Entropic Projections and Dominating Points

Entropic projections and dominating points are solutions to convex minimization problems related to conditional laws of large numbers. They appear in many areas of applied mathematics such as statistical physics, information theory, mathematical statistics, ill-posed inverse problems or large deviat...

Full description

Saved in:
Bibliographic Details
Published inProbability and statistics Vol. 14; pp. 343 - 381
Main Author Léonard, Christian
Format Journal Article
LanguageEnglish
Published Les Ulis EDP Sciences 01.01.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Entropic projections and dominating points are solutions to convex minimization problems related to conditional laws of large numbers. They appear in many areas of applied mathematics such as statistical physics, information theory, mathematical statistics, ill-posed inverse problems or large deviation theory. By means of convex conjugate duality and functional analysis, criteria are derived for the existence of entropic projections, generalized entropic projections and dominating points. Representations of the generalized entropic projections are obtained. It is shown that they are the “measure component" of the solutions to some extended entropy minimization problem. This approach leads to new results and offers a unifying point of view. It also permits to extend previous results on the subject by removing unnecessary topological restrictions. As a by-product, new proofs of already known results are provided.
AbstractList Entropic projections and dominating points are solutions to convex minimization problems related to conditional laws of large numbers. They appear in many areas of applied mathematics such as statistical physics, information theory, mathematical statistics, ill-posed inverse problems or large deviation theory. By means of convex conjugate duality and functional analysis, criteria are derived for the existence of entropic projections, generalized entropic projections and dominating points. Representations of the generalized entropic projections are obtained. It is shown that they are the “measure component" of the solutions to some extended entropy minimization problem. This approach leads to new results and offers a unifying point of view. It also permits to extend previous results on the subject by removing unnecessary topological restrictions. As a by-product, new proofs of already known results are provided.
Entropic projections and dominating points are solutions to convex minimization problems related to conditional laws of large numbers. They appear in many areas of applied mathematics such as statistical physics, information theory, mathematical statistics, ill-posed inverse problems or large deviation theory. By means of convex conjugate duality and functional analysis, criteria are derived for the existence of entropic projections, generalized entropic projections and dominating points. Representations of the generalized entropic projections are obtained. It is shown that they are the "measure component" of the solutions to some extended entropy minimization problem. This approach leads to new results and offers a unifying point of view. It also permits to extend previous results on the subject by removing unnecessary topological restrictions. As a by-product, new proofs of already known results are provided. [PUBLICATION ABSTRACT]
Generalized entropic projections and dominating points are solutions to convex minimization problems related to conditional laws of large numbers. They appear in many areas of applied mathematics such as statistical physics, information theory, mathematical statistics, ill-posed inverse problems or large deviation theory. By means of convex conjugate duality and functional analysis, criteria are derived for their existence. Representations of the generalized entropic projections are obtained: they are the ``measure component" of some extended entropy minimization problem.
Author Léonard, Christian
Author_xml – sequence: 1
  givenname: Christian
  surname: Léonard
  fullname: Léonard, Christian
  organization: Modal-X, Université Paris Ouest, Bât. G, 200 av. de la République, 92000 Nanterre, France; leonard@u-paris10.fr
BackLink https://hal.science/hal-00184785$$DView record in HAL
BookMark eNptkF1LwzAUhoNMcJve-AsKXjmoy0ebpJdjTicWHKLoXUjbVDO3pCaZ6L-3pWMX4tU5HJ734fCOwMBYowA4R_AKwRRNGz_FEGYQkiMwRJjimBDEB92e4ZgjCE_AyPs1hIiSJB2CycIEZxtdRitn16oM2hofSVNF13arjQzavEUrq03wp-C4lhuvzvZzDJ5vFk_zZZw_3N7NZ3lcEspCTFiR1JCTtMQ4qUjBlSoqRgtW1bSiBKcoYbymCScKV5yVnPFCIpSRAmZS8ZqMwWXvfZcb0Ti9le5HWKnFcpaL7tY-z1tH-oVb9qJnG2c_d8oHsbY7Z9r3BII0w2mKSNJSk54qnfXeqfqgRVB0vYnGi31vLQz_wKUOsuslOKk3_0fiPqJ9UN8HuXQfgjLCUsHhi7ifvz4ylM9FQn4BvEd-BA
CitedBy_id crossref_primary_10_1017_jpr_2018_71
crossref_primary_10_1016_j_jmaa_2024_128169
crossref_primary_10_1214_20_AOP1430
crossref_primary_10_1016_j_physd_2021_132980
crossref_primary_10_1112_blms_12675
crossref_primary_10_1137_19M1296859
crossref_primary_10_3934_dcds_2014_34_1533
Cites_doi 10.1142/9789812831811
10.1214/aop/1022677264
10.1137/0804008
10.1016/j.jmaa.2008.04.048
10.1007/978-94-017-2219-3
10.1016/S0304-4149(99)00067-8
10.1137/1.9781611970524.ch1
10.1214/aop/1176996454
10.1214/EJP.v7-103
10.1007/978-1-4612-5320-4
10.1007/s00245-001-0019-5
10.1016/S0167-7152(98)00033-9
10.1007/978-1-4612-0459-6_23
10.1109/18.796367
10.1214/aop/1176993227
10.1142/S0129055X93000206
10.2140/pjm.1968.24.525
10.1007/BF01191912
10.1214/aop/1176993239
10.1214/aop/1019160334
10.1007/BF01874442
10.1214/aop/1176993665
10.1007/978-3-642-02431-3
10.1214/aos/1034276632
ContentType Journal Article
Copyright EDP Sciences, SMAI, 2010
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: EDP Sciences, SMAI, 2010
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1051/ps/2009003
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1262-3318
EndPage 381
ExternalDocumentID oai_HAL_hal_00184785v2
2769330391
10_1051_ps_2009003
ark_67375_80W_KCXR71LC_4
Genre Feature
GroupedDBID -E.
.FH
0E1
3V.
4.4
5GY
5VS
74X
74Y
7WY
7~V
8FE
8FG
8FL
AADXX
AAOTM
ABDBF
ABJCF
ABJNI
ABKKG
ABUBZ
ACACO
ACGFS
ACIMK
ACIPV
ACIWK
ACQPF
AEMTW
AFAYI
AFHSK
AFKRA
AFUTZ
AJPFC
ALMA_UNASSIGNED_HOLDINGS
ARABE
ARAPS
AZPVJ
BENPR
BEZIV
BPHCQ
BSCLL
C0O
DC4
EBS
EJD
ESX
FAM
GI~
GROUPED_ABI_INFORM_COMPLETE
HCIFZ
HG-
HST
HZ~
I.6
IL9
I~P
J36
J38
J3A
K60
K6V
K6~
K7-
L6V
L98
LO0
M-V
M0C
M0N
M7S
O9-
OAV
OK1
P2P
P62
PQQKQ
PROAC
RCA
RED
RR0
S6-
TUS
WQ3
WXU
WXY
AAOGA
AAYXX
ABGDZ
ABNSH
AGQPQ
AMVHM
CITATION
7SC
8FD
ACUHS
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c367t-37b4f0835c224d3b8eebd76b7df6d63251478f6483e2d87c878ba1193b09ae8f3
ISSN 1292-8100
IngestDate Fri May 09 12:14:11 EDT 2025
Fri Jul 25 10:24:28 EDT 2025
Tue Jul 01 02:28:57 EDT 2025
Thu Apr 24 22:59:26 EDT 2025
Wed Oct 30 09:30:24 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords large deviations
random measures
entropy
dominating points
Conditional laws of large numbers
convex optimization
entropic projections
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c367t-37b4f0835c224d3b8eebd76b7df6d63251478f6483e2d87c878ba1193b09ae8f3
Notes ark:/67375/80W-KCXR71LC-4
publisher-ID:ps0801
istex:29C39DB20DC1594065AFE4ADFCF73030B71872E4
PII:S1292810009000032
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
OpenAccessLink https://hal.science/hal-00184785
PQID 1069255134
PQPubID 616496
PageCount 39
ParticipantIDs hal_primary_oai_HAL_hal_00184785v2
proquest_journals_1069255134
crossref_primary_10_1051_ps_2009003
crossref_citationtrail_10_1051_ps_2009003
istex_primary_ark_67375_80W_KCXR71LC_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-01-01
PublicationDateYYYYMMDD 2010-01-01
PublicationDate_xml – month: 01
  year: 2010
  text: 2010-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationTitle Probability and statistics
PublicationYear 2010
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Léonard (R17) 2001; 44
Léonard (R16) 2010; 17
Dominating (R22) 1983; 11
Boucher (R3) 1999; 27
Gamboa (R12) 1997; 25
R24
R27
Csiszár (R5) 1984; 12
Dacunha-Castelle (R8) 1990; 26
R26
R29
Convexity (R23) 1984; 12
Rockafellar (R25) 1968; 24
Najim (R21) 2002; 7
R1
Csiszár (R4) 1975; 3
Einmahl (R10) 1996; 105
R9
Léonard (R18) 2003; 10
Léonard (R20) 2002; 8
Schied (R28) 1998; 39
Csiszár (R7) 1999; 45
Csiszár (R6) 1995; 68
R30
Kuelbs (R14) 2000; 28
Léonard (R19) 2008; 346
Borwein (R2) 1994; 1
R13
Léonard (R15) 2000; 85
Ellis (R11) 1993; 5
References_xml – ident: R13
  doi: 10.1142/9789812831811
– volume: 26
  start-page: 567
  year: 1990
  ident: R8
  publication-title: Ann. Inst. H. Poincaré. Probab. Statist.
– volume: 27
  start-page: 297
  year: 1999
  ident: R3
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1022677264
– volume: 1
  start-page: 146
  year: 1994
  ident: R2
  publication-title: SIAM J. Optim.
  doi: 10.1137/0804008
– volume: 346
  start-page: 183
  year: 2008
  ident: R19
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2008.04.048
– ident: R29
  doi: 10.1007/978-94-017-2219-3
– volume: 85
  start-page: 93
  year: 2000
  ident: R15
  publication-title: Stoch. Proc. Appl.
  doi: 10.1016/S0304-4149(99)00067-8
– volume: 17
  start-page: 321
  year: 2010
  ident: R16
  publication-title: J. Convex Anal.
– ident: R26
  doi: 10.1137/1.9781611970524.ch1
– volume: 3
  start-page: 146
  year: 1975
  ident: R4
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1176996454
– volume: 7
  start-page: 1
  year: 2002
  ident: R21
  publication-title: Electron. J. Probab.
  doi: 10.1214/EJP.v7-103
– ident: R9
  doi: 10.1007/978-1-4612-5320-4
– ident: R1
– volume: 44
  start-page: 273
  year: 2001
  ident: R17
  publication-title: J. Appl. Math. Optim.
  doi: 10.1007/s00245-001-0019-5
– volume: 39
  start-page: 55
  year: 1998
  ident: R28
  publication-title: Statist. Probab. Lett.
  doi: 10.1016/S0167-7152(98)00033-9
– ident: R30
  doi: 10.1007/978-1-4612-0459-6_23
– volume: 45
  start-page: 2253
  year: 1999
  ident: R7
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/18.796367
– volume: 12
  start-page: 768
  year: 1984
  ident: R5
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1176993227
– volume: 5
  start-page: 659
  year: 1993
  ident: R11
  publication-title: Rev. Math. Phys.
  doi: 10.1142/S0129055X93000206
– volume: 24
  start-page: 525
  year: 1968
  ident: R25
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.1968.24.525
– volume: 105
  start-page: 529
  year: 1996
  ident: R10
  publication-title: Probab. Theory Relat. Fields
  doi: 10.1007/BF01191912
– ident: R24
– volume: 12
  start-page: 903
  year: 1984
  ident: R23
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1176993239
– volume: 28
  start-page: 1259
  year: 2000
  ident: R14
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1019160334
– volume: 10
  start-page: 63
  year: 2003
  ident: R18
  publication-title: J. Convex Anal.
– volume: 68
  start-page: 161
  year: 1995
  ident: R6
  publication-title: Acta Math. Hungar.
  doi: 10.1007/BF01874442
– volume: 8
  start-page: 721
  year: 2002
  ident: R20
  publication-title: Bernoulli
– volume: 11
  start-page: 158
  year: 1983
  ident: R22
  publication-title: Ann. Probab.
  doi: 10.1214/aop/1176993665
– ident: R27
  doi: 10.1007/978-3-642-02431-3
– volume: 25
  start-page: 328
  year: 1997
  ident: R12
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1034276632
SSID ssj0016345
Score 1.8632925
Snippet Entropic projections and dominating points are solutions to convex minimization problems related to conditional laws of large numbers. They appear in many...
Generalized entropic projections and dominating points are solutions to convex minimization problems related to conditional laws of large numbers. They appear...
SourceID hal
proquest
crossref
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 343
SubjectTerms 46N10
60F10
60F99
60G57
Applied mathematics
Conditional laws of large numbers
Convex analysis
convex optimization
dominating points
entropic projections
Entropy
Functional Analysis
Information theory
Inverse problems
large deviations
Mathematical analysis
Mathematics
Numbers
Optimization
Orlicz spaces
Probability
random measures
Random variables
Statistical physics
Studies
Title Entropic Projections and Dominating Points
URI https://api.istex.fr/ark:/67375/80W-KCXR71LC-4/fulltext.pdf
https://www.proquest.com/docview/1069255134
https://hal.science/hal-00184785
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED7R7WU8IBggCmOKACGBFJbEju08TqWjgg4m2ETfrDh2BAK11VIQ4q_n_CNuYUMavESVdUoaf_Hd2f78HcATRRpa6rxJC83qFCO0SjHKFamuCqPbClNUJyl0_JZNzujrWTlbF7xzp0tW6kXz89JzJf-DKrYhrvaU7D8gG2-KDfgb8cUrIozXK2E8tjTzpSW3-_UUR2pz3OKFZbg4RvPJ4nNQa-pzUDRWXp3bay_ZM0Verjmyc_z2OSbpnvjuFQj6DymsETiq2eYawfjlSe8qNlYAMdKjM8wzvy1iQhviREhwib2DpBsejnhVpRAsia-3csEP41C3xYM7e94Es7gsI-t40--x_xGGIjmwPv9i2Wa8lCL7KN-MZu95Ph1JOoDtAucCtkzF9F0Wt4oYcZWo49v0GrRlfrDsDsLTf8s6Bp8s53XbDqMfF0KwyytOb8KNMCFIDj26t-Came_C9eOoptvtws6HiNBteN6DnmyAniCOyRr0xIN-B86OxqejSRoKXqQNYXyFzl7R1ubEDSZWmihhjNKcKa5bphnBVJRy0TIqiCm04I3gQtU5puAqq2ojWnIXtuaLubkHCc6CTWWLJVSU07asRF4TzU3GKoNjsVFDeNZ3iGyCGrwtSvJVOlZCmctlJ0PnDeFxtF16DZRLrR5hv0YDK1s-OZxK22YrP-I_L78XQ3jquj2a_Q3sIez1uMgw4jp8IqsKW5GI3r_qfR7AznpA7MHW6vybeYhp5Ertw0Acvdp3H9Mv2zptuQ
linkProvider EuDML: The European Digital Mathematics Library
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entropic+Projections+and+Dominating+Points&rft.jtitle=Probability+and+statistics&rft.au=L%C3%A9onard%2C+Christian&rft.date=2010-01-01&rft.pub=EDP+Sciences&rft.issn=1292-8100&rft.eissn=1262-3318&rft.volume=14&rft.spage=343&rft.epage=381&rft_id=info:doi/10.1051%2Fps%2F2009003&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_80W_KCXR71LC_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1292-8100&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1292-8100&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1292-8100&client=summon