of the broad-host-range plasmid RSF1010 detected in publication-title: Appl. Environ. Microbiol. – volume: 58 start-page: 2455 year: 2022 end-page: 2467 ident: bb0035 article-title: High-throughput screening, next generation sequencing and machine learning: advanced methods in enzyme engineering publication-title: Chem. Commun. – volume: 9 start-page: 1911 year: 2020 end-page: 1916 ident: bb0205 article-title: Targeted diversification in the publication-title: ACS Synth. Biol. – volume: 416 year: 2025 ident: bb0340 article-title: Engineering and evolution of publication-title: Bioresour. Technol. – volume: 19 start-page: 1203 year: 1991 end-page: 1211 ident: bb0150 article-title: Plasmid RSF1010 DNA-replication publication-title: Nucleic Acids Res. – volume: 173 start-page: 6705 year: 1991 end-page: 6708 ident: bb0425 article-title: Transfer of plasmid RSF1010 by conjugation from publication-title: J. Bacteriol. – volume: 4 start-page: 69 year: 2003 end-page: 78 ident: bb0350 article-title: High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by publication-title: FEMS Yeast Res. – volume: 14 start-page: 1124 year: 2014 end-page: 1127 ident: bb0355 article-title: Increasing expression level and copy number of a publication-title: FEMS Yeast Res. – volume: 54 start-page: 369 year: 1997 end-page: 374 ident: bb0450 article-title: RSF1010-based shuttle vectors for cloning and expression in publication-title: Vet. Microbiol. – volume: 14 year: 2023 ident: bb0170 article-title: Improved dual base editor systems (iACBEs) for simultaneous conversion of adenine and cytosine in the bacterium publication-title: mBio – volume: 14 start-page: 8480 year: 2023 ident: bb0130 article-title: Reconfiguration of the reductive TCA cycle enables high-level succinic acid production by publication-title: Nat. Commun. – volume: 7 year: 2021 ident: bb0190 article-title: Plasmid hypermutation using a targeted artificial DNA replisome publication-title: Sci. Adv. – volume: 2 start-page: 593 year: 2003 end-page: 608 ident: bb0195 article-title: Use of the publication-title: DNA Repair – volume: 134 start-page: 1117 year: 1978 end-page: 1122 ident: bb0430 article-title: Replication of the nonconjugative plasmid RSF1010 in publication-title: J. Bacteriol. – volume: 64 start-page: 59 year: 2018 end-page: 67 ident: bb0220 article-title: DNA polymerase I proofreading exonuclease activity is required for endonuclease V repair pathway both in vitro and in vivo publication-title: DNA Repair – volume: 90 start-page: 1739 year: 2006 end-page: 1751 ident: bb0235 article-title: Temperature dependence and thermodynamics of Klenow polymerase binding to primed-template DNA publication-title: Biophys. J. – volume: 22 start-page: 196 year: 2023 ident: bb0250 article-title: Synthesis of isobutanol using acetate as sole carbon source in publication-title: Microb. Cell Factories – volume: 313 start-page: 818 year: 1985 end-page: 819 ident: bb0245 article-title: Domain of publication-title: Nature – volume: 13 start-page: 113 year: 2020 ident: bb0335 article-title: Bioproduction of succinic acid from xylose by engineered publication-title: Biotechnol. Biofuels – volume: 97 start-page: 6640 year: 2000 end-page: 6645 ident: bb0155 article-title: One-step inactivation of chromosomal genes in publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 41 start-page: 242 year: 2023 end-page: 254 ident: bb0325 article-title: What makes publication-title: Trends Biotechnol. – volume: 98 start-page: 1223 year: 2014 end-page: 1235 ident: bb0320 article-title: Production and glucosylation of C50 and C 40 carotenoids by metabolically engineered publication-title: Appl. Microbiol. Biotechnol. – volume: 42 start-page: 1538 year: 2024 ident: 10.1016/j.tibtech.2025.04.005_bb0410 article-title: Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells publication-title: Nat. Biotechnol. doi: 10.1038/s41587-023-02050-w – volume: 31 start-page: 1707 year: 2013 ident: 10.1016/j.tibtech.2025.04.005_bb0030 article-title: Polishing the craft of genetic diversity creation in directed evolution publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2013.08.021 – volume: 14 start-page: 8480 year: 2023 ident: 10.1016/j.tibtech.2025.04.005_bb0130 article-title: Reconfiguration of the reductive TCA cycle enables high-level succinic acid production by Yarrowia lipolytica publication-title: Nat. Commun. doi: 10.1038/s41467-023-44245-4 – volume: 9 start-page: 1911 year: 2020 ident: 10.1016/j.tibtech.2025.04.005_bb0205 article-title: Targeted diversification in the S. cerevisiae genome with CRISPR-Guided DNA Polymerase I publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.0c00149 – volume: 7 year: 2021 ident: 10.1016/j.tibtech.2025.04.005_bb0190 article-title: Plasmid hypermutation using a targeted artificial DNA replisome publication-title: Sci. Adv. doi: 10.1126/sciadv.abg8712 – volume: 106 start-page: 7810 year: 2009 ident: 10.1016/j.tibtech.2025.04.005_bb0145 article-title: Structure and function of primase RepB′ encoded by broad-host-range plasmid RSF1010 that replicates exclusively in leading-strand mode publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0902910106 – volume: 5 start-page: 1299 year: 2016 ident: 10.1016/j.tibtech.2025.04.005_bb0260 article-title: Production of succinate from acetate by metabolically engineered Escherichia coli publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.6b00052 – volume: 14 start-page: 1124 year: 2014 ident: 10.1016/j.tibtech.2025.04.005_bb0355 article-title: Increasing expression level and copy number of a Yarrowia lipolytica plasmid through regulated centromere function publication-title: FEMS Yeast Res. – volume: 59 start-page: 36 year: 2020 ident: 10.1016/j.tibtech.2025.04.005_bb0015 article-title: In vivo evolutionary engineering of riboswitch with high-threshold for N-acetylneuraminic acid production publication-title: Metab. Eng. doi: 10.1016/j.ymben.2020.01.002 – volume: 10 start-page: 1214 year: 2021 ident: 10.1016/j.tibtech.2025.04.005_bb0055 article-title: Spatiotemporal manipulation of the mismatch repair system of Pseudomonas putida accelerates phenotype emergence publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.1c00031 – volume: 81 start-page: 654 year: 1984 ident: 10.1016/j.tibtech.2025.04.005_bb0140 article-title: Replication of the broad host range plasmid RSF1010-requirement for 3 plasmid-encoded proteins publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.81.3.654 – volume: 6 start-page: 8425 year: 2015 ident: 10.1016/j.tibtech.2025.04.005_bb0200 article-title: Development of potent in vivo mutagenesis plasmids with broad mutational spectra publication-title: Nat. Commun. doi: 10.1038/ncomms9425 – volume: 51 year: 2023 ident: 10.1016/j.tibtech.2025.04.005_bb0110 article-title: Expanded MutaT7 toolkit efficiently and simultaneously accesses all possible transition mutations in bacteria publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkad003 – volume: 15 start-page: 3447 year: 2024 ident: 10.1016/j.tibtech.2025.04.005_bb0405 article-title: Automated in vivo enzyme engineering accelerates biocatalyst optimization publication-title: Nat. Commun. doi: 10.1038/s41467-024-46574-4 – volume: 16 start-page: 113 year: 2020 ident: 10.1016/j.tibtech.2025.04.005_bb0385 article-title: Stress-tolerant non-conventional microbes enable next-generation chemical biosynthesis publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-019-0452-x – volume: 14 year: 2023 ident: 10.1016/j.tibtech.2025.04.005_bb0170 article-title: Improved dual base editor systems (iACBEs) for simultaneous conversion of adenine and cytosine in the bacterium Escherichia coli publication-title: mBio doi: 10.1128/mbio.02296-22 – volume: 2 start-page: 593 year: 2003 ident: 10.1016/j.tibtech.2025.04.005_bb0195 article-title: Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome publication-title: DNA Repair doi: 10.1016/S1568-7864(03)00024-7 – volume: 188 start-page: 551 year: 2007 ident: 10.1016/j.tibtech.2025.04.005_bb0465 article-title: Paired cloning vectors for complementation of mutations in the cyanobacterium Anabaena sp. strain PCC 7120 publication-title: Arch. Microbiol. doi: 10.1007/s00203-007-0276-z – volume: 12 start-page: 899 year: 2013 ident: 10.1016/j.tibtech.2025.04.005_bb0215 article-title: The excision of 3' penultimate errors by DNA polymerase I and its role in endonuclease V-mediated DNA repair publication-title: DNA Repair doi: 10.1016/j.dnarep.2013.08.003 – volume: 19 start-page: 1504 year: 2023 ident: 10.1016/j.tibtech.2025.04.005_bb0100 article-title: Engineered bacterial orthogonal DNA replication system for continuous evolution publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-023-01387-2 – volume: 97 start-page: 6640 year: 2000 ident: 10.1016/j.tibtech.2025.04.005_bb0155 article-title: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.120163297 – volume: 140 start-page: 11560 year: 2018 ident: 10.1016/j.tibtech.2025.04.005_bb0070 article-title: A processive protein chimera introduces mutations across defined DNA regions in vivo publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04001 – volume: 38 start-page: 901 year: 2020 ident: 10.1016/j.tibtech.2025.04.005_bb0175 article-title: Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0562-8 – volume: 25 start-page: 1564 year: 2009 ident: 10.1016/j.tibtech.2025.04.005_bb0470 article-title: Fluctuation analysis CalculatOR: a web tool for the determination of mutation rate using Luria-Delbruck fluctuation analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp253 – volume: 31 start-page: 455 year: 2010 ident: 10.1016/j.tibtech.2025.04.005_bb0300 article-title: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading publication-title: J. Comput. Chem. doi: 10.1002/jcc.21334 – volume: 409 start-page: 195 year: 2006 ident: 10.1016/j.tibtech.2025.04.005_bb0160 article-title: Methods for determining spontaneous mutation rates publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(05)09012-9 – volume: 30 start-page: 2933 year: 2022 ident: 10.1016/j.tibtech.2025.04.005_bb0180 article-title: A precise and efficient adenine base editor publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2022.07.010 – volume: 17 start-page: 1057 year: 2021 ident: 10.1016/j.tibtech.2025.04.005_bb0075 article-title: Rapid generation of potent antibodies by autonomous hypermutation in yeast publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-021-00832-4 – volume: 32 start-page: 1197 year: 2004 ident: 10.1016/j.tibtech.2025.04.005_bb0230 article-title: A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh271 – volume: 90 start-page: 1739 year: 2006 ident: 10.1016/j.tibtech.2025.04.005_bb0235 article-title: Temperature dependence and thermodynamics of Klenow polymerase binding to primed-template DNA publication-title: Biophys. J. doi: 10.1529/biophysj.105.071837 – volume: 12 start-page: 1579 year: 2021 ident: 10.1016/j.tibtech.2025.04.005_bb0115 article-title: Polymerase-guided base editing enables in vivo mutagenesis and rapid protein engineering publication-title: Nat. Commun. doi: 10.1038/s41467-021-21876-z – volume: 3 start-page: 423 year: 2018 ident: 10.1016/j.tibtech.2025.04.005_bb0165 article-title: Deaminase-mediated multiplex genome editing in Escherichia coli publication-title: Nat. Microbiol. doi: 10.1038/s41564-017-0102-6 – volume: 577 start-page: 706 year: 2020 ident: 10.1016/j.tibtech.2025.04.005_bb0295 article-title: Improved protein structure prediction using potentials from deep learning publication-title: Nature doi: 10.1038/s41586-019-1923-7 – volume: 84 start-page: 13 year: 2024 ident: 10.1016/j.tibtech.2025.04.005_bb0265 article-title: Use of acetate as substrate for sustainable production of homoserine and threonine by Escherichia coli W3110: a modular metabolic engineering approach publication-title: Metab. Eng. doi: 10.1016/j.ymben.2024.05.004 – volume: 85 year: 2024 ident: 10.1016/j.tibtech.2025.04.005_bb0135 article-title: Pseudomonas putida as a synthetic biology chassis and a metabolic engineering platform publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2023.103025 – volume: 19 start-page: 1203 year: 1991 ident: 10.1016/j.tibtech.2025.04.005_bb0150 article-title: Plasmid RSF1010 DNA-replication in vitro promoted by purified rsf1010 RepA, RepB and RepC proteins publication-title: Nucleic Acids Res. doi: 10.1093/nar/19.6.1203 – volume: 52 start-page: 8609 year: 2024 ident: 10.1016/j.tibtech.2025.04.005_bb0060 article-title: Dual genetic level modification engineering accelerate genome evolution of Corynebacterium glutamicum publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkae577 – volume: 64 start-page: 59 year: 2018 ident: 10.1016/j.tibtech.2025.04.005_bb0220 article-title: DNA polymerase I proofreading exonuclease activity is required for endonuclease V repair pathway both in vitro and in vivo publication-title: DNA Repair doi: 10.1016/j.dnarep.2018.02.005 – volume: 51 year: 2023 ident: 10.1016/j.tibtech.2025.04.005_bb0125 article-title: A dual gene-specific mutator system installs all transition mutations at similar frequencies in vivo publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkad266 – volume: 560 start-page: 248 year: 2018 ident: 10.1016/j.tibtech.2025.04.005_bb0105 article-title: CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window publication-title: Nature doi: 10.1038/s41586-018-0384-8 – volume: 20 start-page: 459 year: 2022 ident: 10.1016/j.tibtech.2025.04.005_bb0370 article-title: Computational design of a cutinase for plastic biodegradation by mining molecular dynamics simulations trajectories publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2021.12.042 – volume: 54 start-page: 369 year: 1997 ident: 10.1016/j.tibtech.2025.04.005_bb0450 article-title: RSF1010-based shuttle vectors for cloning and expression in Pasteurella multocida publication-title: Vet. Microbiol. doi: 10.1016/S0378-1135(96)01294-1 – volume: 173 start-page: 6705 year: 1991 ident: 10.1016/j.tibtech.2025.04.005_bb0425 article-title: Transfer of plasmid RSF1010 by conjugation from Escherichia coli to Streptomyces lividans and Mycobacterium smegmatis publication-title: J. Bacteriol. doi: 10.1128/jb.173.21.6705-6708.1991 – volume: 14 start-page: 3627 year: 2024 ident: 10.1016/j.tibtech.2025.04.005_bb0375 article-title: Dynamic docking-assisted engineering of hydrolases for efficient PET depolymerization publication-title: ACS Catal. doi: 10.1021/acscatal.4c00400 – volume: 133 start-page: 1527 year: 1978 ident: 10.1016/j.tibtech.2025.04.005_bb0420 article-title: RSF1010 plasmid as a potentially useful vector in Pseudomonas species publication-title: J. Bacteriol. doi: 10.1128/jb.133.3.1527-1529.1978 – volume: 100 start-page: 9727 year: 2003 ident: 10.1016/j.tibtech.2025.04.005_bb0225 article-title: Targeted gene evolution in Escherichia coli using a highly error-prone DNA polymerase I publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1333928100 – volume: 296 year: 2021 ident: 10.1016/j.tibtech.2025.04.005_bb0365 article-title: Recent advances in de novo protein design: principles, methods, and applications publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2021.100558 – volume: 416 year: 2025 ident: 10.1016/j.tibtech.2025.04.005_bb0340 article-title: Engineering and evolution of Yarrowia lipolytica for producing lipids from lignocellulosic hydrolysates publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2024.131806 – volume: 41 start-page: 673 year: 2023 ident: 10.1016/j.tibtech.2025.04.005_bb0185 article-title: Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01533-6 – volume: 14 start-page: 972 year: 2018 ident: 10.1016/j.tibtech.2025.04.005_bb0005 article-title: Continuous directed evolution of proteins with improved soluble expression publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-018-0121-5 – volume: 42 start-page: 1551 year: 2024 ident: 10.1016/j.tibtech.2025.04.005_bb0390 article-title: Efficient genome-editing tools to engineer the recalcitrant non-model industrial microorganism Zymomonas mobilis publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2024.05.005 – volume: 158 start-page: 47 year: 1977 ident: 10.1016/j.tibtech.2025.04.005_bb0280 article-title: Alteration of ribosomal-protein l6 in mutants of Escherichia coli resistant to gentamicin publication-title: Mol. Gen. Genet. doi: 10.1007/BF00455118 – volume: 70 start-page: 263 year: 2013 ident: 10.1016/j.tibtech.2025.04.005_bb0290 article-title: Improvement of pBBR1MCS plasmids, a very useful series of broad-host-range cloning vectors publication-title: Plasmid doi: 10.1016/j.plasmid.2013.04.001 – volume: 22 start-page: 196 year: 2023 ident: 10.1016/j.tibtech.2025.04.005_bb0250 article-title: Synthesis of isobutanol using acetate as sole carbon source in Escherichia coli publication-title: Microb. Cell Factories doi: 10.1186/s12934-023-02197-w – volume: 13 start-page: 113 year: 2020 ident: 10.1016/j.tibtech.2025.04.005_bb0335 article-title: Bioproduction of succinic acid from xylose by engineered Yarrowia lipolytica without pH control publication-title: Biotechnol. Biofuels doi: 10.1186/s13068-020-01747-3 – volume: 54 start-page: 3351 year: 2015 ident: 10.1016/j.tibtech.2025.04.005_bb0020 article-title: Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201409470 – volume: 41 start-page: 242 year: 2023 ident: 10.1016/j.tibtech.2025.04.005_bb0325 article-title: What makes Yarrowia lipolytica well suited for industry? publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2022.07.006 – volume: 25 start-page: 639 year: 2024 ident: 10.1016/j.tibtech.2025.04.005_bb0360 article-title: Opportunities and challenges in design and optimization of protein function publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-024-00718-y – volume: 134 start-page: 1117 year: 1978 ident: 10.1016/j.tibtech.2025.04.005_bb0430 article-title: Replication of the nonconjugative plasmid RSF1010 in Escherichia coli K-12 publication-title: J. Bacteriol. doi: 10.1128/jb.134.3.1117-1122.1978 – volume: 12 start-page: 2271 year: 2023 ident: 10.1016/j.tibtech.2025.04.005_bb0210 article-title: Multiplexed guide RNA expression leads to increased mutation frequency in targeted window using a CRISPR-guided error-prone DNA polymerase in Saccharomyces cerevisiae publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.2c00689 – volume: 9 start-page: 1270 year: 2020 ident: 10.1016/j.tibtech.2025.04.005_bb0090 article-title: Automated continuous evolution of proteins in vivo publication-title: ACS Synth. Biol. doi: 10.1021/acssynbio.0c00135 – volume: 98 start-page: 1223 year: 2014 ident: 10.1016/j.tibtech.2025.04.005_bb0320 article-title: Production and glucosylation of C50 and C 40 carotenoids by metabolically engineered Corynebacterium glutamicum publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-013-5359-y – volume: 14 start-page: 3389 year: 2023 ident: 10.1016/j.tibtech.2025.04.005_bb0120 article-title: A Cas3-base editing tool for targetable in vivo mutagenesis publication-title: Nat. Commun. doi: 10.1038/s41467-023-39087-z – volume: 32 start-page: 884 year: 2024 ident: 10.1016/j.tibtech.2025.04.005_bb0400 article-title: Mutagenesis techniques for evolutionary engineering of microbes - exploiting CRISPR-Cas, oligonucleotides, recombinases, and polymerases publication-title: Trends Microbiol. doi: 10.1016/j.tim.2024.02.006 – volume: 24 start-page: 1 year: 2015 ident: 10.1016/j.tibtech.2025.04.005_bb0040 article-title: In vivo continuous directed evolution publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2014.09.040 – volume: 40 start-page: 864 year: 1994 ident: 10.1016/j.tibtech.2025.04.005_bb0460 article-title: Transfer of the broad-host-range IncQ plasmid RSF1010 and other plasmid vectors to the Gram-positive methylotroph Brevibacterium methylicum by electrotransformation publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/BF00173989 – volume: 175 start-page: 1946 year: 2018 ident: 10.1016/j.tibtech.2025.04.005_bb0080 article-title: Scalable, continuous evolution of genes at mutation rates above genomic error thresholds publication-title: Cell doi: 10.1016/j.cell.2018.10.021 – volume: 51 start-page: 8623 year: 2023 ident: 10.1016/j.tibtech.2025.04.005_bb0050 article-title: Engineering of the DNA replication and repair machinery to develop binary mutators for rapid genome evolution of Corynebacterium glutamicum publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkad602 – volume: 9 year: 2023 ident: 10.1016/j.tibtech.2025.04.005_bb0345 article-title: Big data mining, rational modification, and ancestral sequence reconstruction inferred multiple xylose isomerases for biorefinery publication-title: Sci. Adv. – volume: 20 start-page: 216 year: 2019 ident: 10.1016/j.tibtech.2025.04.005_bb0440 article-title: Modification of RSF1010-based broad-host-range plasmids for improved conjugation and cyanobacterial bioprospecting publication-title: iScience doi: 10.1016/j.isci.2019.09.002 – volume: 4 start-page: 69 year: 2003 ident: 10.1016/j.tibtech.2025.04.005_bb0350 article-title: High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? publication-title: FEMS Yeast Res. doi: 10.1016/S1567-1356(03)00141-7 – volume: 15 start-page: 4101 year: 2020 ident: 10.1016/j.tibtech.2025.04.005_bb0045 article-title: Phage-assisted continuous and non-continuous evolution publication-title: Nat. Protoc. doi: 10.1038/s41596-020-00410-3 – volume: 383 start-page: 421 year: 2024 ident: 10.1016/j.tibtech.2025.04.005_bb0095 article-title: Establishing a synthetic orthogonal replication system enables accelerated evolution in E. coli publication-title: Science doi: 10.1126/science.adk1281 – volume: 192 Pt B start-page: 410 year: 2014 ident: 10.1016/j.tibtech.2025.04.005_bb0445 article-title: Reprint of ‘versatile and stable vectors for efficient gene expression in Ralstonia eutropha H16’ publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2014.09.023 – volume: 177 start-page: 4890 year: 1995 ident: 10.1016/j.tibtech.2025.04.005_bb0435 article-title: Inhibition of VirB-mediated transfer of diverse substrates from Agrobacterium tumefaciens by the IncQ plasmid RSF1010 publication-title: J. Bacteriol. doi: 10.1128/jb.177.17.4890-4899.1995 – volume: 50 year: 2022 ident: 10.1016/j.tibtech.2025.04.005_bb0065 article-title: Development of a genome-targeting mutator for the adaptive evolution of microbial cells publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab1244 – volume: 98 start-page: 5633 year: 2014 ident: 10.1016/j.tibtech.2025.04.005_bb0315 article-title: Engineering of Corynebacterium glutamicum for growth and L-lysine and lycopene production from N-acetyl-glucosamine publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-014-5676-9 – volume: 62 year: 2023 ident: 10.1016/j.tibtech.2025.04.005_bb0240 article-title: Controlled continuous evolution of enzymatic activity screened at ultrahigh throughput using drop-based microfluidics publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202303112 – volume: 59 start-page: 15 year: 2020 ident: 10.1016/j.tibtech.2025.04.005_bb0380 article-title: Non-conventional hosts for the production of fuels and chemicals publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2020.03.004 – volume: 50 start-page: 122 year: 2018 ident: 10.1016/j.tibtech.2025.04.005_bb0310 article-title: Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products publication-title: Metab. Eng. doi: 10.1016/j.ymben.2018.07.008 – volume: 58 start-page: 2455 year: 2022 ident: 10.1016/j.tibtech.2025.04.005_bb0035 article-title: High-throughput screening, next generation sequencing and machine learning: advanced methods in enzyme engineering publication-title: Chem. Commun. doi: 10.1039/D1CC04635G – volume: 63 start-page: 4604 year: 1997 ident: 10.1016/j.tibtech.2025.04.005_bb0455 article-title: A relative of the broad-host-range plasmid RSF1010 detected in Erwinia amylovora publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.63.11.4604-4607.1997 – volume: 296 year: 2020 ident: 10.1016/j.tibtech.2025.04.005_bb0255 article-title: Efficient isopropanol biosynthesis by engineered Escherichia coli using biologically produced acetate from syngas fermentation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.122337 – volume: 104 start-page: 7745 year: 2020 ident: 10.1016/j.tibtech.2025.04.005_bb0270 article-title: Industrial biotechnology of Pseudomonas putida: advances and prospects publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-020-10811-9 – volume: 20 start-page: 486 year: 2009 ident: 10.1016/j.tibtech.2025.04.005_bb0010 article-title: Directed evolution: new parts and optimized function publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2009.08.005 – volume: 279 start-page: 873 year: 1998 ident: 10.1016/j.tibtech.2025.04.005_bb0275 article-title: Ribosomal proteins S5 and L6: high-resolution crystal structures and roles in protein synthesis and antibiotic resistance publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1998.1780 – volume: 2 start-page: 37 year: 2022 ident: 10.1016/j.tibtech.2025.04.005_bb0085 article-title: In vivo hypermutation and continuous evolution publication-title: Nat. Rev. Methods Primers doi: 10.1038/s43586-022-00119-5 – volume: 102 start-page: 9015 year: 2018 ident: 10.1016/j.tibtech.2025.04.005_bb0330 article-title: Microbial conversion of xylose into useful bioproducts publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-018-9294-9 – volume: 47 year: 2021 ident: 10.1016/j.tibtech.2025.04.005_bb0395 article-title: Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2021.107695 – volume: 313 start-page: 818 year: 1985 ident: 10.1016/j.tibtech.2025.04.005_bb0245 article-title: Domain of E. coli DNA polymerase I showing sequence homology to T7 DNA polymerase publication-title: Nature doi: 10.1038/313818a0 – volume: 11 start-page: 91 year: 2010 ident: 10.1016/j.tibtech.2025.04.005_bb0025 article-title: Random mutagenesis methods for in vitro directed enzyme evolution publication-title: Curr. Protein Pept. Sci. doi: 10.2174/138920310790274617 – volume: 405 year: 2023 ident: 10.1016/j.tibtech.2025.04.005_bb0305 article-title: Recent technological strategies for enhancing the stability of lycopene in processing and production publication-title: Food Chem. – volume: 42 start-page: 1442 year: 2024 ident: 10.1016/j.tibtech.2025.04.005_bb0415 article-title: An adenine base editor variant expands context compatibility publication-title: Nat. Biotechnol. doi: 10.1038/s41587-023-01994-3 – volume: 11 year: 2023 ident: 10.1016/j.tibtech.2025.04.005_bb0475 article-title: Design and application of artificial rare L-lysine codons in Corynebacterium glutamicum publication-title: Front. Bioeng. Biotechnol. – volume: 147 start-page: 381 year: 1985 ident: 10.1016/j.tibtech.2025.04.005_bb0285 article-title: Mechanism of action of gentamicin components - characteristics of their binding to Escherichia coli ribosomes publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1985.tb08761.x |
SSID | ssj0003791 |
Score | 2.477452 |
Snippet | In vivo targeted mutagenesis technology can enable the gene of interest to generate genetic diversity within the host cell without human intervention.We... HighlightsIn vivo targeted mutagenesis technology can enable the gene of interest to generate genetic diversity within the host cell without human... In vivo target mutagenesis is a powerful approach to accelerate protein evolution. However, current approaches have been primarily developed in conventional... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2049 |
SubjectTerms | Adenosine Bacteria Biological evolution Corynebacterium glutamicum - genetics Directed Molecular Evolution - methods DNA helicase DNA polymerase DNA primase DNA-directed DNA polymerase E coli Enzymes Escherichia coli - genetics Evolution Genes Genomes in vivo target mutagenesis Internal Medicine Metabolism Microorganisms multiple hosts Mutagenesis Mutation Mutation rates Plasmids Plasmids - genetics Primase Proteins Pseudomonas putida Pseudomonas putida - genetics synthetic biology Yarrowia - genetics |
Title | An in vivo target mutagenesis system for multiple hosts |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0167779925001325 https://www.clinicalkey.es/playcontent/1-s2.0-S0167779925001325 https://dx.doi.org/10.1016/j.tibtech.2025.04.005 https://www.ncbi.nlm.nih.gov/pubmed/40345898 https://www.proquest.com/docview/3237431173 https://www.proquest.com/docview/3202401038 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0heig9oPLRkhaQK3ENm8RO7BxXK9CWFRzaIrhZdmJLQSK7Irsc-e3MbJKFChBVT1ESW7HGk5ln-c0zwFFcop-UPAtz6V0oYiNDUyZE2xFpbgohjKVq5POLbHwpzq7T6zUY9bUwRKvsYn8b05fRunsy6Kw5mFXV4DcR6KXMc0zitGFAheZCSPLy44cnmgeX7al5pO9NrZ-qeAY3mBUsSaXiMjFJl4qndIrd6_npLfy5zEOnn2GzA5Bs2I5xC9ZcvQ0fR_25bdvw6ZnE4A7IYc2qmt1X91PWsr7Z7WKOQQRDXNWwVsiZIXJlPbWQUd1HswuXpyd_RuOwOywhLHgm5yHHvGucs74ofV5GlqcmL7x3ymfCJCXJxhHcErGLEaIYZUuXKIxtKjecJNz5F1ivp7XbA2Yi57xJPSIHLiwhSGWV595mvsTVURHAcW8iPWs1MXRPFrvRnU012VRHQqNNA8h6Q-q-4BNDlMao_V5H-VpH13Q_WqNj3SQ60i-cIQC16vmXP_3LR_f7udar7_CEE9aKJQ_gx-o1ziztr5jaTRfUhgTjSHE-gK-tj6zsIyIuUpWrb_8_ru-wQXct-3Af1ud3C3eAiGhuD5cufwgfhj8n4wu6Tn5dTR4B4kILkg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3R5UB7qCi0NC20rsQ13SR2Yue4WoGWr70UJG6WndhSkMgissvv78zmg1YFFXGNM7I1tt88yzPPAIdxieuk5FmYS-9CERsZmjKhtB2R5qYQwliqRr6YZ7MrcXqdXm_AtK-FobTKDvtbTF-jdfdl3HlzfFdV41-UQC9lnmMQpwuD9A1skjpVOoLNycnZbD4AMpftw3kk8U0Gj4U84xsMDJbUUvGkmKRr0VN6yO7pEPUcBV2HouNteN9xSDZph_kBNly9A1vT_um2HXj3h8rgLshJzaqaPVQPC9YmfrPb1RJxBFGualir5cyQvLI-u5BR6UfzEa6Ojy6ns7B7LyEseCaXIcfQa5yzvih9XkaWpyYvvHfKZ8IkJSnHEeMSsYuRpRhlS5cohDeVG04q7vwTjOpF7T4DM5Fz3qQeyQMXlkiksspzbzNf4gGpCOBn7yJ918pi6D5f7EZ3PtXkUx0JjT4NIOsdqfuaT0QpjcD9P0P5lKFrur3W6Fg3iY70P-shADVY_rWkXtLpfj_XeuiHJ5zoVix5AD-GZpxZumIxtVus6B_SjCPR-QD22jUy-EdEXKQqV19eP67vsDW7vDjX5yfzs6_wllraZMR9GC3vV-4ACdLSfus2wG-h-Qyg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+in+vivo+target+mutagenesis+system+for+multiple+hosts&rft.jtitle=Trends+in+biotechnology+%28Regular+ed.%29&rft.au=Yin%2C+Dong&rft.au=Pang%2C+Qingxiao&rft.au=Yuan%2C+Yingbo&rft.au=Su%2C+Tianyuan&rft.date=2025-08-01&rft.eissn=1879-3096&rft.volume=43&rft.issue=8&rft.spage=2049&rft_id=info:doi/10.1016%2Fj.tibtech.2025.04.005&rft_id=info%3Apmid%2F40345898&rft.externalDocID=40345898 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7799&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7799&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7799&client=summon |