Spring-based mechanical metamaterials with deep-learning-accelerated design
Mechanical metamaterials exhibit unique properties that depend on their microstructure and surpass those of their constituent materials. Flexible mechanical metamaterials, in particular, hold significant potential for applications requiring substantial deformations, such as soft robotics and energy...
Saved in:
Published in | Materials & design Vol. 252; p. 113800 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.04.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mechanical metamaterials exhibit unique properties that depend on their microstructure and surpass those of their constituent materials. Flexible mechanical metamaterials, in particular, hold significant potential for applications requiring substantial deformations, such as soft robotics and energy absorption. In this study, we proposed a collection of flexible mechanical metamaterials discretely assembled using structural spring elements. These spring elements enhance both flexibility and reversibility, allowing the materials to withstand large deformations. The geometric regularity of the metamaterials enables zero-shot learning, allowing deep learning frameworks to address property prediction and inverse design problems beyond the training dataset. Using a property-prediction model, the effective mechanical properties of these metamaterials can be accurately predicted based on specified design parameters. Furthermore, an inverse-design model enables the direct generation of mechanical metamaterials with desired target properties, even outside the training dataspace, in the range of Young's modulus E ∈ (0, 350) kPa and Poisson's ratio ν ∈ (-0.12, 0.12). The properties of these inversely designed metamaterials are analyzed through finite element method simulations and mechanical testing. The deep learning-accelerated design approach not only streamlines the development process but also provides a framework for advancing metamaterial design, encompassing property prediction and inverse design.
•Developed novel, flexible, and resilient mechanical metamaterials using spring element assemblies.•Demonstrated rapid, zero-shot property prediction and inverse design of these metamaterials via deep learning.•Validated deep learning predictions through simulations and experiments. |
---|---|
AbstractList | Mechanical metamaterials exhibit unique properties that depend on their microstructure and surpass those of their constituent materials. Flexible mechanical metamaterials, in particular, hold significant potential for applications requiring substantial deformations, such as soft robotics and energy absorption. In this study, we proposed a collection of flexible mechanical metamaterials discretely assembled using structural spring elements. These spring elements enhance both flexibility and reversibility, allowing the materials to withstand large deformations. The geometric regularity of the metamaterials enables zero-shot learning, allowing deep learning frameworks to address property prediction and inverse design problems beyond the training dataset. Using a property-prediction model, the effective mechanical properties of these metamaterials can be accurately predicted based on specified design parameters. Furthermore, an inverse-design model enables the direct generation of mechanical metamaterials with desired target properties, even outside the training dataspace, in the range of Young's modulus E ∈ (0, 350) kPa and Poisson's ratio ν ∈ (-0.12, 0.12). The properties of these inversely designed metamaterials are analyzed through finite element method simulations and mechanical testing. The deep learning-accelerated design approach not only streamlines the development process but also provides a framework for advancing metamaterial design, encompassing property prediction and inverse design.
•Developed novel, flexible, and resilient mechanical metamaterials using spring element assemblies.•Demonstrated rapid, zero-shot property prediction and inverse design of these metamaterials via deep learning.•Validated deep learning predictions through simulations and experiments. Mechanical metamaterials exhibit unique properties that depend on their microstructure and surpass those of their constituent materials. Flexible mechanical metamaterials, in particular, hold significant potential for applications requiring substantial deformations, such as soft robotics and energy absorption. In this study, we proposed a collection of flexible mechanical metamaterials discretely assembled using structural spring elements. These spring elements enhance both flexibility and reversibility, allowing the materials to withstand large deformations. The geometric regularity of the metamaterials enables zero-shot learning, allowing deep learning frameworks to address property prediction and inverse design problems beyond the training dataset. Using a property-prediction model, the effective mechanical properties of these metamaterials can be accurately predicted based on specified design parameters. Furthermore, an inverse-design model enables the direct generation of mechanical metamaterials with desired target properties, even outside the training dataspace, in the range of Young's modulus E ∈ (0, 350) kPa and Poisson's ratio ν ∈ (-0.12, 0.12). The properties of these inversely designed metamaterials are analyzed through finite element method simulations and mechanical testing. The deep learning-accelerated design approach not only streamlines the development process but also provides a framework for advancing metamaterial design, encompassing property prediction and inverse design. |
ArticleNumber | 113800 |
Author | Zheng, Xiaoyang Zhou, Jiaxin Guo, Xiaofeng Yi, Yong Watanabe, Ikumu Yamada, Takayuki |
Author_xml | – sequence: 1 givenname: Xiaofeng orcidid: 0000-0003-1971-7442 surname: Guo fullname: Guo, Xiaofeng organization: School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China – sequence: 2 givenname: Xiaoyang orcidid: 0000-0003-1452-5855 surname: Zheng fullname: Zheng, Xiaoyang email: xzheng@g.ecc.u-tokyo.ac.jp organization: Institute of Engineering Innovation, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan – sequence: 3 givenname: Jiaxin orcidid: 0000-0001-7681-1668 surname: Zhou fullname: Zhou, Jiaxin organization: Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan – sequence: 4 givenname: Takayuki orcidid: 0000-0002-5349-6690 surname: Yamada fullname: Yamada, Takayuki organization: Institute of Engineering Innovation, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan – sequence: 5 givenname: Yong orcidid: 0000-0003-0627-5446 surname: Yi fullname: Yi, Yong email: yiyong@swust.edu.cn organization: School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China – sequence: 6 givenname: Ikumu orcidid: 0000-0002-7693-1675 surname: Watanabe fullname: Watanabe, Ikumu email: WATANABE.Ikumu@nims.go.jp organization: Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan |
BookMark | eNp9kMtOwzAQRb0oEm3hD1j0B1L8SuxskFDFS1RiAaytiT1uHaVJZUcg_h6XIJasZjQz9-jOXZBZP_RIyBWja0ZZdd2uDzA6TGtOeblmTGhKZ2ROeSULxlV5ThYptZRyroSck-fXYwz9rmggoVsd0O6hDxa63I6QSRgDdGn1Gcb9yiEeiw4h9icFWIsdxnzi8iaFXX9Bznw-xsvfuiTv93dvm8di-_LwtLndFlZUaiyYVihKtFr5BkpV1xyxapx0mlNVMt1YX1NoQHjvdd4Kh8oyaZ2voXLSiyV5mrhugNZk_weIX2aAYH4GQ9wZiGOwHRqfXVKhK6zBSyVr7YBrUVvtfakEqMySE8vGIaWI_o_HqDkFalozBWpOgZop0Cy7mWSY__wIGE2yAXuLLkS0YzYS_gd8AxrLhjU |
Cites_doi | 10.1016/j.matdes.2020.109098 10.1126/scirobotics.adi2746 10.1073/pnas.2111505119 10.1038/s41467-020-17947-2 10.1016/j.matdes.2022.111497 10.1016/j.compositesb.2020.108501 10.1038/s41586-020-03123-5 10.1038/nature18960 10.1002/adma.202210993 10.1016/j.compstruct.2023.116800 10.1038/s41467-023-40854-1 10.1016/j.ijmecsci.2022.107524 10.1038/natrevmats.2017.66 10.1016/j.matdes.2021.110178 10.1126/science.1211649 10.1007/s40684-023-00549-w 10.1126/sciadv.1500778 10.1039/D4MH00906A 10.1016/j.matdes.2020.109313 10.1038/s42256-023-00676-8 10.1002/adma.202302530 10.1038/s41467-023-41679-8 10.1016/j.mattod.2021.04.019 10.1126/sciadv.abc9943 10.1002/advs.202001384 10.1109/TMECH.2017.2697310 10.1038/s41524-020-0341-6 10.1002/adfm.202107795 10.1016/j.conbuildmat.2023.131181 10.1016/j.ijmecsci.2018.10.028 10.1126/sciadv.aaz4169 10.1016/j.matdes.2023.111661 10.1038/s41467-022-28694-x 10.1002/adma.202305254 10.1088/1361-665X/aaa61c 10.1080/14686996.2022.2157682 10.1002/adfm.201909033 10.1016/j.mattod.2018.11.004 10.1002/adma.201603959 10.1016/j.matdes.2023.112548 10.1002/nme.3264 |
ContentType | Journal Article |
Copyright | 2025 The Author(s) |
Copyright_xml | – notice: 2025 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.matdes.2025.113800 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | oai_doaj_org_article_facc0386e9af47498da2839c8ff573a7 10_1016_j_matdes_2025_113800 S0264127525002205 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 29M 4.4 457 4G. 5GY 5VS 6I. 7-5 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAFTH AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADVLN AEBSH AEIPS AEKER AEZYN AFJKZ AFRZQ AFTJW AGHFR AGUBO AHHHB AHJVU AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BCNDV BJAXD BKOJK BLXMC BNPGV EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 O9- OAUVE OK1 P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEW SMS SPC SSH SSM SST SSZ T5K WUQ ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS |
ID | FETCH-LOGICAL-c367t-187e35ec87fba57992ee6bd4d8207518bcf90aba3fff89923de7c14cdf9a6d4f3 |
IEDL.DBID | AIKHN |
ISSN | 0264-1275 |
IngestDate | Tue Aug 26 23:52:24 EDT 2025 Tue Jul 01 04:56:17 EDT 2025 Sun Apr 06 06:53:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Soft robotics Inverse design Flexibility Mechanical metamaterial |
Language | English |
License | This is an open access article under the CC BY-NC license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-187e35ec87fba57992ee6bd4d8207518bcf90aba3fff89923de7c14cdf9a6d4f3 |
ORCID | 0000-0002-5349-6690 0000-0002-7693-1675 0000-0003-1971-7442 0000-0003-1452-5855 0000-0001-7681-1668 0000-0003-0627-5446 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0264127525002205 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_facc0386e9af47498da2839c8ff573a7 crossref_primary_10_1016_j_matdes_2025_113800 elsevier_sciencedirect_doi_10_1016_j_matdes_2025_113800 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2025 2025-04-00 2025-04-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: April 2025 |
PublicationDecade | 2020 |
PublicationTitle | Materials & design |
PublicationYear | 2025 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Zheng, Watanabe, Wang, Chen, Naito (br0090) 2024; 237 Zheng, Uto, Hu, Chen, Naito, Watanabe (br0120) 2022; 29 Nazir, Gokcekaya, Billah, Ertugrul, Jiang, Sun, Hussain (br0270) 2023; 226 Huang, Fleming, Clark, Marussi, Fezzaa, Thiyagalingam, Leung, Lee (br0280) 2022; 13 Zheng, Watanabe, Paik, Li, Guo, Naito (br0370) 2024 Teng, Ren, Zhang, Jiang, Pan, Zhang, Zhang, Xie (br0210) 2022; 229 Bertoldi, Vitelli, Christensen, Van Hecke (br0190) 2017; 2 Akamatsu, Noguchi, Matsushima, Sato, Yanagimoto, Yamada (br0030) 2023; 311 Watanabe, Setoyama, Nagasako, Iwata, Nakanishi (br0460) 2012; 89 Pyo, Park (br0130) 2024; 11 Coulais, Teomy, De Reus, Shokef, Van Hecke (br0180) 2016; 535 Bonfanti, Guerra, Font-Clos, Rayneau-Kirkhope, Zapperi (br0230) 2020; 11 Belke, Paik (br0330) 2017; 22 Watanabe, Yamanaka (br0450) 2019; 150 Zheng, Guo, Watanabe (br0050) 2021; 198 Belke, Holdcroft, Sigrist, Paik (br0340) 2023; 5 Zheng, Zhang, Chen, Watanabe (br0010) 2023; 35 Zheng, Chen, Guo, Samitsu, Watanabe (br0400) 2021; 211 Bastek, Kumar, Telgen, Glaesener, Kochmann (br0360) 2022; 119 Schaedler, Jacobsen, Torrents, Sorensen, Lian, Greer, Valdevit, Carter (br0060) 2011; 334 Jenett, Cameron, Tourlomousis, Rubio, Ochalek, Gershenfeld (br0290) 2020; 6 Kumar, Tan, Zheng, Kochmann (br0430) 2020; 6 Mark, Palagi, Qiu, Fischer (br0220) 2016 Lang, Jiang, Teng, Zhang, Han, Hao, Xu, Ni, Xie, Qin (br0300) 2023; 378 Oliveri, Overvelde (br0420) 2020; 30 Wu, Zhang, Yang, Jiang, Xu, Tan, Su (br0150) 2023; 76 Churchill, Shahan, Smith, Keefe, McKnight (br0100) 2016; 2 Hewage, Alderson, Alderson, Scarpa (br0080) 2016; 28 Gregg, Catanoso, Formoso, Kostitsyna, Ochalek, Olatunde, Park, Sebastianelli, Taylor, Trinh (br0320) 2024; 9 Lee, Chen, Wang, Chan, Chen (br0350) 2024; 36 Tomita, Shimanuki, Nishigaki, Oyama, Sasagawa, Murai, Umemoto (br0160) 2023; 225 Ren, Das, Tran, Ngo, Xie (br0040) 2018; 27 Han, Kang, Kang (br0240) 2019; 26 Zheng, Chen, Jiang, Naito, Watanabe (br0410) 2023; 24 Jiao, Mueller, Raney, Zheng, Alavi (br0020) 2023; 14 He, Wang, Shen, Xia, Xiong (br0310) 2024 Kollmann, Abueidda, Koric, Guleryuz, Sobh (br0390) 2020; 196 Ha, Yao, Xu, Liu, Liu, Elkins, Kile, Deshpande, Kong, Bauchy (br0440) 2023; 14 Askari, Hutchins, Thomas, Astolfi, Watson, Abdi, Ricci, Laureti, Nie, Freear (br0250) 2020; 36 Chen, Pauly, Reis (br0110) 2021; 589 Mao, He, Zhao (br0380) 2020; 6 Chen, Chen, Du, Liu, Li, Fang (br0070) 2021; 204 Xin, Liu, Liu, Leng (br0170) 2022; 32 Dudek, Iglesias Martínez, Ulliac, Hirsinger, Wang, Laude, Kadic (br0140) 2023; 35 Fan, Zhang, Wei, Zhang, Choi, Song, Shi (br0260) 2021; 50 Pishvar, Harne (br0200) 2020; 7 Zheng (10.1016/j.matdes.2025.113800_br0050) 2021; 198 Gregg (10.1016/j.matdes.2025.113800_br0320) 2024; 9 Nazir (10.1016/j.matdes.2025.113800_br0270) 2023; 226 Mao (10.1016/j.matdes.2025.113800_br0380) 2020; 6 Zheng (10.1016/j.matdes.2025.113800_br0090) 2024; 237 Churchill (10.1016/j.matdes.2025.113800_br0100) 2016; 2 Xin (10.1016/j.matdes.2025.113800_br0170) 2022; 32 Bertoldi (10.1016/j.matdes.2025.113800_br0190) 2017; 2 Lee (10.1016/j.matdes.2025.113800_br0350) 2024; 36 Akamatsu (10.1016/j.matdes.2025.113800_br0030) 2023; 311 Huang (10.1016/j.matdes.2025.113800_br0280) 2022; 13 Bonfanti (10.1016/j.matdes.2025.113800_br0230) 2020; 11 Belke (10.1016/j.matdes.2025.113800_br0330) 2017; 22 Ren (10.1016/j.matdes.2025.113800_br0040) 2018; 27 Tomita (10.1016/j.matdes.2025.113800_br0160) 2023; 225 Zheng (10.1016/j.matdes.2025.113800_br0010) 2023; 35 Chen (10.1016/j.matdes.2025.113800_br0110) 2021; 589 Zheng (10.1016/j.matdes.2025.113800_br0120) 2022; 29 Mark (10.1016/j.matdes.2025.113800_br0220) 2016 He (10.1016/j.matdes.2025.113800_br0310) 2024 Zheng (10.1016/j.matdes.2025.113800_br0400) 2021; 211 Zheng (10.1016/j.matdes.2025.113800_br0410) 2023; 24 Askari (10.1016/j.matdes.2025.113800_br0250) 2020; 36 Wu (10.1016/j.matdes.2025.113800_br0150) 2023; 76 Watanabe (10.1016/j.matdes.2025.113800_br0460) 2012; 89 Pishvar (10.1016/j.matdes.2025.113800_br0200) 2020; 7 Fan (10.1016/j.matdes.2025.113800_br0260) 2021; 50 Pyo (10.1016/j.matdes.2025.113800_br0130) 2024; 11 Schaedler (10.1016/j.matdes.2025.113800_br0060) 2011; 334 Zheng (10.1016/j.matdes.2025.113800_br0370) 2024 Jiao (10.1016/j.matdes.2025.113800_br0020) 2023; 14 Watanabe (10.1016/j.matdes.2025.113800_br0450) 2019; 150 Kumar (10.1016/j.matdes.2025.113800_br0430) 2020; 6 Hewage (10.1016/j.matdes.2025.113800_br0080) 2016; 28 Kollmann (10.1016/j.matdes.2025.113800_br0390) 2020; 196 Han (10.1016/j.matdes.2025.113800_br0240) 2019; 26 Jenett (10.1016/j.matdes.2025.113800_br0290) 2020; 6 Dudek (10.1016/j.matdes.2025.113800_br0140) 2023; 35 Bastek (10.1016/j.matdes.2025.113800_br0360) 2022; 119 Teng (10.1016/j.matdes.2025.113800_br0210) 2022; 229 Chen (10.1016/j.matdes.2025.113800_br0070) 2021; 204 Coulais (10.1016/j.matdes.2025.113800_br0180) 2016; 535 Ha (10.1016/j.matdes.2025.113800_br0440) 2023; 14 Lang (10.1016/j.matdes.2025.113800_br0300) 2023; 378 Belke (10.1016/j.matdes.2025.113800_br0340) 2023; 5 Oliveri (10.1016/j.matdes.2025.113800_br0420) 2020; 30 |
References_xml | – volume: 378 year: 2023 ident: br0300 article-title: Assembled mechanical metamaterials with transformable shape and auxeticity publication-title: Constr. Build. Mater. – volume: 35 year: 2023 ident: br0010 article-title: Deep learning in mechanical metamaterials: from prediction and generation to inverse design publication-title: Adv. Mater. – volume: 226 year: 2023 ident: br0270 article-title: Multi-material additive manufacturing: a systematic review of design, properties, applications, challenges, and 3d printing of materials and cellular metamaterials publication-title: Mater. Des. – volume: 89 start-page: 829 year: 2012 end-page: 845 ident: br0460 article-title: Multiscale prediction of mechanical behavior of ferrite–pearlite steel with numerical material testing publication-title: Int. J. Numer. Methods Eng. – year: 2024 ident: br0370 article-title: Text-to-microstructure generation using generative deep learning publication-title: Small – volume: 211 year: 2021 ident: br0400 article-title: Controllable inverse design of auxetic metamaterials using deep learning publication-title: Mater. Des. – volume: 535 start-page: 529 year: 2016 end-page: 532 ident: br0180 article-title: Combinatorial design of textured mechanical metamaterials publication-title: Nature – volume: 13 start-page: 1170 year: 2022 ident: br0280 article-title: Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing publication-title: Nat. Commun. – volume: 196 year: 2020 ident: br0390 article-title: Deep learning for topology optimization of 2d metamaterials publication-title: Mater. Des. – volume: 2 year: 2016 ident: br0100 article-title: Dynamically variable negative stiffness structures publication-title: Sci. Adv. – volume: 14 start-page: 6004 year: 2023 ident: br0020 article-title: Mechanical metamaterials and beyond publication-title: Nat. Commun. – volume: 311 year: 2023 ident: br0030 article-title: Two-phase topology optimization for metamaterials with negative Poisson's ratio publication-title: Compos. Struct. – volume: 2 start-page: 1 year: 2017 end-page: 11 ident: br0190 article-title: Flexible mechanical metamaterials publication-title: Nat. Rev. Mater. – start-page: 4951 year: 2016 end-page: 4956 ident: br0220 article-title: Auxetic metamaterial simplifies soft robot design publication-title: 2016 IEEE International Conference on Robotics and Automation (ICRA) – volume: 24 year: 2023 ident: br0410 article-title: Deep-learning-based inverse design of three-dimensional architected cellular materials with the target porosity and stiffness using voxelized Voronoi lattices publication-title: Sci. Technol. Adv. Mater. – volume: 150 start-page: 314 year: 2019 end-page: 321 ident: br0450 article-title: Voxel coarsening approach on image-based finite element modeling of representative volume element publication-title: Int. J. Mech. Sci. – volume: 589 start-page: 386 year: 2021 end-page: 390 ident: br0110 article-title: A reprogrammable mechanical metamaterial with stable memory publication-title: Nature – year: 2024 ident: br0310 article-title: Assembled mechanical metamaterials with integrated functionalities of programmable multistability and multitransition behaviors publication-title: Mater. Horiz. – volume: 50 start-page: 303 year: 2021 end-page: 328 ident: br0260 article-title: A review of additive manufacturing of metamaterials and developing trends publication-title: Mater. Today – volume: 9 year: 2024 ident: br0320 article-title: Ultralight, strong, and self-reprogrammable mechanical metamaterials publication-title: Sci. Robot. – volume: 22 start-page: 2153 year: 2017 end-page: 2164 ident: br0330 article-title: Mori: a modular origami robot publication-title: IEEE/ASME Trans. Mechatron. – volume: 6 year: 2020 ident: br0290 article-title: Discretely assembled mechanical metamaterials publication-title: Sci. Adv. – volume: 334 start-page: 962 year: 2011 end-page: 965 ident: br0060 article-title: Ultralight metallic microlattices publication-title: Science – volume: 29 year: 2022 ident: br0120 article-title: Reprogrammable flexible mechanical metamaterials publication-title: Appl. Mater. Today – volume: 119 year: 2022 ident: br0360 article-title: Inverting the structure–property map of truss metamaterials by deep learning publication-title: Proc. Natl. Acad. Sci. – volume: 237 year: 2024 ident: br0090 article-title: Minimal-surface-based multiphase metamaterials with highly variable stiffness publication-title: Mater. Des. – volume: 76 year: 2023 ident: br0150 article-title: A hybrid architectural metamaterial combing plate lattice and hollow-truss lattice with advanced mechanical performances publication-title: Addit. Manuf. – volume: 32 year: 2022 ident: br0170 article-title: 4d pixel mechanical metamaterials with programmable and reconfigurable properties publication-title: Adv. Funct. Mater. – volume: 225 year: 2023 ident: br0160 article-title: Origami-inspired metamaterials with switchable energy absorption based on bifurcated motions of a Tachi-Miura polyhedron publication-title: Mater. Des. – volume: 27 year: 2018 ident: br0040 article-title: Auxetic metamaterials and structures: a review publication-title: Smart Mater. Struct. – volume: 6 year: 2020 ident: br0380 article-title: Designing complex architectured materials with generative adversarial networks publication-title: Sci. Adv. – volume: 11 start-page: 291 year: 2024 end-page: 320 ident: br0130 article-title: Mechanical metamaterials for sensor and actuator applications publication-title: Int. J. Precis. Eng. Manuf.-Green Technol. – volume: 26 start-page: 30 year: 2019 end-page: 39 ident: br0240 article-title: Two nature-mimicking auxetic materials with potential for high energy absorption publication-title: Mater. Today – volume: 14 start-page: 5765 year: 2023 ident: br0440 article-title: Rapid inverse design of metamaterials based on prescribed mechanical behavior through machine learning publication-title: Nat. Commun. – volume: 35 year: 2023 ident: br0140 article-title: Micro-scale mechanical metamaterial with a controllable transition in the Poisson's ratio and band gap formation publication-title: Adv. Mater. – volume: 229 year: 2022 ident: br0210 article-title: A simple 3d re-entrant auxetic metamaterial with enhanced energy absorption publication-title: Int. J. Mech. Sci. – volume: 30 year: 2020 ident: br0420 article-title: Inverse design of mechanical metamaterials that undergo buckling publication-title: Adv. Funct. Mater. – volume: 7 year: 2020 ident: br0200 article-title: Foundations for soft, smart matter by active mechanical metamaterials publication-title: Adv. Sci. – volume: 5 start-page: 669 year: 2023 end-page: 675 ident: br0340 article-title: Morphological flexibility in robotic systems through physical polygon meshing publication-title: Nat. Mach. Intell. – volume: 204 year: 2021 ident: br0070 article-title: Novel multifunctional negative stiffness mechanical metamaterial structure: tailored functions of multi-stable and compressive mono-stable publication-title: Composites, Part B, Eng. – volume: 6 start-page: 73 year: 2020 ident: br0430 article-title: Inverse-designed spinodoid metamaterials publication-title: npj Comput. Mater. – volume: 198 year: 2021 ident: br0050 article-title: A mathematically defined 3d auxetic metamaterial with tunable mechanical and conduction properties publication-title: Mater. Des. – volume: 36 year: 2020 ident: br0250 article-title: Additive manufacturing of metamaterials: a review publication-title: Addit. Manuf. – volume: 11 start-page: 4162 year: 2020 ident: br0230 article-title: Automatic design of mechanical metamaterial actuators publication-title: Nat. Commun. – volume: 28 start-page: 10323 year: 2016 end-page: 10332 ident: br0080 article-title: Double-negative mechanical metamaterials displaying simultaneous negative stiffness and negative Poisson's ratio properties publication-title: Adv. Mater. – volume: 36 year: 2024 ident: br0350 article-title: Data-driven design for metamaterials and multiscale systems: a review publication-title: Adv. Mater. – volume: 196 year: 2020 ident: 10.1016/j.matdes.2025.113800_br0390 article-title: Deep learning for topology optimization of 2d metamaterials publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.109098 – year: 2024 ident: 10.1016/j.matdes.2025.113800_br0370 article-title: Text-to-microstructure generation using generative deep learning publication-title: Small – volume: 36 year: 2020 ident: 10.1016/j.matdes.2025.113800_br0250 article-title: Additive manufacturing of metamaterials: a review publication-title: Addit. Manuf. – volume: 9 issue: 86 year: 2024 ident: 10.1016/j.matdes.2025.113800_br0320 article-title: Ultralight, strong, and self-reprogrammable mechanical metamaterials publication-title: Sci. Robot. doi: 10.1126/scirobotics.adi2746 – volume: 119 issue: 1 year: 2022 ident: 10.1016/j.matdes.2025.113800_br0360 article-title: Inverting the structure–property map of truss metamaterials by deep learning publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2111505119 – volume: 11 start-page: 4162 issue: 1 year: 2020 ident: 10.1016/j.matdes.2025.113800_br0230 article-title: Automatic design of mechanical metamaterial actuators publication-title: Nat. Commun. doi: 10.1038/s41467-020-17947-2 – volume: 225 year: 2023 ident: 10.1016/j.matdes.2025.113800_br0160 article-title: Origami-inspired metamaterials with switchable energy absorption based on bifurcated motions of a Tachi-Miura polyhedron publication-title: Mater. Des. doi: 10.1016/j.matdes.2022.111497 – volume: 204 year: 2021 ident: 10.1016/j.matdes.2025.113800_br0070 article-title: Novel multifunctional negative stiffness mechanical metamaterial structure: tailored functions of multi-stable and compressive mono-stable publication-title: Composites, Part B, Eng. doi: 10.1016/j.compositesb.2020.108501 – volume: 29 year: 2022 ident: 10.1016/j.matdes.2025.113800_br0120 article-title: Reprogrammable flexible mechanical metamaterials publication-title: Appl. Mater. Today – volume: 589 start-page: 386 issue: 7842 year: 2021 ident: 10.1016/j.matdes.2025.113800_br0110 article-title: A reprogrammable mechanical metamaterial with stable memory publication-title: Nature doi: 10.1038/s41586-020-03123-5 – volume: 535 start-page: 529 issue: 7613 year: 2016 ident: 10.1016/j.matdes.2025.113800_br0180 article-title: Combinatorial design of textured mechanical metamaterials publication-title: Nature doi: 10.1038/nature18960 – volume: 35 issue: 20 year: 2023 ident: 10.1016/j.matdes.2025.113800_br0140 article-title: Micro-scale mechanical metamaterial with a controllable transition in the Poisson's ratio and band gap formation publication-title: Adv. Mater. doi: 10.1002/adma.202210993 – volume: 311 year: 2023 ident: 10.1016/j.matdes.2025.113800_br0030 article-title: Two-phase topology optimization for metamaterials with negative Poisson's ratio publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2023.116800 – volume: 14 start-page: 5765 issue: 1 year: 2023 ident: 10.1016/j.matdes.2025.113800_br0440 article-title: Rapid inverse design of metamaterials based on prescribed mechanical behavior through machine learning publication-title: Nat. Commun. doi: 10.1038/s41467-023-40854-1 – volume: 229 year: 2022 ident: 10.1016/j.matdes.2025.113800_br0210 article-title: A simple 3d re-entrant auxetic metamaterial with enhanced energy absorption publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2022.107524 – volume: 2 start-page: 1 issue: 11 year: 2017 ident: 10.1016/j.matdes.2025.113800_br0190 article-title: Flexible mechanical metamaterials publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.66 – volume: 211 year: 2021 ident: 10.1016/j.matdes.2025.113800_br0400 article-title: Controllable inverse design of auxetic metamaterials using deep learning publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.110178 – volume: 334 start-page: 962 issue: 6058 year: 2011 ident: 10.1016/j.matdes.2025.113800_br0060 article-title: Ultralight metallic microlattices publication-title: Science doi: 10.1126/science.1211649 – volume: 11 start-page: 291 issue: 1 year: 2024 ident: 10.1016/j.matdes.2025.113800_br0130 article-title: Mechanical metamaterials for sensor and actuator applications publication-title: Int. J. Precis. Eng. Manuf.-Green Technol. doi: 10.1007/s40684-023-00549-w – volume: 2 issue: 2 year: 2016 ident: 10.1016/j.matdes.2025.113800_br0100 article-title: Dynamically variable negative stiffness structures publication-title: Sci. Adv. doi: 10.1126/sciadv.1500778 – year: 2024 ident: 10.1016/j.matdes.2025.113800_br0310 article-title: Assembled mechanical metamaterials with integrated functionalities of programmable multistability and multitransition behaviors publication-title: Mater. Horiz. doi: 10.1039/D4MH00906A – volume: 198 year: 2021 ident: 10.1016/j.matdes.2025.113800_br0050 article-title: A mathematically defined 3d auxetic metamaterial with tunable mechanical and conduction properties publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.109313 – volume: 5 start-page: 669 issue: 6 year: 2023 ident: 10.1016/j.matdes.2025.113800_br0340 article-title: Morphological flexibility in robotic systems through physical polygon meshing publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-023-00676-8 – volume: 35 issue: 45 year: 2023 ident: 10.1016/j.matdes.2025.113800_br0010 article-title: Deep learning in mechanical metamaterials: from prediction and generation to inverse design publication-title: Adv. Mater. doi: 10.1002/adma.202302530 – volume: 14 start-page: 6004 issue: 1 year: 2023 ident: 10.1016/j.matdes.2025.113800_br0020 article-title: Mechanical metamaterials and beyond publication-title: Nat. Commun. doi: 10.1038/s41467-023-41679-8 – volume: 50 start-page: 303 year: 2021 ident: 10.1016/j.matdes.2025.113800_br0260 article-title: A review of additive manufacturing of metamaterials and developing trends publication-title: Mater. Today doi: 10.1016/j.mattod.2021.04.019 – volume: 6 issue: 47 year: 2020 ident: 10.1016/j.matdes.2025.113800_br0290 article-title: Discretely assembled mechanical metamaterials publication-title: Sci. Adv. doi: 10.1126/sciadv.abc9943 – volume: 7 issue: 18 year: 2020 ident: 10.1016/j.matdes.2025.113800_br0200 article-title: Foundations for soft, smart matter by active mechanical metamaterials publication-title: Adv. Sci. doi: 10.1002/advs.202001384 – volume: 22 start-page: 2153 issue: 5 year: 2017 ident: 10.1016/j.matdes.2025.113800_br0330 article-title: Mori: a modular origami robot publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2017.2697310 – volume: 6 start-page: 73 issue: 1 year: 2020 ident: 10.1016/j.matdes.2025.113800_br0430 article-title: Inverse-designed spinodoid metamaterials publication-title: npj Comput. Mater. doi: 10.1038/s41524-020-0341-6 – volume: 32 issue: 6 year: 2022 ident: 10.1016/j.matdes.2025.113800_br0170 article-title: 4d pixel mechanical metamaterials with programmable and reconfigurable properties publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202107795 – start-page: 4951 year: 2016 ident: 10.1016/j.matdes.2025.113800_br0220 article-title: Auxetic metamaterial simplifies soft robot design – volume: 378 year: 2023 ident: 10.1016/j.matdes.2025.113800_br0300 article-title: Assembled mechanical metamaterials with transformable shape and auxeticity publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2023.131181 – volume: 150 start-page: 314 year: 2019 ident: 10.1016/j.matdes.2025.113800_br0450 article-title: Voxel coarsening approach on image-based finite element modeling of representative volume element publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2018.10.028 – volume: 6 issue: 17 year: 2020 ident: 10.1016/j.matdes.2025.113800_br0380 article-title: Designing complex architectured materials with generative adversarial networks publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz4169 – volume: 76 year: 2023 ident: 10.1016/j.matdes.2025.113800_br0150 article-title: A hybrid architectural metamaterial combing plate lattice and hollow-truss lattice with advanced mechanical performances publication-title: Addit. Manuf. – volume: 226 year: 2023 ident: 10.1016/j.matdes.2025.113800_br0270 article-title: Multi-material additive manufacturing: a systematic review of design, properties, applications, challenges, and 3d printing of materials and cellular metamaterials publication-title: Mater. Des. doi: 10.1016/j.matdes.2023.111661 – volume: 13 start-page: 1170 issue: 1 year: 2022 ident: 10.1016/j.matdes.2025.113800_br0280 article-title: Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing publication-title: Nat. Commun. doi: 10.1038/s41467-022-28694-x – volume: 36 issue: 8 year: 2024 ident: 10.1016/j.matdes.2025.113800_br0350 article-title: Data-driven design for metamaterials and multiscale systems: a review publication-title: Adv. Mater. doi: 10.1002/adma.202305254 – volume: 27 issue: 2 year: 2018 ident: 10.1016/j.matdes.2025.113800_br0040 article-title: Auxetic metamaterials and structures: a review publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/aaa61c – volume: 24 issue: 1 year: 2023 ident: 10.1016/j.matdes.2025.113800_br0410 article-title: Deep-learning-based inverse design of three-dimensional architected cellular materials with the target porosity and stiffness using voxelized Voronoi lattices publication-title: Sci. Technol. Adv. Mater. doi: 10.1080/14686996.2022.2157682 – volume: 30 issue: 12 year: 2020 ident: 10.1016/j.matdes.2025.113800_br0420 article-title: Inverse design of mechanical metamaterials that undergo buckling publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201909033 – volume: 26 start-page: 30 year: 2019 ident: 10.1016/j.matdes.2025.113800_br0240 article-title: Two nature-mimicking auxetic materials with potential for high energy absorption publication-title: Mater. Today doi: 10.1016/j.mattod.2018.11.004 – volume: 28 start-page: 10323 issue: 46 year: 2016 ident: 10.1016/j.matdes.2025.113800_br0080 article-title: Double-negative mechanical metamaterials displaying simultaneous negative stiffness and negative Poisson's ratio properties publication-title: Adv. Mater. doi: 10.1002/adma.201603959 – volume: 237 year: 2024 ident: 10.1016/j.matdes.2025.113800_br0090 article-title: Minimal-surface-based multiphase metamaterials with highly variable stiffness publication-title: Mater. Des. doi: 10.1016/j.matdes.2023.112548 – volume: 89 start-page: 829 issue: 7 year: 2012 ident: 10.1016/j.matdes.2025.113800_br0460 article-title: Multiscale prediction of mechanical behavior of ferrite–pearlite steel with numerical material testing publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.3264 |
SSID | ssj0022734 |
Score | 2.446071 |
Snippet | Mechanical metamaterials exhibit unique properties that depend on their microstructure and surpass those of their constituent materials. Flexible mechanical... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 113800 |
SubjectTerms | Deep learning Flexibility Inverse design Mechanical metamaterial Soft robotics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJz2IT1xf9OA1uNu8jyoui6InF_YWkkkiCq6L1P-_maaVnvTirfSRtN8Evsl05htCrqRyRnAwNAEHyqc-Ui-9plCLpEAnV7dN-56e5XzBH5ZiOWj1hTlhRR64AHedHMCEaRmNS1xxo4PLjGjyMEko5to68sx5_Waq22qhaEuJrqAqnxJ90Vyb2ZVdwRBRqrsW2NJEY3XbgJRa7f4BNw34ZrZHdjtHsbopL7hPtuLqgOwM5AMPyWOJylFkolB9RCziRczzYePy9GVxVRhqrUKMa9q1iHil-Wsz3aBKRMhXMIfjiCxm9y93c9o1R6DApGroVKvIRAStkndCGVPHKH3gIVM6_krxkMzEecdSSnlPVbMQFUw5hGScDDyxYzJafa7iCamS9JAfUd5PsK5UaaFDAK8BEviaqTGhPTp2XTQwbJ8c9m4LmhbRtAXNMblFCH_uRQXr9kS2q-3sav-y65io3gC2cwYKyeeh3n6d_vQ_pj8j2zhkydE5J6Pm6zteZPej8ZftStsAX_bZhQ priority: 102 providerName: Directory of Open Access Journals |
Title | Spring-based mechanical metamaterials with deep-learning-accelerated design |
URI | https://dx.doi.org/10.1016/j.matdes.2025.113800 https://doaj.org/article/facc0386e9af47498da2839c8ff573a7 |
Volume | 252 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8QwDI54LDAgnuKtDqzR3TXvERDoAMECSGxV4iTokDhO6Pj_2E2LjoWBrU2bpnWsfHZqf2bsTBvvlATHM0jgchQSDzpYDrXKBmz2dVu07_5Bj5_l7Yt6WWKXfS4MhVV2a39Z09vVumsZdNIczCaTwSN6D5LoyRHE23TRZbZaC6dRtVfPb-7GDz9-FzG4lK0Wougzqs-ga8O80C6MiXi7a0X1TSylui0gVEvkvwBUC-Bzvck2OquxOi8vtsWW0nSbrS9wCe6wu7JFxwmWYvWeKKOXJgAP5x6HL5pW0b5rFVOa8a5exCv3AIg9RBkR8QoFdOyy5-urp8sx7yolcBDazPnImiRUAmty8Mo4V6ekQ5QR8Z3-qwTIbuiDFzlndLBqEZOBkYSYnddRZrHHVqYf07TPqqwDYBcTwpCSTI1VNkYIFiBDqIU5YLyXTjMrhBhNHyn21hRpNiTNpkjzgF2QCH_uJTrrtuHj87Xp5rPJ-KVDYXVyPksjnY0ezR6HupKVER4HNf0ENL-0Ax81-XP4w3_3PGJrdFaidI7ZyvzzK52gATIPp52CnbYO_DflDdwe |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BOSwcVjwWAcsjB65W28SO7SOLqAqFXgCJm2WPbdSVKBUq_x9PnFTdyx64RXYcJ-ORvxln5huAy1paLThqFpEj40MXmKudYliKKFFFWzZF-x6m9fiZ372Ilw247nJhKKyy3fvznt7s1m1Lv5VmfzGb9R-T98CJnjyBeJMuuglbxE4lerB1dTsZT1d-FzG45KMWouiTosuga8K8kl3oA_F2l4LqmyhKdVtDqIbIfw2o1sBntAs_W6uxuMovtgcbYb4PO2tcggcwyUd0jGDJF2-BMnppAdLl0qbps6YVdO5a-BAWrK0X8cosYsIeoozwqYcCOn7B8-jm6XrM2koJDKtaLtlQyVCJgEpGZ4XUugyhdp77hO_0X8Vh1APrbBVjTA5WWfkgccjRR21rz2N1CL35-zwcQRFrh2mIdG5ASaZSCeU9OoUY0ZWVPAbWSccsMiGG6SLF_posTUPSNFmax_CHRLi6l-ism4b3j1fTrqeJ6UsHlaqDtpFLrpW3yezRSVeikJVNk8puAcw_2pEeNfvv9CffHnkBP8ZPD_fm_nY6-Q3b1JMjdk6ht_z4DGfJGFm681bZvgAcEd4P |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spring-based+mechanical+metamaterials+with+deep-learning-accelerated+design&rft.jtitle=Materials+%26+design&rft.au=Guo%2C+Xiaofeng&rft.au=Zheng%2C+Xiaoyang&rft.au=Zhou%2C+Jiaxin&rft.au=Yamada%2C+Takayuki&rft.date=2025-04-01&rft.issn=0264-1275&rft.volume=252&rft.spage=113800&rft_id=info:doi/10.1016%2Fj.matdes.2025.113800&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2025_113800 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon |