Generating Synthetic Disguised Faces with Cycle-Consistency Loss and an Automated Filtering Algorithm

Applications for facial recognition have eased the process of personal identification. However, there are increasing concerns about the performance of these systems against the challenges of presentation attacks, spoofing, and disguises. One of the reasons for the lack of a robustness of facial reco...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 10; no. 1; p. 4
Main Authors Ahmad, Mobeen, Cheema, Usman, Abdullah, Muhammad, Moon, Seungbin, Han, Dongil
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2022
Subjects
Online AccessGet full text
ISSN2227-7390
2227-7390
DOI10.3390/math10010004

Cover

Loading…
Abstract Applications for facial recognition have eased the process of personal identification. However, there are increasing concerns about the performance of these systems against the challenges of presentation attacks, spoofing, and disguises. One of the reasons for the lack of a robustness of facial recognition algorithms in these challenges is the limited amount of suitable training data. This lack of training data can be addressed by creating a database with the subjects having several disguises, but this is an expensive process. Another approach is to use generative adversarial networks to synthesize facial images with the required disguise add-ons. In this paper, we present a synthetic disguised face database for the training and evaluation of robust facial recognition algorithms. Furthermore, we present a methodology for generating synthetic facial images for the desired disguise add-ons. Cycle-consistency loss is used to generate facial images with disguises, e.g., fake beards, makeup, and glasses, from normal face images. Additionally, an automated filtering scheme is presented for automated data filtering from the synthesized faces. Finally, facial recognition experiments are performed on the proposed synthetic data to show the efficacy of the proposed methodology and the presented database. Training on the proposed database achieves an improvement in the rank-1 recognition rate (68.3%), over a model trained on the original nondisguised face images.
AbstractList Applications for facial recognition have eased the process of personal identification. However, there are increasing concerns about the performance of these systems against the challenges of presentation attacks, spoofing, and disguises. One of the reasons for the lack of a robustness of facial recognition algorithms in these challenges is the limited amount of suitable training data. This lack of training data can be addressed by creating a database with the subjects having several disguises, but this is an expensive process. Another approach is to use generative adversarial networks to synthesize facial images with the required disguise add-ons. In this paper, we present a synthetic disguised face database for the training and evaluation of robust facial recognition algorithms. Furthermore, we present a methodology for generating synthetic facial images for the desired disguise add-ons. Cycle-consistency loss is used to generate facial images with disguises, e.g., fake beards, makeup, and glasses, from normal face images. Additionally, an automated filtering scheme is presented for automated data filtering from the synthesized faces. Finally, facial recognition experiments are performed on the proposed synthetic data to show the efficacy of the proposed methodology and the presented database. Training on the proposed database achieves an improvement in the rank-1 recognition rate (68.3%), over a model trained on the original nondisguised face images.
Author Ahmad, Mobeen
Han, Dongil
Moon, Seungbin
Abdullah, Muhammad
Cheema, Usman
Author_xml – sequence: 1
  givenname: Mobeen
  orcidid: 0000-0001-5909-0125
  surname: Ahmad
  fullname: Ahmad, Mobeen
– sequence: 2
  givenname: Usman
  orcidid: 0000-0001-8996-7119
  surname: Cheema
  fullname: Cheema, Usman
– sequence: 3
  givenname: Muhammad
  surname: Abdullah
  fullname: Abdullah, Muhammad
– sequence: 4
  givenname: Seungbin
  surname: Moon
  fullname: Moon, Seungbin
– sequence: 5
  givenname: Dongil
  orcidid: 0000-0001-5763-570X
  surname: Han
  fullname: Han, Dongil
BookMark eNptkV9rWyEYxqWk0C7tXT_Agd3urP47Gi9DtnaFwC7WXotH35MYTjRTwzjfvmbpoIyCoujz_Hx8309oFmIAhO4I_sqYwvd7U7YE4zowv0DXlFLZynoxe7e_Qrc576oCK8IWXF0jeIQAyRQfNs2vKZQtFG-bbz5vjj6Dax6Mhdz88WXbrCY7QruKIftcINipWcecGxNcnc3yWGKNcLL4sUA6AZfjJqZq3d-gy8GMGW7f1jl6efj-vPrRrn8-Pq2W69YyIUtLLGE9k4AV7XknqcGdAYuJkNSpnjuChVgMClOmDDeUD1Jwx3spGfQKgLE5ejpzXTQ7fUh-b9Kko_H670FMG21S_eAIuuIHLsG5np8gzhAiusWAremEgPrEHH0-sw4p_j5CLnoXjynU-JoKsqgZOqGqip5VNtViJBi09aWWM4aSjB81wfrUHf2-O9X05T_Tv6gfyl8Bd8iSUA
CitedBy_id crossref_primary_10_1155_2022_7566896
crossref_primary_10_1109_ACCESS_2024_3486552
crossref_primary_10_3389_fpls_2023_1280496
crossref_primary_10_31466_kfbd_1278278
Cites_doi 10.1109/BTAS.2012.6374605
10.1109/CVPR.2017.632
10.1109/TBIOM.2020.2973001
10.1016/j.cviu.2021.103218
10.1109/ICB.2013.6613019
10.1109/AVSS.2009.58
10.1109/ACCESS.2020.3031599
10.1016/j.inffus.2006.06.002
10.1016/j.jvcir.2019.05.001
10.1109/ICCV.2017.244
10.1016/j.imavis.2007.06.010
10.1109/BTAS.2010.5634507
10.1109/ICPR.2018.8545076
10.1007/s12530-020-09346-1
10.1109/ICPR.2010.374
10.1145/3422622
10.1016/j.dsp.2020.102809
10.20944/preprints202007.0479.v1
10.1016/j.cviu.2005.03.001
10.3390/s21092998
10.1109/TSMC.2014.2331215
10.1109/TPAMI.2010.180
10.1109/ICAASE51408.2020.9380127
10.1109/TIFS.2010.2054083
10.1371/journal.pone.0099212
10.1016/j.cognition.2021.104611
10.3390/s21030728
10.1109/ICB.2016.7550052
10.1155/2016/9682453
10.1109/FG.2011.5771395
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math10010004
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central - New (Subscription)
Technology collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database (ProQuest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database (subscription)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_572f47eddb464d4da11658f0ca566e02
10_3390_math10010004
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c367t-1c13b37e092b4572a05aec01672d9b4d10668f90239a4a24f764d4b773eb9ee33
IEDL.DBID BENPR
ISSN 2227-7390
IngestDate Wed Aug 27 01:27:49 EDT 2025
Fri Jul 25 12:03:59 EDT 2025
Tue Jul 01 02:58:07 EDT 2025
Thu Apr 24 23:08:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-1c13b37e092b4572a05aec01672d9b4d10668f90239a4a24f764d4b773eb9ee33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5763-570X
0000-0001-8996-7119
0000-0001-5909-0125
OpenAccessLink https://www.proquest.com/docview/2618239569?pq-origsite=%requestingapplication%
PQID 2618239569
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_572f47eddb464d4da11658f0ca566e02
proquest_journals_2618239569
crossref_citationtrail_10_3390_math10010004
crossref_primary_10_3390_math10010004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Khaldi (ref_22) 2020; 12
Singh (ref_12) 2009; 27
ref_36
ref_35
ref_34
ref_11
ref_32
Noyes (ref_14) 2021; 211
Singh (ref_1) 2010; 5
ref_30
Goodfellow (ref_19) 2020; 63
Cheema (ref_13) 2021; 208–209
ref_17
Afifi (ref_31) 2019; 62
ref_38
ref_15
ref_37
Singh (ref_8) 2008; 9
Min (ref_16) 2014; 44
ref_24
ref_23
ref_21
ref_20
Ahmad (ref_33) 2020; 8
Steiner (ref_25) 2016; 2016
ref_3
ref_2
ref_29
ref_28
ref_27
ref_26
Klare (ref_5) 2010; 33
ref_9
Taskiran (ref_10) 2020; 106
Zhang (ref_18) 2020; 2
Chen (ref_6) 2005; 99
ref_4
ref_7
References_xml – ident: ref_29
  doi: 10.1109/BTAS.2012.6374605
– ident: ref_32
  doi: 10.1109/CVPR.2017.632
– ident: ref_30
– volume: 2
  start-page: 182
  year: 2020
  ident: ref_18
  article-title: CASIA-SURF: A Large-Scale Multi-Modal Benchmark for Face Anti-Spoofing
  publication-title: IEEE Trans. Biom. Behav. Identity Sci.
  doi: 10.1109/TBIOM.2020.2973001
– volume: 208–209
  start-page: 103218
  year: 2021
  ident: ref_13
  article-title: Sejong Face Database: A Multi-Modal Disguise Face Database
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2021.103218
– ident: ref_15
  doi: 10.1109/ICB.2013.6613019
– ident: ref_28
  doi: 10.1109/AVSS.2009.58
– volume: 8
  start-page: 189891
  year: 2020
  ident: ref_33
  article-title: Image Classification Based on Automatic Neural Architecture Search Using Binary Crow Search Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031599
– ident: ref_34
– volume: 9
  start-page: 200
  year: 2008
  ident: ref_8
  article-title: Hierarchical Fusion of Multi-Spectral Face Images for Improved Recognition Performance
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2006.06.002
– volume: 62
  start-page: 77
  year: 2019
  ident: ref_31
  article-title: AFIF4: Deep Gender Classification Based on AdaBoost-Based Fusion of Isolated Facial Features and Foggy Faces
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2019.05.001
– ident: ref_23
  doi: 10.1109/ICCV.2017.244
– ident: ref_11
– volume: 27
  start-page: 245
  year: 2009
  ident: ref_12
  article-title: Face Recognition with Disguise and Single Gallery Images
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2007.06.010
– ident: ref_4
  doi: 10.1109/BTAS.2010.5634507
– ident: ref_26
  doi: 10.1109/ICPR.2018.8545076
– ident: ref_37
– volume: 12
  start-page: 923
  year: 2020
  ident: ref_22
  article-title: A New Framework for Grayscale Ear Images Recognition Using Generative Adversarial Networks under Unconstrained Conditions
  publication-title: Evol. Syst.
  doi: 10.1007/s12530-020-09346-1
– ident: ref_35
– ident: ref_7
  doi: 10.1109/ICPR.2010.374
– volume: 63
  start-page: 139
  year: 2020
  ident: ref_19
  article-title: Generative Adversarial Networks
  publication-title: Commun. ACM
  doi: 10.1145/3422622
– volume: 106
  start-page: 102809
  year: 2020
  ident: ref_10
  article-title: Face Recognition: Past, Present and Future (a Review)
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2020.102809
– ident: ref_9
  doi: 10.20944/preprints202007.0479.v1
– volume: 99
  start-page: 332
  year: 2005
  ident: ref_6
  article-title: IR and Visible Light Face Recognition
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2005.03.001
– ident: ref_21
  doi: 10.3390/s21092998
– ident: ref_27
– volume: 44
  start-page: 1534
  year: 2014
  ident: ref_16
  article-title: KinectfaceDB: A Kinect Database for Face Recognition
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2014.2331215
– volume: 33
  start-page: 639
  year: 2010
  ident: ref_5
  article-title: Matching Forensic Sketches to Mug Shot Photos
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.180
– ident: ref_20
  doi: 10.1109/ICAASE51408.2020.9380127
– volume: 5
  start-page: 441
  year: 2010
  ident: ref_1
  article-title: Plastic Surgery: A New Dimension to Face Recognition
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2010.2054083
– ident: ref_38
– ident: ref_17
  doi: 10.1371/journal.pone.0099212
– ident: ref_36
– volume: 211
  start-page: 104611
  year: 2021
  ident: ref_14
  article-title: Seeing through Disguise: Getting to Know You with a Deep Convolutional Neural Network
  publication-title: Cognition
  doi: 10.1016/j.cognition.2021.104611
– ident: ref_3
  doi: 10.3390/s21030728
– ident: ref_24
  doi: 10.1109/ICB.2016.7550052
– volume: 2016
  start-page: 9682453
  year: 2016
  ident: ref_25
  article-title: Design of an Active Multispectral SWIR Camera System for Skin Detection and Face Verification
  publication-title: J. Sens.
  doi: 10.1155/2016/9682453
– ident: ref_2
  doi: 10.1109/FG.2011.5771395
SSID ssj0000913849
Score 2.2113047
Snippet Applications for facial recognition have eased the process of personal identification. However, there are increasing concerns about the performance of these...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 4
SubjectTerms Algorithms
Automation
Cameras
Consistency
CycleGAN
disguised face
Face recognition
Facial recognition technology
Generative adversarial networks
Image filters
Mathematics
Methods
Object recognition
Spoofing
style transfer
Synthesis
synthetic database
synthetic faces
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygU5AEmFJHEbmyPpVBVCFigUrfIr5RKJUVNOvTfc5ekVRFCLAxZHPvinM_xd875O0KubMy4Fd4FUiY-4F6zQBrJA4DeBvnorMgqts-XZDDkj6POaCPVF8aE1fTAteLAYY8zDsKc4Ql33Gnki5FZaDUAEV_TSMKat-FMVd9gFTHJVR3pzsCvvwX89458Qwhivq1BFVX_jy9xtbz098legwtpt-7PAdny-SHZfV6TqhZHxNcU0RinTF-XOdyBcno_KcaLSeEd7WN0FcWNVdpbgpCgSsZZIChe0ifoCNW5g4t2F-UMhGKTCf4sR4Hd6Xg2h6Yfx2TYf3jrDYImS0JgWSLKILIRM0z4UMWGg7Z02NHe4umC2CnDHfh8icwUHmLVXMc8E6hHIwTzRnnP2AnZzme5PyXUq06spAAXx8LclgympBZhxpUwPHLGtsjNSm-pbSjEMZPFNAVXArWcbmq5Ra7XtT9r6oxf6t3hEKzrIOF1VQBmkDZmkP5lBi3SXg1g2szCIgXvUMJrdxJ19h_POCc7MR5-qDZg2mS7nC_8BUCS0lxW1vcFnqLeIA
  priority: 102
  providerName: Directory of Open Access Journals
Title Generating Synthetic Disguised Faces with Cycle-Consistency Loss and an Automated Filtering Algorithm
URI https://www.proquest.com/docview/2618239569
https://doaj.org/article/572f47eddb464d4da11658f0ca566e02
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxELZKuLSHCvpQU2jkAz1VFhvbu7ZPKFBShABVUCRuK782RKIbym4O-ffMbJxAhdrDXmyv5deMvxnb3xCy57mQXsXAtC4ik9EKpp2WDKC3Qz46r6qO7fOiOLmWpzf5TXK4Nela5Uondoo6zDz6yPcB6WsuAM2bg_s_DKNG4elqCqGxQTZBBeu8RzYPjy9-Xq69LMh6qaVZ3ngXYN_vAw68Rd4hBDN_7UUdZf8LjdxtM-Mt8jbhQzpaTug2eRXrd-TN-ZpctXlP4pIqGu8r06tFDTmQTr9Pm8l82sRAx3jLiqKDlR4toBLWBeVsEBwv6Bk0hNo6wEdH83YGleIvUzw0xwpHdxPodXv7-wO5Hh__OjphKVoC86JQLRv6oXBCxcxwJ3PFbZbb6PGVAQ_GyQC2X6Erg49ZrbRcVqqQASZEiehMjEJ8JL16VsdPhEaTc6MVmDoeZFwLEE2rskoa5eQwON8n31bjVvpEJY4RLe5KMClwlMvno9wnX9el75cUGv8od4hTsC6DxNddwuxhUiY5KqFjlYS1FZzE5geL9EG6yrwFXBoz3ie7qwkskzQ25dPa-fz_7B3ymuPzhs7Fskt67cM8fgHQ0boB2dDjH4O0vgad6f4IOpnY3A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaq9gAcEE8RKOADPSGrG9tZ24cKpY8opWmEoJV6W_zaNFLZtN2NUP4Uv5GZfQQQglsPe_F6Le94PP48Hn9DyDvPhfQqBqZ1GpmMVjDttGQAvR3y0XmV12yf03R8Lj9eDC42yI_uLgyGVXY2sTbUYeHRR74LSF9zAWjefLi-YZg1Ck9XuxQajVqcxNV32LKVe8eHML47nI-Ozg7GrM0qwLxIVcX6vi-cUDEx3MmB4jYZ2OgxGp8H42SAPVKqc4OXPq20XOYqlQE6rkR0JkZ0gILJ3wKYYWAWbe0fTT99Xnt1kGVTS9NE2Athkl3AnZfIc4Tg6Y-1r04R8NcKUC9ro0fkYYtH6bBRoMdkIxZPyIPTNZlr-ZTEhpoa46Ppl1UBb6CcHs7L2XJexkBHGNVF0aFLD1bQCKuTgJYIxld0Ah2htgjw0OGyWkCj-MkcD-mxweHVDKRcXX57Rs7vRI7PyWaxKOILQqMZcKMVbK082BQtwBRYleTSKCf7wfkeed_JLfMtdTlm0LjKYAuDUs5-l3KP7KxrXzeUHf-ot49DsK6DRNt1weJ2lrXzNoMfyyXocnASux8s0hXpPPEWcHBMeI9sdwOYtbO_zH7p6sv_v35L7o3PTifZ5Hh68orc53i1onbvbJPN6nYZXwPgqdybVsso-XrXiv0TksESmQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqVEJwQDxFSgEf6AlZ2djO2j4glDaNWlqiCqjU2-LXppHKpnQ3Qvlr_Dpm9hFACG497MX2Wuvx7PjzePwNIa89F9KrGJjWaWQyWsG005IB9HbIR-dVXrN9ztKjc_n-YnSxRX50d2EwrLKzibWhDkuPPvIBIH3NBaB5M8jbsIizyfTd9TeGGaTwpLVLp9GoyElcf4ftW_n2eAJzvcf59PDzwRFrMwwwL1JVsaEfCidUTAx3cqS4TUY2eozM58E4GWC_lOrc4AVQKy2XuUplgEEoEZ2JEZ2hYP63FayKuke29w9nZx83Hh5k3NTSNNH2QphkABj0EjmPEEj9sQ7W6QL-Wg3qJW76gNxvsSkdN8r0kGzF4hG592FD7Fo-JrGhqcZYafppXUANlNPJopyvFmUMdIoRXhSdu_RgDZ2wOiFoicB8TU_hQ6gtAjx0vKqW0Cm-ssADe-xwfDUHKVeXX5-Q81uR41PSK5ZFfEZoNCNutIJtlgf7ogWYBauSXBrl5DA43ydvOrllvqUxx2waVxlsZ1DK2e9S7pO9Tevrhr7jH-32cQo2bZB0uy5Y3syz9h_OYGC5BL0OTuLnB4vURTpPvAVMHBPeJ7vdBGatJSizX3q78__qV-QOKHR2ejw7eU7ucrxlUXt6dkmvulnFF4B9KveyVTJKvty2Xv8EFNIWxQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generating+Synthetic+Disguised+Faces+with+Cycle-Consistency+Loss+and+an+Automated+Filtering+Algorithm&rft.jtitle=Mathematics+%28Basel%29&rft.au=Ahmad%2C+Mobeen&rft.au=Cheema%2C+Usman&rft.au=Abdullah%2C+Muhammad&rft.au=Moon%2C+Seungbin&rft.date=2022-01-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=10&rft.issue=1&rft.spage=4&rft_id=info:doi/10.3390%2Fmath10010004&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon