Spring-based mechanical metamaterials with deep-learning-accelerated design

Mechanical metamaterials exhibit unique properties that depend on their microstructure and surpass those of their constituent materials. Flexible mechanical metamaterials, in particular, hold significant potential for applications requiring substantial deformations, such as soft robotics and energy...

Full description

Saved in:
Bibliographic Details
Published inMaterials & design Vol. 252; p. 113800
Main Authors Guo, Xiaofeng, Zheng, Xiaoyang, Zhou, Jiaxin, Yamada, Takayuki, Yi, Yong, Watanabe, Ikumu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2025
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mechanical metamaterials exhibit unique properties that depend on their microstructure and surpass those of their constituent materials. Flexible mechanical metamaterials, in particular, hold significant potential for applications requiring substantial deformations, such as soft robotics and energy absorption. In this study, we proposed a collection of flexible mechanical metamaterials discretely assembled using structural spring elements. These spring elements enhance both flexibility and reversibility, allowing the materials to withstand large deformations. The geometric regularity of the metamaterials enables zero-shot learning, allowing deep learning frameworks to address property prediction and inverse design problems beyond the training dataset. Using a property-prediction model, the effective mechanical properties of these metamaterials can be accurately predicted based on specified design parameters. Furthermore, an inverse-design model enables the direct generation of mechanical metamaterials with desired target properties, even outside the training dataspace, in the range of Young's modulus E ∈ (0, 350) kPa and Poisson's ratio ν ∈ (-0.12, 0.12). The properties of these inversely designed metamaterials are analyzed through finite element method simulations and mechanical testing. The deep learning-accelerated design approach not only streamlines the development process but also provides a framework for advancing metamaterial design, encompassing property prediction and inverse design. •Developed novel, flexible, and resilient mechanical metamaterials using spring element assemblies.•Demonstrated rapid, zero-shot property prediction and inverse design of these metamaterials via deep learning.•Validated deep learning predictions through simulations and experiments.
AbstractList Mechanical metamaterials exhibit unique properties that depend on their microstructure and surpass those of their constituent materials. Flexible mechanical metamaterials, in particular, hold significant potential for applications requiring substantial deformations, such as soft robotics and energy absorption. In this study, we proposed a collection of flexible mechanical metamaterials discretely assembled using structural spring elements. These spring elements enhance both flexibility and reversibility, allowing the materials to withstand large deformations. The geometric regularity of the metamaterials enables zero-shot learning, allowing deep learning frameworks to address property prediction and inverse design problems beyond the training dataset. Using a property-prediction model, the effective mechanical properties of these metamaterials can be accurately predicted based on specified design parameters. Furthermore, an inverse-design model enables the direct generation of mechanical metamaterials with desired target properties, even outside the training dataspace, in the range of Young's modulus E ∈ (0, 350) kPa and Poisson's ratio ν ∈ (-0.12, 0.12). The properties of these inversely designed metamaterials are analyzed through finite element method simulations and mechanical testing. The deep learning-accelerated design approach not only streamlines the development process but also provides a framework for advancing metamaterial design, encompassing property prediction and inverse design. •Developed novel, flexible, and resilient mechanical metamaterials using spring element assemblies.•Demonstrated rapid, zero-shot property prediction and inverse design of these metamaterials via deep learning.•Validated deep learning predictions through simulations and experiments.
Mechanical metamaterials exhibit unique properties that depend on their microstructure and surpass those of their constituent materials. Flexible mechanical metamaterials, in particular, hold significant potential for applications requiring substantial deformations, such as soft robotics and energy absorption. In this study, we proposed a collection of flexible mechanical metamaterials discretely assembled using structural spring elements. These spring elements enhance both flexibility and reversibility, allowing the materials to withstand large deformations. The geometric regularity of the metamaterials enables zero-shot learning, allowing deep learning frameworks to address property prediction and inverse design problems beyond the training dataset. Using a property-prediction model, the effective mechanical properties of these metamaterials can be accurately predicted based on specified design parameters. Furthermore, an inverse-design model enables the direct generation of mechanical metamaterials with desired target properties, even outside the training dataspace, in the range of Young's modulus E ∈ (0, 350) kPa and Poisson's ratio ν ∈ (-0.12, 0.12). The properties of these inversely designed metamaterials are analyzed through finite element method simulations and mechanical testing. The deep learning-accelerated design approach not only streamlines the development process but also provides a framework for advancing metamaterial design, encompassing property prediction and inverse design.
ArticleNumber 113800
Author Zheng, Xiaoyang
Zhou, Jiaxin
Guo, Xiaofeng
Yi, Yong
Watanabe, Ikumu
Yamada, Takayuki
Author_xml – sequence: 1
  givenname: Xiaofeng
  orcidid: 0000-0003-1971-7442
  surname: Guo
  fullname: Guo, Xiaofeng
  organization: School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
– sequence: 2
  givenname: Xiaoyang
  orcidid: 0000-0003-1452-5855
  surname: Zheng
  fullname: Zheng, Xiaoyang
  email: xzheng@g.ecc.u-tokyo.ac.jp
  organization: Institute of Engineering Innovation, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
– sequence: 3
  givenname: Jiaxin
  orcidid: 0000-0001-7681-1668
  surname: Zhou
  fullname: Zhou, Jiaxin
  organization: Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan
– sequence: 4
  givenname: Takayuki
  orcidid: 0000-0002-5349-6690
  surname: Yamada
  fullname: Yamada, Takayuki
  organization: Institute of Engineering Innovation, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
– sequence: 5
  givenname: Yong
  orcidid: 0000-0003-0627-5446
  surname: Yi
  fullname: Yi, Yong
  email: yiyong@swust.edu.cn
  organization: School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
– sequence: 6
  givenname: Ikumu
  orcidid: 0000-0002-7693-1675
  surname: Watanabe
  fullname: Watanabe, Ikumu
  email: WATANABE.Ikumu@nims.go.jp
  organization: Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan
BookMark eNp9kMtOwzAQRb0oEm3hD1j0B1L8SuxskFDFS1RiAaytiT1uHaVJZUcg_h6XIJasZjQz9-jOXZBZP_RIyBWja0ZZdd2uDzA6TGtOeblmTGhKZ2ROeSULxlV5ThYptZRyroSck-fXYwz9rmggoVsd0O6hDxa63I6QSRgDdGn1Gcb9yiEeiw4h9icFWIsdxnzi8iaFXX9Bznw-xsvfuiTv93dvm8di-_LwtLndFlZUaiyYVihKtFr5BkpV1xyxapx0mlNVMt1YX1NoQHjvdd4Kh8oyaZ2voXLSiyV5mrhugNZk_weIX2aAYH4GQ9wZiGOwHRqfXVKhK6zBSyVr7YBrUVvtfakEqMySE8vGIaWI_o_HqDkFalozBWpOgZop0Cy7mWSY__wIGE2yAXuLLkS0YzYS_gd8AxrLhjU
Cites_doi 10.1016/j.matdes.2020.109098
10.1126/scirobotics.adi2746
10.1073/pnas.2111505119
10.1038/s41467-020-17947-2
10.1016/j.matdes.2022.111497
10.1016/j.compositesb.2020.108501
10.1038/s41586-020-03123-5
10.1038/nature18960
10.1002/adma.202210993
10.1016/j.compstruct.2023.116800
10.1038/s41467-023-40854-1
10.1016/j.ijmecsci.2022.107524
10.1038/natrevmats.2017.66
10.1016/j.matdes.2021.110178
10.1126/science.1211649
10.1007/s40684-023-00549-w
10.1126/sciadv.1500778
10.1039/D4MH00906A
10.1016/j.matdes.2020.109313
10.1038/s42256-023-00676-8
10.1002/adma.202302530
10.1038/s41467-023-41679-8
10.1016/j.mattod.2021.04.019
10.1126/sciadv.abc9943
10.1002/advs.202001384
10.1109/TMECH.2017.2697310
10.1038/s41524-020-0341-6
10.1002/adfm.202107795
10.1016/j.conbuildmat.2023.131181
10.1016/j.ijmecsci.2018.10.028
10.1126/sciadv.aaz4169
10.1016/j.matdes.2023.111661
10.1038/s41467-022-28694-x
10.1002/adma.202305254
10.1088/1361-665X/aaa61c
10.1080/14686996.2022.2157682
10.1002/adfm.201909033
10.1016/j.mattod.2018.11.004
10.1002/adma.201603959
10.1016/j.matdes.2023.112548
10.1002/nme.3264
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.matdes.2025.113800
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID oai_doaj_org_article_facc0386e9af47498da2839c8ff573a7
10_1016_j_matdes_2025_113800
S0264127525002205
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
29M
4.4
457
4G.
5GY
5VS
6I.
7-5
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADVLN
AEBSH
AEIPS
AEKER
AEZYN
AFJKZ
AFRZQ
AFTJW
AGHFR
AGUBO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BJAXD
BKOJK
BLXMC
BNPGV
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
O9-
OAUVE
OK1
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEW
SMS
SPC
SSH
SSM
SST
SSZ
T5K
WUQ
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
ID FETCH-LOGICAL-c367t-187e35ec87fba57992ee6bd4d8207518bcf90aba3fff89923de7c14cdf9a6d4f3
IEDL.DBID AIKHN
ISSN 0264-1275
IngestDate Tue Aug 26 23:52:24 EDT 2025
Tue Jul 01 04:56:17 EDT 2025
Sun Apr 06 06:53:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Soft robotics
Inverse design
Flexibility
Mechanical metamaterial
Language English
License This is an open access article under the CC BY-NC license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-187e35ec87fba57992ee6bd4d8207518bcf90aba3fff89923de7c14cdf9a6d4f3
ORCID 0000-0002-5349-6690
0000-0002-7693-1675
0000-0003-1971-7442
0000-0003-1452-5855
0000-0001-7681-1668
0000-0003-0627-5446
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0264127525002205
ParticipantIDs doaj_primary_oai_doaj_org_article_facc0386e9af47498da2839c8ff573a7
crossref_primary_10_1016_j_matdes_2025_113800
elsevier_sciencedirect_doi_10_1016_j_matdes_2025_113800
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2025
2025-04-00
2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 2025
PublicationDecade 2020
PublicationTitle Materials & design
PublicationYear 2025
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Zheng, Watanabe, Wang, Chen, Naito (br0090) 2024; 237
Zheng, Uto, Hu, Chen, Naito, Watanabe (br0120) 2022; 29
Nazir, Gokcekaya, Billah, Ertugrul, Jiang, Sun, Hussain (br0270) 2023; 226
Huang, Fleming, Clark, Marussi, Fezzaa, Thiyagalingam, Leung, Lee (br0280) 2022; 13
Zheng, Watanabe, Paik, Li, Guo, Naito (br0370) 2024
Teng, Ren, Zhang, Jiang, Pan, Zhang, Zhang, Xie (br0210) 2022; 229
Bertoldi, Vitelli, Christensen, Van Hecke (br0190) 2017; 2
Akamatsu, Noguchi, Matsushima, Sato, Yanagimoto, Yamada (br0030) 2023; 311
Watanabe, Setoyama, Nagasako, Iwata, Nakanishi (br0460) 2012; 89
Pyo, Park (br0130) 2024; 11
Coulais, Teomy, De Reus, Shokef, Van Hecke (br0180) 2016; 535
Bonfanti, Guerra, Font-Clos, Rayneau-Kirkhope, Zapperi (br0230) 2020; 11
Belke, Paik (br0330) 2017; 22
Watanabe, Yamanaka (br0450) 2019; 150
Zheng, Guo, Watanabe (br0050) 2021; 198
Belke, Holdcroft, Sigrist, Paik (br0340) 2023; 5
Zheng, Zhang, Chen, Watanabe (br0010) 2023; 35
Zheng, Chen, Guo, Samitsu, Watanabe (br0400) 2021; 211
Bastek, Kumar, Telgen, Glaesener, Kochmann (br0360) 2022; 119
Schaedler, Jacobsen, Torrents, Sorensen, Lian, Greer, Valdevit, Carter (br0060) 2011; 334
Jenett, Cameron, Tourlomousis, Rubio, Ochalek, Gershenfeld (br0290) 2020; 6
Kumar, Tan, Zheng, Kochmann (br0430) 2020; 6
Mark, Palagi, Qiu, Fischer (br0220) 2016
Lang, Jiang, Teng, Zhang, Han, Hao, Xu, Ni, Xie, Qin (br0300) 2023; 378
Oliveri, Overvelde (br0420) 2020; 30
Wu, Zhang, Yang, Jiang, Xu, Tan, Su (br0150) 2023; 76
Churchill, Shahan, Smith, Keefe, McKnight (br0100) 2016; 2
Hewage, Alderson, Alderson, Scarpa (br0080) 2016; 28
Gregg, Catanoso, Formoso, Kostitsyna, Ochalek, Olatunde, Park, Sebastianelli, Taylor, Trinh (br0320) 2024; 9
Lee, Chen, Wang, Chan, Chen (br0350) 2024; 36
Tomita, Shimanuki, Nishigaki, Oyama, Sasagawa, Murai, Umemoto (br0160) 2023; 225
Ren, Das, Tran, Ngo, Xie (br0040) 2018; 27
Han, Kang, Kang (br0240) 2019; 26
Zheng, Chen, Jiang, Naito, Watanabe (br0410) 2023; 24
Jiao, Mueller, Raney, Zheng, Alavi (br0020) 2023; 14
He, Wang, Shen, Xia, Xiong (br0310) 2024
Kollmann, Abueidda, Koric, Guleryuz, Sobh (br0390) 2020; 196
Ha, Yao, Xu, Liu, Liu, Elkins, Kile, Deshpande, Kong, Bauchy (br0440) 2023; 14
Askari, Hutchins, Thomas, Astolfi, Watson, Abdi, Ricci, Laureti, Nie, Freear (br0250) 2020; 36
Chen, Pauly, Reis (br0110) 2021; 589
Mao, He, Zhao (br0380) 2020; 6
Chen, Chen, Du, Liu, Li, Fang (br0070) 2021; 204
Xin, Liu, Liu, Leng (br0170) 2022; 32
Dudek, Iglesias Martínez, Ulliac, Hirsinger, Wang, Laude, Kadic (br0140) 2023; 35
Fan, Zhang, Wei, Zhang, Choi, Song, Shi (br0260) 2021; 50
Pishvar, Harne (br0200) 2020; 7
Zheng (10.1016/j.matdes.2025.113800_br0050) 2021; 198
Gregg (10.1016/j.matdes.2025.113800_br0320) 2024; 9
Nazir (10.1016/j.matdes.2025.113800_br0270) 2023; 226
Mao (10.1016/j.matdes.2025.113800_br0380) 2020; 6
Zheng (10.1016/j.matdes.2025.113800_br0090) 2024; 237
Churchill (10.1016/j.matdes.2025.113800_br0100) 2016; 2
Xin (10.1016/j.matdes.2025.113800_br0170) 2022; 32
Bertoldi (10.1016/j.matdes.2025.113800_br0190) 2017; 2
Lee (10.1016/j.matdes.2025.113800_br0350) 2024; 36
Akamatsu (10.1016/j.matdes.2025.113800_br0030) 2023; 311
Huang (10.1016/j.matdes.2025.113800_br0280) 2022; 13
Bonfanti (10.1016/j.matdes.2025.113800_br0230) 2020; 11
Belke (10.1016/j.matdes.2025.113800_br0330) 2017; 22
Ren (10.1016/j.matdes.2025.113800_br0040) 2018; 27
Tomita (10.1016/j.matdes.2025.113800_br0160) 2023; 225
Zheng (10.1016/j.matdes.2025.113800_br0010) 2023; 35
Chen (10.1016/j.matdes.2025.113800_br0110) 2021; 589
Zheng (10.1016/j.matdes.2025.113800_br0120) 2022; 29
Mark (10.1016/j.matdes.2025.113800_br0220) 2016
He (10.1016/j.matdes.2025.113800_br0310) 2024
Zheng (10.1016/j.matdes.2025.113800_br0400) 2021; 211
Zheng (10.1016/j.matdes.2025.113800_br0410) 2023; 24
Askari (10.1016/j.matdes.2025.113800_br0250) 2020; 36
Wu (10.1016/j.matdes.2025.113800_br0150) 2023; 76
Watanabe (10.1016/j.matdes.2025.113800_br0460) 2012; 89
Pishvar (10.1016/j.matdes.2025.113800_br0200) 2020; 7
Fan (10.1016/j.matdes.2025.113800_br0260) 2021; 50
Pyo (10.1016/j.matdes.2025.113800_br0130) 2024; 11
Schaedler (10.1016/j.matdes.2025.113800_br0060) 2011; 334
Zheng (10.1016/j.matdes.2025.113800_br0370) 2024
Jiao (10.1016/j.matdes.2025.113800_br0020) 2023; 14
Watanabe (10.1016/j.matdes.2025.113800_br0450) 2019; 150
Kumar (10.1016/j.matdes.2025.113800_br0430) 2020; 6
Hewage (10.1016/j.matdes.2025.113800_br0080) 2016; 28
Kollmann (10.1016/j.matdes.2025.113800_br0390) 2020; 196
Han (10.1016/j.matdes.2025.113800_br0240) 2019; 26
Jenett (10.1016/j.matdes.2025.113800_br0290) 2020; 6
Dudek (10.1016/j.matdes.2025.113800_br0140) 2023; 35
Bastek (10.1016/j.matdes.2025.113800_br0360) 2022; 119
Teng (10.1016/j.matdes.2025.113800_br0210) 2022; 229
Chen (10.1016/j.matdes.2025.113800_br0070) 2021; 204
Coulais (10.1016/j.matdes.2025.113800_br0180) 2016; 535
Ha (10.1016/j.matdes.2025.113800_br0440) 2023; 14
Lang (10.1016/j.matdes.2025.113800_br0300) 2023; 378
Belke (10.1016/j.matdes.2025.113800_br0340) 2023; 5
Oliveri (10.1016/j.matdes.2025.113800_br0420) 2020; 30
References_xml – volume: 378
  year: 2023
  ident: br0300
  article-title: Assembled mechanical metamaterials with transformable shape and auxeticity
  publication-title: Constr. Build. Mater.
– volume: 35
  year: 2023
  ident: br0010
  article-title: Deep learning in mechanical metamaterials: from prediction and generation to inverse design
  publication-title: Adv. Mater.
– volume: 226
  year: 2023
  ident: br0270
  article-title: Multi-material additive manufacturing: a systematic review of design, properties, applications, challenges, and 3d printing of materials and cellular metamaterials
  publication-title: Mater. Des.
– volume: 89
  start-page: 829
  year: 2012
  end-page: 845
  ident: br0460
  article-title: Multiscale prediction of mechanical behavior of ferrite–pearlite steel with numerical material testing
  publication-title: Int. J. Numer. Methods Eng.
– year: 2024
  ident: br0370
  article-title: Text-to-microstructure generation using generative deep learning
  publication-title: Small
– volume: 211
  year: 2021
  ident: br0400
  article-title: Controllable inverse design of auxetic metamaterials using deep learning
  publication-title: Mater. Des.
– volume: 535
  start-page: 529
  year: 2016
  end-page: 532
  ident: br0180
  article-title: Combinatorial design of textured mechanical metamaterials
  publication-title: Nature
– volume: 13
  start-page: 1170
  year: 2022
  ident: br0280
  article-title: Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing
  publication-title: Nat. Commun.
– volume: 196
  year: 2020
  ident: br0390
  article-title: Deep learning for topology optimization of 2d metamaterials
  publication-title: Mater. Des.
– volume: 2
  year: 2016
  ident: br0100
  article-title: Dynamically variable negative stiffness structures
  publication-title: Sci. Adv.
– volume: 14
  start-page: 6004
  year: 2023
  ident: br0020
  article-title: Mechanical metamaterials and beyond
  publication-title: Nat. Commun.
– volume: 311
  year: 2023
  ident: br0030
  article-title: Two-phase topology optimization for metamaterials with negative Poisson's ratio
  publication-title: Compos. Struct.
– volume: 2
  start-page: 1
  year: 2017
  end-page: 11
  ident: br0190
  article-title: Flexible mechanical metamaterials
  publication-title: Nat. Rev. Mater.
– start-page: 4951
  year: 2016
  end-page: 4956
  ident: br0220
  article-title: Auxetic metamaterial simplifies soft robot design
  publication-title: 2016 IEEE International Conference on Robotics and Automation (ICRA)
– volume: 24
  year: 2023
  ident: br0410
  article-title: Deep-learning-based inverse design of three-dimensional architected cellular materials with the target porosity and stiffness using voxelized Voronoi lattices
  publication-title: Sci. Technol. Adv. Mater.
– volume: 150
  start-page: 314
  year: 2019
  end-page: 321
  ident: br0450
  article-title: Voxel coarsening approach on image-based finite element modeling of representative volume element
  publication-title: Int. J. Mech. Sci.
– volume: 589
  start-page: 386
  year: 2021
  end-page: 390
  ident: br0110
  article-title: A reprogrammable mechanical metamaterial with stable memory
  publication-title: Nature
– year: 2024
  ident: br0310
  article-title: Assembled mechanical metamaterials with integrated functionalities of programmable multistability and multitransition behaviors
  publication-title: Mater. Horiz.
– volume: 50
  start-page: 303
  year: 2021
  end-page: 328
  ident: br0260
  article-title: A review of additive manufacturing of metamaterials and developing trends
  publication-title: Mater. Today
– volume: 9
  year: 2024
  ident: br0320
  article-title: Ultralight, strong, and self-reprogrammable mechanical metamaterials
  publication-title: Sci. Robot.
– volume: 22
  start-page: 2153
  year: 2017
  end-page: 2164
  ident: br0330
  article-title: Mori: a modular origami robot
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 6
  year: 2020
  ident: br0290
  article-title: Discretely assembled mechanical metamaterials
  publication-title: Sci. Adv.
– volume: 334
  start-page: 962
  year: 2011
  end-page: 965
  ident: br0060
  article-title: Ultralight metallic microlattices
  publication-title: Science
– volume: 29
  year: 2022
  ident: br0120
  article-title: Reprogrammable flexible mechanical metamaterials
  publication-title: Appl. Mater. Today
– volume: 119
  year: 2022
  ident: br0360
  article-title: Inverting the structure–property map of truss metamaterials by deep learning
  publication-title: Proc. Natl. Acad. Sci.
– volume: 237
  year: 2024
  ident: br0090
  article-title: Minimal-surface-based multiphase metamaterials with highly variable stiffness
  publication-title: Mater. Des.
– volume: 76
  year: 2023
  ident: br0150
  article-title: A hybrid architectural metamaterial combing plate lattice and hollow-truss lattice with advanced mechanical performances
  publication-title: Addit. Manuf.
– volume: 32
  year: 2022
  ident: br0170
  article-title: 4d pixel mechanical metamaterials with programmable and reconfigurable properties
  publication-title: Adv. Funct. Mater.
– volume: 225
  year: 2023
  ident: br0160
  article-title: Origami-inspired metamaterials with switchable energy absorption based on bifurcated motions of a Tachi-Miura polyhedron
  publication-title: Mater. Des.
– volume: 27
  year: 2018
  ident: br0040
  article-title: Auxetic metamaterials and structures: a review
  publication-title: Smart Mater. Struct.
– volume: 6
  year: 2020
  ident: br0380
  article-title: Designing complex architectured materials with generative adversarial networks
  publication-title: Sci. Adv.
– volume: 11
  start-page: 291
  year: 2024
  end-page: 320
  ident: br0130
  article-title: Mechanical metamaterials for sensor and actuator applications
  publication-title: Int. J. Precis. Eng. Manuf.-Green Technol.
– volume: 26
  start-page: 30
  year: 2019
  end-page: 39
  ident: br0240
  article-title: Two nature-mimicking auxetic materials with potential for high energy absorption
  publication-title: Mater. Today
– volume: 14
  start-page: 5765
  year: 2023
  ident: br0440
  article-title: Rapid inverse design of metamaterials based on prescribed mechanical behavior through machine learning
  publication-title: Nat. Commun.
– volume: 35
  year: 2023
  ident: br0140
  article-title: Micro-scale mechanical metamaterial with a controllable transition in the Poisson's ratio and band gap formation
  publication-title: Adv. Mater.
– volume: 229
  year: 2022
  ident: br0210
  article-title: A simple 3d re-entrant auxetic metamaterial with enhanced energy absorption
  publication-title: Int. J. Mech. Sci.
– volume: 30
  year: 2020
  ident: br0420
  article-title: Inverse design of mechanical metamaterials that undergo buckling
  publication-title: Adv. Funct. Mater.
– volume: 7
  year: 2020
  ident: br0200
  article-title: Foundations for soft, smart matter by active mechanical metamaterials
  publication-title: Adv. Sci.
– volume: 5
  start-page: 669
  year: 2023
  end-page: 675
  ident: br0340
  article-title: Morphological flexibility in robotic systems through physical polygon meshing
  publication-title: Nat. Mach. Intell.
– volume: 204
  year: 2021
  ident: br0070
  article-title: Novel multifunctional negative stiffness mechanical metamaterial structure: tailored functions of multi-stable and compressive mono-stable
  publication-title: Composites, Part B, Eng.
– volume: 6
  start-page: 73
  year: 2020
  ident: br0430
  article-title: Inverse-designed spinodoid metamaterials
  publication-title: npj Comput. Mater.
– volume: 198
  year: 2021
  ident: br0050
  article-title: A mathematically defined 3d auxetic metamaterial with tunable mechanical and conduction properties
  publication-title: Mater. Des.
– volume: 36
  year: 2020
  ident: br0250
  article-title: Additive manufacturing of metamaterials: a review
  publication-title: Addit. Manuf.
– volume: 11
  start-page: 4162
  year: 2020
  ident: br0230
  article-title: Automatic design of mechanical metamaterial actuators
  publication-title: Nat. Commun.
– volume: 28
  start-page: 10323
  year: 2016
  end-page: 10332
  ident: br0080
  article-title: Double-negative mechanical metamaterials displaying simultaneous negative stiffness and negative Poisson's ratio properties
  publication-title: Adv. Mater.
– volume: 36
  year: 2024
  ident: br0350
  article-title: Data-driven design for metamaterials and multiscale systems: a review
  publication-title: Adv. Mater.
– volume: 196
  year: 2020
  ident: 10.1016/j.matdes.2025.113800_br0390
  article-title: Deep learning for topology optimization of 2d metamaterials
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.109098
– year: 2024
  ident: 10.1016/j.matdes.2025.113800_br0370
  article-title: Text-to-microstructure generation using generative deep learning
  publication-title: Small
– volume: 36
  year: 2020
  ident: 10.1016/j.matdes.2025.113800_br0250
  article-title: Additive manufacturing of metamaterials: a review
  publication-title: Addit. Manuf.
– volume: 9
  issue: 86
  year: 2024
  ident: 10.1016/j.matdes.2025.113800_br0320
  article-title: Ultralight, strong, and self-reprogrammable mechanical metamaterials
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.adi2746
– volume: 119
  issue: 1
  year: 2022
  ident: 10.1016/j.matdes.2025.113800_br0360
  article-title: Inverting the structure–property map of truss metamaterials by deep learning
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2111505119
– volume: 11
  start-page: 4162
  issue: 1
  year: 2020
  ident: 10.1016/j.matdes.2025.113800_br0230
  article-title: Automatic design of mechanical metamaterial actuators
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17947-2
– volume: 225
  year: 2023
  ident: 10.1016/j.matdes.2025.113800_br0160
  article-title: Origami-inspired metamaterials with switchable energy absorption based on bifurcated motions of a Tachi-Miura polyhedron
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2022.111497
– volume: 204
  year: 2021
  ident: 10.1016/j.matdes.2025.113800_br0070
  article-title: Novel multifunctional negative stiffness mechanical metamaterial structure: tailored functions of multi-stable and compressive mono-stable
  publication-title: Composites, Part B, Eng.
  doi: 10.1016/j.compositesb.2020.108501
– volume: 29
  year: 2022
  ident: 10.1016/j.matdes.2025.113800_br0120
  article-title: Reprogrammable flexible mechanical metamaterials
  publication-title: Appl. Mater. Today
– volume: 589
  start-page: 386
  issue: 7842
  year: 2021
  ident: 10.1016/j.matdes.2025.113800_br0110
  article-title: A reprogrammable mechanical metamaterial with stable memory
  publication-title: Nature
  doi: 10.1038/s41586-020-03123-5
– volume: 535
  start-page: 529
  issue: 7613
  year: 2016
  ident: 10.1016/j.matdes.2025.113800_br0180
  article-title: Combinatorial design of textured mechanical metamaterials
  publication-title: Nature
  doi: 10.1038/nature18960
– volume: 35
  issue: 20
  year: 2023
  ident: 10.1016/j.matdes.2025.113800_br0140
  article-title: Micro-scale mechanical metamaterial with a controllable transition in the Poisson's ratio and band gap formation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202210993
– volume: 311
  year: 2023
  ident: 10.1016/j.matdes.2025.113800_br0030
  article-title: Two-phase topology optimization for metamaterials with negative Poisson's ratio
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2023.116800
– volume: 14
  start-page: 5765
  issue: 1
  year: 2023
  ident: 10.1016/j.matdes.2025.113800_br0440
  article-title: Rapid inverse design of metamaterials based on prescribed mechanical behavior through machine learning
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-40854-1
– volume: 229
  year: 2022
  ident: 10.1016/j.matdes.2025.113800_br0210
  article-title: A simple 3d re-entrant auxetic metamaterial with enhanced energy absorption
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2022.107524
– volume: 2
  start-page: 1
  issue: 11
  year: 2017
  ident: 10.1016/j.matdes.2025.113800_br0190
  article-title: Flexible mechanical metamaterials
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.66
– volume: 211
  year: 2021
  ident: 10.1016/j.matdes.2025.113800_br0400
  article-title: Controllable inverse design of auxetic metamaterials using deep learning
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.110178
– volume: 334
  start-page: 962
  issue: 6058
  year: 2011
  ident: 10.1016/j.matdes.2025.113800_br0060
  article-title: Ultralight metallic microlattices
  publication-title: Science
  doi: 10.1126/science.1211649
– volume: 11
  start-page: 291
  issue: 1
  year: 2024
  ident: 10.1016/j.matdes.2025.113800_br0130
  article-title: Mechanical metamaterials for sensor and actuator applications
  publication-title: Int. J. Precis. Eng. Manuf.-Green Technol.
  doi: 10.1007/s40684-023-00549-w
– volume: 2
  issue: 2
  year: 2016
  ident: 10.1016/j.matdes.2025.113800_br0100
  article-title: Dynamically variable negative stiffness structures
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1500778
– year: 2024
  ident: 10.1016/j.matdes.2025.113800_br0310
  article-title: Assembled mechanical metamaterials with integrated functionalities of programmable multistability and multitransition behaviors
  publication-title: Mater. Horiz.
  doi: 10.1039/D4MH00906A
– volume: 198
  year: 2021
  ident: 10.1016/j.matdes.2025.113800_br0050
  article-title: A mathematically defined 3d auxetic metamaterial with tunable mechanical and conduction properties
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.109313
– volume: 5
  start-page: 669
  issue: 6
  year: 2023
  ident: 10.1016/j.matdes.2025.113800_br0340
  article-title: Morphological flexibility in robotic systems through physical polygon meshing
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-023-00676-8
– volume: 35
  issue: 45
  year: 2023
  ident: 10.1016/j.matdes.2025.113800_br0010
  article-title: Deep learning in mechanical metamaterials: from prediction and generation to inverse design
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202302530
– volume: 14
  start-page: 6004
  issue: 1
  year: 2023
  ident: 10.1016/j.matdes.2025.113800_br0020
  article-title: Mechanical metamaterials and beyond
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-41679-8
– volume: 50
  start-page: 303
  year: 2021
  ident: 10.1016/j.matdes.2025.113800_br0260
  article-title: A review of additive manufacturing of metamaterials and developing trends
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2021.04.019
– volume: 6
  issue: 47
  year: 2020
  ident: 10.1016/j.matdes.2025.113800_br0290
  article-title: Discretely assembled mechanical metamaterials
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abc9943
– volume: 7
  issue: 18
  year: 2020
  ident: 10.1016/j.matdes.2025.113800_br0200
  article-title: Foundations for soft, smart matter by active mechanical metamaterials
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202001384
– volume: 22
  start-page: 2153
  issue: 5
  year: 2017
  ident: 10.1016/j.matdes.2025.113800_br0330
  article-title: Mori: a modular origami robot
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2017.2697310
– volume: 6
  start-page: 73
  issue: 1
  year: 2020
  ident: 10.1016/j.matdes.2025.113800_br0430
  article-title: Inverse-designed spinodoid metamaterials
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-020-0341-6
– volume: 32
  issue: 6
  year: 2022
  ident: 10.1016/j.matdes.2025.113800_br0170
  article-title: 4d pixel mechanical metamaterials with programmable and reconfigurable properties
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202107795
– start-page: 4951
  year: 2016
  ident: 10.1016/j.matdes.2025.113800_br0220
  article-title: Auxetic metamaterial simplifies soft robot design
– volume: 378
  year: 2023
  ident: 10.1016/j.matdes.2025.113800_br0300
  article-title: Assembled mechanical metamaterials with transformable shape and auxeticity
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2023.131181
– volume: 150
  start-page: 314
  year: 2019
  ident: 10.1016/j.matdes.2025.113800_br0450
  article-title: Voxel coarsening approach on image-based finite element modeling of representative volume element
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2018.10.028
– volume: 6
  issue: 17
  year: 2020
  ident: 10.1016/j.matdes.2025.113800_br0380
  article-title: Designing complex architectured materials with generative adversarial networks
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz4169
– volume: 76
  year: 2023
  ident: 10.1016/j.matdes.2025.113800_br0150
  article-title: A hybrid architectural metamaterial combing plate lattice and hollow-truss lattice with advanced mechanical performances
  publication-title: Addit. Manuf.
– volume: 226
  year: 2023
  ident: 10.1016/j.matdes.2025.113800_br0270
  article-title: Multi-material additive manufacturing: a systematic review of design, properties, applications, challenges, and 3d printing of materials and cellular metamaterials
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2023.111661
– volume: 13
  start-page: 1170
  issue: 1
  year: 2022
  ident: 10.1016/j.matdes.2025.113800_br0280
  article-title: Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28694-x
– volume: 36
  issue: 8
  year: 2024
  ident: 10.1016/j.matdes.2025.113800_br0350
  article-title: Data-driven design for metamaterials and multiscale systems: a review
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202305254
– volume: 27
  issue: 2
  year: 2018
  ident: 10.1016/j.matdes.2025.113800_br0040
  article-title: Auxetic metamaterials and structures: a review
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aaa61c
– volume: 24
  issue: 1
  year: 2023
  ident: 10.1016/j.matdes.2025.113800_br0410
  article-title: Deep-learning-based inverse design of three-dimensional architected cellular materials with the target porosity and stiffness using voxelized Voronoi lattices
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1080/14686996.2022.2157682
– volume: 30
  issue: 12
  year: 2020
  ident: 10.1016/j.matdes.2025.113800_br0420
  article-title: Inverse design of mechanical metamaterials that undergo buckling
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201909033
– volume: 26
  start-page: 30
  year: 2019
  ident: 10.1016/j.matdes.2025.113800_br0240
  article-title: Two nature-mimicking auxetic materials with potential for high energy absorption
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.11.004
– volume: 28
  start-page: 10323
  issue: 46
  year: 2016
  ident: 10.1016/j.matdes.2025.113800_br0080
  article-title: Double-negative mechanical metamaterials displaying simultaneous negative stiffness and negative Poisson's ratio properties
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603959
– volume: 237
  year: 2024
  ident: 10.1016/j.matdes.2025.113800_br0090
  article-title: Minimal-surface-based multiphase metamaterials with highly variable stiffness
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2023.112548
– volume: 89
  start-page: 829
  issue: 7
  year: 2012
  ident: 10.1016/j.matdes.2025.113800_br0460
  article-title: Multiscale prediction of mechanical behavior of ferrite–pearlite steel with numerical material testing
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.3264
SSID ssj0022734
Score 2.446071
Snippet Mechanical metamaterials exhibit unique properties that depend on their microstructure and surpass those of their constituent materials. Flexible mechanical...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 113800
SubjectTerms Deep learning
Flexibility
Inverse design
Mechanical metamaterial
Soft robotics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yJz2IT1xf9OA1uNu8jyoui6InF_YWkkkiCq6L1P-_maaVnvTirfSRtN8Evsl05htCrqRyRnAwNAEHyqc-Ui-9plCLpEAnV7dN-56e5XzBH5ZiOWj1hTlhRR64AHedHMCEaRmNS1xxo4PLjGjyMEko5to68sx5_Waq22qhaEuJrqAqnxJ90Vyb2ZVdwRBRqrsW2NJEY3XbgJRa7f4BNw34ZrZHdjtHsbopL7hPtuLqgOwM5AMPyWOJylFkolB9RCziRczzYePy9GVxVRhqrUKMa9q1iHil-Wsz3aBKRMhXMIfjiCxm9y93c9o1R6DApGroVKvIRAStkndCGVPHKH3gIVM6_krxkMzEecdSSnlPVbMQFUw5hGScDDyxYzJafa7iCamS9JAfUd5PsK5UaaFDAK8BEviaqTGhPTp2XTQwbJ8c9m4LmhbRtAXNMblFCH_uRQXr9kS2q-3sav-y65io3gC2cwYKyeeh3n6d_vQ_pj8j2zhkydE5J6Pm6zteZPej8ZftStsAX_bZhQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Spring-based mechanical metamaterials with deep-learning-accelerated design
URI https://dx.doi.org/10.1016/j.matdes.2025.113800
https://doaj.org/article/facc0386e9af47498da2839c8ff573a7
Volume 252
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8QwDI54LDAgnuKtDqzR3TXvERDoAMECSGxV4iTokDhO6Pj_2E2LjoWBrU2bpnWsfHZqf2bsTBvvlATHM0jgchQSDzpYDrXKBmz2dVu07_5Bj5_l7Yt6WWKXfS4MhVV2a39Z09vVumsZdNIczCaTwSN6D5LoyRHE23TRZbZaC6dRtVfPb-7GDz9-FzG4lK0Wougzqs-ga8O80C6MiXi7a0X1TSylui0gVEvkvwBUC-Bzvck2OquxOi8vtsWW0nSbrS9wCe6wu7JFxwmWYvWeKKOXJgAP5x6HL5pW0b5rFVOa8a5exCv3AIg9RBkR8QoFdOyy5-urp8sx7yolcBDazPnImiRUAmty8Mo4V6ekQ5QR8Z3-qwTIbuiDFzlndLBqEZOBkYSYnddRZrHHVqYf07TPqqwDYBcTwpCSTI1VNkYIFiBDqIU5YLyXTjMrhBhNHyn21hRpNiTNpkjzgF2QCH_uJTrrtuHj87Xp5rPJ-KVDYXVyPksjnY0ezR6HupKVER4HNf0ENL-0Ax81-XP4w3_3PGJrdFaidI7ZyvzzK52gATIPp52CnbYO_DflDdwe
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5BOSwcVjwWAcsjB65W28SO7SOLqAqFXgCJm2WPbdSVKBUq_x9PnFTdyx64RXYcJ-ORvxln5huAy1paLThqFpEj40MXmKudYliKKFFFWzZF-x6m9fiZ372Ilw247nJhKKyy3fvznt7s1m1Lv5VmfzGb9R-T98CJnjyBeJMuuglbxE4lerB1dTsZT1d-FzG45KMWouiTosuga8K8kl3oA_F2l4LqmyhKdVtDqIbIfw2o1sBntAs_W6uxuMovtgcbYb4PO2tcggcwyUd0jGDJF2-BMnppAdLl0qbps6YVdO5a-BAWrK0X8cosYsIeoozwqYcCOn7B8-jm6XrM2koJDKtaLtlQyVCJgEpGZ4XUugyhdp77hO_0X8Vh1APrbBVjTA5WWfkgccjRR21rz2N1CL35-zwcQRFrh2mIdG5ASaZSCeU9OoUY0ZWVPAbWSccsMiGG6SLF_posTUPSNFmax_CHRLi6l-ism4b3j1fTrqeJ6UsHlaqDtpFLrpW3yezRSVeikJVNk8puAcw_2pEeNfvv9CffHnkBP8ZPD_fm_nY6-Q3b1JMjdk6ht_z4DGfJGFm681bZvgAcEd4P
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spring-based+mechanical+metamaterials+with+deep-learning-accelerated+design&rft.jtitle=Materials+%26+design&rft.au=Guo%2C+Xiaofeng&rft.au=Zheng%2C+Xiaoyang&rft.au=Zhou%2C+Jiaxin&rft.au=Yamada%2C+Takayuki&rft.date=2025-04-01&rft.issn=0264-1275&rft.volume=252&rft.spage=113800&rft_id=info:doi/10.1016%2Fj.matdes.2025.113800&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matdes_2025_113800
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon