Row crop grain harvester path optimization in headland patterns

•Genetic Algorithm used to optimized harvester routing.•Yield data used to determine when unloading needed to occur based on route.•Turn automation, without route optimization had the potential to reduce non-working in-field travel by 5.9–17.2 percent.•Route optimization found to reduce non-working...

Full description

Saved in:
Bibliographic Details
Published inComputers and electronics in agriculture Vol. 171; p. 105295
Main Authors Evans, John T., Pitla, Santosh K., Luck, Joe D., Kocher, Michael
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.04.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Genetic Algorithm used to optimized harvester routing.•Yield data used to determine when unloading needed to occur based on route.•Turn automation, without route optimization had the potential to reduce non-working in-field travel by 5.9–17.2 percent.•Route optimization found to reduce non-working travel between 13.8 and 31.5 percent in tested fields. Harvesting is one of the most complex field operations for grain producers requiring route planning that is subject to change based on spatial crop yield and scheduling with support vehicles. Inefficient routing increases operation time which lead to negative impacts including: increased labor cost, crop loss, and unnecessary hours put on expensive machinery. In addition to increased time, inefficient routing also increases the amount of unnecessary in-field travel, which increases fuel cost and the possibility of soil compaction. The goal of this research was to implement an optimization routine that could determine the most efficient harvest pattern for row crop harvesters in actual fields. A Genetic Algorithm was developed that was able to optimize the harvest route and provide a feasible solution in real field conditions. The algorithm was validated using spatial yield data from three fields and the optimized travel path reduced the non-working in-field travel between 13.8 and 31.5 percent.
AbstractList Harvesting is one of the most complex field operations for grain producers requiring route planning that is subject to change based on spatial crop yield and scheduling with support vehicles. Inefficient routing increases operation time which lead to negative impacts including: increased labor cost, crop loss, and unnecessary hours put on expensive machinery. In addition to increased time, inefficient routing also increases the amount of unnecessary in-field travel, which increases fuel cost and the possibility of soil compaction. The goal of this research was to implement an optimization routine that could determine the most efficient harvest pattern for row crop harvesters in actual fields. A Genetic Algorithm was developed that was able to optimize the harvest route and provide a feasible solution in real field conditions. The algorithm was validated using spatial yield data from three fields and the optimized travel path reduced the non-working in-field travel between 13.8 and 31.5 percent.
•Genetic Algorithm used to optimized harvester routing.•Yield data used to determine when unloading needed to occur based on route.•Turn automation, without route optimization had the potential to reduce non-working in-field travel by 5.9–17.2 percent.•Route optimization found to reduce non-working travel between 13.8 and 31.5 percent in tested fields. Harvesting is one of the most complex field operations for grain producers requiring route planning that is subject to change based on spatial crop yield and scheduling with support vehicles. Inefficient routing increases operation time which lead to negative impacts including: increased labor cost, crop loss, and unnecessary hours put on expensive machinery. In addition to increased time, inefficient routing also increases the amount of unnecessary in-field travel, which increases fuel cost and the possibility of soil compaction. The goal of this research was to implement an optimization routine that could determine the most efficient harvest pattern for row crop harvesters in actual fields. A Genetic Algorithm was developed that was able to optimize the harvest route and provide a feasible solution in real field conditions. The algorithm was validated using spatial yield data from three fields and the optimized travel path reduced the non-working in-field travel between 13.8 and 31.5 percent.
ArticleNumber 105295
Author Evans, John T.
Kocher, Michael
Pitla, Santosh K.
Luck, Joe D.
Author_xml – sequence: 1
  givenname: John T.
  surname: Evans
  fullname: Evans, John T.
  email: jevansiv@purdue.edu
– sequence: 2
  givenname: Santosh K.
  surname: Pitla
  fullname: Pitla, Santosh K.
  email: Spitla2@unl.edu
– sequence: 3
  givenname: Joe D.
  surname: Luck
  fullname: Luck, Joe D.
  email: Jluck2@unl.edu
– sequence: 4
  givenname: Michael
  surname: Kocher
  fullname: Kocher, Michael
  email: Mkocher1@unl.edu
BookMark eNqFkM1KxDAUhYMoODP6Bi4Kbtx0TNK0TV0oMvgHA4LoOmTS25mUtqlJZkSf3tS6moWuLsn5zuXcM0WHnekAoTOC5wST7LKeK9P2cj2nmA5fKS3SAzQhPKdxTnB-iCYB4zHJiuIYTZ2rcXgXPJ-gmxfzESlr-mhtpe6ijbQ7cB5s1Eu_iUzvdau_pNemiwYZZNnIrhzUAHXuBB1VsnFw-jtn6O3-7nXxGC-fH54Wt8tYJVnuYypTXlFI06SqcLHiOIwQZlWypCIMcAkKKOeEMS4xy1aMcEKlZFLShAc1maGLcW9vzfs2JBStdgqaEAbM1gnKkoIlPFwb0PM9tDZb24V0A8ULznnCA8VGKhzvnIVK9Fa30n4KgsXQqqjF2KoYWhVjq8F2tWdT2v_U40N_zX_m69EMoamdBiuc0tApKLUF5UVp9N8LvgG2mpZ5
CitedBy_id crossref_primary_10_3390_agriculture10050144
crossref_primary_10_1002_rob_22422
crossref_primary_10_3390_machines9050103
crossref_primary_10_3390_agronomy14112473
crossref_primary_10_3390_electronics12153232
crossref_primary_10_1002_agj2_20489
crossref_primary_10_1002_rob_22516
crossref_primary_10_1016_j_compag_2023_108021
crossref_primary_10_1155_2022_4176942
crossref_primary_10_1007_s10846_022_01722_0
crossref_primary_10_1016_j_compag_2024_109217
crossref_primary_10_1002_rob_22187
crossref_primary_10_3390_agronomy12051151
Cites_doi 10.1016/j.biosystemseng.2009.09.003
10.1016/j.biosystemseng.2008.06.008
10.2136/sssaj1986.03615995005000020035x
10.1080/03052150802406540
10.1016/j.ejor.2005.04.027
10.1023/A:1006529012972
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Apr 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Apr 2020
DBID AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
DOI 10.1016/j.compag.2020.105295
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
ExternalDocumentID 10_1016_j_compag_2020_105295
S0168169919304272
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
7SC
7SP
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c367t-2a58f2e553ff09b80ff0699bd43f14e0dece2881448a046b41812aa4aa2380de3
IEDL.DBID .~1
ISSN 0168-1699
IngestDate Mon Jul 21 11:23:29 EDT 2025
Fri Jul 25 04:32:18 EDT 2025
Tue Jul 01 01:58:17 EDT 2025
Thu Apr 24 22:54:01 EDT 2025
Fri Feb 23 02:47:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Routing
Algorithms
Harvest
Harvester
Optimization
Logistics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-2a58f2e553ff09b80ff0699bd43f14e0dece2881448a046b41812aa4aa2380de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2438988838
PQPubID 2045491
ParticipantIDs proquest_miscellaneous_2439438710
proquest_journals_2438988838
crossref_primary_10_1016_j_compag_2020_105295
crossref_citationtrail_10_1016_j_compag_2020_105295
elsevier_sciencedirect_doi_10_1016_j_compag_2020_105295
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers and electronics in agriculture
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Rexhepi, Maxhuni, Dika (b0055) 2013; 10
Razali, Geraghty (b0050) 2011
Vaishnav, Choudhary, Jain (b0060) 2017; 2
Voorhees, Nelson, Randall (b0065) 1986; 50
Bochtis, Vougioukas (b0025) 2008; 101
Bochtis, Sørensen (b0020) 2009; 104
Ali, Verlinden, Van Oudheusden (b0005) 2009; 41
Hansen, Benson, Reid, Hornbaker (b0040) 2002
Larrañaga, Kuijpers, Murga, Inza, Dizdarevic (b0045) 1999; 13
Arora, Agarwal, Tanwar (b0015) 2016; 7
Carter, Ragsdale (b0030) 2006; 175
Aranganayaki (b0010) 2014; 5
Deng, Liu, Zhou (b0035) 2015; 2015
Vaishnav (10.1016/j.compag.2020.105295_b0060) 2017; 2
Voorhees (10.1016/j.compag.2020.105295_b0065) 1986; 50
Razali (10.1016/j.compag.2020.105295_b0050) 2011
Carter (10.1016/j.compag.2020.105295_b0030) 2006; 175
Ali (10.1016/j.compag.2020.105295_b0005) 2009; 41
Deng (10.1016/j.compag.2020.105295_b0035) 2015; 2015
Larrañaga (10.1016/j.compag.2020.105295_b0045) 1999; 13
Arora (10.1016/j.compag.2020.105295_b0015) 2016; 7
Hansen (10.1016/j.compag.2020.105295_b0040) 2002
Bochtis (10.1016/j.compag.2020.105295_b0020) 2009; 104
Aranganayaki (10.1016/j.compag.2020.105295_b0010) 2014; 5
Rexhepi (10.1016/j.compag.2020.105295_b0055) 2013; 10
Bochtis (10.1016/j.compag.2020.105295_b0025) 2008; 101
References_xml – volume: 13
  start-page: 129
  year: 1999
  end-page: 170
  ident: b0045
  article-title: Genetic algorithms for the travelling salesman problem: a review of representations and operators
  publication-title: Artif. Intell. Rev.
– volume: 104
  start-page: 447
  year: 2009
  end-page: 457
  ident: b0020
  article-title: The vehicle routing problem in field logistics part I
  publication-title: Biosyst. Eng.
– start-page: 1
  year: 2011
  end-page: 6
  ident: b0050
  article-title: Genetic algorithm performance with different selection strategies in solving TSP
  publication-title: Proceedings of the World Congress on Engineering. International Association of Engineers Hong Kong
– volume: 50
  start-page: 428
  year: 1986
  end-page: 433
  ident: b0065
  article-title: Extent and persistence of subsoil compaction caused by heavy axle loads
  publication-title: Soil Sci. Soc. Am. J.
– volume: 10
  start-page: 158
  year: 2013
  end-page: 164
  ident: b0055
  article-title: Analysis of the impact of parameters values on the Genetic Algorithm for TSP
  publication-title: IJCSI Int. J. Comput. Sci. Issues
– volume: 5
  start-page: 815
  year: 2014
  end-page: 819
  ident: b0010
  article-title: Reduce total distance and time using genetic algorithm in Traveling Salesman Problem
  publication-title: Int. J. Comput. Sci. Eng.
– volume: 41
  start-page: 183
  year: 2009
  end-page: 197
  ident: b0005
  article-title: Infield logistics planning for crop-harvesting operations
  publication-title: Eng. Optim.
– volume: 175
  start-page: 246
  year: 2006
  end-page: 257
  ident: b0030
  article-title: A new approach to solving the multiple traveling salesperson problem using genetic algorithms
  publication-title: Eur. J. Oper. Res.
– volume: 7
  start-page: 1014
  year: 2016
  end-page: 1018
  ident: b0015
  article-title: Solving TSP using genetic algorithm and nearest neighbour algorithm and their comparison
  publication-title: Int. J. Sci. Eng. Res.
– volume: 2015
  start-page: 794
  year: 2015
  ident: b0035
  article-title: An improved genetic algorithm with initial population strategy for symmetric TSP
  publication-title: Math. Probl. Eng.
– start-page: 02
  year: 2002
  end-page: 3105
  ident: b0040
  article-title: Evaluation and use of an in-field grain handling simulation
  publication-title: ASAE Pap.
– volume: 2
  start-page: 105
  year: 2017
  end-page: 108
  ident: b0060
  article-title: Traveling salesman problem using genetic algorithm: a survey
  publication-title: Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol.
– volume: 101
  start-page: 1
  year: 2008
  end-page: 12
  ident: b0025
  article-title: Minimizing the non-working distance travelled by machines operating in a headland field pattern
  publication-title: Biosyst. Eng.
– start-page: 1
  year: 2011
  ident: 10.1016/j.compag.2020.105295_b0050
  article-title: Genetic algorithm performance with different selection strategies in solving TSP
– volume: 104
  start-page: 447
  year: 2009
  ident: 10.1016/j.compag.2020.105295_b0020
  article-title: The vehicle routing problem in field logistics part I
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2009.09.003
– volume: 101
  start-page: 1
  year: 2008
  ident: 10.1016/j.compag.2020.105295_b0025
  article-title: Minimizing the non-working distance travelled by machines operating in a headland field pattern
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2008.06.008
– volume: 10
  start-page: 158
  year: 2013
  ident: 10.1016/j.compag.2020.105295_b0055
  article-title: Analysis of the impact of parameters values on the Genetic Algorithm for TSP
  publication-title: IJCSI Int. J. Comput. Sci. Issues
– volume: 50
  start-page: 428
  year: 1986
  ident: 10.1016/j.compag.2020.105295_b0065
  article-title: Extent and persistence of subsoil compaction caused by heavy axle loads
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1986.03615995005000020035x
– volume: 41
  start-page: 183
  year: 2009
  ident: 10.1016/j.compag.2020.105295_b0005
  article-title: Infield logistics planning for crop-harvesting operations
  publication-title: Eng. Optim.
  doi: 10.1080/03052150802406540
– volume: 175
  start-page: 246
  year: 2006
  ident: 10.1016/j.compag.2020.105295_b0030
  article-title: A new approach to solving the multiple traveling salesperson problem using genetic algorithms
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2005.04.027
– volume: 2
  start-page: 105
  year: 2017
  ident: 10.1016/j.compag.2020.105295_b0060
  article-title: Traveling salesman problem using genetic algorithm: a survey
  publication-title: Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol.
– volume: 5
  start-page: 815
  year: 2014
  ident: 10.1016/j.compag.2020.105295_b0010
  article-title: Reduce total distance and time using genetic algorithm in Traveling Salesman Problem
  publication-title: Int. J. Comput. Sci. Eng.
– volume: 2015
  start-page: 794
  issue: 212
  year: 2015
  ident: 10.1016/j.compag.2020.105295_b0035
  article-title: An improved genetic algorithm with initial population strategy for symmetric TSP
  publication-title: Math. Probl. Eng.
– volume: 13
  start-page: 129
  year: 1999
  ident: 10.1016/j.compag.2020.105295_b0045
  article-title: Genetic algorithms for the travelling salesman problem: a review of representations and operators
  publication-title: Artif. Intell. Rev.
  doi: 10.1023/A:1006529012972
– volume: 7
  start-page: 1014
  year: 2016
  ident: 10.1016/j.compag.2020.105295_b0015
  article-title: Solving TSP using genetic algorithm and nearest neighbour algorithm and their comparison
  publication-title: Int. J. Sci. Eng. Res.
– start-page: 02
  year: 2002
  ident: 10.1016/j.compag.2020.105295_b0040
  article-title: Evaluation and use of an in-field grain handling simulation
  publication-title: ASAE Pap.
SSID ssj0016987
Score 2.3510468
Snippet •Genetic Algorithm used to optimized harvester routing.•Yield data used to determine when unloading needed to occur based on route.•Turn automation, without...
Harvesting is one of the most complex field operations for grain producers requiring route planning that is subject to change based on spatial crop yield and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105295
SubjectTerms Algorithms
crop losses
Crop yield
energy costs
Genetic algorithms
Grain
Harvest
Harvester
Harvesters
Harvesting
Headlands
labor
Logistics
Optimization
planning
Route planning
Routing
rowcrops
Soil compaction
Title Row crop grain harvester path optimization in headland patterns
URI https://dx.doi.org/10.1016/j.compag.2020.105295
https://www.proquest.com/docview/2438988838
https://www.proquest.com/docview/2439438710
Volume 171
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuJ0jghe67ombdOTjOGYijuog91C0yZzou3Yh978232vTQeKMPBU2rz04yV5H-l770fIpQ5MKhhYbp00BAcFiw2BXW8cwROhUmPA5MCtgYdhMBjxu7E_rpFelQuDYZVW9pcyvZDW9krbcrM9m07bT2CsiE4A9k2ELnmIcpjzEGf51dc6zAMIRJkyHYC3BNRV-lwR41XEeU_AS_QKwFsPUSb-Vk-_BHWhffp7ZNeajbRbvtk-qensgOx0J3NbOkMfkuvH_JMiIBedIOwDfYnnH0UZBIqowzQH2fBuky4pNsPgYlQjtuKm4OKIjPo3z72BY-ERnIQF4dLxYl8YT_s-M8aNlHDhAB-oUs5Mh2s31Yn2hACPScTgBSuOyjyOeRyDmoZWdkzqWZ7pE0ITbnwGt4sUMxyzaRV0T1zFeKIC40cNwiquyMTWDkcIizdZBYm9ypKXEnkpS142iLPuNStrZ2ygDyuGyx9zQIJ439CzWY2PtGtwIT0EdgcHn4kGuVg3w-rBXyJxpvNVQRMBGZhZp_9--BnZxrMynKdJ6sv5Sp-DpbJUrWIqtshW9_Z-MPwG0pDndw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KHtSD-MRq1QheY9PsJtmcpBRL1bYHbaG3JZvs1oompQ-9-dudSTYFRSh4CmRm85jNzmMzMx8h18rXCafguTWSAAIUbDYEfr22OYu5TLQGlwO3Bnp9vzNkDyNvVCGtshYG0yqN7i90eq6tzZm6kWZ9OpnUn8FZ4Q0f_JsQQ_IA9PAmg-WLMAY3X6s8D-DgRc20D-ESsJf1c3mSV57oPYYw0c0Rb12EmfjbPv3S1Ln5ae-RXeM3Ws3i0fZJRaUHZKc5npneGeqQ3D5lnxYiclljxH2wXqLZR94HwULYYSsD5fBuqi4tJMPsYlojUnFXcH5Ehu27QatjG3wEO6Z-sLDdyOPaVZ5HtXZCyR04wAvKhFHdYMpJVKxcziFk4hGEwZKhNY8iFkVgp4FKj8lGmqXqhFgx0x6Fy4WSaobltBKGx46kLJa-9sIqoaVURGyahyOGxZsos8ReRSFLgbIUhSyrxF6NmhbNM9bwB6XAxY-PQIB-XzOyVs6PMItwLlxEdocIn_IquVqRYfngP5EoVdky5wmBDfys03_f_JJsdQa9ruje9x_PyDZSityeGtlYzJbqHNyWhbzIP8tvLRTpBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Row+crop+grain+harvester+path+optimization+in+headland+patterns&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Evans%2C+John+T.&rft.au=Pitla%2C+Santosh+K.&rft.au=Luck%2C+Joe+D.&rft.au=Kocher%2C+Michael&rft.date=2020-04-01&rft.pub=Elsevier+B.V&rft.issn=0168-1699&rft.eissn=1872-7107&rft.volume=171&rft_id=info:doi/10.1016%2Fj.compag.2020.105295&rft.externalDocID=S0168169919304272
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon