Entropic Projections and Dominating Points
Entropic projections and dominating points are solutions to convex minimization problems related to conditional laws of large numbers. They appear in many areas of applied mathematics such as statistical physics, information theory, mathematical statistics, ill-posed inverse problems or large deviat...
Saved in:
Published in | Probability and statistics Vol. 14; pp. 343 - 381 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Les Ulis
EDP Sciences
01.01.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Entropic projections and dominating points are solutions to convex minimization problems related to conditional laws of large numbers. They appear in many areas of applied mathematics such as statistical physics, information theory, mathematical statistics, ill-posed inverse problems or large deviation theory. By means of convex conjugate duality and functional analysis, criteria are derived for the existence of entropic projections, generalized entropic projections and dominating points. Representations of the generalized entropic projections are obtained. It is shown that they are the “measure component" of the solutions to some extended entropy minimization problem. This approach leads to new results and offers a unifying point of view. It also permits to extend previous results on the subject by removing unnecessary topological restrictions. As a by-product, new proofs of already known results are provided. |
---|---|
AbstractList | Entropic projections and dominating points are solutions to convex minimization problems related to conditional laws of large numbers. They appear in many areas of applied mathematics such as statistical physics, information theory, mathematical statistics, ill-posed inverse problems or large deviation theory. By means of convex conjugate duality and functional analysis, criteria are derived for the existence of entropic projections, generalized entropic projections and dominating points. Representations of the generalized entropic projections are obtained. It is shown that they are the “measure component" of the solutions to some extended entropy minimization problem. This approach leads to new results and offers a unifying point of view. It also permits to extend previous results on the subject by removing unnecessary topological restrictions. As a by-product, new proofs of already known results are provided. Entropic projections and dominating points are solutions to convex minimization problems related to conditional laws of large numbers. They appear in many areas of applied mathematics such as statistical physics, information theory, mathematical statistics, ill-posed inverse problems or large deviation theory. By means of convex conjugate duality and functional analysis, criteria are derived for the existence of entropic projections, generalized entropic projections and dominating points. Representations of the generalized entropic projections are obtained. It is shown that they are the "measure component" of the solutions to some extended entropy minimization problem. This approach leads to new results and offers a unifying point of view. It also permits to extend previous results on the subject by removing unnecessary topological restrictions. As a by-product, new proofs of already known results are provided. [PUBLICATION ABSTRACT] Generalized entropic projections and dominating points are solutions to convex minimization problems related to conditional laws of large numbers. They appear in many areas of applied mathematics such as statistical physics, information theory, mathematical statistics, ill-posed inverse problems or large deviation theory. By means of convex conjugate duality and functional analysis, criteria are derived for their existence. Representations of the generalized entropic projections are obtained: they are the ``measure component" of some extended entropy minimization problem. |
Author | Léonard, Christian |
Author_xml | – sequence: 1 givenname: Christian surname: Léonard fullname: Léonard, Christian organization: Modal-X, Université Paris Ouest, Bât. G, 200 av. de la République, 92000 Nanterre, France; leonard@u-paris10.fr |
BackLink | https://hal.science/hal-00184785$$DView record in HAL |
BookMark | eNptkF1LwzAUhoNMcJve-AsKXjmoy0ebpJdjTicWHKLoXUjbVDO3pCaZ6L-3pWMX4tU5HJ734fCOwMBYowA4R_AKwRRNGz_FEGYQkiMwRJjimBDEB92e4ZgjCE_AyPs1hIiSJB2CycIEZxtdRitn16oM2hofSVNF13arjQzavEUrq03wp-C4lhuvzvZzDJ5vFk_zZZw_3N7NZ3lcEspCTFiR1JCTtMQ4qUjBlSoqRgtW1bSiBKcoYbymCScKV5yVnPFCIpSRAmZS8ZqMwWXvfZcb0Ti9le5HWKnFcpaL7tY-z1tH-oVb9qJnG2c_d8oHsbY7Z9r3BII0w2mKSNJSk54qnfXeqfqgRVB0vYnGi31vLQz_wKUOsuslOKk3_0fiPqJ9UN8HuXQfgjLCUsHhi7ifvz4ylM9FQn4BvEd-BA |
CitedBy_id | crossref_primary_10_1017_jpr_2018_71 crossref_primary_10_1016_j_jmaa_2024_128169 crossref_primary_10_1214_20_AOP1430 crossref_primary_10_1016_j_physd_2021_132980 crossref_primary_10_1112_blms_12675 crossref_primary_10_1137_19M1296859 crossref_primary_10_3934_dcds_2014_34_1533 |
Cites_doi | 10.1142/9789812831811 10.1214/aop/1022677264 10.1137/0804008 10.1016/j.jmaa.2008.04.048 10.1007/978-94-017-2219-3 10.1016/S0304-4149(99)00067-8 10.1137/1.9781611970524.ch1 10.1214/aop/1176996454 10.1214/EJP.v7-103 10.1007/978-1-4612-5320-4 10.1007/s00245-001-0019-5 10.1016/S0167-7152(98)00033-9 10.1007/978-1-4612-0459-6_23 10.1109/18.796367 10.1214/aop/1176993227 10.1142/S0129055X93000206 10.2140/pjm.1968.24.525 10.1007/BF01191912 10.1214/aop/1176993239 10.1214/aop/1019160334 10.1007/BF01874442 10.1214/aop/1176993665 10.1007/978-3-642-02431-3 10.1214/aos/1034276632 |
ContentType | Journal Article |
Copyright | EDP Sciences, SMAI, 2010 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: EDP Sciences, SMAI, 2010 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 1XC VOOES |
DOI | 10.1051/ps/2009003 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1262-3318 |
EndPage | 381 |
ExternalDocumentID | oai_HAL_hal_00184785v2 2769330391 10_1051_ps_2009003 ark_67375_80W_KCXR71LC_4 |
Genre | Feature |
GroupedDBID | -E. .FH 0E1 3V. 4.4 5GY 5VS 74X 74Y 7WY 7~V 8FE 8FG 8FL AADXX AAOTM ABDBF ABJCF ABJNI ABKKG ABUBZ ACACO ACGFS ACIMK ACIPV ACIWK ACQPF AEMTW AFAYI AFHSK AFKRA AFUTZ AJPFC ALMA_UNASSIGNED_HOLDINGS ARABE ARAPS AZPVJ BENPR BEZIV BPHCQ BSCLL C0O DC4 EBS EJD ESX FAM GI~ GROUPED_ABI_INFORM_COMPLETE HCIFZ HG- HST HZ~ I.6 IL9 I~P J36 J38 J3A K60 K6V K6~ K7- L6V L98 LO0 M-V M0C M0N M7S O9- OAV OK1 P2P P62 PQQKQ PROAC RCA RED RR0 S6- TUS WQ3 WXU WXY AAOGA AAYXX ABGDZ ABNSH AGQPQ AMVHM CITATION 7SC 8FD ACUHS JQ2 L7M L~C L~D 1XC VOOES |
ID | FETCH-LOGICAL-c367t-37b4f0835c224d3b8eebd76b7df6d63251478f6483e2d87c878ba1193b09ae8f3 |
ISSN | 1292-8100 |
IngestDate | Fri May 09 12:14:11 EDT 2025 Fri Jul 25 10:24:28 EDT 2025 Tue Jul 01 02:28:57 EDT 2025 Thu Apr 24 22:59:26 EDT 2025 Wed Oct 30 09:30:24 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | large deviations random measures entropy dominating points Conditional laws of large numbers convex optimization entropic projections |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c367t-37b4f0835c224d3b8eebd76b7df6d63251478f6483e2d87c878ba1193b09ae8f3 |
Notes | ark:/67375/80W-KCXR71LC-4 publisher-ID:ps0801 istex:29C39DB20DC1594065AFE4ADFCF73030B71872E4 PII:S1292810009000032 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
OpenAccessLink | https://hal.science/hal-00184785 |
PQID | 1069255134 |
PQPubID | 616496 |
PageCount | 39 |
ParticipantIDs | hal_primary_oai_HAL_hal_00184785v2 proquest_journals_1069255134 crossref_primary_10_1051_ps_2009003 crossref_citationtrail_10_1051_ps_2009003 istex_primary_ark_67375_80W_KCXR71LC_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-01-01 |
PublicationDateYYYYMMDD | 2010-01-01 |
PublicationDate_xml | – month: 01 year: 2010 text: 2010-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Les Ulis |
PublicationPlace_xml | – name: Les Ulis |
PublicationTitle | Probability and statistics |
PublicationYear | 2010 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Léonard (R17) 2001; 44 Léonard (R16) 2010; 17 Dominating (R22) 1983; 11 Boucher (R3) 1999; 27 Gamboa (R12) 1997; 25 R24 R27 Csiszár (R5) 1984; 12 Dacunha-Castelle (R8) 1990; 26 R26 R29 Convexity (R23) 1984; 12 Rockafellar (R25) 1968; 24 Najim (R21) 2002; 7 R1 Csiszár (R4) 1975; 3 Einmahl (R10) 1996; 105 R9 Léonard (R18) 2003; 10 Léonard (R20) 2002; 8 Schied (R28) 1998; 39 Csiszár (R7) 1999; 45 Csiszár (R6) 1995; 68 R30 Kuelbs (R14) 2000; 28 Léonard (R19) 2008; 346 Borwein (R2) 1994; 1 R13 Léonard (R15) 2000; 85 Ellis (R11) 1993; 5 |
References_xml | – ident: R13 doi: 10.1142/9789812831811 – volume: 26 start-page: 567 year: 1990 ident: R8 publication-title: Ann. Inst. H. Poincaré. Probab. Statist. – volume: 27 start-page: 297 year: 1999 ident: R3 publication-title: Ann. Probab. doi: 10.1214/aop/1022677264 – volume: 1 start-page: 146 year: 1994 ident: R2 publication-title: SIAM J. Optim. doi: 10.1137/0804008 – volume: 346 start-page: 183 year: 2008 ident: R19 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2008.04.048 – ident: R29 doi: 10.1007/978-94-017-2219-3 – volume: 85 start-page: 93 year: 2000 ident: R15 publication-title: Stoch. Proc. Appl. doi: 10.1016/S0304-4149(99)00067-8 – volume: 17 start-page: 321 year: 2010 ident: R16 publication-title: J. Convex Anal. – ident: R26 doi: 10.1137/1.9781611970524.ch1 – volume: 3 start-page: 146 year: 1975 ident: R4 publication-title: Ann. Probab. doi: 10.1214/aop/1176996454 – volume: 7 start-page: 1 year: 2002 ident: R21 publication-title: Electron. J. Probab. doi: 10.1214/EJP.v7-103 – ident: R9 doi: 10.1007/978-1-4612-5320-4 – ident: R1 – volume: 44 start-page: 273 year: 2001 ident: R17 publication-title: J. Appl. Math. Optim. doi: 10.1007/s00245-001-0019-5 – volume: 39 start-page: 55 year: 1998 ident: R28 publication-title: Statist. Probab. Lett. doi: 10.1016/S0167-7152(98)00033-9 – ident: R30 doi: 10.1007/978-1-4612-0459-6_23 – volume: 45 start-page: 2253 year: 1999 ident: R7 publication-title: IEEE Trans. Inform. Theory doi: 10.1109/18.796367 – volume: 12 start-page: 768 year: 1984 ident: R5 publication-title: Ann. Probab. doi: 10.1214/aop/1176993227 – volume: 5 start-page: 659 year: 1993 ident: R11 publication-title: Rev. Math. Phys. doi: 10.1142/S0129055X93000206 – volume: 24 start-page: 525 year: 1968 ident: R25 publication-title: Pacific J. Math. doi: 10.2140/pjm.1968.24.525 – volume: 105 start-page: 529 year: 1996 ident: R10 publication-title: Probab. Theory Relat. Fields doi: 10.1007/BF01191912 – ident: R24 – volume: 12 start-page: 903 year: 1984 ident: R23 publication-title: Ann. Probab. doi: 10.1214/aop/1176993239 – volume: 28 start-page: 1259 year: 2000 ident: R14 publication-title: Ann. Probab. doi: 10.1214/aop/1019160334 – volume: 10 start-page: 63 year: 2003 ident: R18 publication-title: J. Convex Anal. – volume: 68 start-page: 161 year: 1995 ident: R6 publication-title: Acta Math. Hungar. doi: 10.1007/BF01874442 – volume: 8 start-page: 721 year: 2002 ident: R20 publication-title: Bernoulli – volume: 11 start-page: 158 year: 1983 ident: R22 publication-title: Ann. Probab. doi: 10.1214/aop/1176993665 – ident: R27 doi: 10.1007/978-3-642-02431-3 – volume: 25 start-page: 328 year: 1997 ident: R12 publication-title: Ann. Statist. doi: 10.1214/aos/1034276632 |
SSID | ssj0016345 |
Score | 1.8632925 |
Snippet | Entropic projections and dominating points are solutions to convex minimization problems related to conditional laws of large numbers. They appear in many... Generalized entropic projections and dominating points are solutions to convex minimization problems related to conditional laws of large numbers. They appear... |
SourceID | hal proquest crossref istex |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 343 |
SubjectTerms | 46N10 60F10 60F99 60G57 Applied mathematics Conditional laws of large numbers Convex analysis convex optimization dominating points entropic projections Entropy Functional Analysis Information theory Inverse problems large deviations Mathematical analysis Mathematics Numbers Optimization Orlicz spaces Probability random measures Random variables Statistical physics Studies |
Title | Entropic Projections and Dominating Points |
URI | https://api.istex.fr/ark:/67375/80W-KCXR71LC-4/fulltext.pdf https://www.proquest.com/docview/1069255134 https://hal.science/hal-00184785 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED7R7WU8IBggCmOKACGBFJbEju08TqWjgg4m2ETfrDh2BAK11VIQ4q_n_CNuYUMavESVdUoaf_Hd2f78HcATRRpa6rxJC83qFCO0SjHKFamuCqPbClNUJyl0_JZNzujrWTlbF7xzp0tW6kXz89JzJf-DKrYhrvaU7D8gG2-KDfgb8cUrIozXK2E8tjTzpSW3-_UUR2pz3OKFZbg4RvPJ4nNQa-pzUDRWXp3bay_ZM0Verjmyc_z2OSbpnvjuFQj6DymsETiq2eYawfjlSe8qNlYAMdKjM8wzvy1iQhviREhwib2DpBsejnhVpRAsia-3csEP41C3xYM7e94Es7gsI-t40--x_xGGIjmwPv9i2Wa8lCL7KN-MZu95Ph1JOoDtAucCtkzF9F0Wt4oYcZWo49v0GrRlfrDsDsLTf8s6Bp8s53XbDqMfF0KwyytOb8KNMCFIDj26t-Came_C9eOoptvtws6HiNBteN6DnmyAniCOyRr0xIN-B86OxqejSRoKXqQNYXyFzl7R1ubEDSZWmihhjNKcKa5bphnBVJRy0TIqiCm04I3gQtU5puAqq2ojWnIXtuaLubkHCc6CTWWLJVSU07asRF4TzU3GKoNjsVFDeNZ3iGyCGrwtSvJVOlZCmctlJ0PnDeFxtF16DZRLrR5hv0YDK1s-OZxK22YrP-I_L78XQ3jquj2a_Q3sIez1uMgw4jp8IqsKW5GI3r_qfR7AznpA7MHW6vybeYhp5Ertw0Acvdp3H9Mv2zptuQ |
linkProvider | EuDML: The European Digital Mathematics Library |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entropic+Projections+and+Dominating+Points&rft.jtitle=Probability+and+statistics&rft.au=L%C3%A9onard%2C+Christian&rft.date=2010-01-01&rft.pub=EDP+Sciences&rft.issn=1292-8100&rft.eissn=1262-3318&rft.volume=14&rft.spage=343&rft.epage=381&rft_id=info:doi/10.1051%2Fps%2F2009003&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_80W_KCXR71LC_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1292-8100&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1292-8100&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1292-8100&client=summon |