Nonpremixed MILD combustion in a laboratory-scale cylindrical furnace: Occurrence and identification

This paper reports a comprehensive investigation into the occurrence and identification of nonpremixed MILD combustion of C3H8/air in a cylindrical furnace. The combustion mode is altered by varying burner arrangement, air-fuel nozzle separation, equivalence ratio and thermal input. Based on the exp...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 216; p. 119295
Main Authors Cheong, Kin-Pang, Wang, Guochang, Si, Jicang, Mi, Jianchun
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.02.2021
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper reports a comprehensive investigation into the occurrence and identification of nonpremixed MILD combustion of C3H8/air in a cylindrical furnace. The combustion mode is altered by varying burner arrangement, air-fuel nozzle separation, equivalence ratio and thermal input. Based on the experimental observations, flow analysis and chemical calculations, a new criterion is proposed to identify the occurrence of nonpremixed MILD combustion using local heat release rate (HRR) particularly for CFD simulations. Importantly, unlike the case of CH4, the nonpremixed MILD combustion of C3H8 exhibits a negative HRR (HRR−) region that departs distantly from the positive HRR (HRR+) region, due to complex pyrolysis. This is distinct from the conventional flame where the HRR− region is adjecent to the HRR+ one. The new criterion notably improves the mode identification of nonpremixed combustion operating in various furnaces at different conditions. Moreover, the current study highlights the importance of local HRR in linking the experimental observation, CFD simulation and chemical calculation of MILD combustion. •Occurrence of nonpremixed C3H8 MILD combustion and its identification are systematically investigated.•Unlike burning CH4, MILD combustion of C3H8 includes a negative heat release rate (HRR) region.•A new criterion based on local HRR is proposed for identifying the nonpremixed MILD combustion.•Local HRR reasonably links the experimental and numerical results of MILD combustion.
AbstractList This paper reports a comprehensive investigation into the occurrence and identification of nonpremixed MILD combustion of C3H8/air in a cylindrical furnace. The combustion mode is altered by varying burner arrangement, air-fuel nozzle separation, equivalence ratio and thermal input. Based on the experimental observations, flow analysis and chemical calculations, a new criterion is proposed to identify the occurrence of nonpremixed MILD combustion using local heat release rate (HRR) particularly for CFD simulations. Importantly, unlike the case of CH4, the nonpremixed MILD combustion of C3HN8 exhibits a negative HRR (HRR−) region that departs distantly from the positive HRR (HRR+) region, due to complex pyrolysis. This is distinct from the conventional flame where the HRR− region is adjecent to the HRR+ one. The new criterion notably improves the mode identification of nonpremixed combustion operating in various furnaces at different conditions. Moreover, the current study highlights the importance of local HRR in linking the experimental observation, CFD simulation and chemical calculation of MILD combustion.
This paper reports a comprehensive investigation into the occurrence and identification of nonpremixed MILD combustion of C3H8/air in a cylindrical furnace. The combustion mode is altered by varying burner arrangement, air-fuel nozzle separation, equivalence ratio and thermal input. Based on the experimental observations, flow analysis and chemical calculations, a new criterion is proposed to identify the occurrence of nonpremixed MILD combustion using local heat release rate (HRR) particularly for CFD simulations. Importantly, unlike the case of CH4, the nonpremixed MILD combustion of C3H8 exhibits a negative HRR (HRR−) region that departs distantly from the positive HRR (HRR+) region, due to complex pyrolysis. This is distinct from the conventional flame where the HRR− region is adjecent to the HRR+ one. The new criterion notably improves the mode identification of nonpremixed combustion operating in various furnaces at different conditions. Moreover, the current study highlights the importance of local HRR in linking the experimental observation, CFD simulation and chemical calculation of MILD combustion. •Occurrence of nonpremixed C3H8 MILD combustion and its identification are systematically investigated.•Unlike burning CH4, MILD combustion of C3H8 includes a negative heat release rate (HRR) region.•A new criterion based on local HRR is proposed for identifying the nonpremixed MILD combustion.•Local HRR reasonably links the experimental and numerical results of MILD combustion.
This paper reports a comprehensive investigation into the occurrence and identification of nonpremixed MILD combustion of C₃H₈/air in a cylindrical furnace. The combustion mode is altered by varying burner arrangement, air-fuel nozzle separation, equivalence ratio and thermal input. Based on the experimental observations, flow analysis and chemical calculations, a new criterion is proposed to identify the occurrence of nonpremixed MILD combustion using local heat release rate (HRR) particularly for CFD simulations. Importantly, unlike the case of CH₄, the nonpremixed MILD combustion of C₃H₈ exhibits a negative HRR (HRR⁻) region that departs distantly from the positive HRR (HRR⁺) region, due to complex pyrolysis. This is distinct from the conventional flame where the HRR⁻ region is adjecent to the HRR⁺ one. The new criterion notably improves the mode identification of nonpremixed combustion operating in various furnaces at different conditions. Moreover, the current study highlights the importance of local HRR in linking the experimental observation, CFD simulation and chemical calculation of MILD combustion.
ArticleNumber 119295
Author Cheong, Kin-Pang
Si, Jicang
Mi, Jianchun
Wang, Guochang
Author_xml – sequence: 1
  givenname: Kin-Pang
  orcidid: 0000-0002-7841-3767
  surname: Cheong
  fullname: Cheong, Kin-Pang
  organization: School of Aeronautics and Astronautics, Sichuan University, Chengdu, Sichuan, 610065, China
– sequence: 2
  givenname: Guochang
  surname: Wang
  fullname: Wang, Guochang
  organization: College of Engineering, Peking University, Beijing, 100871, China
– sequence: 3
  givenname: Jicang
  surname: Si
  fullname: Si, Jicang
  organization: College of Engineering, Peking University, Beijing, 100871, China
– sequence: 4
  givenname: Jianchun
  surname: Mi
  fullname: Mi, Jianchun
  email: jmi@pku.edu.cn
  organization: College of Engineering, Peking University, Beijing, 100871, China
BookMark eNqFkcFO3DAQhi1EpS60b9CDpV56yWLHiR1zqFQBpUhLubRna9aeVF5l7a2dIPbtcRpOHMrJGuv7fmnmPyOnIQYk5BNna864vNitMWD6c1zXrC5fXNe6PSEr3ilRSdW1p2TFhGRV2zT1e3KW844x1nZar4j7GcMh4d4_oaP3d5trauN-O-XRx0B9oEAH2MYEY0zHKlsYkNrj4INLvgy0n1IAi5f0wdopJQwWKQRHvcMw-r4wc9AH8q6HIePHl_ec_P5-8-vqR7V5uL27-raprJBqrLjtVQ_OgQTbCuSq77adEEwIxRsnagCmuWZOtqrBHixoJaXEGjjrOIdGnJMvS-4hxb8T5tHsfbY4DBAwTtnURRRKiVYX9PMrdBfnXYZCNZ1mdcNlV6jLhbIp5pywN9aP_1YaE_jBcGbmAszOLAWYuQCzFFDk5pV8SH4P6fiW9nXRsFzq0WMy2fr5sM4ntKNx0f8_4Bk5wqRf
CitedBy_id crossref_primary_10_1021_acs_energyfuels_3c03984
crossref_primary_10_1016_j_energy_2024_130785
crossref_primary_10_1016_j_icheatmasstransfer_2024_108535
crossref_primary_10_22430_22565337_2472
crossref_primary_10_1016_j_energy_2023_127683
crossref_primary_10_1016_j_energy_2023_129070
crossref_primary_10_1016_j_ijhydene_2025_02_219
crossref_primary_10_1016_j_ijhydene_2023_04_238
crossref_primary_10_1016_j_ijhydene_2024_06_409
crossref_primary_10_1016_j_energy_2023_129905
crossref_primary_10_1021_acs_energyfuels_0c03503
crossref_primary_10_1016_j_energy_2022_124611
crossref_primary_10_1016_j_ijhydene_2023_06_054
crossref_primary_10_1021_acs_energyfuels_1c00511
crossref_primary_10_1016_j_energy_2021_122574
crossref_primary_10_1016_j_ijft_2024_100905
Cites_doi 10.1016/j.combustflame.2013.01.024
10.1016/j.combustflame.2010.02.017
10.1016/j.energy.2020.117158
10.1016/j.applthermaleng.2014.11.007
10.1021/acs.energyfuels.8b01587
10.1016/j.pecs.2004.02.003
10.1016/S1540-7489(02)80143-2
10.1016/j.energy.2011.09.003
10.1007/s003480050044
10.1016/j.pecs.2019.05.003
10.1016/j.energy.2018.12.146
10.1016/0360-1285(84)90118-7
10.1016/0010-2180(90)90122-8
10.1016/j.combustflame.2012.01.013
10.1021/acs.energyfuels.9b02738
10.1016/j.combustflame.2017.05.027
10.1007/s003480000248
10.1016/j.energy.2019.01.008
10.1016/S0360-1285(97)00006-3
10.1021/acs.energyfuels.6b02490
10.1016/j.energy.2019.115934
10.1016/j.energy.2019.115945
10.1016/j.fuproc.2018.09.002
10.1016/j.energy.2017.02.083
10.1016/S0010-2180(01)00328-5
10.1016/j.energy.2019.116819
10.1080/00102202.2012.664012
10.1016/j.fuel.2014.01.010
10.1016/j.proci.2016.06.013
10.1080/00102200302356
10.1016/j.combustflame.2008.08.009
10.1016/j.proci.2012.06.028
10.1016/j.combustflame.2016.05.020
10.1016/j.energy.2014.05.029
10.1016/j.proci.2006.07.039
10.1021/acs.energyfuels.5b00511
10.1016/j.proci.2008.09.003
10.1016/j.apenergy.2019.02.046
10.1016/j.fuel.2016.12.093
10.1021/ef200208d
10.1021/ef900866v
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Feb 1, 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 1, 2021
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
F28
FR3
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.energy.2020.119295
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1873-6785
ExternalDocumentID 10_1016_j_energy_2020_119295
S0360544220324026
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SEW
SSH
WUQ
7SP
7ST
7TB
8FD
C1K
EFKBS
F28
FR3
KR7
L7M
SOI
7S9
L.6
ID FETCH-LOGICAL-c367t-1cf7fadda6ac53e17f8b833033714d32aa09190d6574efaca97666e2a10811a43
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Fri Jul 11 10:00:03 EDT 2025
Wed Aug 13 11:07:41 EDT 2025
Thu Apr 24 23:10:44 EDT 2025
Tue Jul 01 00:43:33 EDT 2025
Fri Feb 23 02:48:44 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Heat release rate
Combustion mode
MILD combustion criterion
Flameless combustion
Nonpremixed
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-1cf7fadda6ac53e17f8b833033714d32aa09190d6574efaca97666e2a10811a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7841-3767
PQID 2489024168
PQPubID 2045484
ParticipantIDs proquest_miscellaneous_2574377359
proquest_journals_2489024168
crossref_citationtrail_10_1016_j_energy_2020_119295
crossref_primary_10_1016_j_energy_2020_119295
elsevier_sciencedirect_doi_10_1016_j_energy_2020_119295
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy (Oxford)
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Wünning, Wünning (bib4) 1997; 23
Özdemir, Peters (bib9) 2001; 30
Reaction Design (bib45) 2013
Li, Dai, Wang (bib30) 2017; 31
Ranasinghe, Guan, Gardi, Sabatini (bib2) 2019; 188
Sharma, Chowdhury, Kumar (bib14) 2020; 194
Khalil, Gupta (bib16) 2014; 122
Zhu, Lyu, Zhu, Li (bib8) 2018; 182
Tsuji, Gupta, Hasegawa, Katsuki, Kishimoto, Morita (bib12) 2002
Li, Li, Sun, Bai, Aldén (bib17) 2010; 157
de Joannon, Sabia, Cozzolino, Sorrentino, Cavaliere (bib39) 2012; 184
Tu, Xu, Xu, Liu, Yang (bib40) 2020; 197
Ye, Medwell, Evans, Dally (bib26) 2017; 183
de Joannon, Matarazzo, Sabia, Cavaliere (bib19) 2007; 31
Evans, Medwell, Wu, Stagni, Ihme (bib22) 2017; 36
ANSYS® Fluent, Release 16.0, 2015.
Szegö, Dally, Nathan (bib10) 2009; 156
Jiménez, Cuenot, Poinsot, Haworth (bib38) 2002; 128
Li, Dally, Mi, Wang (bib5) 2013; 160
Westbrook, Dryer (bib47) 1984; 10
Bilger, Stårner, Kee (bib44) 1990; 80
Cheong, Wang, Mi, Wang, Zhu, Ren (bib11) 2018; 32
Tu, Liu, Chen, Liu, Zhao, Zheng (bib41) 2015; 76
Kumar, Paul, Mukunda (bib18) 2002; 29
Ye, Medwell, Dally, Evans (bib25) 2016; 171
Khalil, Gupta (bib28) 2017; 195
von Schéele, Vesterberg, Ritzén (bib13) 2005
de Joannon, Sorrentino, Cavaliere (bib24) 2012; 159
Cheong, Wang, Wang, Zhu, Ren, Mi (bib36) 2019; 170
de Joannon, Sabia, Sorrentino, Cavaliere (bib23) 2009; 32
Cavigiolo, Galbiati, Effuggi, Gelosa, Rota (bib33) 2003; 175
Cheong, Li, Wang, Mi (bib6) 2017; 124
Wang, Si, Xu, Mi (bib29) 2019
Tian, Zhou, Ji, Bai, Yuan (bib15) 2019; 171
Mi, Li, Dally, Craig (bib31) 2009; 23
Zhang, Mi, Li, Wang, Dally (bib21) 2015; 29
Cavaliere, de Joannon (bib3) 2004; 30
Nasr, Lai (bib43) 1997; 22
Wang, You, Joshi, Davis, Laskin, Egolfopoulos, Law (bib46) 2007
Tu, Xu, Zhou, Wang, Yang, Liu (bib27) 2019; 240
Wang, Li, Mei, Zhang, Mi (bib20) 2014; 72
Mi, Li, Zheng (bib34) 2011; 36
Feng, Zhang, Wu, Huang, Zhang (bib35) 2019; 33
Wang, Chung (bib42) 2019; 74
Mahendra Reddy, Sawant, Trivedi, Kumar (bib7) 2013; 34
Li, Mi, Dally, Craig, Wang (bib32) 2011; 25
Conti, Holtberg, Diefenderfer, LaRose, Turnure, Westfall (bib1) 2016
de Joannon (10.1016/j.energy.2020.119295_bib24) 2012; 159
Conti (10.1016/j.energy.2020.119295_bib1) 2016
Cheong (10.1016/j.energy.2020.119295_bib11) 2018; 32
Wang (10.1016/j.energy.2020.119295_bib20) 2014; 72
Westbrook (10.1016/j.energy.2020.119295_bib47) 1984; 10
Khalil (10.1016/j.energy.2020.119295_bib16) 2014; 122
de Joannon (10.1016/j.energy.2020.119295_bib23) 2009; 32
Li (10.1016/j.energy.2020.119295_bib30) 2017; 31
Szegö (10.1016/j.energy.2020.119295_bib10) 2009; 156
Khalil (10.1016/j.energy.2020.119295_bib28) 2017; 195
Zhang (10.1016/j.energy.2020.119295_bib21) 2015; 29
Li (10.1016/j.energy.2020.119295_bib5) 2013; 160
Kumar (10.1016/j.energy.2020.119295_bib18) 2002; 29
Nasr (10.1016/j.energy.2020.119295_bib43) 1997; 22
Cheong (10.1016/j.energy.2020.119295_bib6) 2017; 124
Wang (10.1016/j.energy.2020.119295_bib46) 2007
de Joannon (10.1016/j.energy.2020.119295_bib39) 2012; 184
Wünning (10.1016/j.energy.2020.119295_bib4) 1997; 23
Li (10.1016/j.energy.2020.119295_bib17) 2010; 157
10.1016/j.energy.2020.119295_bib37
Mi (10.1016/j.energy.2020.119295_bib34) 2011; 36
Tu (10.1016/j.energy.2020.119295_bib40) 2020; 197
von Schéele (10.1016/j.energy.2020.119295_bib13) 2005
Ye (10.1016/j.energy.2020.119295_bib25) 2016; 171
Bilger (10.1016/j.energy.2020.119295_bib44) 1990; 80
Tu (10.1016/j.energy.2020.119295_bib41) 2015; 76
Tian (10.1016/j.energy.2020.119295_bib15) 2019; 171
Jiménez (10.1016/j.energy.2020.119295_bib38) 2002; 128
de Joannon (10.1016/j.energy.2020.119295_bib19) 2007; 31
Ye (10.1016/j.energy.2020.119295_bib26) 2017; 183
Evans (10.1016/j.energy.2020.119295_bib22) 2017; 36
Zhu (10.1016/j.energy.2020.119295_bib8) 2018; 182
Cavigiolo (10.1016/j.energy.2020.119295_bib33) 2003; 175
Wang (10.1016/j.energy.2020.119295_bib29) 2019
Tsuji (10.1016/j.energy.2020.119295_bib12) 2002
Cheong (10.1016/j.energy.2020.119295_bib36) 2019; 170
Feng (10.1016/j.energy.2020.119295_bib35) 2019; 33
Li (10.1016/j.energy.2020.119295_bib32) 2011; 25
Ranasinghe (10.1016/j.energy.2020.119295_bib2) 2019; 188
Mi (10.1016/j.energy.2020.119295_bib31) 2009; 23
Reaction Design (10.1016/j.energy.2020.119295_bib45) 2013
Tu (10.1016/j.energy.2020.119295_bib27) 2019; 240
Wang (10.1016/j.energy.2020.119295_bib42) 2019; 74
Özdemir (10.1016/j.energy.2020.119295_bib9) 2001; 30
Sharma (10.1016/j.energy.2020.119295_bib14) 2020; 194
Cavaliere (10.1016/j.energy.2020.119295_bib3) 2004; 30
Mahendra Reddy (10.1016/j.energy.2020.119295_bib7) 2013; 34
References_xml – volume: 74
  start-page: 152
  year: 2019
  end-page: 238
  ident: bib42
  article-title: Soot formation in laminar counterflow flames
  publication-title: Prog Energy Combust Sci
– volume: 36
  start-page: 4297
  year: 2017
  end-page: 4304
  ident: bib22
  article-title: Classification and lift-off height prediction of non-premixed MILD and autoignitive flames
  publication-title: Proc Combust Inst
– volume: 171
  start-page: 173
  year: 2016
  end-page: 184
  ident: bib25
  article-title: The transition of ethanol flames from conventional to MILD combustion
  publication-title: Combust Flame
– volume: 23
  start-page: 81
  year: 1997
  end-page: 94
  ident: bib4
  article-title: Flameless oxidation to reduce thermal NO-formation
  publication-title: Prog Energy Combust Sci
– volume: 159
  start-page: 1832
  year: 2012
  end-page: 1839
  ident: bib24
  article-title: MILD combustion in diffusion-controlled regimes of Hot Diluted Fuel
  publication-title: Combust Flame
– volume: 23
  start-page: 5349
  year: 2009
  end-page: 5356
  ident: bib31
  article-title: Importance of initial momentum rate and air-fuel premixing on moderate or intense low oxygen dilution (MILD) combustion in a recuperative furnace
  publication-title: Energy Fuels
– volume: 25
  start-page: 2782
  year: 2011
  end-page: 2793
  ident: bib32
  article-title: Premixed moderate or intense low-oxygen dilution (MILD) combustion from a single jet burner in a laboratory-scale furnace
  publication-title: Energy Fuels
– reference: ANSYS® Fluent, Release 16.0, 2015.
– volume: 29
  start-page: 4576
  year: 2015
  end-page: 4585
  ident: bib21
  article-title: Moderate or intense low-oxygen dilution combustion of methane diluted by CO
  publication-title: Energy Fuels
– volume: 29
  start-page: 1131
  year: 2002
  end-page: 1137
  ident: bib18
  article-title: Studies on a new high-intensity low-emission burner
  publication-title: Proc Combust Inst
– volume: 10
  start-page: 1
  year: 1984
  end-page: 57
  ident: bib47
  article-title: Chemical kinetic modeling of hydrocarbon combustion
  publication-title: Prog Energy Combust Sci
– start-page: 115934
  year: 2019
  ident: bib29
  article-title: MILD combustion versus conventional bluff-body flame of a premixed CH4/air jet in hot coflow
  publication-title: Energy
– volume: 30
  start-page: 683
  year: 2001
  end-page: 695
  ident: bib9
  article-title: Characteristics of the reaction zone in a combustor operating at mild combustion
  publication-title: Exp Fluid
– volume: 22
  start-page: 251
  year: 1997
  end-page: 260
  ident: bib43
  article-title: Two parallel plane jets: mean flow and effects of acoustic excitation
  publication-title: Exp Fluid
– volume: 34
  start-page: 3319
  year: 2013
  end-page: 3326
  ident: bib7
  article-title: Studies on a liquid fuel based two stage flameless combustor
  publication-title: Proc Combust Inst
– volume: 188
  start-page: 115945
  year: 2019
  ident: bib2
  article-title: Review of advanced low-emission technologies for sustainable aviation
  publication-title: Energy
– volume: 170
  start-page: 1181
  year: 2019
  end-page: 1190
  ident: bib36
  article-title: Stability and emission characteristics of nonpremixed MILD combustion from a parallel-jet burner in a cylindrical furnace
  publication-title: Energy
– volume: 76
  start-page: 64
  year: 2015
  end-page: 75
  ident: bib41
  article-title: Effects of furnace chamber shape on the MILD combustion of natural gas
  publication-title: Appl Therm Eng
– year: 2016
  ident: bib1
  article-title: International energy outlook 2016 with projections to 2040, USDOE energy information administration (EIA)
– volume: 33
  start-page: 11923
  year: 2019
  end-page: 11931
  ident: bib35
  article-title: Theoretical analysis on the criteria of MILD coal combustion
  publication-title: Energy Fuels
– volume: 160
  start-page: 933
  year: 2013
  end-page: 946
  ident: bib5
  article-title: MILD oxy-combustion of gaseous fuels in a laboratory-scale furnace
  publication-title: Combust Flame
– volume: 171
  start-page: 149
  year: 2019
  end-page: 160
  ident: bib15
  article-title: Applying moderate or intense low-oxygen dilution combustion to a co-axial-jet I-shaped recuperative radiant tube for further performance enhancement
  publication-title: Energy
– year: 2007
  ident: bib46
  article-title: SC mech version II. High-temperature combustion reaction model of H2/CO/C1-C4 Compounds
– year: 2002
  ident: bib12
  article-title: High temperature air combustion: from energy conservation to pollution reduction
– volume: 80
  start-page: 135
  year: 1990
  end-page: 149
  ident: bib44
  article-title: On reduced mechanisms for methane-air combustion in nonpremixed flames
  publication-title: Combust Flame
– volume: 156
  start-page: 429
  year: 2009
  end-page: 438
  ident: bib10
  article-title: Operational characteristics of a parallel jet MILD combustion burner system
  publication-title: Combust Flame
– volume: 194
  start-page: 116819
  year: 2020
  ident: bib14
  article-title: A novel air injection scheme to achieve MILD combustion in a can-type gas turbine combustor
  publication-title: Energy
– volume: 31
  start-page: 4382
  year: 2017
  end-page: 4390
  ident: bib30
  article-title: Characteristic chemical time scale analysis of a partial oxidation flame in hot syngas coflow
  publication-title: Energy Fuels
– volume: 195
  start-page: 113
  year: 2017
  end-page: 122
  ident: bib28
  article-title: Towards colorless distributed combustion regime
  publication-title: Fuel
– volume: 175
  start-page: 1347
  year: 2003
  end-page: 1367
  ident: bib33
  article-title: Mild combustion in a laboratory-scale apparatus
  publication-title: Combust Sci Technol
– volume: 182
  start-page: 104
  year: 2018
  end-page: 112
  ident: bib8
  article-title: NO emissions under pulverized char MILD combustion in O2/CO2 preheated by a circulating fluidized bed: effect of oxygen-staging gas distribution
  publication-title: Fuel Process Technol
– start-page: 16
  year: 2005
  ident: bib13
  article-title: Invisible flames for clearly visible results, Nord
  publication-title: Steel Min. Rev. Swed.
– volume: 184
  start-page: 1207
  year: 2012
  end-page: 1218
  ident: bib39
  article-title: Pyrolitic and oxidative structures in hot oxidant diluted oxidant (HODO) MILD combustion
  publication-title: Combust Sci Technol
– volume: 157
  start-page: 1087
  year: 2010
  end-page: 1096
  ident: bib17
  article-title: Turbulence and combustion interaction: high resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH2O in a piloted premixed jet flame
  publication-title: Combust Flame
– volume: 240
  start-page: 1003
  year: 2019
  end-page: 1013
  ident: bib27
  article-title: CFD and kinetic modelling study of methane MILD combustion in O2/N2, O2/CO2 and O2/H2O atmospheres
  publication-title: Appl Energy
– volume: 36
  start-page: 6583
  year: 2011
  end-page: 6595
  ident: bib34
  article-title: Impact of injection conditions on flame characteristics from a parallel multi-jet burner
  publication-title: Energy
– volume: 197
  start-page: 117158
  year: 2020
  ident: bib40
  article-title: Numerical study of methane combustion under moderate or intense low-oxygen dilution regime at elevated pressure conditions up to 8 atm
  publication-title: Energy
– volume: 32
  start-page: 8817
  year: 2018
  end-page: 8829
  ident: bib11
  article-title: Premixed MILD combustion of propane in a cylindrical furnace with a single jet burner: combustion and emission characteristics
  publication-title: Energy Fuels
– volume: 72
  start-page: 242
  year: 2014
  end-page: 253
  ident: bib20
  article-title: Combustion of CH4/O2/N2 in a well stirred reactor
  publication-title: Energy
– volume: 31
  start-page: 3409
  year: 2007
  end-page: 3416
  ident: bib19
  article-title: MILD combustion in homogeneous charge diffusion ignition (HCDI) regime
  publication-title: Proc Combust Inst
– volume: 183
  start-page: 330
  year: 2017
  end-page: 342
  ident: bib26
  article-title: Characteristics of turbulent n-heptane jet flames in a hot and diluted coflow
  publication-title: Combust Flame
– volume: 128
  start-page: 1
  year: 2002
  end-page: 21
  ident: bib38
  article-title: Numerical simulation and modeling for lean stratified propane-air flames
  publication-title: Combust Flame
– volume: 124
  start-page: 652
  year: 2017
  end-page: 664
  ident: bib6
  article-title: Emissions of NO and CO from counterflow combustion of CH 4 under MILD and oxyfuel conditions
  publication-title: Energy
– volume: 32
  start-page: 3147
  year: 2009
  end-page: 3154
  ident: bib23
  article-title: Numerical study of mild combustion in hot diluted diffusion ignition (HDDI) regime
  publication-title: Proc Combust Inst
– volume: 30
  start-page: 329
  year: 2004
  end-page: 366
  ident: bib3
  article-title: Mild combustion
  publication-title: Prog Energy Combust Sci
– volume: 122
  start-page: 28
  year: 2014
  end-page: 35
  ident: bib16
  article-title: Hydroxyl radical distribution in distributed reaction combustion condition
  publication-title: Fuel
– year: 2013
  ident: bib45
  article-title: Chemkin-pro release 15131
– volume: 160
  start-page: 933
  year: 2013
  ident: 10.1016/j.energy.2020.119295_bib5
  article-title: MILD oxy-combustion of gaseous fuels in a laboratory-scale furnace
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2013.01.024
– volume: 157
  start-page: 1087
  year: 2010
  ident: 10.1016/j.energy.2020.119295_bib17
  article-title: Turbulence and combustion interaction: high resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH2O in a piloted premixed jet flame
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2010.02.017
– volume: 197
  start-page: 117158
  year: 2020
  ident: 10.1016/j.energy.2020.119295_bib40
  article-title: Numerical study of methane combustion under moderate or intense low-oxygen dilution regime at elevated pressure conditions up to 8 atm
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117158
– volume: 76
  start-page: 64
  year: 2015
  ident: 10.1016/j.energy.2020.119295_bib41
  article-title: Effects of furnace chamber shape on the MILD combustion of natural gas
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2014.11.007
– ident: 10.1016/j.energy.2020.119295_bib37
– volume: 32
  start-page: 8817
  year: 2018
  ident: 10.1016/j.energy.2020.119295_bib11
  article-title: Premixed MILD combustion of propane in a cylindrical furnace with a single jet burner: combustion and emission characteristics
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.8b01587
– volume: 30
  start-page: 329
  year: 2004
  ident: 10.1016/j.energy.2020.119295_bib3
  article-title: Mild combustion
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2004.02.003
– volume: 29
  start-page: 1131
  year: 2002
  ident: 10.1016/j.energy.2020.119295_bib18
  article-title: Studies on a new high-intensity low-emission burner
  publication-title: Proc Combust Inst
  doi: 10.1016/S1540-7489(02)80143-2
– year: 2013
  ident: 10.1016/j.energy.2020.119295_bib45
– volume: 36
  start-page: 6583
  year: 2011
  ident: 10.1016/j.energy.2020.119295_bib34
  article-title: Impact of injection conditions on flame characteristics from a parallel multi-jet burner
  publication-title: Energy
  doi: 10.1016/j.energy.2011.09.003
– volume: 22
  start-page: 251
  year: 1997
  ident: 10.1016/j.energy.2020.119295_bib43
  article-title: Two parallel plane jets: mean flow and effects of acoustic excitation
  publication-title: Exp Fluid
  doi: 10.1007/s003480050044
– volume: 74
  start-page: 152
  year: 2019
  ident: 10.1016/j.energy.2020.119295_bib42
  article-title: Soot formation in laminar counterflow flames
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/j.pecs.2019.05.003
– volume: 170
  start-page: 1181
  year: 2019
  ident: 10.1016/j.energy.2020.119295_bib36
  article-title: Stability and emission characteristics of nonpremixed MILD combustion from a parallel-jet burner in a cylindrical furnace
  publication-title: Energy
  doi: 10.1016/j.energy.2018.12.146
– year: 2016
  ident: 10.1016/j.energy.2020.119295_bib1
– volume: 10
  start-page: 1
  year: 1984
  ident: 10.1016/j.energy.2020.119295_bib47
  article-title: Chemical kinetic modeling of hydrocarbon combustion
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/0360-1285(84)90118-7
– volume: 80
  start-page: 135
  year: 1990
  ident: 10.1016/j.energy.2020.119295_bib44
  article-title: On reduced mechanisms for methane-air combustion in nonpremixed flames
  publication-title: Combust Flame
  doi: 10.1016/0010-2180(90)90122-8
– volume: 159
  start-page: 1832
  year: 2012
  ident: 10.1016/j.energy.2020.119295_bib24
  article-title: MILD combustion in diffusion-controlled regimes of Hot Diluted Fuel
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2012.01.013
– volume: 33
  start-page: 11923
  year: 2019
  ident: 10.1016/j.energy.2020.119295_bib35
  article-title: Theoretical analysis on the criteria of MILD coal combustion
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.9b02738
– volume: 183
  start-page: 330
  year: 2017
  ident: 10.1016/j.energy.2020.119295_bib26
  article-title: Characteristics of turbulent n-heptane jet flames in a hot and diluted coflow
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2017.05.027
– volume: 30
  start-page: 683
  year: 2001
  ident: 10.1016/j.energy.2020.119295_bib9
  article-title: Characteristics of the reaction zone in a combustor operating at mild combustion
  publication-title: Exp Fluid
  doi: 10.1007/s003480000248
– volume: 171
  start-page: 149
  year: 2019
  ident: 10.1016/j.energy.2020.119295_bib15
  article-title: Applying moderate or intense low-oxygen dilution combustion to a co-axial-jet I-shaped recuperative radiant tube for further performance enhancement
  publication-title: Energy
  doi: 10.1016/j.energy.2019.01.008
– volume: 23
  start-page: 81
  year: 1997
  ident: 10.1016/j.energy.2020.119295_bib4
  article-title: Flameless oxidation to reduce thermal NO-formation
  publication-title: Prog Energy Combust Sci
  doi: 10.1016/S0360-1285(97)00006-3
– year: 2002
  ident: 10.1016/j.energy.2020.119295_bib12
– start-page: 16
  year: 2005
  ident: 10.1016/j.energy.2020.119295_bib13
  article-title: Invisible flames for clearly visible results, Nord
  publication-title: Steel Min. Rev. Swed.
– volume: 31
  start-page: 4382
  year: 2017
  ident: 10.1016/j.energy.2020.119295_bib30
  article-title: Characteristic chemical time scale analysis of a partial oxidation flame in hot syngas coflow
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.6b02490
– start-page: 115934
  year: 2019
  ident: 10.1016/j.energy.2020.119295_bib29
  article-title: MILD combustion versus conventional bluff-body flame of a premixed CH4/air jet in hot coflow
  publication-title: Energy
  doi: 10.1016/j.energy.2019.115934
– volume: 188
  start-page: 115945
  year: 2019
  ident: 10.1016/j.energy.2020.119295_bib2
  article-title: Review of advanced low-emission technologies for sustainable aviation
  publication-title: Energy
  doi: 10.1016/j.energy.2019.115945
– volume: 182
  start-page: 104
  year: 2018
  ident: 10.1016/j.energy.2020.119295_bib8
  article-title: NO emissions under pulverized char MILD combustion in O2/CO2 preheated by a circulating fluidized bed: effect of oxygen-staging gas distribution
  publication-title: Fuel Process Technol
  doi: 10.1016/j.fuproc.2018.09.002
– volume: 124
  start-page: 652
  year: 2017
  ident: 10.1016/j.energy.2020.119295_bib6
  article-title: Emissions of NO and CO from counterflow combustion of CH 4 under MILD and oxyfuel conditions
  publication-title: Energy
  doi: 10.1016/j.energy.2017.02.083
– volume: 128
  start-page: 1
  year: 2002
  ident: 10.1016/j.energy.2020.119295_bib38
  article-title: Numerical simulation and modeling for lean stratified propane-air flames
  publication-title: Combust Flame
  doi: 10.1016/S0010-2180(01)00328-5
– volume: 194
  start-page: 116819
  year: 2020
  ident: 10.1016/j.energy.2020.119295_bib14
  article-title: A novel air injection scheme to achieve MILD combustion in a can-type gas turbine combustor
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116819
– volume: 184
  start-page: 1207
  year: 2012
  ident: 10.1016/j.energy.2020.119295_bib39
  article-title: Pyrolitic and oxidative structures in hot oxidant diluted oxidant (HODO) MILD combustion
  publication-title: Combust Sci Technol
  doi: 10.1080/00102202.2012.664012
– volume: 122
  start-page: 28
  year: 2014
  ident: 10.1016/j.energy.2020.119295_bib16
  article-title: Hydroxyl radical distribution in distributed reaction combustion condition
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.01.010
– volume: 36
  start-page: 4297
  year: 2017
  ident: 10.1016/j.energy.2020.119295_bib22
  article-title: Classification and lift-off height prediction of non-premixed MILD and autoignitive flames
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2016.06.013
– volume: 175
  start-page: 1347
  year: 2003
  ident: 10.1016/j.energy.2020.119295_bib33
  article-title: Mild combustion in a laboratory-scale apparatus
  publication-title: Combust Sci Technol
  doi: 10.1080/00102200302356
– volume: 156
  start-page: 429
  year: 2009
  ident: 10.1016/j.energy.2020.119295_bib10
  article-title: Operational characteristics of a parallel jet MILD combustion burner system
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2008.08.009
– volume: 34
  start-page: 3319
  year: 2013
  ident: 10.1016/j.energy.2020.119295_bib7
  article-title: Studies on a liquid fuel based two stage flameless combustor
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2012.06.028
– volume: 171
  start-page: 173
  year: 2016
  ident: 10.1016/j.energy.2020.119295_bib25
  article-title: The transition of ethanol flames from conventional to MILD combustion
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2016.05.020
– volume: 72
  start-page: 242
  year: 2014
  ident: 10.1016/j.energy.2020.119295_bib20
  article-title: Combustion of CH4/O2/N2 in a well stirred reactor
  publication-title: Energy
  doi: 10.1016/j.energy.2014.05.029
– volume: 31
  start-page: 3409
  year: 2007
  ident: 10.1016/j.energy.2020.119295_bib19
  article-title: MILD combustion in homogeneous charge diffusion ignition (HCDI) regime
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2006.07.039
– volume: 29
  start-page: 4576
  year: 2015
  ident: 10.1016/j.energy.2020.119295_bib21
  article-title: Moderate or intense low-oxygen dilution combustion of methane diluted by CO 2 and N 2
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.5b00511
– volume: 32
  start-page: 3147
  year: 2009
  ident: 10.1016/j.energy.2020.119295_bib23
  article-title: Numerical study of mild combustion in hot diluted diffusion ignition (HDDI) regime
  publication-title: Proc Combust Inst
  doi: 10.1016/j.proci.2008.09.003
– volume: 240
  start-page: 1003
  year: 2019
  ident: 10.1016/j.energy.2020.119295_bib27
  article-title: CFD and kinetic modelling study of methane MILD combustion in O2/N2, O2/CO2 and O2/H2O atmospheres
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.02.046
– volume: 195
  start-page: 113
  year: 2017
  ident: 10.1016/j.energy.2020.119295_bib28
  article-title: Towards colorless distributed combustion regime
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.12.093
– volume: 25
  start-page: 2782
  year: 2011
  ident: 10.1016/j.energy.2020.119295_bib32
  article-title: Premixed moderate or intense low-oxygen dilution (MILD) combustion from a single jet burner in a laboratory-scale furnace
  publication-title: Energy Fuels
  doi: 10.1021/ef200208d
– year: 2007
  ident: 10.1016/j.energy.2020.119295_bib46
– volume: 23
  start-page: 5349
  year: 2009
  ident: 10.1016/j.energy.2020.119295_bib31
  article-title: Importance of initial momentum rate and air-fuel premixing on moderate or intense low oxygen dilution (MILD) combustion in a recuperative furnace
  publication-title: Energy Fuels
  doi: 10.1021/ef900866v
SSID ssj0005899
Score 2.427587
Snippet This paper reports a comprehensive investigation into the occurrence and identification of nonpremixed MILD combustion of C3H8/air in a cylindrical furnace....
This paper reports a comprehensive investigation into the occurrence and identification of nonpremixed MILD combustion of C₃H₈/air in a cylindrical furnace....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119295
SubjectTerms Combustion
Combustion mode
Criteria
energy
Equivalence ratio
Flameless combustion
Furnaces
heat
Heat release rate
Heat transfer
Mathematical analysis
MILD combustion criterion
Nonpremixed
Nozzles
Pyrolysis
Title Nonpremixed MILD combustion in a laboratory-scale cylindrical furnace: Occurrence and identification
URI https://dx.doi.org/10.1016/j.energy.2020.119295
https://www.proquest.com/docview/2489024168
https://www.proquest.com/docview/2574377359
Volume 216
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEG8IPuCLUZRwiqQmvtbz2m7b840g5BC4FyDhren2I1kiu5e7I5EX_3Znul1EE0Pi6-50P2amM79J54OQjy5BxIXIzagomfQqMeOnUyZrp4VSVVXnE93zuZpdyW_X1fUGORxqYTCtstj-3qZna12ujAs3x4umGV-A7QW8ITnOAIcoCNtuS6lRyz_9fJTmYfIMSSRmSD2Uz-Ucr5jr6yBK5Gg7AClU_3JPfxnq7H2OX5IXBTbSg_7LXpGN2G6TraGqeLVNdo5-V6wBYdmyq9ckzLt2sYy3zY8Y6PnJ2VcKv1rjDK-upU1LHS160C3v2QokFqm_B-wZcu8QmvDFPn6h2I54mUsDqWsDbUJJM8qSfUOujo8uD2esjFZgXii9ZhOfdALT5pTzlYgTnUxtBLgzbOAXBHcOcMT0c1CVljE57wC1KBW5mwCEmDgpdshm27Vxl9BkUhUCh8ckA_xNDlui1RCmgMhN4nxExMBR60vfcRx_8d0OCWY3tpeDRTnYXg4jwh5WLfq-G0_Q60FY9g_9seAanli5N8jWlv27slzi-SuAVTMiHx5uw87D4xTXxu4OaIA3QmtRTd_-98vfkecck2RyGvge2Vwv7-J7QDnrej-r8T55dnByOpv_Asbx_Lw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ8gPOCLUYR4gloTX8t5bbfb880g5IC7ewES3ppuP5I1unu5OxJ54W932u2CkhgSX3en-zHTmflNOh8An0zAiCsiNyW9oMLKQJUdj6moTMmlLIoqnejO5nJyJc6ui-sNOOprYWJaZbb9nU1P1jpfGWZuDhd1PbxA24t4Q7A4AxyjIPkMtgSqbxxjcHj3R56HSkMkIzWN5H39XEry8qnADsNEFo0HQoXiX_7pkaVO7ufkJbzIuJF87T7tFWz4Zge2-7Li1Q7sHT-UrCFh1tnVa3Dztlks_c_6l3dkdjr9RvBfqzjEq21I3RBD8kZol7d0hSLzxN4i-HSpeQgJ8cXWfyGxH_Ey1QYS0zhSu5xnlES7C1cnx5dHE5pnK1DLZbmmIxvKgLbNSGML7kdlUJXi6M9iBz_HmTEIJMafnSxK4YOxBmGLlJ6ZEWKIkRF8DzabtvFvgAQVCucYPiYo5G8wsSdahXEKylwFxgbAe45qmxuPx_kXP3SfYfZdd3LQUQ66k8MA6P2qRdd44wn6sheW_msDafQNT6w86GWrswKvNBPxABbRqhrAx_vbqHrxPMU0vr1BGuQNL0tejN_-98s_wPbkcjbV09P5-T48ZzFjJuWEH8Dmennj3yHkWVfv05b-DYH7_ko
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonpremixed+MILD+combustion+in+a+laboratory-scale+cylindrical+furnace%3A+Occurrence+and+identification&rft.jtitle=Energy+%28Oxford%29&rft.au=Cheong%2C+Kin-Pang&rft.au=Wang%2C+Guochang&rft.au=Si%2C+Jicang&rft.au=Mi%2C+Jianchun&rft.date=2021-02-01&rft.issn=0360-5442&rft.volume=216+p.119295-&rft_id=info:doi/10.1016%2Fj.energy.2020.119295&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon