Row crop grain harvester path optimization in headland patterns
•Genetic Algorithm used to optimized harvester routing.•Yield data used to determine when unloading needed to occur based on route.•Turn automation, without route optimization had the potential to reduce non-working in-field travel by 5.9–17.2 percent.•Route optimization found to reduce non-working...
Saved in:
Published in | Computers and electronics in agriculture Vol. 171; p. 105295 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.04.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Genetic Algorithm used to optimized harvester routing.•Yield data used to determine when unloading needed to occur based on route.•Turn automation, without route optimization had the potential to reduce non-working in-field travel by 5.9–17.2 percent.•Route optimization found to reduce non-working travel between 13.8 and 31.5 percent in tested fields.
Harvesting is one of the most complex field operations for grain producers requiring route planning that is subject to change based on spatial crop yield and scheduling with support vehicles. Inefficient routing increases operation time which lead to negative impacts including: increased labor cost, crop loss, and unnecessary hours put on expensive machinery. In addition to increased time, inefficient routing also increases the amount of unnecessary in-field travel, which increases fuel cost and the possibility of soil compaction. The goal of this research was to implement an optimization routine that could determine the most efficient harvest pattern for row crop harvesters in actual fields. A Genetic Algorithm was developed that was able to optimize the harvest route and provide a feasible solution in real field conditions. The algorithm was validated using spatial yield data from three fields and the optimized travel path reduced the non-working in-field travel between 13.8 and 31.5 percent. |
---|---|
AbstractList | Harvesting is one of the most complex field operations for grain producers requiring route planning that is subject to change based on spatial crop yield and scheduling with support vehicles. Inefficient routing increases operation time which lead to negative impacts including: increased labor cost, crop loss, and unnecessary hours put on expensive machinery. In addition to increased time, inefficient routing also increases the amount of unnecessary in-field travel, which increases fuel cost and the possibility of soil compaction. The goal of this research was to implement an optimization routine that could determine the most efficient harvest pattern for row crop harvesters in actual fields. A Genetic Algorithm was developed that was able to optimize the harvest route and provide a feasible solution in real field conditions. The algorithm was validated using spatial yield data from three fields and the optimized travel path reduced the non-working in-field travel between 13.8 and 31.5 percent. •Genetic Algorithm used to optimized harvester routing.•Yield data used to determine when unloading needed to occur based on route.•Turn automation, without route optimization had the potential to reduce non-working in-field travel by 5.9–17.2 percent.•Route optimization found to reduce non-working travel between 13.8 and 31.5 percent in tested fields. Harvesting is one of the most complex field operations for grain producers requiring route planning that is subject to change based on spatial crop yield and scheduling with support vehicles. Inefficient routing increases operation time which lead to negative impacts including: increased labor cost, crop loss, and unnecessary hours put on expensive machinery. In addition to increased time, inefficient routing also increases the amount of unnecessary in-field travel, which increases fuel cost and the possibility of soil compaction. The goal of this research was to implement an optimization routine that could determine the most efficient harvest pattern for row crop harvesters in actual fields. A Genetic Algorithm was developed that was able to optimize the harvest route and provide a feasible solution in real field conditions. The algorithm was validated using spatial yield data from three fields and the optimized travel path reduced the non-working in-field travel between 13.8 and 31.5 percent. |
ArticleNumber | 105295 |
Author | Evans, John T. Kocher, Michael Pitla, Santosh K. Luck, Joe D. |
Author_xml | – sequence: 1 givenname: John T. surname: Evans fullname: Evans, John T. email: jevansiv@purdue.edu – sequence: 2 givenname: Santosh K. surname: Pitla fullname: Pitla, Santosh K. email: Spitla2@unl.edu – sequence: 3 givenname: Joe D. surname: Luck fullname: Luck, Joe D. email: Jluck2@unl.edu – sequence: 4 givenname: Michael surname: Kocher fullname: Kocher, Michael email: Mkocher1@unl.edu |
BookMark | eNqFkM1KxDAUhYMoODP6Bi4Kbtx0TNK0TV0oMvgHA4LoOmTS25mUtqlJZkSf3tS6moWuLsn5zuXcM0WHnekAoTOC5wST7LKeK9P2cj2nmA5fKS3SAzQhPKdxTnB-iCYB4zHJiuIYTZ2rcXgXPJ-gmxfzESlr-mhtpe6ijbQ7cB5s1Eu_iUzvdau_pNemiwYZZNnIrhzUAHXuBB1VsnFw-jtn6O3-7nXxGC-fH54Wt8tYJVnuYypTXlFI06SqcLHiOIwQZlWypCIMcAkKKOeEMS4xy1aMcEKlZFLShAc1maGLcW9vzfs2JBStdgqaEAbM1gnKkoIlPFwb0PM9tDZb24V0A8ULznnCA8VGKhzvnIVK9Fa30n4KgsXQqqjF2KoYWhVjq8F2tWdT2v_U40N_zX_m69EMoamdBiuc0tApKLUF5UVp9N8LvgG2mpZ5 |
CitedBy_id | crossref_primary_10_3390_agriculture10050144 crossref_primary_10_1002_rob_22422 crossref_primary_10_3390_machines9050103 crossref_primary_10_3390_agronomy14112473 crossref_primary_10_3390_electronics12153232 crossref_primary_10_1002_agj2_20489 crossref_primary_10_1002_rob_22516 crossref_primary_10_1016_j_compag_2023_108021 crossref_primary_10_1155_2022_4176942 crossref_primary_10_1007_s10846_022_01722_0 crossref_primary_10_1016_j_compag_2024_109217 crossref_primary_10_1002_rob_22187 crossref_primary_10_3390_agronomy12051151 |
Cites_doi | 10.1016/j.biosystemseng.2009.09.003 10.1016/j.biosystemseng.2008.06.008 10.2136/sssaj1986.03615995005000020035x 10.1080/03052150802406540 10.1016/j.ejor.2005.04.027 10.1023/A:1006529012972 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier BV Apr 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier BV Apr 2020 |
DBID | AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
DOI | 10.1016/j.compag.2020.105295 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-7107 |
ExternalDocumentID | 10_1016_j_compag_2020_105295 S0168169919304272 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO AAYFN ABBOA ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABLVK ABMAC ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLV HLZ HVGLF HZ~ IHE J1W KOM LCYCR LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 QYZTP R2- RIG ROL RPZ SAB SBC SDF SDG SES SEW SNL SPC SPCBC SSA SSH SSV SSZ T5K UHS UNMZH WUQ Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACMHX ACRPL ACVFH ADCNI ADNMO ADSLC AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AGWPP AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION 7SC 7SP 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
ID | FETCH-LOGICAL-c367t-2a58f2e553ff09b80ff0699bd43f14e0dece2881448a046b41812aa4aa2380de3 |
IEDL.DBID | .~1 |
ISSN | 0168-1699 |
IngestDate | Mon Jul 21 11:23:29 EDT 2025 Fri Jul 25 04:32:18 EDT 2025 Tue Jul 01 01:58:17 EDT 2025 Thu Apr 24 22:54:01 EDT 2025 Fri Feb 23 02:47:37 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Routing Algorithms Harvest Harvester Optimization Logistics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-2a58f2e553ff09b80ff0699bd43f14e0dece2881448a046b41812aa4aa2380de3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2438988838 |
PQPubID | 2045491 |
ParticipantIDs | proquest_miscellaneous_2439438710 proquest_journals_2438988838 crossref_primary_10_1016_j_compag_2020_105295 crossref_citationtrail_10_1016_j_compag_2020_105295 elsevier_sciencedirect_doi_10_1016_j_compag_2020_105295 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2020 2020-04-00 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Computers and electronics in agriculture |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Rexhepi, Maxhuni, Dika (b0055) 2013; 10 Razali, Geraghty (b0050) 2011 Vaishnav, Choudhary, Jain (b0060) 2017; 2 Voorhees, Nelson, Randall (b0065) 1986; 50 Bochtis, Vougioukas (b0025) 2008; 101 Bochtis, Sørensen (b0020) 2009; 104 Ali, Verlinden, Van Oudheusden (b0005) 2009; 41 Hansen, Benson, Reid, Hornbaker (b0040) 2002 Larrañaga, Kuijpers, Murga, Inza, Dizdarevic (b0045) 1999; 13 Arora, Agarwal, Tanwar (b0015) 2016; 7 Carter, Ragsdale (b0030) 2006; 175 Aranganayaki (b0010) 2014; 5 Deng, Liu, Zhou (b0035) 2015; 2015 Vaishnav (10.1016/j.compag.2020.105295_b0060) 2017; 2 Voorhees (10.1016/j.compag.2020.105295_b0065) 1986; 50 Razali (10.1016/j.compag.2020.105295_b0050) 2011 Carter (10.1016/j.compag.2020.105295_b0030) 2006; 175 Ali (10.1016/j.compag.2020.105295_b0005) 2009; 41 Deng (10.1016/j.compag.2020.105295_b0035) 2015; 2015 Larrañaga (10.1016/j.compag.2020.105295_b0045) 1999; 13 Arora (10.1016/j.compag.2020.105295_b0015) 2016; 7 Hansen (10.1016/j.compag.2020.105295_b0040) 2002 Bochtis (10.1016/j.compag.2020.105295_b0020) 2009; 104 Aranganayaki (10.1016/j.compag.2020.105295_b0010) 2014; 5 Rexhepi (10.1016/j.compag.2020.105295_b0055) 2013; 10 Bochtis (10.1016/j.compag.2020.105295_b0025) 2008; 101 |
References_xml | – volume: 13 start-page: 129 year: 1999 end-page: 170 ident: b0045 article-title: Genetic algorithms for the travelling salesman problem: a review of representations and operators publication-title: Artif. Intell. Rev. – volume: 104 start-page: 447 year: 2009 end-page: 457 ident: b0020 article-title: The vehicle routing problem in field logistics part I publication-title: Biosyst. Eng. – start-page: 1 year: 2011 end-page: 6 ident: b0050 article-title: Genetic algorithm performance with different selection strategies in solving TSP publication-title: Proceedings of the World Congress on Engineering. International Association of Engineers Hong Kong – volume: 50 start-page: 428 year: 1986 end-page: 433 ident: b0065 article-title: Extent and persistence of subsoil compaction caused by heavy axle loads publication-title: Soil Sci. Soc. Am. J. – volume: 10 start-page: 158 year: 2013 end-page: 164 ident: b0055 article-title: Analysis of the impact of parameters values on the Genetic Algorithm for TSP publication-title: IJCSI Int. J. Comput. Sci. Issues – volume: 5 start-page: 815 year: 2014 end-page: 819 ident: b0010 article-title: Reduce total distance and time using genetic algorithm in Traveling Salesman Problem publication-title: Int. J. Comput. Sci. Eng. – volume: 41 start-page: 183 year: 2009 end-page: 197 ident: b0005 article-title: Infield logistics planning for crop-harvesting operations publication-title: Eng. Optim. – volume: 175 start-page: 246 year: 2006 end-page: 257 ident: b0030 article-title: A new approach to solving the multiple traveling salesperson problem using genetic algorithms publication-title: Eur. J. Oper. Res. – volume: 7 start-page: 1014 year: 2016 end-page: 1018 ident: b0015 article-title: Solving TSP using genetic algorithm and nearest neighbour algorithm and their comparison publication-title: Int. J. Sci. Eng. Res. – volume: 2015 start-page: 794 year: 2015 ident: b0035 article-title: An improved genetic algorithm with initial population strategy for symmetric TSP publication-title: Math. Probl. Eng. – start-page: 02 year: 2002 end-page: 3105 ident: b0040 article-title: Evaluation and use of an in-field grain handling simulation publication-title: ASAE Pap. – volume: 2 start-page: 105 year: 2017 end-page: 108 ident: b0060 article-title: Traveling salesman problem using genetic algorithm: a survey publication-title: Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. – volume: 101 start-page: 1 year: 2008 end-page: 12 ident: b0025 article-title: Minimizing the non-working distance travelled by machines operating in a headland field pattern publication-title: Biosyst. Eng. – start-page: 1 year: 2011 ident: 10.1016/j.compag.2020.105295_b0050 article-title: Genetic algorithm performance with different selection strategies in solving TSP – volume: 104 start-page: 447 year: 2009 ident: 10.1016/j.compag.2020.105295_b0020 article-title: The vehicle routing problem in field logistics part I publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2009.09.003 – volume: 101 start-page: 1 year: 2008 ident: 10.1016/j.compag.2020.105295_b0025 article-title: Minimizing the non-working distance travelled by machines operating in a headland field pattern publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2008.06.008 – volume: 10 start-page: 158 year: 2013 ident: 10.1016/j.compag.2020.105295_b0055 article-title: Analysis of the impact of parameters values on the Genetic Algorithm for TSP publication-title: IJCSI Int. J. Comput. Sci. Issues – volume: 50 start-page: 428 year: 1986 ident: 10.1016/j.compag.2020.105295_b0065 article-title: Extent and persistence of subsoil compaction caused by heavy axle loads publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1986.03615995005000020035x – volume: 41 start-page: 183 year: 2009 ident: 10.1016/j.compag.2020.105295_b0005 article-title: Infield logistics planning for crop-harvesting operations publication-title: Eng. Optim. doi: 10.1080/03052150802406540 – volume: 175 start-page: 246 year: 2006 ident: 10.1016/j.compag.2020.105295_b0030 article-title: A new approach to solving the multiple traveling salesperson problem using genetic algorithms publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2005.04.027 – volume: 2 start-page: 105 year: 2017 ident: 10.1016/j.compag.2020.105295_b0060 article-title: Traveling salesman problem using genetic algorithm: a survey publication-title: Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. – volume: 5 start-page: 815 year: 2014 ident: 10.1016/j.compag.2020.105295_b0010 article-title: Reduce total distance and time using genetic algorithm in Traveling Salesman Problem publication-title: Int. J. Comput. Sci. Eng. – volume: 2015 start-page: 794 issue: 212 year: 2015 ident: 10.1016/j.compag.2020.105295_b0035 article-title: An improved genetic algorithm with initial population strategy for symmetric TSP publication-title: Math. Probl. Eng. – volume: 13 start-page: 129 year: 1999 ident: 10.1016/j.compag.2020.105295_b0045 article-title: Genetic algorithms for the travelling salesman problem: a review of representations and operators publication-title: Artif. Intell. Rev. doi: 10.1023/A:1006529012972 – volume: 7 start-page: 1014 year: 2016 ident: 10.1016/j.compag.2020.105295_b0015 article-title: Solving TSP using genetic algorithm and nearest neighbour algorithm and their comparison publication-title: Int. J. Sci. Eng. Res. – start-page: 02 year: 2002 ident: 10.1016/j.compag.2020.105295_b0040 article-title: Evaluation and use of an in-field grain handling simulation publication-title: ASAE Pap. |
SSID | ssj0016987 |
Score | 2.3510468 |
Snippet | •Genetic Algorithm used to optimized harvester routing.•Yield data used to determine when unloading needed to occur based on route.•Turn automation, without... Harvesting is one of the most complex field operations for grain producers requiring route planning that is subject to change based on spatial crop yield and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105295 |
SubjectTerms | Algorithms crop losses Crop yield energy costs Genetic algorithms Grain Harvest Harvester Harvesters Harvesting Headlands labor Logistics Optimization planning Route planning Routing rowcrops Soil compaction |
Title | Row crop grain harvester path optimization in headland patterns |
URI | https://dx.doi.org/10.1016/j.compag.2020.105295 https://www.proquest.com/docview/2438988838 https://www.proquest.com/docview/2439438710 |
Volume | 171 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXvQgfuJ0jghe67ombdOTjOGYijuog91C0yZzou3Yh978232vTQeKMPBU2rz04yV5H-l770fIpQ5MKhhYbp00BAcFiw2BXW8cwROhUmPA5MCtgYdhMBjxu7E_rpFelQuDYZVW9pcyvZDW9krbcrM9m07bT2CsiE4A9k2ELnmIcpjzEGf51dc6zAMIRJkyHYC3BNRV-lwR41XEeU_AS_QKwFsPUSb-Vk-_BHWhffp7ZNeajbRbvtk-qensgOx0J3NbOkMfkuvH_JMiIBedIOwDfYnnH0UZBIqowzQH2fBuky4pNsPgYlQjtuKm4OKIjPo3z72BY-ERnIQF4dLxYl8YT_s-M8aNlHDhAB-oUs5Mh2s31Yn2hACPScTgBSuOyjyOeRyDmoZWdkzqWZ7pE0ITbnwGt4sUMxyzaRV0T1zFeKIC40cNwiquyMTWDkcIizdZBYm9ypKXEnkpS142iLPuNStrZ2ygDyuGyx9zQIJ439CzWY2PtGtwIT0EdgcHn4kGuVg3w-rBXyJxpvNVQRMBGZhZp_9--BnZxrMynKdJ6sv5Sp-DpbJUrWIqtshW9_Z-MPwG0pDndw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6KHtSD-MRq1QheY9PsJtmcpBRL1bYHbaG3JZvs1oompQ-9-dudSTYFRSh4CmRm85jNzmMzMx8h18rXCafguTWSAAIUbDYEfr22OYu5TLQGlwO3Bnp9vzNkDyNvVCGtshYG0yqN7i90eq6tzZm6kWZ9OpnUn8FZ4Q0f_JsQQ_IA9PAmg-WLMAY3X6s8D-DgRc20D-ESsJf1c3mSV57oPYYw0c0Rb12EmfjbPv3S1Ln5ae-RXeM3Ws3i0fZJRaUHZKc5npneGeqQ3D5lnxYiclljxH2wXqLZR94HwULYYSsD5fBuqi4tJMPsYlojUnFXcH5Ehu27QatjG3wEO6Z-sLDdyOPaVZ5HtXZCyR04wAvKhFHdYMpJVKxcziFk4hGEwZKhNY8iFkVgp4FKj8lGmqXqhFgx0x6Fy4WSaobltBKGx46kLJa-9sIqoaVURGyahyOGxZsos8ReRSFLgbIUhSyrxF6NmhbNM9bwB6XAxY-PQIB-XzOyVs6PMItwLlxEdocIn_IquVqRYfngP5EoVdky5wmBDfys03_f_JJsdQa9ruje9x_PyDZSityeGtlYzJbqHNyWhbzIP8tvLRTpBQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Row+crop+grain+harvester+path+optimization+in+headland+patterns&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Evans%2C+John+T.&rft.au=Pitla%2C+Santosh+K.&rft.au=Luck%2C+Joe+D.&rft.au=Kocher%2C+Michael&rft.date=2020-04-01&rft.pub=Elsevier+B.V&rft.issn=0168-1699&rft.eissn=1872-7107&rft.volume=171&rft_id=info:doi/10.1016%2Fj.compag.2020.105295&rft.externalDocID=S0168169919304272 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |