Generating Synthetic Disguised Faces with Cycle-Consistency Loss and an Automated Filtering Algorithm
Applications for facial recognition have eased the process of personal identification. However, there are increasing concerns about the performance of these systems against the challenges of presentation attacks, spoofing, and disguises. One of the reasons for the lack of a robustness of facial reco...
Saved in:
Published in | Mathematics (Basel) Vol. 10; no. 1; p. 4 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2227-7390 2227-7390 |
DOI | 10.3390/math10010004 |
Cover
Loading…
Abstract | Applications for facial recognition have eased the process of personal identification. However, there are increasing concerns about the performance of these systems against the challenges of presentation attacks, spoofing, and disguises. One of the reasons for the lack of a robustness of facial recognition algorithms in these challenges is the limited amount of suitable training data. This lack of training data can be addressed by creating a database with the subjects having several disguises, but this is an expensive process. Another approach is to use generative adversarial networks to synthesize facial images with the required disguise add-ons. In this paper, we present a synthetic disguised face database for the training and evaluation of robust facial recognition algorithms. Furthermore, we present a methodology for generating synthetic facial images for the desired disguise add-ons. Cycle-consistency loss is used to generate facial images with disguises, e.g., fake beards, makeup, and glasses, from normal face images. Additionally, an automated filtering scheme is presented for automated data filtering from the synthesized faces. Finally, facial recognition experiments are performed on the proposed synthetic data to show the efficacy of the proposed methodology and the presented database. Training on the proposed database achieves an improvement in the rank-1 recognition rate (68.3%), over a model trained on the original nondisguised face images. |
---|---|
AbstractList | Applications for facial recognition have eased the process of personal identification. However, there are increasing concerns about the performance of these systems against the challenges of presentation attacks, spoofing, and disguises. One of the reasons for the lack of a robustness of facial recognition algorithms in these challenges is the limited amount of suitable training data. This lack of training data can be addressed by creating a database with the subjects having several disguises, but this is an expensive process. Another approach is to use generative adversarial networks to synthesize facial images with the required disguise add-ons. In this paper, we present a synthetic disguised face database for the training and evaluation of robust facial recognition algorithms. Furthermore, we present a methodology for generating synthetic facial images for the desired disguise add-ons. Cycle-consistency loss is used to generate facial images with disguises, e.g., fake beards, makeup, and glasses, from normal face images. Additionally, an automated filtering scheme is presented for automated data filtering from the synthesized faces. Finally, facial recognition experiments are performed on the proposed synthetic data to show the efficacy of the proposed methodology and the presented database. Training on the proposed database achieves an improvement in the rank-1 recognition rate (68.3%), over a model trained on the original nondisguised face images. |
Author | Ahmad, Mobeen Han, Dongil Moon, Seungbin Abdullah, Muhammad Cheema, Usman |
Author_xml | – sequence: 1 givenname: Mobeen orcidid: 0000-0001-5909-0125 surname: Ahmad fullname: Ahmad, Mobeen – sequence: 2 givenname: Usman orcidid: 0000-0001-8996-7119 surname: Cheema fullname: Cheema, Usman – sequence: 3 givenname: Muhammad surname: Abdullah fullname: Abdullah, Muhammad – sequence: 4 givenname: Seungbin surname: Moon fullname: Moon, Seungbin – sequence: 5 givenname: Dongil orcidid: 0000-0001-5763-570X surname: Han fullname: Han, Dongil |
BookMark | eNptkV9rWyEYxqWk0C7tXT_Agd3urP47Gi9DtnaFwC7WXotH35MYTjRTwzjfvmbpoIyCoujz_Hx8309oFmIAhO4I_sqYwvd7U7YE4zowv0DXlFLZynoxe7e_Qrc576oCK8IWXF0jeIQAyRQfNs2vKZQtFG-bbz5vjj6Dax6Mhdz88WXbrCY7QruKIftcINipWcecGxNcnc3yWGKNcLL4sUA6AZfjJqZq3d-gy8GMGW7f1jl6efj-vPrRrn8-Pq2W69YyIUtLLGE9k4AV7XknqcGdAYuJkNSpnjuChVgMClOmDDeUD1Jwx3spGfQKgLE5ejpzXTQ7fUh-b9Kko_H670FMG21S_eAIuuIHLsG5np8gzhAiusWAremEgPrEHH0-sw4p_j5CLnoXjynU-JoKsqgZOqGqip5VNtViJBi09aWWM4aSjB81wfrUHf2-O9X05T_Tv6gfyl8Bd8iSUA |
CitedBy_id | crossref_primary_10_1155_2022_7566896 crossref_primary_10_1109_ACCESS_2024_3486552 crossref_primary_10_3389_fpls_2023_1280496 crossref_primary_10_31466_kfbd_1278278 |
Cites_doi | 10.1109/BTAS.2012.6374605 10.1109/CVPR.2017.632 10.1109/TBIOM.2020.2973001 10.1016/j.cviu.2021.103218 10.1109/ICB.2013.6613019 10.1109/AVSS.2009.58 10.1109/ACCESS.2020.3031599 10.1016/j.inffus.2006.06.002 10.1016/j.jvcir.2019.05.001 10.1109/ICCV.2017.244 10.1016/j.imavis.2007.06.010 10.1109/BTAS.2010.5634507 10.1109/ICPR.2018.8545076 10.1007/s12530-020-09346-1 10.1109/ICPR.2010.374 10.1145/3422622 10.1016/j.dsp.2020.102809 10.20944/preprints202007.0479.v1 10.1016/j.cviu.2005.03.001 10.3390/s21092998 10.1109/TSMC.2014.2331215 10.1109/TPAMI.2010.180 10.1109/ICAASE51408.2020.9380127 10.1109/TIFS.2010.2054083 10.1371/journal.pone.0099212 10.1016/j.cognition.2021.104611 10.3390/s21030728 10.1109/ICB.2016.7550052 10.1155/2016/9682453 10.1109/FG.2011.5771395 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.3390/math10010004 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central - New (Subscription) Technology collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database (subscription) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_572f47eddb464d4da11658f0ca566e02 10_3390_math10010004 |
GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c367t-1c13b37e092b4572a05aec01672d9b4d10668f90239a4a24f764d4b773eb9ee33 |
IEDL.DBID | BENPR |
ISSN | 2227-7390 |
IngestDate | Wed Aug 27 01:27:49 EDT 2025 Fri Jul 25 12:03:59 EDT 2025 Tue Jul 01 02:58:07 EDT 2025 Thu Apr 24 23:08:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-1c13b37e092b4572a05aec01672d9b4d10668f90239a4a24f764d4b773eb9ee33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5763-570X 0000-0001-8996-7119 0000-0001-5909-0125 |
OpenAccessLink | https://www.proquest.com/docview/2618239569?pq-origsite=%requestingapplication% |
PQID | 2618239569 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_572f47eddb464d4da11658f0ca566e02 proquest_journals_2618239569 crossref_citationtrail_10_3390_math10010004 crossref_primary_10_3390_math10010004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Khaldi (ref_22) 2020; 12 Singh (ref_12) 2009; 27 ref_36 ref_35 ref_34 ref_11 ref_32 Noyes (ref_14) 2021; 211 Singh (ref_1) 2010; 5 ref_30 Goodfellow (ref_19) 2020; 63 Cheema (ref_13) 2021; 208–209 ref_17 Afifi (ref_31) 2019; 62 ref_38 ref_15 ref_37 Singh (ref_8) 2008; 9 Min (ref_16) 2014; 44 ref_24 ref_23 ref_21 ref_20 Ahmad (ref_33) 2020; 8 Steiner (ref_25) 2016; 2016 ref_3 ref_2 ref_29 ref_28 ref_27 ref_26 Klare (ref_5) 2010; 33 ref_9 Taskiran (ref_10) 2020; 106 Zhang (ref_18) 2020; 2 Chen (ref_6) 2005; 99 ref_4 ref_7 |
References_xml | – ident: ref_29 doi: 10.1109/BTAS.2012.6374605 – ident: ref_32 doi: 10.1109/CVPR.2017.632 – ident: ref_30 – volume: 2 start-page: 182 year: 2020 ident: ref_18 article-title: CASIA-SURF: A Large-Scale Multi-Modal Benchmark for Face Anti-Spoofing publication-title: IEEE Trans. Biom. Behav. Identity Sci. doi: 10.1109/TBIOM.2020.2973001 – volume: 208–209 start-page: 103218 year: 2021 ident: ref_13 article-title: Sejong Face Database: A Multi-Modal Disguise Face Database publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2021.103218 – ident: ref_15 doi: 10.1109/ICB.2013.6613019 – ident: ref_28 doi: 10.1109/AVSS.2009.58 – volume: 8 start-page: 189891 year: 2020 ident: ref_33 article-title: Image Classification Based on Automatic Neural Architecture Search Using Binary Crow Search Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3031599 – ident: ref_34 – volume: 9 start-page: 200 year: 2008 ident: ref_8 article-title: Hierarchical Fusion of Multi-Spectral Face Images for Improved Recognition Performance publication-title: Inf. Fusion doi: 10.1016/j.inffus.2006.06.002 – volume: 62 start-page: 77 year: 2019 ident: ref_31 article-title: AFIF4: Deep Gender Classification Based on AdaBoost-Based Fusion of Isolated Facial Features and Foggy Faces publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2019.05.001 – ident: ref_23 doi: 10.1109/ICCV.2017.244 – ident: ref_11 – volume: 27 start-page: 245 year: 2009 ident: ref_12 article-title: Face Recognition with Disguise and Single Gallery Images publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2007.06.010 – ident: ref_4 doi: 10.1109/BTAS.2010.5634507 – ident: ref_26 doi: 10.1109/ICPR.2018.8545076 – ident: ref_37 – volume: 12 start-page: 923 year: 2020 ident: ref_22 article-title: A New Framework for Grayscale Ear Images Recognition Using Generative Adversarial Networks under Unconstrained Conditions publication-title: Evol. Syst. doi: 10.1007/s12530-020-09346-1 – ident: ref_35 – ident: ref_7 doi: 10.1109/ICPR.2010.374 – volume: 63 start-page: 139 year: 2020 ident: ref_19 article-title: Generative Adversarial Networks publication-title: Commun. ACM doi: 10.1145/3422622 – volume: 106 start-page: 102809 year: 2020 ident: ref_10 article-title: Face Recognition: Past, Present and Future (a Review) publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2020.102809 – ident: ref_9 doi: 10.20944/preprints202007.0479.v1 – volume: 99 start-page: 332 year: 2005 ident: ref_6 article-title: IR and Visible Light Face Recognition publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2005.03.001 – ident: ref_21 doi: 10.3390/s21092998 – ident: ref_27 – volume: 44 start-page: 1534 year: 2014 ident: ref_16 article-title: KinectfaceDB: A Kinect Database for Face Recognition publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2014.2331215 – volume: 33 start-page: 639 year: 2010 ident: ref_5 article-title: Matching Forensic Sketches to Mug Shot Photos publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.180 – ident: ref_20 doi: 10.1109/ICAASE51408.2020.9380127 – volume: 5 start-page: 441 year: 2010 ident: ref_1 article-title: Plastic Surgery: A New Dimension to Face Recognition publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2010.2054083 – ident: ref_38 – ident: ref_17 doi: 10.1371/journal.pone.0099212 – ident: ref_36 – volume: 211 start-page: 104611 year: 2021 ident: ref_14 article-title: Seeing through Disguise: Getting to Know You with a Deep Convolutional Neural Network publication-title: Cognition doi: 10.1016/j.cognition.2021.104611 – ident: ref_3 doi: 10.3390/s21030728 – ident: ref_24 doi: 10.1109/ICB.2016.7550052 – volume: 2016 start-page: 9682453 year: 2016 ident: ref_25 article-title: Design of an Active Multispectral SWIR Camera System for Skin Detection and Face Verification publication-title: J. Sens. doi: 10.1155/2016/9682453 – ident: ref_2 doi: 10.1109/FG.2011.5771395 |
SSID | ssj0000913849 |
Score | 2.2113047 |
Snippet | Applications for facial recognition have eased the process of personal identification. However, there are increasing concerns about the performance of these... |
SourceID | doaj proquest crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 4 |
SubjectTerms | Algorithms Automation Cameras Consistency CycleGAN disguised face Face recognition Facial recognition technology Generative adversarial networks Image filters Mathematics Methods Object recognition Spoofing style transfer Synthesis synthetic database synthetic faces Training |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIpygU5AEmFJHEbmyPpVBVCFigUrfIr5RKJUVNOvTfc5ekVRFCLAxZHPvinM_xd875O0KubMy4Fd4FUiY-4F6zQBrJA4DeBvnorMgqts-XZDDkj6POaCPVF8aE1fTAteLAYY8zDsKc4Ql33Gnki5FZaDUAEV_TSMKat-FMVd9gFTHJVR3pzsCvvwX89458Qwhivq1BFVX_jy9xtbz098legwtpt-7PAdny-SHZfV6TqhZHxNcU0RinTF-XOdyBcno_KcaLSeEd7WN0FcWNVdpbgpCgSsZZIChe0ifoCNW5g4t2F-UMhGKTCf4sR4Hd6Xg2h6Yfx2TYf3jrDYImS0JgWSLKILIRM0z4UMWGg7Z02NHe4umC2CnDHfh8icwUHmLVXMc8E6hHIwTzRnnP2AnZzme5PyXUq06spAAXx8LclgympBZhxpUwPHLGtsjNSm-pbSjEMZPFNAVXArWcbmq5Ra7XtT9r6oxf6t3hEKzrIOF1VQBmkDZmkP5lBi3SXg1g2szCIgXvUMJrdxJ19h_POCc7MR5-qDZg2mS7nC_8BUCS0lxW1vcFnqLeIA priority: 102 providerName: Directory of Open Access Journals |
Title | Generating Synthetic Disguised Faces with Cycle-Consistency Loss and an Automated Filtering Algorithm |
URI | https://www.proquest.com/docview/2618239569 https://doaj.org/article/572f47eddb464d4da11658f0ca566e02 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxELZKuLSHCvpQU2jkAz1VFhvbu7ZPKFBShABVUCRuK782RKIbym4O-ffMbJxAhdrDXmyv5deMvxnb3xCy57mQXsXAtC4ik9EKpp2WDKC3Qz46r6qO7fOiOLmWpzf5TXK4Nela5Uondoo6zDz6yPcB6WsuAM2bg_s_DKNG4elqCqGxQTZBBeu8RzYPjy9-Xq69LMh6qaVZ3ngXYN_vAw68Rd4hBDN_7UUdZf8LjdxtM-Mt8jbhQzpaTug2eRXrd-TN-ZpctXlP4pIqGu8r06tFDTmQTr9Pm8l82sRAx3jLiqKDlR4toBLWBeVsEBwv6Bk0hNo6wEdH83YGleIvUzw0xwpHdxPodXv7-wO5Hh__OjphKVoC86JQLRv6oXBCxcxwJ3PFbZbb6PGVAQ_GyQC2X6Erg49ZrbRcVqqQASZEiehMjEJ8JL16VsdPhEaTc6MVmDoeZFwLEE2rskoa5eQwON8n31bjVvpEJY4RLe5KMClwlMvno9wnX9el75cUGv8od4hTsC6DxNddwuxhUiY5KqFjlYS1FZzE5geL9EG6yrwFXBoz3ie7qwkskzQ25dPa-fz_7B3ymuPzhs7Fskt67cM8fgHQ0boB2dDjH4O0vgad6f4IOpnY3A |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaq9gAcEE8RKOADPSGrG9tZ24cKpY8opWmEoJV6W_zaNFLZtN2NUP4Uv5GZfQQQglsPe_F6Le94PP48Hn9DyDvPhfQqBqZ1GpmMVjDttGQAvR3y0XmV12yf03R8Lj9eDC42yI_uLgyGVXY2sTbUYeHRR74LSF9zAWjefLi-YZg1Ck9XuxQajVqcxNV32LKVe8eHML47nI-Ozg7GrM0qwLxIVcX6vi-cUDEx3MmB4jYZ2OgxGp8H42SAPVKqc4OXPq20XOYqlQE6rkR0JkZ0gILJ3wKYYWAWbe0fTT99Xnt1kGVTS9NE2Athkl3AnZfIc4Tg6Y-1r04R8NcKUC9ro0fkYYtH6bBRoMdkIxZPyIPTNZlr-ZTEhpoa46Ppl1UBb6CcHs7L2XJexkBHGNVF0aFLD1bQCKuTgJYIxld0Ah2htgjw0OGyWkCj-MkcD-mxweHVDKRcXX57Rs7vRI7PyWaxKOILQqMZcKMVbK082BQtwBRYleTSKCf7wfkeed_JLfMtdTlm0LjKYAuDUs5-l3KP7KxrXzeUHf-ot49DsK6DRNt1weJ2lrXzNoMfyyXocnASux8s0hXpPPEWcHBMeI9sdwOYtbO_zH7p6sv_v35L7o3PTifZ5Hh68orc53i1onbvbJPN6nYZXwPgqdybVsso-XrXiv0TksESmQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaqVEJwQDxFSgEf6AlZ2djO2j4glDaNWlqiCqjU2-LXppHKpnQ3Qvlr_Dpm9hFACG497MX2Wuvx7PjzePwNIa89F9KrGJjWaWQyWsG005IB9HbIR-dVXrN9ztKjc_n-YnSxRX50d2EwrLKzibWhDkuPPvIBIH3NBaB5M8jbsIizyfTd9TeGGaTwpLVLp9GoyElcf4ftW_n2eAJzvcf59PDzwRFrMwwwL1JVsaEfCidUTAx3cqS4TUY2eozM58E4GWC_lOrc4AVQKy2XuUplgEEoEZ2JEZ2hYP63FayKuke29w9nZx83Hh5k3NTSNNH2QphkABj0EjmPEEj9sQ7W6QL-Wg3qJW76gNxvsSkdN8r0kGzF4hG592FD7Fo-JrGhqcZYafppXUANlNPJopyvFmUMdIoRXhSdu_RgDZ2wOiFoicB8TU_hQ6gtAjx0vKqW0Cm-ssADe-xwfDUHKVeXX5-Q81uR41PSK5ZFfEZoNCNutIJtlgf7ogWYBauSXBrl5DA43ydvOrllvqUxx2waVxlsZ1DK2e9S7pO9Tevrhr7jH-32cQo2bZB0uy5Y3syz9h_OYGC5BL0OTuLnB4vURTpPvAVMHBPeJ7vdBGatJSizX3q78__qV-QOKHR2ejw7eU7ucrxlUXt6dkmvulnFF4B9KveyVTJKvty2Xv8EFNIWxQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generating+Synthetic+Disguised+Faces+with+Cycle-Consistency+Loss+and+an+Automated+Filtering+Algorithm&rft.jtitle=Mathematics+%28Basel%29&rft.au=Ahmad%2C+Mobeen&rft.au=Cheema%2C+Usman&rft.au=Abdullah%2C+Muhammad&rft.au=Moon%2C+Seungbin&rft.date=2022-01-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=10&rft.issue=1&rft.spage=4&rft_id=info:doi/10.3390%2Fmath10010004&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |