Nonpremixed MILD combustion in a laboratory-scale cylindrical furnace: Occurrence and identification
This paper reports a comprehensive investigation into the occurrence and identification of nonpremixed MILD combustion of C3H8/air in a cylindrical furnace. The combustion mode is altered by varying burner arrangement, air-fuel nozzle separation, equivalence ratio and thermal input. Based on the exp...
Saved in:
Published in | Energy (Oxford) Vol. 216; p. 119295 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.02.2021
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper reports a comprehensive investigation into the occurrence and identification of nonpremixed MILD combustion of C3H8/air in a cylindrical furnace. The combustion mode is altered by varying burner arrangement, air-fuel nozzle separation, equivalence ratio and thermal input. Based on the experimental observations, flow analysis and chemical calculations, a new criterion is proposed to identify the occurrence of nonpremixed MILD combustion using local heat release rate (HRR) particularly for CFD simulations. Importantly, unlike the case of CH4, the nonpremixed MILD combustion of C3H8 exhibits a negative HRR (HRR−) region that departs distantly from the positive HRR (HRR+) region, due to complex pyrolysis. This is distinct from the conventional flame where the HRR− region is adjecent to the HRR+ one. The new criterion notably improves the mode identification of nonpremixed combustion operating in various furnaces at different conditions. Moreover, the current study highlights the importance of local HRR in linking the experimental observation, CFD simulation and chemical calculation of MILD combustion.
•Occurrence of nonpremixed C3H8 MILD combustion and its identification are systematically investigated.•Unlike burning CH4, MILD combustion of C3H8 includes a negative heat release rate (HRR) region.•A new criterion based on local HRR is proposed for identifying the nonpremixed MILD combustion.•Local HRR reasonably links the experimental and numerical results of MILD combustion. |
---|---|
AbstractList | This paper reports a comprehensive investigation into the occurrence and identification of nonpremixed MILD combustion of C3H8/air in a cylindrical furnace. The combustion mode is altered by varying burner arrangement, air-fuel nozzle separation, equivalence ratio and thermal input. Based on the experimental observations, flow analysis and chemical calculations, a new criterion is proposed to identify the occurrence of nonpremixed MILD combustion using local heat release rate (HRR) particularly for CFD simulations. Importantly, unlike the case of CH4, the nonpremixed MILD combustion of C3HN8 exhibits a negative HRR (HRR−) region that departs distantly from the positive HRR (HRR+) region, due to complex pyrolysis. This is distinct from the conventional flame where the HRR− region is adjecent to the HRR+ one. The new criterion notably improves the mode identification of nonpremixed combustion operating in various furnaces at different conditions. Moreover, the current study highlights the importance of local HRR in linking the experimental observation, CFD simulation and chemical calculation of MILD combustion. This paper reports a comprehensive investigation into the occurrence and identification of nonpremixed MILD combustion of C3H8/air in a cylindrical furnace. The combustion mode is altered by varying burner arrangement, air-fuel nozzle separation, equivalence ratio and thermal input. Based on the experimental observations, flow analysis and chemical calculations, a new criterion is proposed to identify the occurrence of nonpremixed MILD combustion using local heat release rate (HRR) particularly for CFD simulations. Importantly, unlike the case of CH4, the nonpremixed MILD combustion of C3H8 exhibits a negative HRR (HRR−) region that departs distantly from the positive HRR (HRR+) region, due to complex pyrolysis. This is distinct from the conventional flame where the HRR− region is adjecent to the HRR+ one. The new criterion notably improves the mode identification of nonpremixed combustion operating in various furnaces at different conditions. Moreover, the current study highlights the importance of local HRR in linking the experimental observation, CFD simulation and chemical calculation of MILD combustion. •Occurrence of nonpremixed C3H8 MILD combustion and its identification are systematically investigated.•Unlike burning CH4, MILD combustion of C3H8 includes a negative heat release rate (HRR) region.•A new criterion based on local HRR is proposed for identifying the nonpremixed MILD combustion.•Local HRR reasonably links the experimental and numerical results of MILD combustion. This paper reports a comprehensive investigation into the occurrence and identification of nonpremixed MILD combustion of C₃H₈/air in a cylindrical furnace. The combustion mode is altered by varying burner arrangement, air-fuel nozzle separation, equivalence ratio and thermal input. Based on the experimental observations, flow analysis and chemical calculations, a new criterion is proposed to identify the occurrence of nonpremixed MILD combustion using local heat release rate (HRR) particularly for CFD simulations. Importantly, unlike the case of CH₄, the nonpremixed MILD combustion of C₃H₈ exhibits a negative HRR (HRR⁻) region that departs distantly from the positive HRR (HRR⁺) region, due to complex pyrolysis. This is distinct from the conventional flame where the HRR⁻ region is adjecent to the HRR⁺ one. The new criterion notably improves the mode identification of nonpremixed combustion operating in various furnaces at different conditions. Moreover, the current study highlights the importance of local HRR in linking the experimental observation, CFD simulation and chemical calculation of MILD combustion. |
ArticleNumber | 119295 |
Author | Cheong, Kin-Pang Si, Jicang Mi, Jianchun Wang, Guochang |
Author_xml | – sequence: 1 givenname: Kin-Pang orcidid: 0000-0002-7841-3767 surname: Cheong fullname: Cheong, Kin-Pang organization: School of Aeronautics and Astronautics, Sichuan University, Chengdu, Sichuan, 610065, China – sequence: 2 givenname: Guochang surname: Wang fullname: Wang, Guochang organization: College of Engineering, Peking University, Beijing, 100871, China – sequence: 3 givenname: Jicang surname: Si fullname: Si, Jicang organization: College of Engineering, Peking University, Beijing, 100871, China – sequence: 4 givenname: Jianchun surname: Mi fullname: Mi, Jianchun email: jmi@pku.edu.cn organization: College of Engineering, Peking University, Beijing, 100871, China |
BookMark | eNqFkcFO3DAQhi1EpS60b9CDpV56yWLHiR1zqFQBpUhLubRna9aeVF5l7a2dIPbtcRpOHMrJGuv7fmnmPyOnIQYk5BNna864vNitMWD6c1zXrC5fXNe6PSEr3ilRSdW1p2TFhGRV2zT1e3KW844x1nZar4j7GcMh4d4_oaP3d5trauN-O-XRx0B9oEAH2MYEY0zHKlsYkNrj4INLvgy0n1IAi5f0wdopJQwWKQRHvcMw-r4wc9AH8q6HIePHl_ec_P5-8-vqR7V5uL27-raprJBqrLjtVQ_OgQTbCuSq77adEEwIxRsnagCmuWZOtqrBHixoJaXEGjjrOIdGnJMvS-4hxb8T5tHsfbY4DBAwTtnURRRKiVYX9PMrdBfnXYZCNZ1mdcNlV6jLhbIp5pywN9aP_1YaE_jBcGbmAszOLAWYuQCzFFDk5pV8SH4P6fiW9nXRsFzq0WMy2fr5sM4ntKNx0f8_4Bk5wqRf |
CitedBy_id | crossref_primary_10_1021_acs_energyfuels_3c03984 crossref_primary_10_1016_j_energy_2024_130785 crossref_primary_10_1016_j_icheatmasstransfer_2024_108535 crossref_primary_10_22430_22565337_2472 crossref_primary_10_1016_j_energy_2023_127683 crossref_primary_10_1016_j_energy_2023_129070 crossref_primary_10_1016_j_ijhydene_2025_02_219 crossref_primary_10_1016_j_ijhydene_2023_04_238 crossref_primary_10_1016_j_ijhydene_2024_06_409 crossref_primary_10_1016_j_energy_2023_129905 crossref_primary_10_1021_acs_energyfuels_0c03503 crossref_primary_10_1016_j_energy_2022_124611 crossref_primary_10_1016_j_ijhydene_2023_06_054 crossref_primary_10_1021_acs_energyfuels_1c00511 crossref_primary_10_1016_j_energy_2021_122574 crossref_primary_10_1016_j_ijft_2024_100905 |
Cites_doi | 10.1016/j.combustflame.2013.01.024 10.1016/j.combustflame.2010.02.017 10.1016/j.energy.2020.117158 10.1016/j.applthermaleng.2014.11.007 10.1021/acs.energyfuels.8b01587 10.1016/j.pecs.2004.02.003 10.1016/S1540-7489(02)80143-2 10.1016/j.energy.2011.09.003 10.1007/s003480050044 10.1016/j.pecs.2019.05.003 10.1016/j.energy.2018.12.146 10.1016/0360-1285(84)90118-7 10.1016/0010-2180(90)90122-8 10.1016/j.combustflame.2012.01.013 10.1021/acs.energyfuels.9b02738 10.1016/j.combustflame.2017.05.027 10.1007/s003480000248 10.1016/j.energy.2019.01.008 10.1016/S0360-1285(97)00006-3 10.1021/acs.energyfuels.6b02490 10.1016/j.energy.2019.115934 10.1016/j.energy.2019.115945 10.1016/j.fuproc.2018.09.002 10.1016/j.energy.2017.02.083 10.1016/S0010-2180(01)00328-5 10.1016/j.energy.2019.116819 10.1080/00102202.2012.664012 10.1016/j.fuel.2014.01.010 10.1016/j.proci.2016.06.013 10.1080/00102200302356 10.1016/j.combustflame.2008.08.009 10.1016/j.proci.2012.06.028 10.1016/j.combustflame.2016.05.020 10.1016/j.energy.2014.05.029 10.1016/j.proci.2006.07.039 10.1021/acs.energyfuels.5b00511 10.1016/j.proci.2008.09.003 10.1016/j.apenergy.2019.02.046 10.1016/j.fuel.2016.12.093 10.1021/ef200208d 10.1021/ef900866v |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Feb 1, 2021 |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Feb 1, 2021 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6 |
DOI | 10.1016/j.energy.2020.119295 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences |
EISSN | 1873-6785 |
ExternalDocumentID | 10_1016_j_energy_2020_119295 S0360544220324026 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SEW SSH WUQ 7SP 7ST 7TB 8FD C1K EFKBS F28 FR3 KR7 L7M SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c367t-1cf7fadda6ac53e17f8b833033714d32aa09190d6574efaca97666e2a10811a43 |
IEDL.DBID | .~1 |
ISSN | 0360-5442 |
IngestDate | Fri Jul 11 10:00:03 EDT 2025 Wed Aug 13 11:07:41 EDT 2025 Thu Apr 24 23:10:44 EDT 2025 Tue Jul 01 00:43:33 EDT 2025 Fri Feb 23 02:48:44 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Heat release rate Combustion mode MILD combustion criterion Flameless combustion Nonpremixed |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-1cf7fadda6ac53e17f8b833033714d32aa09190d6574efaca97666e2a10811a43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7841-3767 |
PQID | 2489024168 |
PQPubID | 2045484 |
ParticipantIDs | proquest_miscellaneous_2574377359 proquest_journals_2489024168 crossref_citationtrail_10_1016_j_energy_2020_119295 crossref_primary_10_1016_j_energy_2020_119295 elsevier_sciencedirect_doi_10_1016_j_energy_2020_119295 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 2021-02-00 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy (Oxford) |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Wünning, Wünning (bib4) 1997; 23 Özdemir, Peters (bib9) 2001; 30 Reaction Design (bib45) 2013 Li, Dai, Wang (bib30) 2017; 31 Ranasinghe, Guan, Gardi, Sabatini (bib2) 2019; 188 Sharma, Chowdhury, Kumar (bib14) 2020; 194 Khalil, Gupta (bib16) 2014; 122 Zhu, Lyu, Zhu, Li (bib8) 2018; 182 Tsuji, Gupta, Hasegawa, Katsuki, Kishimoto, Morita (bib12) 2002 Li, Li, Sun, Bai, Aldén (bib17) 2010; 157 de Joannon, Sabia, Cozzolino, Sorrentino, Cavaliere (bib39) 2012; 184 Tu, Xu, Xu, Liu, Yang (bib40) 2020; 197 Ye, Medwell, Evans, Dally (bib26) 2017; 183 de Joannon, Matarazzo, Sabia, Cavaliere (bib19) 2007; 31 Evans, Medwell, Wu, Stagni, Ihme (bib22) 2017; 36 ANSYS® Fluent, Release 16.0, 2015. Szegö, Dally, Nathan (bib10) 2009; 156 Jiménez, Cuenot, Poinsot, Haworth (bib38) 2002; 128 Li, Dally, Mi, Wang (bib5) 2013; 160 Westbrook, Dryer (bib47) 1984; 10 Bilger, Stårner, Kee (bib44) 1990; 80 Cheong, Wang, Mi, Wang, Zhu, Ren (bib11) 2018; 32 Tu, Liu, Chen, Liu, Zhao, Zheng (bib41) 2015; 76 Kumar, Paul, Mukunda (bib18) 2002; 29 Ye, Medwell, Dally, Evans (bib25) 2016; 171 Khalil, Gupta (bib28) 2017; 195 von Schéele, Vesterberg, Ritzén (bib13) 2005 de Joannon, Sorrentino, Cavaliere (bib24) 2012; 159 Cheong, Wang, Wang, Zhu, Ren, Mi (bib36) 2019; 170 de Joannon, Sabia, Sorrentino, Cavaliere (bib23) 2009; 32 Cavigiolo, Galbiati, Effuggi, Gelosa, Rota (bib33) 2003; 175 Cheong, Li, Wang, Mi (bib6) 2017; 124 Wang, Si, Xu, Mi (bib29) 2019 Tian, Zhou, Ji, Bai, Yuan (bib15) 2019; 171 Mi, Li, Dally, Craig (bib31) 2009; 23 Zhang, Mi, Li, Wang, Dally (bib21) 2015; 29 Cavaliere, de Joannon (bib3) 2004; 30 Nasr, Lai (bib43) 1997; 22 Wang, You, Joshi, Davis, Laskin, Egolfopoulos, Law (bib46) 2007 Tu, Xu, Zhou, Wang, Yang, Liu (bib27) 2019; 240 Wang, Li, Mei, Zhang, Mi (bib20) 2014; 72 Mi, Li, Zheng (bib34) 2011; 36 Feng, Zhang, Wu, Huang, Zhang (bib35) 2019; 33 Wang, Chung (bib42) 2019; 74 Mahendra Reddy, Sawant, Trivedi, Kumar (bib7) 2013; 34 Li, Mi, Dally, Craig, Wang (bib32) 2011; 25 Conti, Holtberg, Diefenderfer, LaRose, Turnure, Westfall (bib1) 2016 de Joannon (10.1016/j.energy.2020.119295_bib24) 2012; 159 Conti (10.1016/j.energy.2020.119295_bib1) 2016 Cheong (10.1016/j.energy.2020.119295_bib11) 2018; 32 Wang (10.1016/j.energy.2020.119295_bib20) 2014; 72 Westbrook (10.1016/j.energy.2020.119295_bib47) 1984; 10 Khalil (10.1016/j.energy.2020.119295_bib16) 2014; 122 de Joannon (10.1016/j.energy.2020.119295_bib23) 2009; 32 Li (10.1016/j.energy.2020.119295_bib30) 2017; 31 Szegö (10.1016/j.energy.2020.119295_bib10) 2009; 156 Khalil (10.1016/j.energy.2020.119295_bib28) 2017; 195 Zhang (10.1016/j.energy.2020.119295_bib21) 2015; 29 Li (10.1016/j.energy.2020.119295_bib5) 2013; 160 Kumar (10.1016/j.energy.2020.119295_bib18) 2002; 29 Nasr (10.1016/j.energy.2020.119295_bib43) 1997; 22 Cheong (10.1016/j.energy.2020.119295_bib6) 2017; 124 Wang (10.1016/j.energy.2020.119295_bib46) 2007 de Joannon (10.1016/j.energy.2020.119295_bib39) 2012; 184 Wünning (10.1016/j.energy.2020.119295_bib4) 1997; 23 Li (10.1016/j.energy.2020.119295_bib17) 2010; 157 10.1016/j.energy.2020.119295_bib37 Mi (10.1016/j.energy.2020.119295_bib34) 2011; 36 Tu (10.1016/j.energy.2020.119295_bib40) 2020; 197 von Schéele (10.1016/j.energy.2020.119295_bib13) 2005 Ye (10.1016/j.energy.2020.119295_bib25) 2016; 171 Bilger (10.1016/j.energy.2020.119295_bib44) 1990; 80 Tu (10.1016/j.energy.2020.119295_bib41) 2015; 76 Tian (10.1016/j.energy.2020.119295_bib15) 2019; 171 Jiménez (10.1016/j.energy.2020.119295_bib38) 2002; 128 de Joannon (10.1016/j.energy.2020.119295_bib19) 2007; 31 Ye (10.1016/j.energy.2020.119295_bib26) 2017; 183 Evans (10.1016/j.energy.2020.119295_bib22) 2017; 36 Zhu (10.1016/j.energy.2020.119295_bib8) 2018; 182 Cavigiolo (10.1016/j.energy.2020.119295_bib33) 2003; 175 Wang (10.1016/j.energy.2020.119295_bib29) 2019 Tsuji (10.1016/j.energy.2020.119295_bib12) 2002 Cheong (10.1016/j.energy.2020.119295_bib36) 2019; 170 Feng (10.1016/j.energy.2020.119295_bib35) 2019; 33 Li (10.1016/j.energy.2020.119295_bib32) 2011; 25 Ranasinghe (10.1016/j.energy.2020.119295_bib2) 2019; 188 Mi (10.1016/j.energy.2020.119295_bib31) 2009; 23 Reaction Design (10.1016/j.energy.2020.119295_bib45) 2013 Tu (10.1016/j.energy.2020.119295_bib27) 2019; 240 Wang (10.1016/j.energy.2020.119295_bib42) 2019; 74 Özdemir (10.1016/j.energy.2020.119295_bib9) 2001; 30 Sharma (10.1016/j.energy.2020.119295_bib14) 2020; 194 Cavaliere (10.1016/j.energy.2020.119295_bib3) 2004; 30 Mahendra Reddy (10.1016/j.energy.2020.119295_bib7) 2013; 34 |
References_xml | – volume: 74 start-page: 152 year: 2019 end-page: 238 ident: bib42 article-title: Soot formation in laminar counterflow flames publication-title: Prog Energy Combust Sci – volume: 36 start-page: 4297 year: 2017 end-page: 4304 ident: bib22 article-title: Classification and lift-off height prediction of non-premixed MILD and autoignitive flames publication-title: Proc Combust Inst – volume: 171 start-page: 173 year: 2016 end-page: 184 ident: bib25 article-title: The transition of ethanol flames from conventional to MILD combustion publication-title: Combust Flame – volume: 23 start-page: 81 year: 1997 end-page: 94 ident: bib4 article-title: Flameless oxidation to reduce thermal NO-formation publication-title: Prog Energy Combust Sci – volume: 159 start-page: 1832 year: 2012 end-page: 1839 ident: bib24 article-title: MILD combustion in diffusion-controlled regimes of Hot Diluted Fuel publication-title: Combust Flame – volume: 23 start-page: 5349 year: 2009 end-page: 5356 ident: bib31 article-title: Importance of initial momentum rate and air-fuel premixing on moderate or intense low oxygen dilution (MILD) combustion in a recuperative furnace publication-title: Energy Fuels – volume: 25 start-page: 2782 year: 2011 end-page: 2793 ident: bib32 article-title: Premixed moderate or intense low-oxygen dilution (MILD) combustion from a single jet burner in a laboratory-scale furnace publication-title: Energy Fuels – reference: ANSYS® Fluent, Release 16.0, 2015. – volume: 29 start-page: 4576 year: 2015 end-page: 4585 ident: bib21 article-title: Moderate or intense low-oxygen dilution combustion of methane diluted by CO publication-title: Energy Fuels – volume: 29 start-page: 1131 year: 2002 end-page: 1137 ident: bib18 article-title: Studies on a new high-intensity low-emission burner publication-title: Proc Combust Inst – volume: 10 start-page: 1 year: 1984 end-page: 57 ident: bib47 article-title: Chemical kinetic modeling of hydrocarbon combustion publication-title: Prog Energy Combust Sci – start-page: 115934 year: 2019 ident: bib29 article-title: MILD combustion versus conventional bluff-body flame of a premixed CH4/air jet in hot coflow publication-title: Energy – volume: 30 start-page: 683 year: 2001 end-page: 695 ident: bib9 article-title: Characteristics of the reaction zone in a combustor operating at mild combustion publication-title: Exp Fluid – volume: 22 start-page: 251 year: 1997 end-page: 260 ident: bib43 article-title: Two parallel plane jets: mean flow and effects of acoustic excitation publication-title: Exp Fluid – volume: 34 start-page: 3319 year: 2013 end-page: 3326 ident: bib7 article-title: Studies on a liquid fuel based two stage flameless combustor publication-title: Proc Combust Inst – volume: 188 start-page: 115945 year: 2019 ident: bib2 article-title: Review of advanced low-emission technologies for sustainable aviation publication-title: Energy – volume: 170 start-page: 1181 year: 2019 end-page: 1190 ident: bib36 article-title: Stability and emission characteristics of nonpremixed MILD combustion from a parallel-jet burner in a cylindrical furnace publication-title: Energy – volume: 76 start-page: 64 year: 2015 end-page: 75 ident: bib41 article-title: Effects of furnace chamber shape on the MILD combustion of natural gas publication-title: Appl Therm Eng – year: 2016 ident: bib1 article-title: International energy outlook 2016 with projections to 2040, USDOE energy information administration (EIA) – volume: 33 start-page: 11923 year: 2019 end-page: 11931 ident: bib35 article-title: Theoretical analysis on the criteria of MILD coal combustion publication-title: Energy Fuels – volume: 160 start-page: 933 year: 2013 end-page: 946 ident: bib5 article-title: MILD oxy-combustion of gaseous fuels in a laboratory-scale furnace publication-title: Combust Flame – volume: 171 start-page: 149 year: 2019 end-page: 160 ident: bib15 article-title: Applying moderate or intense low-oxygen dilution combustion to a co-axial-jet I-shaped recuperative radiant tube for further performance enhancement publication-title: Energy – year: 2007 ident: bib46 article-title: SC mech version II. High-temperature combustion reaction model of H2/CO/C1-C4 Compounds – year: 2002 ident: bib12 article-title: High temperature air combustion: from energy conservation to pollution reduction – volume: 80 start-page: 135 year: 1990 end-page: 149 ident: bib44 article-title: On reduced mechanisms for methane-air combustion in nonpremixed flames publication-title: Combust Flame – volume: 156 start-page: 429 year: 2009 end-page: 438 ident: bib10 article-title: Operational characteristics of a parallel jet MILD combustion burner system publication-title: Combust Flame – volume: 194 start-page: 116819 year: 2020 ident: bib14 article-title: A novel air injection scheme to achieve MILD combustion in a can-type gas turbine combustor publication-title: Energy – volume: 31 start-page: 4382 year: 2017 end-page: 4390 ident: bib30 article-title: Characteristic chemical time scale analysis of a partial oxidation flame in hot syngas coflow publication-title: Energy Fuels – volume: 195 start-page: 113 year: 2017 end-page: 122 ident: bib28 article-title: Towards colorless distributed combustion regime publication-title: Fuel – volume: 175 start-page: 1347 year: 2003 end-page: 1367 ident: bib33 article-title: Mild combustion in a laboratory-scale apparatus publication-title: Combust Sci Technol – volume: 182 start-page: 104 year: 2018 end-page: 112 ident: bib8 article-title: NO emissions under pulverized char MILD combustion in O2/CO2 preheated by a circulating fluidized bed: effect of oxygen-staging gas distribution publication-title: Fuel Process Technol – start-page: 16 year: 2005 ident: bib13 article-title: Invisible flames for clearly visible results, Nord publication-title: Steel Min. Rev. Swed. – volume: 184 start-page: 1207 year: 2012 end-page: 1218 ident: bib39 article-title: Pyrolitic and oxidative structures in hot oxidant diluted oxidant (HODO) MILD combustion publication-title: Combust Sci Technol – volume: 157 start-page: 1087 year: 2010 end-page: 1096 ident: bib17 article-title: Turbulence and combustion interaction: high resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH2O in a piloted premixed jet flame publication-title: Combust Flame – volume: 240 start-page: 1003 year: 2019 end-page: 1013 ident: bib27 article-title: CFD and kinetic modelling study of methane MILD combustion in O2/N2, O2/CO2 and O2/H2O atmospheres publication-title: Appl Energy – volume: 36 start-page: 6583 year: 2011 end-page: 6595 ident: bib34 article-title: Impact of injection conditions on flame characteristics from a parallel multi-jet burner publication-title: Energy – volume: 197 start-page: 117158 year: 2020 ident: bib40 article-title: Numerical study of methane combustion under moderate or intense low-oxygen dilution regime at elevated pressure conditions up to 8 atm publication-title: Energy – volume: 32 start-page: 8817 year: 2018 end-page: 8829 ident: bib11 article-title: Premixed MILD combustion of propane in a cylindrical furnace with a single jet burner: combustion and emission characteristics publication-title: Energy Fuels – volume: 72 start-page: 242 year: 2014 end-page: 253 ident: bib20 article-title: Combustion of CH4/O2/N2 in a well stirred reactor publication-title: Energy – volume: 31 start-page: 3409 year: 2007 end-page: 3416 ident: bib19 article-title: MILD combustion in homogeneous charge diffusion ignition (HCDI) regime publication-title: Proc Combust Inst – volume: 183 start-page: 330 year: 2017 end-page: 342 ident: bib26 article-title: Characteristics of turbulent n-heptane jet flames in a hot and diluted coflow publication-title: Combust Flame – volume: 128 start-page: 1 year: 2002 end-page: 21 ident: bib38 article-title: Numerical simulation and modeling for lean stratified propane-air flames publication-title: Combust Flame – volume: 124 start-page: 652 year: 2017 end-page: 664 ident: bib6 article-title: Emissions of NO and CO from counterflow combustion of CH 4 under MILD and oxyfuel conditions publication-title: Energy – volume: 32 start-page: 3147 year: 2009 end-page: 3154 ident: bib23 article-title: Numerical study of mild combustion in hot diluted diffusion ignition (HDDI) regime publication-title: Proc Combust Inst – volume: 30 start-page: 329 year: 2004 end-page: 366 ident: bib3 article-title: Mild combustion publication-title: Prog Energy Combust Sci – volume: 122 start-page: 28 year: 2014 end-page: 35 ident: bib16 article-title: Hydroxyl radical distribution in distributed reaction combustion condition publication-title: Fuel – year: 2013 ident: bib45 article-title: Chemkin-pro release 15131 – volume: 160 start-page: 933 year: 2013 ident: 10.1016/j.energy.2020.119295_bib5 article-title: MILD oxy-combustion of gaseous fuels in a laboratory-scale furnace publication-title: Combust Flame doi: 10.1016/j.combustflame.2013.01.024 – volume: 157 start-page: 1087 year: 2010 ident: 10.1016/j.energy.2020.119295_bib17 article-title: Turbulence and combustion interaction: high resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH2O in a piloted premixed jet flame publication-title: Combust Flame doi: 10.1016/j.combustflame.2010.02.017 – volume: 197 start-page: 117158 year: 2020 ident: 10.1016/j.energy.2020.119295_bib40 article-title: Numerical study of methane combustion under moderate or intense low-oxygen dilution regime at elevated pressure conditions up to 8 atm publication-title: Energy doi: 10.1016/j.energy.2020.117158 – volume: 76 start-page: 64 year: 2015 ident: 10.1016/j.energy.2020.119295_bib41 article-title: Effects of furnace chamber shape on the MILD combustion of natural gas publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2014.11.007 – ident: 10.1016/j.energy.2020.119295_bib37 – volume: 32 start-page: 8817 year: 2018 ident: 10.1016/j.energy.2020.119295_bib11 article-title: Premixed MILD combustion of propane in a cylindrical furnace with a single jet burner: combustion and emission characteristics publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.8b01587 – volume: 30 start-page: 329 year: 2004 ident: 10.1016/j.energy.2020.119295_bib3 article-title: Mild combustion publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2004.02.003 – volume: 29 start-page: 1131 year: 2002 ident: 10.1016/j.energy.2020.119295_bib18 article-title: Studies on a new high-intensity low-emission burner publication-title: Proc Combust Inst doi: 10.1016/S1540-7489(02)80143-2 – year: 2013 ident: 10.1016/j.energy.2020.119295_bib45 – volume: 36 start-page: 6583 year: 2011 ident: 10.1016/j.energy.2020.119295_bib34 article-title: Impact of injection conditions on flame characteristics from a parallel multi-jet burner publication-title: Energy doi: 10.1016/j.energy.2011.09.003 – volume: 22 start-page: 251 year: 1997 ident: 10.1016/j.energy.2020.119295_bib43 article-title: Two parallel plane jets: mean flow and effects of acoustic excitation publication-title: Exp Fluid doi: 10.1007/s003480050044 – volume: 74 start-page: 152 year: 2019 ident: 10.1016/j.energy.2020.119295_bib42 article-title: Soot formation in laminar counterflow flames publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2019.05.003 – volume: 170 start-page: 1181 year: 2019 ident: 10.1016/j.energy.2020.119295_bib36 article-title: Stability and emission characteristics of nonpremixed MILD combustion from a parallel-jet burner in a cylindrical furnace publication-title: Energy doi: 10.1016/j.energy.2018.12.146 – year: 2016 ident: 10.1016/j.energy.2020.119295_bib1 – volume: 10 start-page: 1 year: 1984 ident: 10.1016/j.energy.2020.119295_bib47 article-title: Chemical kinetic modeling of hydrocarbon combustion publication-title: Prog Energy Combust Sci doi: 10.1016/0360-1285(84)90118-7 – volume: 80 start-page: 135 year: 1990 ident: 10.1016/j.energy.2020.119295_bib44 article-title: On reduced mechanisms for methane-air combustion in nonpremixed flames publication-title: Combust Flame doi: 10.1016/0010-2180(90)90122-8 – volume: 159 start-page: 1832 year: 2012 ident: 10.1016/j.energy.2020.119295_bib24 article-title: MILD combustion in diffusion-controlled regimes of Hot Diluted Fuel publication-title: Combust Flame doi: 10.1016/j.combustflame.2012.01.013 – volume: 33 start-page: 11923 year: 2019 ident: 10.1016/j.energy.2020.119295_bib35 article-title: Theoretical analysis on the criteria of MILD coal combustion publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.9b02738 – volume: 183 start-page: 330 year: 2017 ident: 10.1016/j.energy.2020.119295_bib26 article-title: Characteristics of turbulent n-heptane jet flames in a hot and diluted coflow publication-title: Combust Flame doi: 10.1016/j.combustflame.2017.05.027 – volume: 30 start-page: 683 year: 2001 ident: 10.1016/j.energy.2020.119295_bib9 article-title: Characteristics of the reaction zone in a combustor operating at mild combustion publication-title: Exp Fluid doi: 10.1007/s003480000248 – volume: 171 start-page: 149 year: 2019 ident: 10.1016/j.energy.2020.119295_bib15 article-title: Applying moderate or intense low-oxygen dilution combustion to a co-axial-jet I-shaped recuperative radiant tube for further performance enhancement publication-title: Energy doi: 10.1016/j.energy.2019.01.008 – volume: 23 start-page: 81 year: 1997 ident: 10.1016/j.energy.2020.119295_bib4 article-title: Flameless oxidation to reduce thermal NO-formation publication-title: Prog Energy Combust Sci doi: 10.1016/S0360-1285(97)00006-3 – year: 2002 ident: 10.1016/j.energy.2020.119295_bib12 – start-page: 16 year: 2005 ident: 10.1016/j.energy.2020.119295_bib13 article-title: Invisible flames for clearly visible results, Nord publication-title: Steel Min. Rev. Swed. – volume: 31 start-page: 4382 year: 2017 ident: 10.1016/j.energy.2020.119295_bib30 article-title: Characteristic chemical time scale analysis of a partial oxidation flame in hot syngas coflow publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.6b02490 – start-page: 115934 year: 2019 ident: 10.1016/j.energy.2020.119295_bib29 article-title: MILD combustion versus conventional bluff-body flame of a premixed CH4/air jet in hot coflow publication-title: Energy doi: 10.1016/j.energy.2019.115934 – volume: 188 start-page: 115945 year: 2019 ident: 10.1016/j.energy.2020.119295_bib2 article-title: Review of advanced low-emission technologies for sustainable aviation publication-title: Energy doi: 10.1016/j.energy.2019.115945 – volume: 182 start-page: 104 year: 2018 ident: 10.1016/j.energy.2020.119295_bib8 article-title: NO emissions under pulverized char MILD combustion in O2/CO2 preheated by a circulating fluidized bed: effect of oxygen-staging gas distribution publication-title: Fuel Process Technol doi: 10.1016/j.fuproc.2018.09.002 – volume: 124 start-page: 652 year: 2017 ident: 10.1016/j.energy.2020.119295_bib6 article-title: Emissions of NO and CO from counterflow combustion of CH 4 under MILD and oxyfuel conditions publication-title: Energy doi: 10.1016/j.energy.2017.02.083 – volume: 128 start-page: 1 year: 2002 ident: 10.1016/j.energy.2020.119295_bib38 article-title: Numerical simulation and modeling for lean stratified propane-air flames publication-title: Combust Flame doi: 10.1016/S0010-2180(01)00328-5 – volume: 194 start-page: 116819 year: 2020 ident: 10.1016/j.energy.2020.119295_bib14 article-title: A novel air injection scheme to achieve MILD combustion in a can-type gas turbine combustor publication-title: Energy doi: 10.1016/j.energy.2019.116819 – volume: 184 start-page: 1207 year: 2012 ident: 10.1016/j.energy.2020.119295_bib39 article-title: Pyrolitic and oxidative structures in hot oxidant diluted oxidant (HODO) MILD combustion publication-title: Combust Sci Technol doi: 10.1080/00102202.2012.664012 – volume: 122 start-page: 28 year: 2014 ident: 10.1016/j.energy.2020.119295_bib16 article-title: Hydroxyl radical distribution in distributed reaction combustion condition publication-title: Fuel doi: 10.1016/j.fuel.2014.01.010 – volume: 36 start-page: 4297 year: 2017 ident: 10.1016/j.energy.2020.119295_bib22 article-title: Classification and lift-off height prediction of non-premixed MILD and autoignitive flames publication-title: Proc Combust Inst doi: 10.1016/j.proci.2016.06.013 – volume: 175 start-page: 1347 year: 2003 ident: 10.1016/j.energy.2020.119295_bib33 article-title: Mild combustion in a laboratory-scale apparatus publication-title: Combust Sci Technol doi: 10.1080/00102200302356 – volume: 156 start-page: 429 year: 2009 ident: 10.1016/j.energy.2020.119295_bib10 article-title: Operational characteristics of a parallel jet MILD combustion burner system publication-title: Combust Flame doi: 10.1016/j.combustflame.2008.08.009 – volume: 34 start-page: 3319 year: 2013 ident: 10.1016/j.energy.2020.119295_bib7 article-title: Studies on a liquid fuel based two stage flameless combustor publication-title: Proc Combust Inst doi: 10.1016/j.proci.2012.06.028 – volume: 171 start-page: 173 year: 2016 ident: 10.1016/j.energy.2020.119295_bib25 article-title: The transition of ethanol flames from conventional to MILD combustion publication-title: Combust Flame doi: 10.1016/j.combustflame.2016.05.020 – volume: 72 start-page: 242 year: 2014 ident: 10.1016/j.energy.2020.119295_bib20 article-title: Combustion of CH4/O2/N2 in a well stirred reactor publication-title: Energy doi: 10.1016/j.energy.2014.05.029 – volume: 31 start-page: 3409 year: 2007 ident: 10.1016/j.energy.2020.119295_bib19 article-title: MILD combustion in homogeneous charge diffusion ignition (HCDI) regime publication-title: Proc Combust Inst doi: 10.1016/j.proci.2006.07.039 – volume: 29 start-page: 4576 year: 2015 ident: 10.1016/j.energy.2020.119295_bib21 article-title: Moderate or intense low-oxygen dilution combustion of methane diluted by CO 2 and N 2 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.5b00511 – volume: 32 start-page: 3147 year: 2009 ident: 10.1016/j.energy.2020.119295_bib23 article-title: Numerical study of mild combustion in hot diluted diffusion ignition (HDDI) regime publication-title: Proc Combust Inst doi: 10.1016/j.proci.2008.09.003 – volume: 240 start-page: 1003 year: 2019 ident: 10.1016/j.energy.2020.119295_bib27 article-title: CFD and kinetic modelling study of methane MILD combustion in O2/N2, O2/CO2 and O2/H2O atmospheres publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.02.046 – volume: 195 start-page: 113 year: 2017 ident: 10.1016/j.energy.2020.119295_bib28 article-title: Towards colorless distributed combustion regime publication-title: Fuel doi: 10.1016/j.fuel.2016.12.093 – volume: 25 start-page: 2782 year: 2011 ident: 10.1016/j.energy.2020.119295_bib32 article-title: Premixed moderate or intense low-oxygen dilution (MILD) combustion from a single jet burner in a laboratory-scale furnace publication-title: Energy Fuels doi: 10.1021/ef200208d – year: 2007 ident: 10.1016/j.energy.2020.119295_bib46 – volume: 23 start-page: 5349 year: 2009 ident: 10.1016/j.energy.2020.119295_bib31 article-title: Importance of initial momentum rate and air-fuel premixing on moderate or intense low oxygen dilution (MILD) combustion in a recuperative furnace publication-title: Energy Fuels doi: 10.1021/ef900866v |
SSID | ssj0005899 |
Score | 2.427587 |
Snippet | This paper reports a comprehensive investigation into the occurrence and identification of nonpremixed MILD combustion of C3H8/air in a cylindrical furnace.... This paper reports a comprehensive investigation into the occurrence and identification of nonpremixed MILD combustion of C₃H₈/air in a cylindrical furnace.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 119295 |
SubjectTerms | Combustion Combustion mode Criteria energy Equivalence ratio Flameless combustion Furnaces heat Heat release rate Heat transfer Mathematical analysis MILD combustion criterion Nonpremixed Nozzles Pyrolysis |
Title | Nonpremixed MILD combustion in a laboratory-scale cylindrical furnace: Occurrence and identification |
URI | https://dx.doi.org/10.1016/j.energy.2020.119295 https://www.proquest.com/docview/2489024168 https://www.proquest.com/docview/2574377359 |
Volume | 216 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEG8IPuCLUZRwiqQmvtbz2m7b840g5BC4FyDhren2I1kiu5e7I5EX_3Znul1EE0Pi6-50P2amM79J54OQjy5BxIXIzagomfQqMeOnUyZrp4VSVVXnE93zuZpdyW_X1fUGORxqYTCtstj-3qZna12ujAs3x4umGV-A7QW8ITnOAIcoCNtuS6lRyz_9fJTmYfIMSSRmSD2Uz-Ucr5jr6yBK5Gg7AClU_3JPfxnq7H2OX5IXBTbSg_7LXpGN2G6TraGqeLVNdo5-V6wBYdmyq9ckzLt2sYy3zY8Y6PnJ2VcKv1rjDK-upU1LHS160C3v2QokFqm_B-wZcu8QmvDFPn6h2I54mUsDqWsDbUJJM8qSfUOujo8uD2esjFZgXii9ZhOfdALT5pTzlYgTnUxtBLgzbOAXBHcOcMT0c1CVljE57wC1KBW5mwCEmDgpdshm27Vxl9BkUhUCh8ckA_xNDlui1RCmgMhN4nxExMBR60vfcRx_8d0OCWY3tpeDRTnYXg4jwh5WLfq-G0_Q60FY9g_9seAanli5N8jWlv27slzi-SuAVTMiHx5uw87D4xTXxu4OaIA3QmtRTd_-98vfkecck2RyGvge2Vwv7-J7QDnrej-r8T55dnByOpv_Asbx_Lw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEJ8gPOCLUYR4gloTX8t5bbfb880g5IC7ewES3ppuP5I1unu5OxJ54W932u2CkhgSX3en-zHTmflNOh8An0zAiCsiNyW9oMLKQJUdj6moTMmlLIoqnejO5nJyJc6ui-sNOOprYWJaZbb9nU1P1jpfGWZuDhd1PbxA24t4Q7A4AxyjIPkMtgSqbxxjcHj3R56HSkMkIzWN5H39XEry8qnADsNEFo0HQoXiX_7pkaVO7ufkJbzIuJF87T7tFWz4Zge2-7Li1Q7sHT-UrCFh1tnVa3Dztlks_c_6l3dkdjr9RvBfqzjEq21I3RBD8kZol7d0hSLzxN4i-HSpeQgJ8cXWfyGxH_Ey1QYS0zhSu5xnlES7C1cnx5dHE5pnK1DLZbmmIxvKgLbNSGML7kdlUJXi6M9iBz_HmTEIJMafnSxK4YOxBmGLlJ6ZEWKIkRF8DzabtvFvgAQVCucYPiYo5G8wsSdahXEKylwFxgbAe45qmxuPx_kXP3SfYfZdd3LQUQ66k8MA6P2qRdd44wn6sheW_msDafQNT6w86GWrswKvNBPxABbRqhrAx_vbqHrxPMU0vr1BGuQNL0tejN_-98s_wPbkcjbV09P5-T48ZzFjJuWEH8Dmennj3yHkWVfv05b-DYH7_ko |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonpremixed+MILD+combustion+in+a+laboratory-scale+cylindrical+furnace%3A+Occurrence+and+identification&rft.jtitle=Energy+%28Oxford%29&rft.au=Cheong%2C+Kin-Pang&rft.au=Wang%2C+Guochang&rft.au=Si%2C+Jicang&rft.au=Mi%2C+Jianchun&rft.date=2021-02-01&rft.issn=0360-5442&rft.volume=216+p.119295-&rft_id=info:doi/10.1016%2Fj.energy.2020.119295&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |