Conversion of 5-hydroxymethylfurfural to chemicals: A review of catalytic routes and product applications
Biomass is the sole renewable organic carbon resource in nature. Conversion of Biomass can produce a series of platform molecules. As an essential multi-purpose bioderived furanic platform compound, 5-hydroxymethylfurfural (HMF) can be effectively transformed into a variety of value-added derivative...
Saved in:
Published in | Fuel processing technology Vol. 209; p. 106528 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.12.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0378-3820 1873-7188 |
DOI | 10.1016/j.fuproc.2020.106528 |
Cover
Loading…
Abstract | Biomass is the sole renewable organic carbon resource in nature. Conversion of Biomass can produce a series of platform molecules. As an essential multi-purpose bioderived furanic platform compound, 5-hydroxymethylfurfural (HMF) can be effectively transformed into a variety of value-added derivatives due to its rich chemistry and potential availability, which is an ideal renewable alternative to fossil fuels. This review highlights recent advances in the development of efficient catalytic systems for the conversion of HMF, especially heterogeneous catalysts. Heterogeneous catalysts have advantages in facile separation and recovery, tunable performance by adjusting catalyst structures. Simultaneously, we mainly focus on the application of downstream products in material monomers, pharmaceutical intermediates, and fuels. Furthermore, a few potential research trends are also proposed, in order to provide some useful ideas for the further exploration of the utilization and conversion of HMF in a much simple, efficient, and economical way.
•Highly summarized recent advances in the conversion of HMF into monomers, fuels, and pharmaceutical intermediates•Discussion of research priorities and current challenges in the preparation of HMF downstream products•Prospects for potential research directions downstream of HMF |
---|---|
AbstractList | Biomass is the sole renewable organic carbon resource in nature. Conversion of Biomass can produce a series of platform molecules. As an essential multi-purpose bioderived furanic platform compound, 5-hydroxymethylfurfural (HMF) can be effectively transformed into a variety of value-added derivatives due to its rich chemistry and potential availability, which is an ideal renewable alternative to fossil fuels. This review highlights recent advances in the development of efficient catalytic systems for the conversion of HMF, especially heterogeneous catalysts. Heterogeneous catalysts have advantages in facile separation and recovery, tunable performance by adjusting catalyst structures. Simultaneously, we mainly focus on the application of downstream products in material monomers, pharmaceutical intermediates, and fuels. Furthermore, a few potential research trends are also proposed, in order to provide some useful ideas for the further exploration of the utilization and conversion of HMF in a much simple, efficient, and economical way. Biomass is the sole renewable organic carbon resource in nature. Conversion of Biomass can produce a series of platform molecules. As an essential multi-purpose bioderived furanic platform compound, 5-hydroxymethylfurfural (HMF) can be effectively transformed into a variety of value-added derivatives due to its rich chemistry and potential availability, which is an ideal renewable alternative to fossil fuels. This review highlights recent advances in the development of efficient catalytic systems for the conversion of HMF, especially heterogeneous catalysts. Heterogeneous catalysts have advantages in facile separation and recovery, tunable performance by adjusting catalyst structures. Simultaneously, we mainly focus on the application of downstream products in material monomers, pharmaceutical intermediates, and fuels. Furthermore, a few potential research trends are also proposed, in order to provide some useful ideas for the further exploration of the utilization and conversion of HMF in a much simple, efficient, and economical way. •Highly summarized recent advances in the conversion of HMF into monomers, fuels, and pharmaceutical intermediates•Discussion of research priorities and current challenges in the preparation of HMF downstream products•Prospects for potential research directions downstream of HMF |
ArticleNumber | 106528 |
Author | Xu, Hua-Jian Fu, Yao Li, Xing-Long Kong, Qing-Shan |
Author_xml | – sequence: 1 givenname: Qing-Shan surname: Kong fullname: Kong, Qing-Shan organization: Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Institute of Energy, Hefei Comprehensive National Science Center, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China – sequence: 2 givenname: Xing-Long surname: Li fullname: Li, Xing-Long organization: Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Institute of Energy, Hefei Comprehensive National Science Center, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China – sequence: 3 givenname: Hua-Jian surname: Xu fullname: Xu, Hua-Jian email: hjxu@hfut.edu.cn organization: School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China – sequence: 4 givenname: Yao surname: Fu fullname: Fu, Yao email: fuyao@ustc.edu.cn organization: Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Institute of Energy, Hefei Comprehensive National Science Center, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China |
BookMark | eNqFkUtr3DAUhUVJoZO0_6ALQTfZeKKH9ZgsAmFImkKgm3YtNFcyo8FjTSQ5if995bqrLFIQXBDnO5x7zzk6G-LgEfpKyZoSKq8O6248pQhrRtj8JQXTH9CKasUbRbU-QyvClW64ZuQTOs_5QAgRYqNWKGzj8OxTDnHAscOi2U8uxdfp6Mt-6rsx1Wd7XCKGvT8GsH2-xrc4-efgX2YCbLH9VALgFMfiM7aDwzWMG6Fgezr1lSnVPX9GH7tK-y__5gX6fX_3a_vQPP78_mN7-9gAl6o0lDvKmRUUNHRWtMwRTh1Xitm6T-fkTnZis9OS652j83ZSw45qJx1RDiS_QJeLbw3xNPpczDFk8H1vBx_HbNhGC9ESRWfptzfSQxzTUNMZ1op6xlZqXVXXiwpSzDn5zkAof3cqyYbeUGLmFszBLC2YuQWztFDh9g18SuFo0_Q_7GbBfL1UPXUyGYIfwLuQPBTjYnjf4A95YqaB |
CitedBy_id | crossref_primary_10_1002_EXP_20220169 crossref_primary_10_1039_D5CC00021A crossref_primary_10_1007_s13399_024_06484_3 crossref_primary_10_1016_j_fuproc_2022_107635 crossref_primary_10_3390_pr10102095 crossref_primary_10_1134_S002315842460144X crossref_primary_10_1016_j_mcat_2023_113629 crossref_primary_10_1016_j_seppur_2025_131568 crossref_primary_10_1016_j_cej_2022_140415 crossref_primary_10_1016_j_cej_2022_140536 crossref_primary_10_1002_cctc_202300480 crossref_primary_10_1002_cssc_202401291 crossref_primary_10_1039_D4CY01420K crossref_primary_10_1177_1934578X241290620 crossref_primary_10_1039_D2CY00110A crossref_primary_10_1002_cssc_202402421 crossref_primary_10_1007_s10570_022_04623_5 crossref_primary_10_1002_cctc_202300765 crossref_primary_10_1016_j_fuel_2024_132266 crossref_primary_10_1016_j_fuel_2021_121769 crossref_primary_10_1016_j_fuproc_2020_106672 crossref_primary_10_1016_j_fuel_2025_134429 crossref_primary_10_1002_cssc_202200178 crossref_primary_10_1016_j_cej_2020_127827 crossref_primary_10_1021_acs_energyfuels_4c02996 crossref_primary_10_1021_acs_iecr_2c02934 crossref_primary_10_3389_fchem_2022_1006981 crossref_primary_10_1016_j_bej_2023_108835 crossref_primary_10_1016_j_biortech_2021_125977 crossref_primary_10_1021_acsanm_2c01077 crossref_primary_10_1016_j_cej_2025_159604 crossref_primary_10_1051_bioconf_20237003009 crossref_primary_10_1021_acs_langmuir_3c01380 crossref_primary_10_1002_cplu_202300309 crossref_primary_10_1021_acs_energyfuels_1c03346 crossref_primary_10_1039_D1GC01621K crossref_primary_10_1007_s10311_022_01543_5 crossref_primary_10_1039_D4GC04191G crossref_primary_10_1007_s11694_023_01978_6 crossref_primary_10_1016_j_jechem_2023_11_023 crossref_primary_10_1016_j_isci_2022_104744 crossref_primary_10_1016_j_fuel_2022_125700 crossref_primary_10_1016_j_apcata_2023_119265 crossref_primary_10_1016_j_ceja_2024_100597 crossref_primary_10_1002_cssc_202201846 crossref_primary_10_1039_D2NJ00142J crossref_primary_10_1039_D4NJ03028A crossref_primary_10_3390_molecules28041527 crossref_primary_10_1007_s13738_021_02313_w crossref_primary_10_1039_D1SE00802A crossref_primary_10_1002_er_8545 crossref_primary_10_1360_SSV_2023_0067 crossref_primary_10_3390_catal11070861 crossref_primary_10_1515_ncrs_2022_0105 crossref_primary_10_1007_s13399_021_01495_w crossref_primary_10_1039_D1CY02197D crossref_primary_10_1080_17518253_2025_2457497 crossref_primary_10_1007_s10562_022_04043_x crossref_primary_10_1016_j_apsusc_2022_154579 crossref_primary_10_3390_catal13030574 crossref_primary_10_3390_ijms222111856 crossref_primary_10_1021_acssuschemeng_4c05695 crossref_primary_10_1021_acssuschemeng_2c01303 crossref_primary_10_1002_cssc_202400559 crossref_primary_10_1016_j_fuel_2025_134477 crossref_primary_10_1007_s13399_022_03648_x crossref_primary_10_1021_acs_iecr_2c02322 crossref_primary_10_1016_j_mcat_2024_114354 crossref_primary_10_1016_j_crcon_2023_01_001 crossref_primary_10_1002_cssc_202200421 crossref_primary_10_1016_j_jcis_2024_05_006 crossref_primary_10_1039_D3NJ02786D crossref_primary_10_3390_catal11091077 crossref_primary_10_1016_j_fuel_2022_126610 crossref_primary_10_2174_2213337208666211129090444 crossref_primary_10_1002_cplu_202200166 crossref_primary_10_3390_catal10080895 crossref_primary_10_1021_acssuschemeng_4c04552 crossref_primary_10_1002_er_6743 crossref_primary_10_1016_j_ccr_2024_216426 crossref_primary_10_1002_jsde_12581 crossref_primary_10_3390_catal14030185 crossref_primary_10_1002_slct_202302075 crossref_primary_10_1016_j_jaap_2024_106706 crossref_primary_10_1021_acsomega_4c03804 crossref_primary_10_1039_D1SE00499A crossref_primary_10_1007_s11164_023_05100_9 crossref_primary_10_1016_j_mcat_2023_113244 crossref_primary_10_1039_D1GC03278J crossref_primary_10_1080_17597269_2024_2432148 crossref_primary_10_7454_jessd_v6i2_1158 crossref_primary_10_1021_acscatal_4c01448 crossref_primary_10_3389_fchem_2023_1199921 crossref_primary_10_1016_j_renene_2024_122125 crossref_primary_10_1016_j_apsusc_2024_160677 crossref_primary_10_9767_bcrec_18330 crossref_primary_10_1002_slct_202201255 crossref_primary_10_1007_s10904_021_02062_6 crossref_primary_10_3390_su16020858 crossref_primary_10_1016_j_indcrop_2022_115536 crossref_primary_10_1007_s00107_023_02017_3 crossref_primary_10_3390_catal14120927 crossref_primary_10_3390_molecules29050937 crossref_primary_10_1002_cssc_202402522 crossref_primary_10_1002_open_202000233 crossref_primary_10_1016_j_mcat_2023_112966 crossref_primary_10_1039_D1OB00013F crossref_primary_10_1039_D3SE01164J crossref_primary_10_1016_j_scp_2023_101013 crossref_primary_10_1016_j_cej_2024_150482 crossref_primary_10_1021_acssuschemeng_3c05783 crossref_primary_10_1016_j_inoche_2022_110226 crossref_primary_10_1016_j_renene_2024_120748 crossref_primary_10_1007_s12155_022_10453_x crossref_primary_10_3389_fsufs_2024_1334801 crossref_primary_10_3390_su16020608 |
Cites_doi | 10.1039/C3GC41324A 10.1039/C5GC01043H 10.1002/cssc.201900535 10.1039/C7GC02425H 10.1016/j.cattod.2006.12.006 10.1002/anie.201602883 10.1016/j.jcat.2014.06.023 10.1021/acscatal.6b02853 10.1039/c3ra41043a 10.1016/j.jiec.2013.09.020 10.1002/cctc.201801843 10.1021/jo016004j 10.1002/cplu.201300301 10.1002/cssc.201300414 10.1002/cssc.201301356 10.1021/acssuschemeng.7b02049 10.1039/C5GC03051J 10.1002/cssc.201300476 10.1002/cctc.201500097 10.1021/acscatal.8b04003 10.1039/C5GC01723H 10.1016/j.catcom.2014.09.017 10.1039/C4GC01158A 10.1016/j.biortech.2012.06.001 10.1002/cssc.201700051 10.1039/C7CY01704A 10.1002/cssc.201200718 10.1002/anie.201700231 10.1016/j.molcata.2016.01.005 10.1021/jo015628m 10.1002/cssc.201200489 10.1039/C7GC02310C 10.1002/anie.201403440 10.1016/j.apcatb.2016.08.013 10.1016/j.ejmech.2014.04.005 10.1016/j.apcatb.2006.03.001 10.1246/cl.2007.38 10.1002/anie.201102156 10.1007/s11244-012-9839-6 10.1007/s11244-016-0646-3 10.1039/c3gc42145g 10.1039/C0EE00436G 10.1016/0008-6215(89)80052-7 10.1002/cssc.201501625 10.1038/nmat3872 10.1021/ie2025536 10.1002/cctc.201500119 10.1038/am.2015.21 10.1002/cctc.201200482 10.1039/C5GC02794B 10.1021/cs501776n 10.1021/acs.chemrev.7b00395 10.1021/ie970631a 10.3390/12030634 10.1016/j.apcatb.2013.09.004 10.1039/C8CY02291G 10.1039/c3gc37065h 10.1016/j.tet.2016.10.026 10.1016/j.apcatb.2016.07.004 10.1021/acssuschemeng.8b01617 10.1002/cssc.201402221 10.1039/C8RA01723A 10.1039/C4DT00304G 10.1021/cr100171a 10.1039/C6GC03022J 10.1021/ie3020445 10.1002/cctc.201000018 10.1016/j.fuel.2013.09.072 10.1016/j.apcata.2014.05.003 10.1039/C7RA05427K 10.1021/cr068360d 10.1055/s-2000-6734 10.1016/j.rser.2018.12.010 10.1039/C7CC06097A 10.1039/C3CC49591D 10.1126/science.aan6245 10.1080/00397918108064281 10.1039/c3cy00223c 10.1039/C4CY00213J 10.1002/slct.201701966 10.1016/j.bmcl.2004.02.005 10.1039/c2ee02778j 10.1039/c2gc35175g 10.1021/acs.jpcc.8b11941 10.1016/j.biortech.2017.07.138 10.1016/j.apcatb.2016.06.051 10.1039/C7CS00213K 10.1039/C6GC02723G 10.1002/asia.201700940 10.1016/j.apcatb.2013.04.026 10.1002/cplu.201500292 10.1055/s-1992-26158 10.1016/j.jcat.2014.05.003 10.1002/slct.201903535 10.1039/c2gc35102a 10.1002/cssc.201403453 10.1016/S0040-4020(01)80423-3 10.1021/ie404441a 10.1002/cssc.201500118 10.1016/j.apcata.2017.09.012 10.1021/cr300182k 10.1016/j.cattod.2013.10.012 10.1002/cssc.201802126 10.1016/j.mcat.2017.01.011 10.1016/j.cattod.2016.03.031 10.1016/S0040-4020(98)00634-6 10.1039/C8GC00857D 10.1021/acs.jmedchem.8b00876 10.1002/1615-4169(200210)344:9<953::AID-ADSC953>3.0.CO;2-A 10.1021/jm051043z 10.1039/C7GC00027H 10.1039/c2gc35947b 10.1002/cssc.201800532 10.1039/C6GC00508J 10.1002/cssc.201300832 10.1039/C4GC01601G 10.1021/acssuschemeng.7b03124 10.1016/j.ejmech.2007.12.014 10.1016/j.cattod.2014.02.029 10.1039/C7GC00269F 10.1016/j.catcom.2014.08.008 10.1039/C4EE03194F 10.1016/j.fuel.2013.06.015 10.1039/C5GC01584G 10.1295/polymj.PJ2008170 10.1021/ja3122763 10.1016/j.biortech.2017.04.026 10.1039/C5CY00700C 10.1002/cssc.201402095 10.1002/cssc.201501136 10.1039/C6RA01549B 10.1021/jm0703183 10.1039/C4TA06135G 10.1021/acssuschemeng.7b01813 10.1038/nchem.1609 10.1021/acs.oprd.7b00223 10.1039/C7GC01579H 10.1039/C5GC01794G 10.1023/A:1009017929727 10.1002/cssc.201300443 10.1016/j.cattod.2011.05.008 10.1039/c3ee41857j 10.1016/j.biortech.2017.12.098 10.1002/cssc.201402105 10.1002/bbb.95 10.1002/cjoc.201180455 10.1021/acscatal.6b00750 10.1039/C6MD00649C 10.1016/j.biortech.2018.07.048 10.1016/S0040-4020(01)86635-7 10.1039/C8GC01628C 10.1021/acs.iecr.5b03379 10.1039/c0gc00837k 10.1055/s-1995-3897 10.1039/c004343e 10.1016/j.jece.2013.09.004 10.1039/C7GC01116D 10.1039/c2gc35667h 10.1021/acssuschemeng.7b00573 10.1002/cssc.201701866 10.1016/j.cattod.2018.02.034 10.1039/C4CY01376J 10.1039/C4GC01127A 10.1039/C7GC00315C 10.1021/jacs.7b04481 10.1038/nature05923 10.1021/ie500156d 10.1002/ange.201007508 10.1016/j.apenergy.2012.04.049 10.1039/C5GC02228B 10.1016/j.catcom.2004.05.002 10.1002/cctc.201600942 10.1016/j.bmcl.2010.02.005 10.1039/C6GC03020C 10.1021/ja00765a084 10.1016/j.jcat.2012.12.024 10.1039/c002340j 10.1039/c2gc35039d 10.1021/ja0623358 10.1021/acscatal.7b03152 10.1039/C2RA22190J 10.1016/S1872-2067(15)60927-5 10.1039/C6GC02630C 10.1039/C6RA03565E 10.1016/j.apcata.2013.12.014 10.1016/j.jcat.2011.12.017 10.1016/j.cej.2019.121983 10.1039/C7CY01834G 10.1016/j.tetlet.2017.09.028 10.1039/c0gc00401d 10.1016/S1566-7367(02)00261-3 10.1021/jacs.7b05832 10.1021/acs.iecr.7b05101 10.1039/C7GC03072J 10.1016/j.apcatb.2019.118235 10.1071/CH9851009 10.1039/C7CY00712D 10.1002/1615-4169(20010129)343:1<102::AID-ADSC102>3.0.CO;2-Q 10.1039/C1CY00321F 10.3987/COM-13-12730 10.1016/j.apcata.2015.10.009 10.1126/science.1111166 10.1016/j.jcat.2011.09.030 10.1021/sc500702q 10.1016/j.bmcl.2005.01.019 10.1016/j.fuel.2015.02.020 10.1002/cssc.201402468 10.1021/acssuschemeng.7b02408 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. Copyright Elsevier Science Ltd. Dec 1, 2020 |
Copyright_xml | – notice: 2020 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Dec 1, 2020 |
DBID | AAYXX CITATION 7TB 8FD FR3 H8D L7M 7S9 L.6 |
DOI | 10.1016/j.fuproc.2020.106528 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aerospace Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7188 |
ExternalDocumentID | 10_1016_j_fuproc_2020_106528 S0378382020308195 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABJNI ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSG SSK SSR SSZ T5K TWZ ~02 ~G- 29H 8WZ A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HVGLF HZ~ R2- RIG SAC SCB SEW SSH UHS WUQ ZY4 7TB 8FD EFKBS FR3 H8D L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c367t-13d132a51c8cfa542d031d3772a187fd6b6f59b8638bd1718868cb18d6d07dc63 |
IEDL.DBID | .~1 |
ISSN | 0378-3820 |
IngestDate | Fri Sep 05 04:45:19 EDT 2025 Fri Jul 25 01:26:02 EDT 2025 Tue Jul 01 03:04:38 EDT 2025 Thu Apr 24 22:56:44 EDT 2025 Fri Feb 23 02:47:55 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Catalytic conversion Platform chemicals 5-Hydroxymethylfurfural Hydrogenation Material monomers Furan derivatives |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c367t-13d132a51c8cfa542d031d3772a187fd6b6f59b8638bd1718868cb18d6d07dc63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2450654688 |
PQPubID | 2047467 |
ParticipantIDs | proquest_miscellaneous_2985540716 proquest_journals_2450654688 crossref_citationtrail_10_1016_j_fuproc_2020_106528 crossref_primary_10_1016_j_fuproc_2020_106528 elsevier_sciencedirect_doi_10_1016_j_fuproc_2020_106528 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 2020-12-00 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Fuel processing technology |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Kraus, Guney (bb1040) 2012; 14 Tekautz, Kirschneck, Linhart (bb0300) 2017 Rosatella, Simeonov, Frade, Afonso (bb0050) 2011; 13 Xu, Zhang (bb0200) 2015; 7 Cottier, Descotes, Eymard, Rapp (bb0745) 1995; 1995 Zhao, Dong, Wang, Wang, Yan, Yan, Zhang, Cao, Jin (bb0665) 2017; 8 Bottari, Kumalaputri, Krawczyk, Feringa, Heeres, Barta (bb0405) 2015; 8 bb0035 Wu, Xu, Zhu, Cui, Li, Deng, Fu (bb0530) 2016; 9 Yu, Hu (bb0720) 2002; 67 Ohyama, Ohira, Satsuma (bb0485) 2017; 7 Zhou, Rauchfuss (bb0965) 2013; 6 Huber, Iborra, Corma (bb0020) 2006; 106 Guo, Liu, Zhang, Han, Liu, Jiang, Han, Wu (bb0870) 2016; 18 Mamman, Lee, Kim, Hwang, Park, Hwang, Chang, Hwang (bb0890) 2008; 2 Yang, Deng, Pan, Guo, Fu (bb0145) 2012; 14 Fang, Luque, Li (bb0170) 2016; 18 Cai, Li, Wang, Zhang (bb0425) 2014; 234 Zhao, Sojdak, Myint, Seidel (bb1085) 2017; 139 Chen, Li, Wang, Liang, Wang, Zhang, Zhang (bb0245) 2017; 5 Zhou, Song, Zhang, Jiang, Zhang, Han (bb0345) 2017; 19 Corma, de la Torre, Renz (bb0960) 2012; 5 Wang, Zhang, Liu (bb0315) 2015; 3 Liu, Zhang, Lv, Deng, Duan (bb0130) 2014; 472 Goodman, Jacobsen (bb0725) 2002; 344 Doyle, DeBruyn, Kooistra (bb1075) 1972; 94 Rathod, Jadhav (bb0250) 2018; 6 Pupovac, Palkovits (bb0925) 2013; 6 Dutta, De, Alam, Abu-Omar, Saha (bb0990) 2012; 288 Zhang, Wang, Fang, Liu (bb1020) 2014; 79 Muller, Diehl, Lichtenthaler (bb0610) 1998; 54 Wang, Zhang, Ma, MaBifunctional (bb0100) 2016; 6 Zhang, Hou, Meng, Zhuang, Xie, Zhou, Wang (bb0165) 2017; 7 Xiao, Zheng, Li, Pang, Sun, Wang, Pang, Wang, Wang, Zhang (bb0515) 2016; 18 Huang, Chen, Yan, Guo, Fu (bb0845) 2014; 7 Parsania (bb0700) 1993; 5 Yu, He, Chen, Zheng, Ye, Lin, Yuan (bb0860) 2015; 7 Yoshida, Kasuya, Haga, Fukuda (bb0550) 2008; 40 Nilges, Schroeder (bb0880) 2013; 6 Ohyama, Esaki, Yamamoto, Arai, Satsuma (bb0390) 2013; 3 Yang, Li, Li, Wang, Wang, Zhang, Cong, Wang, Huber (bb0895) 2015; 54 Li, Cai, Zhang, Li, Pei, Dai, Wang, Zhang (bb0825) 2015; 36 Cao, Iris, Tsang, Zhang, Ok, Kwon, Song, Poon (bb0115) 2018; 267 Cukalovic, Stevens (bb0615) 2010; 12 Iwanami, Yano, Oriyama (bb1065) 2006; 36 Matasi, Caldwell, Hao, Neustadt, Arik, Foster, Lachowicz, Tulshian (bb0680) 2005; 15 Rorrer, Bell, Toste (bb0005) 2019; 12 Chatterjee, Ishizakaa, Kawanami (bb0380) 2014; 16 Buntara, Noel, Phua, Melian-Cabrera, dé Vries, Heeres (bb0565) 2011; 50 Yang, Xie, Deng, Li, Zheng, Duan (bb0535) 2019; 4 Buntara, Noel, Phua, Melián-Cabrera, de Vries, Heeres (bb0570) 2012; 55 Wang, Zhang, Liu, Li (bb1015) 2013; 3 Wang, Liu, Xiang, Wang, Lyu, Qi, Si, Yang, Hu (bb0185) 2019; 9 Lanzafame, Temi, Perathoner, Centi, Macario, Aloise, Giordano (bb0995) 2011; 175 Xia, Cuan, Liu, Gong, Lu, Wang (bb0930) 2014; 53 Liu, Zhu, Tang, Liu, Cheng, Hu (bb0220) 2014; 7 Xu, Li, Li, Han, Wang, Cong, Wang, Zhang (bb0950) 2018; 20 Wu, Yu, Hao, Wells, Meng, Li, Pu, Liu, Ragauskas (bb0105) 2017; 244 Barrett, Chheda, Huber, Dumesic (bb0920) 2006; 66 Mika, Csefalvay, Nemeth (bb0040) 2018; 118 Mittal, Nisola, Malihan, Seo, Kim, Lee, Chung (bb0205) 2016; 6 van der Klis, van Haveren, van Es, Bitter, Galkin, Ananikov, Galkin, Krivodaeva, Romashov, Zalesskiy, Kachala, Burykina, Ananikov (bb1105) 2017; 10 Sanda, Rigal, Gaset (bb0595) 1989; 187 Yuan, Zhang, Zheng, Lin (bb1025) 2015; 150 Bing, Zhang, Deng (bb1035) 2012; 51 van Putten, van der Waal, de Jong, Rasrendra, Heeres, de Vries (bb0045) 2013; 113 Li, Ho, Lim, Zhang (bb0460) 2017; 19 Mishra, Lee, Kim, Lee, Cho, Yi, Kim (bb0275) 2017; 19 Jaganathan, Chaudhari, Rode, Chaudhari, Mills (bb0500) 1998; 37 Bohre, Saha, Abu-Omar (bb0945) 2015; 8 G. J. M. Gruter. 5-Substituted 2-(alkoxymethyl) furans: U.S. Patent 8,231,693. 2012-7-31. Zu, Yang, Wang, Liu, Ren, Lu, Wang (bb0790) 2014; 146 Choudhary, Mushrif, Ho, Anderko, Nikolakis, Marinkovic, Frenkel, Sandler, Vlachos (bb0885) 2013; 135 Liu, Du, Yang, Lu, Lu, Xu (bb0430) 2012; 5 Weissermel, Arpe (bb0435) 2003 Balakrishnan, Sacia, Bell (bb1090) 2012; 14 Yi, Teong, Zhang (bb0360) 2015; 8 Hu, Tang, Xu, Wu, Lin, Liu (bb0780) 2014; 53 Rodenas, Mariscal, Fierro, Martín Alonso, Dumesic, López Granados (bb0465) 2018; 20 Gao, Xie, Fan, Yang, Li (bb0270) 2017; 5 Gao, Liu, Ma, Zhong, Song, Xu, Gan, Han, Niu (bb0340) 2020; 261 Yadav, Sharma (bb0125) 2014; 147 Song, Hesse (bb0695) 1993; 49 Gomez Millan, Hellsten, Llorca, Luque, Sixta, Balu (bb0060) 2019; 11 Tellers, McWilliams, Humphrey, Journet, DiMichele, Hinksmon, McKeown, Rosner, Sun, Tillyer (bb0685) 2006; 128 Iris, Tsang (bb0065) 2017; 238 Zhu, Kong, Zheng, Ding, Zhu, Li (bb0410) 2015; 5 Lew, Rajabbeigi, Tsapatsis (bb1055) 2012; 51 Ahmed, Mannel, Root, Stahl (bb0240) 2017; 21 Du, Ma, Wang, Liu, Xu (bb0445) 2011; 13 Wang, Zhu, Li, Liu, Tan, Wang, Cai, Ma (bb0055) 2019; 103 Taitt, Nam, Choi (bb0335) 2019; 9 Delost, Smith, Anderson, Njardarson (bb0585) 2018; 61 Li, Zhang, Chen, Li, Li, Xu, Fu (bb1100) 2018; 20 Tuteja, Choudhary, Nishimura, Ebitani (bb0580) 2014; 7 Zhang, Huber (bb0190) 2018; 47 Nishimura, Ikeda, Ebitani (bb0770) 2014; 232 Li, Deng, Shi, Pan, Yu, Xu, Fu (bb0495) 2015; 17 Corma, de la Torre, Renz, Villandier (bb0955) 2011; 123 Saha, Gupta, Abu-Omar, Modak, Bhaumik (bb0305) 2013; 299 Ohyama, Kanao, Ohira, Satsuma (bb0480) 2016; 18 Deutsch, Shanks (bb0820) 2012; 285 Wang, Hilgert, Richter, Wang, Bongard, Spliethoff, Weidenthaler, Schüth (bb0810) 2014; 13 Lv, Wang, Yang, Deng, Chen, Zhu, Hou (bb0215) 2016; 18 Kubota, Choi (bb0330) 2018; 11 Che, Lu, Zhang, Huang, Nie, Gao, Xu (bb0985) 2012; 119 Jagadeesh, Murugesan, Alshammari, Neumann, Pohl, Radnik, Beller (bb0625) 2017; 358 Liu, Liu, Wang, Ren, Zhang (bb1005) 2014; 117 Partenheimer, Grushin (bb0225) 2001; 343 Gallo, Alamillo, Dumesic (bb0095) 2016; 422 Yang, Abu-Omar, Hu (bb1045) 2012; 99 Kwon, de Jong, Raoufmoghaddam, Koper (bb0875) 2013; 6 Yan, Xin, Zhao, Gao, Lu, Wang, Zhang (bb0320) 2018; 8 Cao, Iris, Chen, Tsang, Wang, Xiong, Zhang, Ok, Kwon, Song, Poon (bb0090) 2018; 252 Yi, Teong, Zhang (bb0365) 2016; 18 Kumalaputri, Bottari, Erne, Heeres, Barta (bb0420) 2014; 7 Pasini, Solinas, Zanotti, Albonetti, Cavani, Vaccari, Mazzanti, Ranieri, Mazzoni (bb0375) 2014; 43 Bakos, Gyömöre, Domján, Soós (bb1070) 2017; 56 Dow, Kelly, Schletter, Wierenga (bb0735) 1981; 11 Yi, Teong, Li, Zhang (bb0355) 2014; 7 Serrano-Ruiz, Dumesic (bb0015) 2011; 4 Cueto, Faba, Diaz, Ordonez (bb0905) 2017; 201 Saha, Dutta, Abu-Omar (bb0230) 2012; 2 Liu, Audemar, Vigier, Clacens, Campo, Jérôme (bb0510) 2014; 7 Lan, Lin, Chen, Yin (bb0450) 2015; 5 Ribeiro, Schuchardt (bb0370) 2003; 4 Zhang, Wang, Lyu, Xie, Qi, Si, Liu, Yang, Hu (bb0915) 2019; 123 Hansen, Barta, Anastas, Ford, Riisager (bb0835) 2012; 14 Sanda, Rigal, Delmas, Gaset (bb0600) 1992; 1992 Marquardt, Schmid, Jung (bb0690) 2000; 2000 Liu, Chen (bb0940) 2013; 6 Stahl, Powell, Root, Mannel, Ahmed (bb0235) 2017 Kroger, Prusse, Vorlop (bb0350) 2000; 13 Ramos, Grigoropoulos, Perret, Zanella, Katsoulidis, Manning, Claridgea, Rosseinsky (bb0490) 2017; 19 Zhu, Lei, Miao, Sheng, Zhuang, Yao, Zhang (bb0705) 2012; 30 Sokolovskii, Murphy, Boussie, Diamond, Dias, Zhu, Longmire, Herrmann, Torssell, Lavrenko (bb0285) 2017 Zhou, Liu, Sun, Peng, Wang, Wang, Yang (bb0750) 2013; 87 Insyani, Erma, Min, Kim (bb0775) 2017; 19 Nie, Liu (bb0120) 2014; 316 Sassaman, Prakash, Olah, Donald, Loker (bb1080) 1988; 44 Meguellati, Ahmed-Belkacem, Yi, Haudecoeur, Crouillère, Brillet, Pawlotsky, Boumendjel, Peuchmaur (bb0655) 2014; 80 Lin, Shi, Nyarko, Bastow, Wu, Su, Shih, Lee (bb0675) 2006; 49 Liu, Zhang, Shi, Zhang, Wang, Ma (bb0670) 2018; 8 Sutton, Waldie, Wu, Schlaf, Louis, Gordon (bb0935) 2013; 5 Liu, Zhang, Fang, Liu, Huang (bb1000) 2014; 20 Gupta, Rai, Dwivedi, Singh (bb0255) 2017; 9 Jain, Jonnalagadda, Ramanujachary, Mugweru (bb0310) 2015; 58 Yin, Sun, Liu, Zhang (bb1030) 2015; 3 Yu, Liu, Hu (bb0715) 2001; 66 Kong, Zhu, Zheng, Zhu, Fang (bb0855) 2017; 5 Liu, Zhang, Huang, Fang (bb0980) 2013; 113 Li, Saravanamurugan, Yang, Riisager (bb1060) 2016; 18 Chheda, Dumesic (bb0910) 2007; 123 Román-Leshkov, Barrett, Liu, Dumesic (bb0760) 2007; 447 Zhu, Tao, Zhang, Dong, Liu, He, Cao (bb0620) 2017; 19 Cao, Liang, Guan, Wang, Qu, Zhang, Wang, Mu (bb0415) 2014; 481 Neaţu, Petre, Somoghi, Florea, Parvulescu (bb0135) 2016; 278 Wang, Hou, Li, Xie, Li, Zhou, Wang (bb0265) 2017; 19 Komanoya, Kinemura, Kita, Kamata, Hara (bb0630) 2017; 139 Kiermayer (bb0030) 1895; 19 Santos, Silva, Jordao, Fraga (bb0560) 2004; 5 Huber, Chheda, Barrett, Dumesic (bb0900) 2005; 308 Nagpure, Venugopal, Lucas, Manikandan, Thirumalaiswamy, Chilukuri (bb0830) 2015; 5 Jeong, Singh, Sharma, Gyak, Maurya, Kim (bb0785) 2015; 7 Luo, Lee, Yun, Wang, Monai, Murray, Fornasiero, Gorte (bb0805) 2016; 199 Lewis, Bayless, Eckman, Ellis, Grewal, Libertine, Nicolas, Scannell, Wels, Wenberg, Wypij (bb0730) 2004; 14 Zhao, Jayakumar, Hu, Yan, Yang, Lee (bb0180) 2018; 6 Liu, Zhang (bb1010) 2013; 3 Xiong, Iris, Chen, Tsang, Cao, Song, Kwon, Ok, Zhang, Poon (bb0110) 2018; 314 Duan, Zheng, Li, Deng, Ma, Yang (bb0505) 2017; 19 Chatterjee, Ishizaka, Kawanami (bb0765) 2014; 16 Aellig, Jenny, Scholz, Wolf, Giovinazzo, Kollhoffa, Hermans (bb0400) 2014; 4 Li, Ho, Zhang (bb0440) 2016; 18 Galkin, Krivodaeva, Romashov, Zalesskiy, Kachala, Burykina, Ananikov (bb0590) 2016; 55 Li, Gu, Bjornson, Muthukumarappan (bb0085) 2013; 1 Liu, Audemar, Vigier, Clacens, De Campo, Jérôme (bb0525) 2014; 16 Witczak, Bielski, Mencer (bb0660) 2017; 58 Suryawanshi, Chandra, Kumar, Porwal, Gupta (bb0640) 2008; 43 Xiong, Iris, Tsang, Bolan, Ok, Igalavithana, Kirkham, KimL, Vikrant (bb0080) 2019; 375 Pasini, Lolli, Albonetti, Cavani, Mella (bb0385) 2014; 317 Chidambaram, Bell (bb0815) 2010; 12 Mehner, Montero, Martinez, Spange (bb0540) 2007; 12 Chen, Koso, Kubota, Nakagawa, Tomishige (bb0575) 2010; 2 Chen, Li, Huang, Yuan (bb0850) 2017; 200 Alamillo, Tucker, Chia, Pagán-Torresa, Dumesic (bb0395) 2012; 14 Alonso, Wettstein, Dumesic (bb0010) 2013; 15 Jogia, Vakamoce, Weavers (bb0740) 1985; 38 Luo, Arroyo-Ramírez, Wei, Yun, Murray, Gorte (bb0840) 2015; 508 Han, Liu, Zhang, Pang, Xu, Guo, Liu, Zhang, Ji (bb0545) 2017; 19 Ohyama, Kanao, Esaki, Satsuma (bb0475) 2014; 50 Romashov, Ananikov (bb0555) 2017; 12 Tan, Li, Fang, Chen, Luque, Li (bb0175) 2017; 7 Fu, Shen, Chen, Lv, Ouyang (bb0290) 2017 Biswas, Dutta, Kanak Wu (10.1016/j.fuproc.2020.106528_bb0105) 2017; 244 Gao (10.1016/j.fuproc.2020.106528_bb0340) 2020; 261 Li (10.1016/j.fuproc.2020.106528_bb0495) 2015; 17 Shen (10.1016/j.fuproc.2020.106528_bb0295) 2018; 57 Tellers (10.1016/j.fuproc.2020.106528_bb0685) 2006; 128 Zhu (10.1016/j.fuproc.2020.106528_bb0705) 2012; 30 Liu (10.1016/j.fuproc.2020.106528_bb0670) 2018; 8 Yi (10.1016/j.fuproc.2020.106528_bb0360) 2015; 8 Gupta (10.1016/j.fuproc.2020.106528_bb0255) 2017; 9 Nam (10.1016/j.fuproc.2020.106528_bb0325) 2018; 8 Liu (10.1016/j.fuproc.2020.106528_bb0525) 2014; 16 Yin (10.1016/j.fuproc.2020.106528_bb1030) 2015; 3 Ramos (10.1016/j.fuproc.2020.106528_bb0490) 2017; 19 Weissermel (10.1016/j.fuproc.2020.106528_bb0435) 2003 Rorrer (10.1016/j.fuproc.2020.106528_bb0005) 2019; 12 Bottari (10.1016/j.fuproc.2020.106528_bb0405) 2015; 8 Witczak (10.1016/j.fuproc.2020.106528_bb0660) 2017; 58 Yang (10.1016/j.fuproc.2020.106528_bb0145) 2012; 14 Duan (10.1016/j.fuproc.2020.106528_bb0505) 2017; 19 Hansen (10.1016/j.fuproc.2020.106528_bb0835) 2012; 14 Corma (10.1016/j.fuproc.2020.106528_bb0955) 2011; 123 Cottier (10.1016/j.fuproc.2020.106528_bb0745) 1995; 1995 Tekautz (10.1016/j.fuproc.2020.106528_bb0300) 2017 Yuan (10.1016/j.fuproc.2020.106528_bb1025) 2015; 150 Liu (10.1016/j.fuproc.2020.106528_bb0980) 2013; 113 Li (10.1016/j.fuproc.2020.106528_bb0440) 2016; 18 Luo (10.1016/j.fuproc.2020.106528_bb0840) 2015; 508 Wang (10.1016/j.fuproc.2020.106528_bb1015) 2013; 3 Ohyama (10.1016/j.fuproc.2020.106528_bb0390) 2013; 3 Iris (10.1016/j.fuproc.2020.106528_bb0065) 2017; 238 Biswas (10.1016/j.fuproc.2020.106528_bb0140) 2017; 53 Jain (10.1016/j.fuproc.2020.106528_bb0310) 2015; 58 Zhou (10.1016/j.fuproc.2020.106528_bb0965) 2013; 6 Ohyama (10.1016/j.fuproc.2020.106528_bb0485) 2017; 7 Lewis (10.1016/j.fuproc.2020.106528_bb0730) 2004; 14 Zakrzewska (10.1016/j.fuproc.2020.106528_bb0070) 2011; 111 Han (10.1016/j.fuproc.2020.106528_bb0545) 2017; 19 Mamman (10.1016/j.fuproc.2020.106528_bb0890) 2008; 2 Wang (10.1016/j.fuproc.2020.106528_bb0810) 2014; 13 Kong (10.1016/j.fuproc.2020.106528_bb0855) 2017; 5 Liu (10.1016/j.fuproc.2020.106528_bb0510) 2014; 7 Grushin (10.1016/j.fuproc.2020.106528_bb0195) 2003 Iwanami (10.1016/j.fuproc.2020.106528_bb1065) 2006; 36 Wang (10.1016/j.fuproc.2020.106528_bb0055) 2019; 103 Luo (10.1016/j.fuproc.2020.106528_bb0800) 2016; 6 Yi (10.1016/j.fuproc.2020.106528_bb0355) 2014; 7 Wang (10.1016/j.fuproc.2020.106528_bb0265) 2017; 19 Liu (10.1016/j.fuproc.2020.106528_bb0940) 2013; 6 Li (10.1016/j.fuproc.2020.106528_bb0825) 2015; 36 Fu (10.1016/j.fuproc.2020.106528_bb0290) 2017 Saha (10.1016/j.fuproc.2020.106528_bb0075) 2014; 16 Liu (10.1016/j.fuproc.2020.106528_bb1005) 2014; 117 Wang (10.1016/j.fuproc.2020.106528_bb0315) 2015; 3 Bing (10.1016/j.fuproc.2020.106528_bb1035) 2012; 51 Dutta (10.1016/j.fuproc.2020.106528_bb0990) 2012; 288 Rosatella (10.1016/j.fuproc.2020.106528_bb0050) 2011; 13 Yang (10.1016/j.fuproc.2020.106528_bb0535) 2019; 4 Santos (10.1016/j.fuproc.2020.106528_bb0560) 2004; 5 Gallo (10.1016/j.fuproc.2020.106528_bb0095) 2016; 422 Chen (10.1016/j.fuproc.2020.106528_bb0245) 2017; 5 Rathod (10.1016/j.fuproc.2020.106528_bb0250) 2018; 6 Partenheimer (10.1016/j.fuproc.2020.106528_bb0225) 2001; 343 Cai (10.1016/j.fuproc.2020.106528_bb0425) 2014; 234 Chen (10.1016/j.fuproc.2020.106528_bb0575) 2010; 2 Nagpure (10.1016/j.fuproc.2020.106528_bb0830) 2015; 5 Huang (10.1016/j.fuproc.2020.106528_bb0845) 2014; 7 Chen (10.1016/j.fuproc.2020.106528_bb0850) 2017; 200 Li (10.1016/j.fuproc.2020.106528_bb0710) 2018; 6 Corma (10.1016/j.fuproc.2020.106528_bb0960) 2012; 5 Kraus (10.1016/j.fuproc.2020.106528_bb1040) 2012; 14 Antonyraj (10.1016/j.fuproc.2020.106528_bb0160) 2014; 57 Jagadeesh (10.1016/j.fuproc.2020.106528_bb0625) 2017; 358 Serrano-Ruiz (10.1016/j.fuproc.2020.106528_bb0015) 2011; 4 Nilges (10.1016/j.fuproc.2020.106528_bb0880) 2013; 6 Zhao (10.1016/j.fuproc.2020.106528_bb1085) 2017; 139 Zhang (10.1016/j.fuproc.2020.106528_bb0915) 2019; 123 Mittal (10.1016/j.fuproc.2020.106528_bb0205) 2016; 6 Yang (10.1016/j.fuproc.2020.106528_bb0895) 2015; 54 Sanda (10.1016/j.fuproc.2020.106528_bb0595) 1989; 187 Yu (10.1016/j.fuproc.2020.106528_bb0715) 2001; 66 Yan (10.1016/j.fuproc.2020.106528_bb0320) 2018; 8 Cao (10.1016/j.fuproc.2020.106528_bb0415) 2014; 481 Buntara (10.1016/j.fuproc.2020.106528_bb0565) 2011; 50 Lin (10.1016/j.fuproc.2020.106528_bb0675) 2006; 49 Ribeiro (10.1016/j.fuproc.2020.106528_bb0370) 2003; 4 Bakos (10.1016/j.fuproc.2020.106528_bb1070) 2017; 56 Jeong (10.1016/j.fuproc.2020.106528_bb0785) 2015; 7 Sugimura (10.1016/j.fuproc.2020.106528_bb0755) 2016; 72 Luo (10.1016/j.fuproc.2020.106528_bb0805) 2016; 199 Parsania (10.1016/j.fuproc.2020.106528_bb0700) 1993; 5 Zhu (10.1016/j.fuproc.2020.106528_bb0410) 2015; 5 Sokolovskii (10.1016/j.fuproc.2020.106528_bb0285) 2017 Saha (10.1016/j.fuproc.2020.106528_bb0230) 2012; 2 Mishra (10.1016/j.fuproc.2020.106528_bb0275) 2017; 19 Zhou (10.1016/j.fuproc.2020.106528_bb0750) 2013; 87 Román-Leshkov (10.1016/j.fuproc.2020.106528_bb0760) 2007; 447 Yoshida (10.1016/j.fuproc.2020.106528_bb0550) 2008; 40 Pasini (10.1016/j.fuproc.2020.106528_bb0375) 2014; 43 Liu (10.1016/j.fuproc.2020.106528_bb1010) 2013; 3 Li (10.1016/j.fuproc.2020.106528_bb0470) 2018; 11 Stahl (10.1016/j.fuproc.2020.106528_bb0235) 2017 Li (10.1016/j.fuproc.2020.106528_bb0865) 2017; 2 Sádaba (10.1016/j.fuproc.2020.106528_bb0155) 2013; 5 Taitt (10.1016/j.fuproc.2020.106528_bb0335) 2019; 9 Liu (10.1016/j.fuproc.2020.106528_bb1000) 2014; 20 Nie (10.1016/j.fuproc.2020.106528_bb0120) 2014; 316 Lew (10.1016/j.fuproc.2020.106528_bb1055) 2012; 51 Ohyama (10.1016/j.fuproc.2020.106528_bb0480) 2016; 18 Galkin (10.1016/j.fuproc.2020.106528_rf1110) 2016; 55 Zhang (10.1016/j.fuproc.2020.106528_bb0190) 2018; 47 Du (10.1016/j.fuproc.2020.106528_bb0445) 2011; 13 Song (10.1016/j.fuproc.2020.106528_bb0695) 1993; 49 Li (10.1016/j.fuproc.2020.106528_bb0085) 2013; 1 Mika (10.1016/j.fuproc.2020.106528_bb0040) 2018; 118 Wang (10.1016/j.fuproc.2020.106528_bb0100) 2016; 6 Kiermayer (10.1016/j.fuproc.2020.106528_bb0030) 1895; 19 Lockman (10.1016/j.fuproc.2020.106528_bb0650) 2010; 20 Sutton (10.1016/j.fuproc.2020.106528_bb0935) 2013; 5 Balakrishnan (10.1016/j.fuproc.2020.106528_bb1090) 2012; 14 Liu (10.1016/j.fuproc.2020.106528_bb0130) 2014; 472 Tan (10.1016/j.fuproc.2020.106528_bb0175) 2017; 7 Nishimura (10.1016/j.fuproc.2020.106528_bb0770) 2014; 232 Saha (10.1016/j.fuproc.2020.106528_bb0305) 2013; 299 Hu (10.1016/j.fuproc.2020.106528_bb0780) 2014; 53 Liu (10.1016/j.fuproc.2020.106528_bb0430) 2012; 5 Zhao (10.1016/j.fuproc.2020.106528_bb0665) 2017; 8 Galkin (10.1016/j.fuproc.2020.106528_rf1105) 2019; 12 Yang (10.1016/j.fuproc.2020.106528_bb1045) 2012; 99 Cao (10.1016/j.fuproc.2020.106528_bb0115) 2018; 267 Zu (10.1016/j.fuproc.2020.106528_bb0790) 2014; 146 Gomez Millan (10.1016/j.fuproc.2020.106528_bb0060) 2019; 11 Cueto (10.1016/j.fuproc.2020.106528_bb0905) 2017; 201 Pupovac (10.1016/j.fuproc.2020.106528_bb0925) 2013; 6 Kwon (10.1016/j.fuproc.2020.106528_bb0875) 2013; 6 Li (10.1016/j.fuproc.2020.106528_bb1060) 2016; 18 Arias (10.1016/j.fuproc.2020.106528_bb0970) 2015; 8 Lv (10.1016/j.fuproc.2020.106528_bb0215) 2016; 18 Matasi (10.1016/j.fuproc.2020.106528_bb0680) 2005; 15 Aellig (10.1016/j.fuproc.2020.106528_bb0400) 2014; 4 Zhu (10.1016/j.fuproc.2020.106528_bb0620) 2017; 19 Chidambaram (10.1016/j.fuproc.2020.106528_bb0815) 2010; 12 Guo (10.1016/j.fuproc.2020.106528_bb0150) 2015; 80 Wang (10.1016/j.fuproc.2020.106528_bb0210) 2014; 53 Guo (10.1016/j.fuproc.2020.106528_bb0870) 2016; 18 Gong (10.1016/j.fuproc.2020.106528_bb0280) 2017; 7 Chheda (10.1016/j.fuproc.2020.106528_bb0910) 2007; 123 Muller (10.1016/j.fuproc.2020.106528_bb0610) 1998; 54 Wu (10.1016/j.fuproc.2020.106528_bb0530) 2016; 9 Tuteja (10.1016/j.fuproc.2020.106528_bb0580) 2014; 7 Rodenas (10.1016/j.fuproc.2020.106528_bb0465) 2018; 20 Wang (10.1016/j.fuproc.2020.106528_bb0185) 2019; 9 Li (10.1016/j.fuproc.2020.106528_bb0795) 2017; 431 Xia (10.1016/j.fuproc.2020.106528_bb0930) 2014; 53 Imhof (10.1016/j.fuproc.2020.106528_bb0975) 2009; 1 Choudhary (10.1016/j.fuproc.2020.106528_bb0885) 2013; 135 Buntara (10.1016/j.fuproc.2020.106528_bb0570) 2012; 55 Galkin (10.1016/j.fuproc.2020.106528_bb0590) 2016; 55 Chatterjee (10.1016/j.fuproc.2020.106528_bb0380) 2014; 16 Yu (10.1016/j.fuproc.2020.106528_bb0720) 2002; 67 Neaţu (10.1016/j.fuproc.2020.106528_bb0135) 2016; 278 van der Klis (10.1016/j.fuproc.2020.106528_rf1100) 2017; 10 Marquardt (10.1016/j.fuproc.2020.106528_bb0690) 2000; 2000 Schiavo (10.1016/j.fuproc.2020.106528_bb0520) 1991; 5 10.1016/j.fuproc.2020.106528_bb1095 Chatterjee (10.1016/j.fuproc.2020.106528_bb0765) 2014; 16 Meguellati (10.1016/j.fuproc.2020.106528_bb0655) 2014; 80 Cao (10.1016/j.fuproc.2020.106528_bb0090) 2018; 252 Xiong (10.1016/j.fuproc.2020.106528_bb0110) 2018; 314 Alamillo (10.1016/j.fuproc.2020.106528_bb0395) 2012; 14 Huber (10.1016/j.fuproc.2020.106528_bb0020) 2006; 106 Jogia (10.1016/j.fuproc.2020.106528_bb0740) 1985; 38 Xu (10.1016/j.fuproc.2020.106528_bb0950) 2018; 20 Xiao (10.1016/j.fuproc.2020.106528_bb0515) 2016; 18 Romashov (10.1016/j.fuproc.2020.106528_bb0555) 2017; 12 Dow (10.1016/j.fuproc.2020.106528_bb0735) 1981; 11 Ohyama (10.1016/j.fuproc.2020.106528_bb0475) 2014; 50 Liu (10.1016/j.fuproc.2020.106528_bb0220) 2014; 7 Zhang (10.1016/j.fuproc.2020.106528_bb0165) 2017; 7 van Putten (10.1016/j.fuproc.2020.106528_bb0045) 2013; 113 Yi (10.1016/j.fuproc.2020.106528_bb0365) 2016; 18 Komanoya (10.1016/j.fuproc.2020.106528_bb0630) 2017; 139 Kubota (10.1016/j.fuproc.2020.106528_bb0330) 2018; 11 Jaganathan (10.1016/j.fuproc.2020.106528_bb0500) 1998; 37 Xiong (10.1016/j.fuproc.2020.106528_bb0080) 2019; 375 Zhao (10.1016/j.fuproc.2020.106528_bb0180) 2018; 6 Li (10.1016/j.fuproc.2020.106528_bb0460) 2017; 19 Zhou (10.1016/j.fuproc.2020.106528_bb0345) 2017; 19 Villain-Guillot (10.1016/j.fuproc.2020.106528_bb0605) 2007; 50 Bohre (10.1016/j.fuproc.2020.106528_bb0945) 2015; 8 Alonso (10.1016/j.fuproc.2020.106528_bb0010) 2013; 15 Arias (10.1016/j.fuproc.2020.106528_bb0645) 2016; 59 Delost (10.1016/j.fuproc.2020.106528_bb0585) 2018; 61 Hirapara (10.1016/j.fuproc.2020.106528_bb0 |
References_xml | – volume: 13 start-page: 237 year: 2000 end-page: 242 ident: bb0350 article-title: A new approach for the production of 2, 5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose publication-title: Top. Catal. – volume: 288 start-page: 8 year: 2012 end-page: 15 ident: bb0990 article-title: Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts publication-title: J. Catal. – volume: 7 start-page: 6050 year: 2017 end-page: 6058 ident: bb0165 article-title: Direct synthesis of V-containing all-silica beta-zeolite for efficient one-pot, one-step conversion of carbohydrates into 2, 5-diformylfuran publication-title: Catal. Sci. Technol. – volume: 5 start-page: 11280 year: 2017 end-page: 11289 ident: bb0855 article-title: Inclusion of Zn into metallic ni enables selective and effective synthesis of 2,5-dimethylfuran from bioderived 5-hydroxymethylfurfural publication-title: ACS Sustain. Chem. Eng. – volume: 4 start-page: 2326 year: 2014 end-page: 2331 ident: bb0400 article-title: Combined 1, 4-butanediol lactonization and transfer hydrogenation/hydrogenolysis of furfuralderivatives under continuous flow conditions publication-title: Catal. Sci. Technol. – volume: 187 start-page: 15 year: 1989 end-page: 23 ident: bb0595 article-title: Synthèse du 5-bromométhyl-et du 5-chlorométhyl-2-furannecarboxaldéhyde publication-title: Carbohydr. Res. – volume: 8 start-page: 1323 year: 2015 end-page: 1327 ident: bb0405 article-title: Copperzinc alloy nanopowder: a robust precious-metal-free catalyst for the conversion of 5-hydroxymethylfurfural publication-title: ChemSusChem – volume: 19 start-page: 722 year: 2017 end-page: 728 ident: bb0545 article-title: 5-Hydroxymethyl-2-vinylfuran: a biomass-based solvent-free adhesive publication-title: Green Chem. – volume: 12 start-page: 2835 year: 2019 end-page: 2858 ident: bb0005 article-title: Synthesis of biomass-derived ethers for use as fuels and lubricants publication-title: ChemSusChem – volume: 15 start-page: 584 year: 2013 end-page: 595 ident: bb0010 article-title: Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass publication-title: Green Chem. – volume: 50 start-page: 4195 year: 2007 end-page: 4204 ident: bb0605 article-title: Structure–activity relationships of phenyl-furanyl-rhodanines as inhibitors of RNA polymerase with antibacterial activity on biofilms publication-title: J. Med. Chem. – volume: 7 start-page: 1068 year: 2014 end-page: 1072 ident: bb0845 article-title: Nickel–tungsten carbide catalysts for the production of 2, 5-dimethylfuran from biomass-derived molecules publication-title: ChemSusChem – volume: 238 start-page: 716 year: 2017 end-page: 732 ident: bb0065 article-title: Conversion of biomass to hydroxymethylfurfural: a review of catalytic systems and underlying mechanisms publication-title: Bioresour. Technol. – volume: 19 start-page: 5356 year: 2017 end-page: 5360 ident: bb0635 article-title: CO publication-title: Green Chem. – volume: 1992 start-page: 541 year: 1992 end-page: 542 ident: bb0600 article-title: The Vilsmeier reaction: a new synthetic method for 5-(chloromethyl)-2-furaldehyde publication-title: Synthesis – volume: 7 start-page: 3541 year: 2014 end-page: 3547 ident: bb0220 article-title: One-pot, one-step synthesis of 2, 5-diformylfuran from carbohydrates over mo-containing keggin heteropolyacids publication-title: ChemSusChem – volume: 8 start-page: 1151 year: 2015 end-page: 1155 ident: bb0360 article-title: The direct conversion of sugars into 2,5-furandicarboxylic acid in a triphasic system publication-title: ChemSusChem – volume: 343 start-page: 102 year: 2001 end-page: 111 ident: bb0225 article-title: Synthesis of 2,5-diformylfuran and furan-2,5-dicarboxylic acid by catalytic air-oxidation of 5-hydroxymethylfurfural. unexpectedly selective aerobic oxidation of benzyl alcohol to benzaldehyde with metal=bromide catalysts publication-title: Adv. Synth. Catal. – volume: 7 start-page: 34776 year: 2017 end-page: 34782 ident: bb0280 article-title: Platinum deposited on cerium coordination polymer for catalytic oxidation of hydroxymethylfurfural producing 2,5-furandicarboxylic acid publication-title: RSC Adv. – year: 2017 ident: bb0300 article-title: Process for the Production of 2,5-Furandicarboxylic Acid (FDCA). WO2017097843A1 – volume: 18 start-page: 2976 year: 2016 end-page: 2980 ident: bb0440 article-title: Selective aerobic oxidation of furfural to maleic anhydride with heterogeneous Mo–V–O catalysts publication-title: Green Chem. – volume: 7 year: 2015 ident: bb0785 article-title: One-flow syntheses of diverse heterocyclic furan chemicals directly from fructose via tandem transformation platform publication-title: NPG Asia Mater. – volume: 18 start-page: 643 year: 2016 end-page: 647 ident: bb0455 article-title: The conversion of 5-hydroxymethyl furfural (HMF) to maleic anhydride with vanadium-based heterogeneous catalysts publication-title: Green Chem. – volume: 19 start-page: 2482 year: 2017 end-page: 2490 ident: bb0775 article-title: Direct one-pot conversion of monosaccharides into high-yield 2,5-dimethylfuran over a multifunctional Pd/Zr-based metal-organic framework@sulfonated graphene oxide catalyst publication-title: Green Chem. – volume: 14 start-page: 1626 year: 2012 end-page: 1634 ident: bb1090 article-title: Etherification and reductive etherification of 5-(hydroxymethyl) furfural: 5-(alkoxymethyl) furfurals and 2, 5-bis (alkoxymethyl) furans as potential bio-diesel candidates publication-title: Green Chem. – volume: 9 start-page: 660 year: 2019 end-page: 670 ident: bb0335 article-title: A comparative study of nickel, cobalt, and iron oxyhydroxide anodes for the electrochemical oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid publication-title: ACS Catal. – volume: 150 start-page: 236 year: 2015 end-page: 242 ident: bb1025 article-title: Efficient synthesis of promising liquid fuels 5-ethoxymethylfurfural from carbohydrates publication-title: Fuel – volume: 117 start-page: 68 year: 2014 end-page: 73 ident: bb1005 article-title: Efficient one-pot synthesis of 5-ethoxymethylfurfural from fructose catalyzed by heteropolyacid supported on K-10 clay publication-title: Fuel – volume: 4 start-page: 11165 year: 2019 end-page: 11171 ident: bb0535 article-title: Highly selective conversion of HMF to 1-hydroxy-2,5-hexanedione on Pd/MIL-101(Cr) publication-title: ChemistrySelect – volume: 7 start-page: 1701 year: 2015 end-page: 1707 ident: bb0860 article-title: Carbon nanotubes for the hydrogenation and hydrogenolysis of 5-hydroxymethylfurfural publication-title: ChemCatChem – volume: 19 start-page: 3880 year: 2017 end-page: 3887 ident: bb0620 article-title: Versatile CO-assisted direct reductive amination of 5-hydroxymethylfurfural catalyzed by a supported gold catalyst publication-title: Green Chem. – volume: 43 start-page: 10224 year: 2014 end-page: 10234 ident: bb0375 article-title: Substrate and product role in the Shvo’s catalyzed selective hydrogenation of the platform biobased chemical 5-hydroxymethylfurfural publication-title: Dalton Trans. – year: 2017 ident: bb0285 article-title: Processes for the Preparation of 2,5-Furandicarboxylic Acid and Intermediates and Derivatives Thereof. US20170197930 – volume: 111 start-page: 397 year: 2011 end-page: 417 ident: bb0070 article-title: Ionic liquid-mediated formation of 5-hydroxymethylfurfural-a promising biomass-derived building block publication-title: Chem. Rev. – volume: 54 start-page: 11825 year: 2015 end-page: 11837 ident: bb0895 article-title: Synthesis of jet-fuel range cycloalkanes from the mixtures of cyclopentanone and butanal publication-title: Ind. Eng. Chem. Res. – volume: 1995 start-page: 303 year: 1995 end-page: 306 ident: bb0745 article-title: Syntheses of γ-oxo acids or γ-oxo esters by photooxygenation of furanic compounds and reduction under ultrasound: application to the synthesis of 5-aminolevulinic acid hydrochloride publication-title: Synthesis – volume: 37 start-page: 2099 year: 1998 end-page: 2106 ident: bb0500 article-title: Hydrogenation of diethyl adipate in a catalytic fixed-bed reactor publication-title: Ind. Eng. Chem. Res. – volume: 10 start-page: 1460 year: 2017 end-page: 1468 ident: bb1105 article-title: Synthesis of furandicarboxylic acid esters from nonfood feedstocks without concomitant levulinic acid formation publication-title: ChemSusChem – volume: 14 start-page: 1413 year: 2012 end-page: 1419 ident: bb0395 article-title: The selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using heterogeneous catalysts publication-title: Green Chem. – volume: 20 start-page: 1977 year: 2014 end-page: 1984 ident: bb1000 article-title: Synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose in ethanol catalyzed by MCM-41 supported phosphotungstic acid publication-title: J. Ind. Eng. Chem. – volume: 18 start-page: 6222 year: 2016 end-page: 6228 ident: bb0870 article-title: Efficient hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over a cobalt and copper bimetallic catalyst on N-graphene-modified Al publication-title: Green Chem. – volume: 12 start-page: 634 year: 2007 end-page: 640 ident: bb0540 article-title: Synthesis of 5-acetoxymethyl-and 5-hydroxymethyl-2-vinyl-furan publication-title: Molecules – volume: 447 start-page: 982 year: 2007 end-page: 985 ident: bb0760 article-title: Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates publication-title: Nature – volume: 18 start-page: 726 year: 2016 end-page: 734 ident: bb1060 article-title: Direct transformation of carbohydrates to the biofuel 5-ethoxymethylfurfural by solid acid catalysts publication-title: Green Chem. – year: 2003 ident: bb0195 article-title: WO2003024947 – volume: 80 start-page: 579 year: 2014 end-page: 592 ident: bb0655 article-title: B-ring modified aurones as promising allosteric inhibitors of hepatitis C virus RNAdependent RNA polymerase publication-title: Eur. J. Med. Chem. – volume: 8 start-page: 317 year: 2015 end-page: 331 ident: bb0970 article-title: Synthesis of high quality alkyl naphthenic kerosene by reacting oil refinery with biomass refinery stream publication-title: Energy Environ. Sci. – volume: 244 start-page: 78 year: 2017 end-page: 83 ident: bb0105 article-title: Characterization of products from hydrothermal carbonization of pine publication-title: Bioresour. Technol. – volume: 1 start-page: 1174 year: 2013 end-page: 1181 ident: bb0085 article-title: Biochar based solid acid catalyst hydrolyze biomass publication-title: J. Environ. Chem. Eng. – volume: 7 start-page: 2131 year: 2014 end-page: 2137 ident: bb0355 article-title: Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2, 5-furandicarboxylic acid publication-title: ChemSusChem – volume: 5 start-page: 5852 year: 2017 end-page: 5861 ident: bb0270 article-title: Highly efficient and stable bimetallic AuPd over La-doped Ca-Mg-Al layered double hydroxide for base-free aerobic oxidation of 5-hydroxymethylfurfural in water publication-title: ACS Sust. Chem. Eng. – volume: 8 start-page: 4022 year: 2015 end-page: 4029 ident: bb0945 article-title: Catalytic upgrading of 5-hydroxymethylfurfural to drop-in biofuels by solid base and bifunctional metal–acid catalysts publication-title: ChemSusChem – volume: 118 start-page: 505 year: 2018 end-page: 613 ident: bb0040 article-title: Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability publication-title: Chem. Rev. – volume: 201 start-page: 221 year: 2017 end-page: 231 ident: bb0905 article-title: Performance of basic mixed oxides for aqueous-phase 5-hydroxymethylfurfural-acetone aldol condensation publication-title: Appl. Catal. B-Environ. – volume: 59 start-page: 1257 year: 2016 end-page: 1265 ident: bb0645 article-title: Chemicals from biomass: synthesis of biologically active furanochalcones by Claisen–Schmidt condensation of biomass-derived 5-hydroxymethylfurfural (HMF) with acetophenones publication-title: Top. Catal. – volume: 5 start-page: 704 year: 1991 end-page: 711 ident: bb0520 article-title: Catalytic-hydrogenation of 5-hydroxymethylfurfural in aqueous-medium publication-title: Bull. Soc. Chim. Fr. – volume: 472 start-page: 64 year: 2014 end-page: 71 ident: bb0130 article-title: Efficient aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran catalyzed by magnetic nanoparticle supported manganese oxide publication-title: Appl. Catal. A – volume: 12 start-page: 1201 year: 2010 end-page: 1206 ident: bb0615 article-title: Production of biobased HMF derivatives by reductive amination publication-title: Green Chem. – volume: 50 start-page: 7083 year: 2011 end-page: 7087 ident: bb0565 article-title: Caprolactam from renewable resources: catalytic conversion of 5-hydroxymethylfurfural into caprolactone publication-title: Angew. Chem., Int. Ed. – volume: 18 start-page: 676 year: 2016 end-page: 680 ident: bb0480 article-title: The effect of heterogeneous acid–base catalysis on conversion of 5-hydroxymethylfurfural into a cyclopentanone derivative publication-title: Green Chem. – volume: 53 start-page: 3056 year: 2014 end-page: 3064 ident: bb0780 article-title: Selective transformation of 5-hydroxymethylfurfural into the liquid fuel 2,5-dimethylfuran over carbon-supported ruthenium publication-title: Ind. Eng. Chem.Res. – volume: 175 start-page: 435 year: 2011 end-page: 441 ident: bb0995 article-title: Etherification of 5-hydroxymethyl-2-furfural (HMF) with ethanol to biodiesel components using mesoporous solid acidic catalysts publication-title: Catal. Today – volume: 123 start-page: 2423 year: 2011 end-page: 2426 ident: bb0955 article-title: Production of high-quality diesel from biomass waste products publication-title: Angew. Chem. – volume: 16 start-page: 1543 year: 2014 end-page: 1551 ident: bb0765 article-title: Hydrogenation of 5-hydroxymethylfurfural in supercritical carbon dioxide-water: a tunable approach to dimethylfuran selectivity publication-title: Green Chem. – volume: 316 start-page: 57 year: 2014 end-page: 66 ident: bb0120 article-title: Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran on manganese oxide catalysts publication-title: J. Catal. – volume: 12 start-page: 2652 year: 2017 end-page: 2655 ident: bb0555 article-title: Alkynylation of bio-based 5-hydroxymethylfurfural to connect biomass processing with conjugated polymers and furanic pharmaceuticals publication-title: Chem.-Asian J. – year: 2017 ident: bb0235 article-title: Conversion of Alcohols to Alkyl Esters and Carboxylic Acids Using Heterogeneous Palladium-based Catalysts. US20170137362A1 – volume: 66 start-page: 5413 year: 2001 end-page: 5418 ident: bb0715 article-title: Efficient Baylis–Hillman reaction using stoichiometric base catalyst and an aqueous medium publication-title: J. Org. Chem. – volume: 547 start-page: 230 year: 2017 end-page: 236 ident: bb0260 article-title: Basic anion-exchange resin (AER)-supported Au-Pd alloy nanoparticles for the oxidation of 5-hydroxymethyl-2-furfural (HMF) into 2,5-furan dicarboxylic acid (FDCA) publication-title: Appl. Catal., A – volume: 252 start-page: 76 year: 2018 end-page: 82 ident: bb0090 article-title: Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar publication-title: Bioresour. Technol. – volume: 51 start-page: 5331 year: 2012 end-page: 5336 ident: bb1035 article-title: Efficient one-pot synthesis of 5-(ethoxymethyl)furfural from fructose catalyzed by a novel solid catalyst publication-title: Ind. Chem. Eng. Res. – volume: 19 start-page: 1003 year: 1895 end-page: 1006 ident: bb0030 article-title: A derivative of furfuraldehyde from laevulose publication-title: Chemiker-Zeitung – volume: 51 start-page: 5364 year: 2012 end-page: 5366 ident: bb1055 article-title: One-pot synthesis of 5-(ethoxymethyl) furfural from glucose using Sn-BEA and Amberlyst catalysts publication-title: Ind. Eng. Chem. Res. – volume: 18 start-page: 2302 year: 2016 end-page: 2307 ident: bb0215 article-title: Direct synthesis of 2, 5-diformylfuran from fructose with graphene oxide as a bifunctional and metal-free catalyst publication-title: Green Chem. – volume: 72 start-page: 7638 year: 2016 end-page: 7641 ident: bb0755 article-title: Practical synthesis of mumefural, a component of Japanese apricot juice concentrate publication-title: Tetrahedron – volume: 317 start-page: 206 year: 2014 end-page: 219 ident: bb0385 article-title: Methanol as a clean and efficient H-transfer reactant for carbonyl reduction: scope, limitations, and reaction mechanism publication-title: J. Catal. – volume: 3 start-page: 12313 year: 2013 end-page: 12319 ident: bb1010 article-title: One-pot conversion of carbohydrates into 5-ethoxymethylfurfural and ethyl D-glucopyranoside in ethanol catalyzed by a silica supported sulfonic acid catalyst publication-title: RSC Adv. – volume: 2 start-page: 438 year: 2008 end-page: 454 ident: bb0890 article-title: Furfural: hemicellulose/xylosederived biochemical publication-title: Biofuels Bioprod. Biorefin. – volume: 106 start-page: 4044 year: 2006 end-page: 4098 ident: bb0020 article-title: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering publication-title: Chem. Rev. – volume: 19 start-page: 216 year: 1895 end-page: 217 ident: bb0025 article-title: Action of oxalic acid on inulin publication-title: Chem. Zeit. – volume: 344 start-page: 953 year: 2002 end-page: 956 ident: bb0725 article-title: A practical synthesis of α, β-unsaturated imides, useful substrates for asymmetric conjugate addition reactions publication-title: Adv. Synth. Catal. – volume: 18 start-page: 979 year: 2016 end-page: 983 ident: bb0365 article-title: The direct conversion of sugars into 2, 5-furandicarboxylic acid in a triphasic system publication-title: Green Chem. – volume: 13 start-page: 293 year: 2014 end-page: 300 ident: bb0810 article-title: Platinum-cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural publication-title: Nat. Mater. – volume: 3 start-page: 1033 year: 2013 end-page: 1036 ident: bb0390 article-title: Selective hydrogenation of 2-hydroxymethyl-5-furfural to 2, 5-bis(hydroxymethyl)furan over gold sub-nano clusters publication-title: RSC Adv. – volume: 13 start-page: 554 year: 2011 end-page: 557 ident: bb0445 article-title: Oxidation of 5-hydroxymethylfurfural to maleic anhydride with molecular oxygen publication-title: Green Chem. – volume: 21 start-page: 1388 year: 2017 end-page: 1393 ident: bb0240 article-title: Aerobic oxidation of diverse primary alcohols to carboxylic acids with a heterogeneous Pd-Bi-Te/C (PBT/C) catalyst publication-title: Org. Process. Res. Dev. – volume: 6 start-page: 2103 year: 2013 end-page: 2110 ident: bb0925 article-title: Cu/MgAl publication-title: ChemSusChem – volume: 55 start-page: 8338 year: 2016 end-page: 8342 ident: bb0590 article-title: Critical effect of 5-hydroxymethylfurfural aging and decomposition on the utility of biomass conversion in organic synthesis publication-title: Angew. Chem. Int. Ed. – volume: 147 start-page: 293 year: 2014 end-page: 301 ident: bb0125 article-title: Biomass derived chemicals: environmentally benign process for oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran by using nano-fibrous Ag-OMS-2-catalyst publication-title: Appl. Catal. B – volume: 232 start-page: 89 year: 2014 end-page: 98 ident: bb0770 article-title: Selective hydrogenation of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) under atmospheric hydrogen pressure over carbon supported PdAu bimetallic publication-title: Catalyst. Catal. Today – volume: 20 start-page: 3753 year: 2018 end-page: 3760 ident: bb0950 article-title: Synthesis of high-density aviation fuels with methyl benzaldehyde and cyclohexanone publication-title: Green Chem. – volume: 16 start-page: 24 year: 2014 end-page: 38 ident: bb0075 article-title: Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents publication-title: Green Chem. – volume: 11 start-page: 2138 year: 2018 end-page: 2145 ident: bb0330 article-title: Electrochemical oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid (FDCA) in acidic media enabling spontaneous FDCA separation publication-title: ChemSusChem – volume: 7 start-page: 2089 year: 2014 end-page: 2093 ident: bb0510 article-title: Palladium/carbon dioxide cooperative catalysis for the production of diketone derivatives from carbohydrates publication-title: ChemSusChem – volume: 58 start-page: 4069 year: 2017 end-page: 4072 ident: bb0660 article-title: Concise and efficient synthesis of Estereoisomers of exo-cyclic carbohydrate enones. Aldol condensation of dihydrolevoglucosenone with five-membered aromatic aldehydes Part 1 publication-title: Tetrahedron Lett. – volume: 5 start-page: 11300 year: 2017 end-page: 11306 ident: bb0245 article-title: Highly porous nitrogen- and phosphorus-codoped graphene: an outstanding support for Pd catalysts to oxidize 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid publication-title: ACS Sust. Chem. Eng. – volume: 299 start-page: 316 year: 2013 end-page: 320 ident: bb0305 article-title: Porphyrin-based porous organic polymer-supported iron(III) catalyst for efficient aerobic oxidation of 5-hydroxymethyl-furfural into 2,5-furandicarboxylic acid publication-title: J. Catal. – volume: 128 start-page: 17063 year: 2006 end-page: 17073 ident: bb0685 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 2457 year: 2012 end-page: 2461 ident: bb0835 article-title: One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol publication-title: Green Chem. – volume: 19 start-page: 5103 year: 2017 end-page: 5113 ident: bb0505 article-title: Conversion of HMF to methyl cyclopentenolone using Pd/Nb publication-title: Green Chem. – volume: 123 start-page: 59 year: 2007 end-page: 70 ident: bb0910 article-title: An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates publication-title: Catal. Today – volume: 57 start-page: 2811 year: 2018 end-page: 2818 ident: bb0295 article-title: Atomic layer deposition of a Pt-skin catalyst for base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid publication-title: Ind. Eng. Chem. Res. – volume: 14 start-page: 2986 year: 2012 end-page: 2989 ident: bb0145 article-title: A one-pot approach for conversion of fructose to 2, 5-diformylfuran by combination of Fe publication-title: Green Chem. – volume: 19 start-page: 1701 year: 2017 end-page: 1713 ident: bb0490 article-title: Selective conversion of 5-hydroxymethylfurfural to cyclopentanone derivatives over Cu–Al publication-title: Green Chem. – volume: 119 start-page: 433 year: 2012 end-page: 436 ident: bb0985 article-title: Catalytic selective etherification of hydroxyl groups in 5-hydroxymethylfurfural over H publication-title: Bioresour. Technol. – volume: 5 start-page: 284 year: 2013 end-page: 293 ident: bb0155 article-title: Catalytic performance of zeolite-supported vanadia in the aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran publication-title: ChemCatChem – volume: 49 start-page: 3963 year: 2006 end-page: 3972 ident: bb0675 article-title: Antitumor agents. 250. Design and synthesis of new curcumin analogues as potential anti-prostate cancer agents publication-title: J. Med. Chem. – volume: 199 start-page: 439 year: 2016 end-page: 446 ident: bb0805 article-title: Base metal-Pt alloys: a general route to high selectivity and stability in the production of biofuels from HMF publication-title: Appl. Catal. B-Environ. – volume: 19 start-page: 3820 year: 2017 end-page: 3830 ident: bb0265 article-title: Hydrophilic mesoporous poly(ionic liquid)-supported Au-Pd alloy nanoparticles towards aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions publication-title: Green Chem. – volume: 36 start-page: 38 year: 2006 end-page: 39 ident: bb1065 article-title: Iron (III) chloride-catalyzed reductive etherification of carbonyl compounds with alcohols publication-title: Chem. Lett. – volume: 20 start-page: 2283 year: 2010 end-page: 2286 ident: bb0650 article-title: Inhibition of eEF2-K by thieno[2,3-b]pyridine analogues publication-title: Bioorg. Med. Chem. Lett. – volume: 8 start-page: 164 year: 2018 end-page: 175 ident: bb0320 article-title: Fe–Zr–O catalyzed base-free aerobic oxidation of 5-HMF to 2,5-FDCA as a biomass-derived polyester monomer publication-title: Catal. Sci. Technol. – volume: 267 start-page: 242 year: 2018 end-page: 248 ident: bb0115 article-title: Phosphoric acid-activated wood biochar for catalytic conversion of starch-rich food waste into glucose and 5-hydroxymethylfurfural publication-title: Bioresour. Technol. – volume: 79 start-page: 233 year: 2014 end-page: 240 ident: bb1020 article-title: Synthesis of 5-ethoxymethylfurfural from fructose and inulin catalyzed by a magnetically recoverable acid catalyst publication-title: ChemPlusChem – volume: 49 start-page: 6797 year: 1993 end-page: 6804 ident: bb0695 article-title: Synthesis of (±) tetrahydromyricoidine publication-title: Tetrahedron – volume: 53 start-page: 11751 year: 2017 end-page: 11754 ident: bb0140 article-title: Heterogeneous mesoporous manganese/cobalt oxide catalysts for selective oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran publication-title: Chem. Commun. – volume: 5 start-page: 1463 year: 2015 end-page: 1472 ident: bb0830 article-title: Renewable fuels from biomass-derived compounds: Ru-containing hydrotalcites as catalysts for conversion of HMF to 2, 5-dimethylfuran publication-title: Catal. Sci. Technol. – volume: 375 start-page: 121983 year: 2019 end-page: 122006 ident: bb0080 article-title: Value-added chemicals from food supply chain wastes: state-of-the-art review and future prospects publication-title: Chem. Eng. J. – year: 2017 ident: bb0290 article-title: Method Using 5-Hydroxymethylfurfural to Prepare 2,5-Furandicarboxylic Acid. CN106749130 – volume: 358 start-page: 326 year: 2017 end-page: 332 ident: bb0625 article-title: MOF-derived cobalt nanoparticles catalyze a general synthesis of amines publication-title: Science – volume: 200 start-page: 192 year: 2017 end-page: 199 ident: bb0850 article-title: Carbon-coated Cu-Co bimetallic nanoparticles as selective and recyclable catalysts for production of biofuel 2,5-dimethylfuran publication-title: Appl. Catal. B-Environ. – volume: 56 start-page: 5217 year: 2017 end-page: 5221 ident: bb1070 article-title: Auto-tandem catalysis with frustrated lewis pairs for reductive etherification of aldehydes and ketones publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 2266 year: 2014 end-page: 2275 ident: bb0420 article-title: Tunable and selectiveconversion of 5-HMF to 2, 5-furandimethanol and 2, 5-dimethylfuran over copperdopedporous metal oxides publication-title: ChemSusChem – volume: 16 start-page: 4734 year: 2014 end-page: 4739 ident: bb0380 article-title: Selective hydrogenation of 5-hydroxymethylfurfural to 2,5-bis-(hydroxymethyl) furan using Pt/MCM-41 in an aqueous medium: a simple approach publication-title: Green Chem. – volume: 53 start-page: 5820 year: 2014 end-page: 5827 ident: bb0210 article-title: Environmentally friendly oxidation of biomass derived 5-hydroxymethylfurfural into 2, 5-diformylfuran catalyzed by magnetic separation of ruthenium catalyst publication-title: Ind. Eng. Chem. Res. – volume: 50 start-page: 5633 year: 2014 end-page: 5636 ident: bb0475 article-title: Conversion of 5-hydroxymethylfurfural to a cyclopentanone derivative by ring rearrangement over supported Au nanoparticles publication-title: Chem. Commun. – volume: 7 start-page: 2948 year: 2017 end-page: 2955 ident: bb0175 article-title: Controlled growth of monodisperse ferrite octahedral nanocrystals for biomass-derived catalytic applications publication-title: ACS Catal. – volume: 6 start-page: 2925 year: 2013 end-page: 2931 ident: bb0880 article-title: Electrochemistry for biofuel generation: production of furans by electrocatalytic hydrogenation of furfurals publication-title: Energy Environ. Sci. – volume: 13 start-page: 754 year: 2011 end-page: 793 ident: bb0050 article-title: 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications publication-title: Green Chem. – volume: 481 start-page: 49 year: 2014 end-page: 53 ident: bb0415 article-title: Catalytic synthesis of 2, 5-bismethoxymethylfuran: a promising cetane number improver for diesel publication-title: Appl. Catal. A-Gen. – volume: 3 start-page: 992 year: 2015 end-page: 999 ident: bb1030 article-title: Magnetic material grafted cross-linked imidazolium based polyionic liquids: an efficient acid catalyst for the synthesis of promising liquid fuel 5-ethoxymethylfurfural from carbohydrates publication-title: J. Mater. Chem. A – volume: 139 start-page: 11493 year: 2017 end-page: 11499 ident: bb0630 article-title: Electronic effect of ruthenium nanoparticles on efficient reductive amination of carbonyl compounds publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 312 year: 1993 end-page: 315 ident: bb0700 article-title: Physicochemical studies on furylacrylic acid publication-title: Asian J. Chem. – volume: 135 start-page: 3997 year: 2013 end-page: 4006 ident: bb0885 publication-title: J. Am. Chem. Soc. – volume: 87 start-page: 1711 year: 2013 end-page: 1726 ident: bb0750 article-title: Synthesis of novel coumarin derivatives and publication-title: Heterocycles – volume: 8 start-page: 13686 year: 2018 end-page: 13696 ident: bb0670 article-title: Production of renewable long-chained cycloalkanes from biomass-derived furfurals and cyclic ketones publication-title: RSC Adv. – volume: 5 start-page: 4208 year: 2015 end-page: 4217 ident: bb0410 article-title: Efficient synthesis of 2, 5-dihydroxymethylfuran and 2, 5-dimethylfuran from 5-hydroxymethylfurfural using mineral-derived Cu catalysts as versatile catalysts publication-title: Catal. Sci. Technol. – volume: 18 start-page: 2175 year: 2016 end-page: 2184 ident: bb0515 article-title: Synthesis of 1, 6-hexanediol from HMF over double-layered catalysts of Pd/SiO publication-title: Green Chem. – volume: 1 start-page: 11 year: 2009 end-page: 17 ident: bb0975 article-title: Furanics: versatile molecules for biofuels and bulk chemicals applications publication-title: Biofuels Techno. – volume: 11 start-page: 2022 year: 2019 end-page: 2042 ident: bb0060 article-title: Recent advances in the catalytic production of platform chemicals from holocellulosic biomass publication-title: ChemCatChem – volume: 431 start-page: 32 year: 2017 end-page: 38 ident: bb0795 article-title: Ruthenium supported on CoFe layered double oxide for selective hydrogenation of 5-hydroxymethylfurfural publication-title: Mol. Catal. – volume: 11 start-page: 43 year: 1981 end-page: 53 ident: bb0735 article-title: A direct alcohol for hydrazine interchange: scope and stereochemistry publication-title: Synth.Commun. – volume: 314 start-page: 52 year: 2018 end-page: 61 ident: bb0110 article-title: Sulfonated biochar as acid catalyst for sugar hydrolysis and dehydration publication-title: Catal. Today – volume: 6 start-page: 8048 year: 2018 end-page: 8054 ident: bb0710 article-title: Al-doping promoted aerobic amidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxamide over cryptomelane publication-title: ACS Sust. Chem.Eng. – volume: 285 start-page: 235 year: 2012 end-page: 241 ident: bb0820 article-title: Active species of copper chromite catalyst in C–O hydrogenolysis of 5-methylfurfuryl alcohol publication-title: J. Catal. – volume: 3 start-page: 406 year: 2015 end-page: 412 ident: bb0315 article-title: Catalytic conversion of fructose and 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid over a recyclable Fe publication-title: ACS Sust. Chem. Eng. – volume: 47 start-page: 1351 year: 2018 end-page: 1390 ident: bb0190 article-title: Catalytic oxidation of carbohydrates into organic acids and furan chemicals publication-title: Chem. Soc. Rev. – volume: 103 start-page: 227 year: 2019 end-page: 247 ident: bb0055 article-title: Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran publication-title: Renew. Sust. Energy Rev. – volume: 8 start-page: 1093 year: 2017 end-page: 1102 ident: bb0665 article-title: Synthesis and synergistic antifungal effects of monoketone derivatives of curcumin against fluconazole-resistant Candida spp. publication-title: MedChemComm. – volume: 44 start-page: 3771 year: 1988 end-page: 3780 ident: bb1080 article-title: Ionic hydrogenation with organosilanes under acid-free conditions. synthesis of ethers, alkoxysilanes, thioethers, and cyclic ethers via rganosilyl iodide and triflate catalyzed reductions of carbonyl compounds and their derivatives publication-title: Tetrahedron – volume: 14 start-page: 1593 year: 2012 end-page: 1596 ident: bb1040 article-title: A direct synthesis of 5-alkoxymethylfurfural ethers from fructose via sulfonic acid-functionalized ionic liquids publication-title: Green Chem. – volume: 3 start-page: 2104 year: 2013 end-page: 2112 ident: bb1015 article-title: Silica coated magnetic Fe publication-title: Catal. Sci. Technol. – volume: 7 start-page: 2947 year: 2017 end-page: 2953 ident: bb0485 article-title: Hydrogenative ring-rearrangement of biomass derived 5-(hydroxymethyl) furfural to 3-(hydroxymethyl) cyclopentanol using combination catalyst systems of Pt/SiO publication-title: Catal. Sci. Technol. – volume: 36 start-page: 1638 year: 2015 end-page: 1646 ident: bb0825 article-title: Tailored one-pot production of furan-based fuels from fructose in an ionic liquid biphasic solvent system publication-title: Chin. J. Catal. – volume: 7 start-page: 1470 year: 2015 end-page: 1477 ident: bb0200 article-title: Polyaniline-grafted VO(acac)2: an effective catalyst for the synthesis of 2,5-diformylfuran from 5-hydroxymethylfurfural and fructose publication-title: ChemCatChem – year: 2003 ident: bb0435 article-title: Industrial Organic Chemistry – volume: 67 start-page: 219 year: 2002 end-page: 223 ident: bb0720 article-title: Successful Baylis–Hillman reaction of acrylamide with aromatic aldehydes publication-title: J. Org. Chem. – volume: 18 start-page: 3152 year: 2016 end-page: 3157 ident: bb0170 article-title: Direct synthesis of V-containing all-silica beta-zeolite for efficient one-pot, one-step conversion of carbohydrates into 2,5-diformylfuran publication-title: Green Chem. – volume: 234 start-page: 59 year: 2014 end-page: 65 ident: bb0425 article-title: Biomass into chemicals: one-pot production of furan-based diols from carbohydrates via tandem reactions publication-title: Catal. Today – volume: 61 start-page: 10996 year: 2018 end-page: 11020 ident: bb0585 article-title: From oxiranes to oligomers: architectures of U.S. FDA approved pharmaceuticals containing oxygen heterocycles publication-title: J. Med. Chem. – volume: 146 start-page: 244 year: 2014 end-page: 248 ident: bb0790 article-title: Efficient production of the liquid fuel 2, 5-dimethylfuran from 5-hydroxymethylfurfural over Ru/Co publication-title: Appl. Catal. B-Environ. – volume: 19 start-page: 1619 year: 2017 end-page: 1623 ident: bb0275 article-title: MnCo publication-title: Green Chem. – volume: 43 start-page: 2473 year: 2008 end-page: 2478 ident: bb0640 article-title: Chemotherapy of leishmaniasis part-VIII: synthesis and bioevaluation of novel chalcones publication-title: Eur. J. Med. Chem. – volume: 2 start-page: 11062 year: 2017 end-page: 11070 ident: bb0865 article-title: Graphitic carbon nitride (g-C publication-title: ChemistrySelect – volume: 2000 start-page: 1131 year: 2000 end-page: 1132 ident: bb0690 article-title: Racemic synthesis of the new antibiotic tetramic acid reutericyclin publication-title: Synlett – volume: 6 start-page: 43152 year: 2016 end-page: 43158 ident: bb0100 article-title: Brønsted-Lewis solid acid as a recyclable catalyst for conversion of glucose to 5-hydroxymethylfurfural and its hydrophobicity effect publication-title: RSC Adv. – volume: 123 start-page: 4903 year: 2019 end-page: 4913 ident: bb0915 article-title: Synergistic catalytic mechanism of acidic silanol and basic alkylamine bifunctional groups over SBA-15 zeolite toward aldol condensation publication-title: J. Phys. Chem. C – volume: 54 start-page: 10703 year: 1998 end-page: 10712 ident: bb0610 article-title: Building blocks from sugars. Part 23. Hydrophilic 3-pyridinols from fructose and isomaltulose publication-title: Tetrahedron – volume: 5 start-page: 428 year: 2013 end-page: 432 ident: bb0935 article-title: The hydrodeoxygenation of bioderived furans into alkanes publication-title: Nat. Chem. – volume: 5 start-page: 377 year: 2004 end-page: 381 ident: bb0560 article-title: Hydrogenation of dimethyl adipate over bimetallic catalysts publication-title: Catal. Commun. – volume: 94 start-page: 3659 year: 1972 end-page: 3661 ident: bb1075 article-title: Silane reductions in acidic media. I. Reduction of aldehydes and ketones in alcoholic acidic media. General synthesis of ethers publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 139 year: 2012 end-page: 143 ident: bb0705 article-title: β-Alanine-DBU: a highly efficient catalytic system for Knoevenagel-Doebner reaction under mild conditions publication-title: Chin. J. Chem. – volume: 14 start-page: 2265 year: 2004 end-page: 2268 ident: bb0730 article-title: 5-Lipoxygenase inhibitors with histamine H1 receptor antagonist activity publication-title: Med. Chem. Lett. – volume: 113 start-page: 625 year: 2013 end-page: 631 ident: bb0980 article-title: Efficient conversion of carbohydrates into 5-ethoxymethylfurfural in ethanol catalyzed by AlCl publication-title: Fuel – volume: 53 start-page: 9755 year: 2014 end-page: 9760 ident: bb0930 article-title: Pd/NbOPO publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 383 year: 2013 end-page: 388 ident: bb0965 article-title: Production of hybrid diesel fuel precursors from carbohydrates and petrochemicals using formic acid as a reactive solvent publication-title: ChemSusChem – volume: 308 start-page: 1446 year: 2005 end-page: 1450 ident: bb0900 article-title: Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates publication-title: Science – volume: 66 start-page: 111 year: 2006 end-page: 118 ident: bb0920 article-title: Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water publication-title: Appl. Catal. B-Environ. – volume: 17 start-page: 1038 year: 2015 end-page: 1046 ident: bb0495 article-title: Selective conversion of furfural to cyclopentanone or cyclopentanol using different preparation methods of Cu–Co catalysts publication-title: Green Chem. – volume: 6 start-page: 1659 year: 2013 end-page: 1667 ident: bb0875 article-title: Electrocatalytic hydrogenation of 5-hydroxymethylfurfural in the absence and presence of glucose publication-title: ChemSusChem – volume: 55 start-page: 612 year: 2012 end-page: 619 ident: bb0570 article-title: From 5-hydroxymethylfurfural (HMF) to polymer precursors: catalyst screening studies on the conversion of 1, 2, 6-hexanetriol to 1, 6-hexanediol publication-title: Top. Catal. – reference: G. J. M. Gruter. 5-Substituted 2-(alkoxymethyl) furans: U.S. Patent 8,231,693. 2012-7-31. – volume: 261 start-page: 118235 year: 2020 ident: bb0340 article-title: NiSe@ NiOx core-shell nanowires as a non-precious electrocatalyst for upgrading 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid publication-title: Appl. Catal. B Environ. – volume: 40 start-page: 1164 year: 2008 end-page: 1169 ident: bb0550 article-title: Brand-new biomass-based vinyl polymers from 5-hydroxymethylfurfural publication-title: Polym. J. – volume: 15 start-page: 1333 year: 2005 end-page: 1336 ident: bb0680 article-title: The discovery and synthesis of novel adenosine receptor (A2A) antagonists publication-title: Bioorg. Med. Chem. Lett. – volume: 12 start-page: 1253 year: 2010 end-page: 1262 ident: bb0815 article-title: A two-step approach for the catalytic conversion of glucose to 2, 5-dimethylfuran in ionic liquids publication-title: Green Chem. – volume: 9 start-page: 2760 year: 2017 end-page: 2767 ident: bb0255 article-title: Catalytic, aerial oxidation of biomass-derived furans to furan carboxylic acids in water over bimetallic nickel-palladium alloy nanoparticles publication-title: ChemCatChem – volume: 5 start-page: 2151 year: 2012 end-page: 2154 ident: bb0430 article-title: Catalytic oxidative decarboxylation of malic acid into dimethyl malonate in methanol with dioxygen publication-title: ChemSusChem – volume: 38 start-page: 1009 year: 1985 end-page: 1016 ident: bb0740 article-title: Synthesis of some furfural and syringic acid derivatives publication-title: Aust. J. Chem. – volume: 6 start-page: 4095 year: 2016 end-page: 4104 ident: bb0800 article-title: Mechanisms for high selectivity in the hydrodeoxygenation of 5-hydroxymethylfurfural over PtCo nanocrystals publication-title: ACS Catal. – volume: 99 start-page: 80 year: 2012 end-page: 84 ident: bb1045 article-title: Heteropolyacid catalyzed conversion of fructose, sucrose, and inulin to 5-ethoxymethylfurfural, a liquid biofuel candidate publication-title: Appl. Energ. – volume: 6 start-page: 284 year: 2018 end-page: 291 ident: bb0180 article-title: CdTe/CdS core/shell quantum dots cocatalyzed by sulfur tolerant [Mo publication-title: ACS Sust. Chem. Eng. – volume: 4 start-page: 83 year: 2003 end-page: 86 ident: bb0370 article-title: Cooperative effect of cobalt acetylacetonate and silica in the catalytic cyclization and oxidation of fructose to 2,5-furandicarboxylic acid publication-title: Catal. Commun. – volume: 5 start-page: 6328 year: 2012 end-page: 6344 ident: bb0960 article-title: Production of high quality diesel from cellulose and hemicellulose by the Sylvan process: catalysts and process variables publication-title: Energy Environ. Sci. – volume: 9 start-page: 1209 year: 2016 end-page: 1215 ident: bb0530 article-title: Selective conversion of 5-hydroxymethylfuraldehyde using Cp* Ir catalysts in aqueous formate buffer solution publication-title: ChemSusChem – volume: 19 start-page: 914 year: 2017 end-page: 918 ident: bb0460 article-title: Highly efficient formic acid-mediated oxidation of renewable furfural to maleic acid with H publication-title: Green Chem. – volume: 9 start-page: 811 year: 2019 end-page: 821 ident: bb0185 article-title: The design and catalytic performance of molybdenum active sites on an MCM-41 framework for the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran publication-title: Catalysis Science & Technology – volume: 6 start-page: 2236 year: 2013 end-page: 2239 ident: bb0940 article-title: Diesel and alkane fuels from biomass by organocatalysis and metal–acid tandem catalysis publication-title: ChemSusChem – volume: 80 start-page: 1760 year: 2015 end-page: 1768 ident: bb0150 article-title: Bicomponent assembly of VO2 and polyaniline-functionalized carbon nanotubes for the selective oxidation of biomass-based 5-hydroxymethylfurfural to 2,5-diformylfuran publication-title: ChemPlusChem – volume: 139 start-page: 10224 year: 2017 end-page: 10227 ident: bb1085 article-title: Reductive etherification via anion-binding catalysis publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 83 year: 2011 end-page: 99 ident: bb0015 article-title: Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels publication-title: Energy Environ. Sci. – volume: 508 start-page: 86 year: 2015 end-page: 93 ident: bb0840 article-title: Comparison of HMF hydrodeoxygenation over different metal catalysts in a continuous flow reactor publication-title: Appl. Catal. A-Gen. – volume: 2 start-page: 79 year: 2012 end-page: 81 ident: bb0230 article-title: Aerobic oxidation of 5-hydroxylmethylfurfural with homogeneous and nanoparticulate catalysts publication-title: Catal. Sci. Technol. – volume: 20 start-page: 1095 year: 2018 end-page: 1105 ident: bb1100 article-title: A cobalt catalyst for reductive etheriication of 5-hydroxymethyl-furfural to 2,5-bis(methoxymethyl)furan under mild conditions publication-title: Green Chem. – volume: 20 start-page: 2845 year: 2018 end-page: 2856 ident: bb0465 article-title: Improving the production of maleic acid from biomass: TS-1 catalysed aqueous phase oxidation of furfural in the presence of γ-valerolactone publication-title: Green Chem. – volume: 16 start-page: 4110 year: 2014 end-page: 4114 ident: bb0525 article-title: Combination of Pd/C and Amberlyst-15 in a single reactor for the acid/hydrogenating catalytic conversion of carbohydrates to 5-hydroxy-2,5-hexanedione publication-title: Green Chem. – volume: 58 start-page: 179 year: 2015 end-page: 182 ident: bb0310 article-title: Selective oxidation of 5-hydroxymethyl-2-furfural to furan-2,5-dicarboxylic acid over spinel mixed metal oxide catalyst publication-title: Catal. Commun. – volume: 7 start-page: 96 year: 2014 end-page: 100 ident: bb0580 article-title: Direct synthesis of 1,6-hexanediol from HMF over a heterogeneous Pd/ZrP catalyst using formic acid as hydrogen source publication-title: ChemSusChem – volume: 19 start-page: 1075 year: 2017 end-page: 1081 ident: bb0345 article-title: Highly selective photocatalytic oxidation of biomass-derived chemicals to carboxyl compounds over Au/TiO publication-title: Green Chem. – volume: 278 start-page: 66 year: 2016 end-page: 73 ident: bb0135 article-title: Oxidation of 5-hydroxymethyl furfural to 2, 5-diformylfuran in aqueous media over heterogeneous manganese based catalysts publication-title: Catal. Today – volume: 5 start-page: 2035 year: 2015 end-page: 2041 ident: bb0450 article-title: Transformation of 5-hydroxymethylfurfural (HMF) to maleic anhydride by aerobic oxidation with heteropolyacid catalysts publication-title: ACS Catal. – volume: 2 start-page: 547 year: 2010 end-page: 555 ident: bb0575 article-title: Chemoselective hydrogenolysis of tetrahydropyran-2-methanol to 1, 6-hexanediol over rhenium-modified carbon-supported rhodium catalysts publication-title: ChemCatChem – volume: 8 start-page: 1197 year: 2018 end-page: 1206 ident: bb0325 article-title: Copper-based catalytic anodes to produce 2,5-furandicarboxylic acid, a biomass-derived alternative to terephthalic acid publication-title: ACS Catal. – volume: 11 start-page: 612 year: 2018 end-page: 618 ident: bb0470 article-title: Highly efficient gas-phase oxidation of renewable furfural to maleic anhydride over plate vanadium phosphorus oxide catalyst publication-title: ChemSusChem – volume: 57 start-page: 64 year: 2014 end-page: 68 ident: bb0160 article-title: Heterogeneous selective oxidation of 5-hydroxymethyl-2-furfural (HMF) into 2,5-diformylfuran catalyzed by vanadium supported activated carbon in MIBK, extracting solvent for HMF publication-title: Catal. Commun. – volume: 6 start-page: 5766 year: 2018 end-page: 5771 ident: bb0250 article-title: Efficient method for synthesis of 2,5-furandicarboxylic acid from 5-hydroxymethylfurfural and fructose using Pd/CC catalyst under aqueous conditions publication-title: ACS Sust. Chem. Eng. – ident: bb0035 article-title: 5-Hydroxymethylfurfural (5-HMF) (CAS 67-47-0) market 2019 to 2024 growth analysis by manufacturers, regions, type and application, revenue, market size, gross margin forecast analysis – volume: 113 start-page: 1499 year: 2013 end-page: 1597 ident: bb0045 article-title: Hydroxymethylfurfural, a versatile platform chemical made from renewable resources publication-title: Chem. Rev. – volume: 6 start-page: 25678 year: 2016 end-page: 25688 ident: bb0205 article-title: One-pot synthesis of 2, 5-diformylfuran from fructose using a magnetic bi-functional catalyst publication-title: RSC Adv. – volume: 422 start-page: 13 year: 2016 end-page: 17 ident: bb0095 article-title: Acid-functionalized mesoporous carbons for the continuous production of 5-hydroxymethylfurfural publication-title: J. Mol. Catal. A Chem. – volume: 16 start-page: 24 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0075 article-title: Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents publication-title: Green Chem. doi: 10.1039/C3GC41324A – volume: 18 start-page: 726 year: 2016 ident: 10.1016/j.fuproc.2020.106528_bb1060 article-title: Direct transformation of carbohydrates to the biofuel 5-ethoxymethylfurfural by solid acid catalysts publication-title: Green Chem. doi: 10.1039/C5GC01043H – volume: 12 start-page: 2835 year: 2019 ident: 10.1016/j.fuproc.2020.106528_bb0005 article-title: Synthesis of biomass-derived ethers for use as fuels and lubricants publication-title: ChemSusChem doi: 10.1002/cssc.201900535 – year: 2003 ident: 10.1016/j.fuproc.2020.106528_bb0435 – volume: 19 start-page: 5356 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0635 article-title: CO2-assisted synthesis of non-symmetric α-diketones directly from aldehydes via C–C bond formation publication-title: Green Chem. doi: 10.1039/C7GC02425H – volume: 123 start-page: 59 year: 2007 ident: 10.1016/j.fuproc.2020.106528_bb0910 article-title: An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates publication-title: Catal. Today doi: 10.1016/j.cattod.2006.12.006 – volume: 55 start-page: 8338 year: 2016 ident: 10.1016/j.fuproc.2020.106528_rf1110 article-title: Critical influence of 5-hydroxymethylfurfural aging and decomposition on the utility of biomass conversion in organic synthesis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201602883 – volume: 317 start-page: 206 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0385 article-title: Methanol as a clean and efficient H-transfer reactant for carbonyl reduction: scope, limitations, and reaction mechanism publication-title: J. Catal. doi: 10.1016/j.jcat.2014.06.023 – volume: 7 start-page: 2948 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0175 article-title: Controlled growth of monodisperse ferrite octahedral nanocrystals for biomass-derived catalytic applications publication-title: ACS Catal. doi: 10.1021/acscatal.6b02853 – volume: 3 start-page: 12313 year: 2013 ident: 10.1016/j.fuproc.2020.106528_bb1010 article-title: One-pot conversion of carbohydrates into 5-ethoxymethylfurfural and ethyl D-glucopyranoside in ethanol catalyzed by a silica supported sulfonic acid catalyst publication-title: RSC Adv. doi: 10.1039/c3ra41043a – volume: 20 start-page: 1977 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb1000 article-title: Synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose in ethanol catalyzed by MCM-41 supported phosphotungstic acid publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2013.09.020 – volume: 11 start-page: 2022 year: 2019 ident: 10.1016/j.fuproc.2020.106528_bb0060 article-title: Recent advances in the catalytic production of platform chemicals from holocellulosic biomass publication-title: ChemCatChem doi: 10.1002/cctc.201801843 – year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0290 – volume: 67 start-page: 219 year: 2002 ident: 10.1016/j.fuproc.2020.106528_bb0720 article-title: Successful Baylis–Hillman reaction of acrylamide with aromatic aldehydes publication-title: J. Org. Chem. doi: 10.1021/jo016004j – volume: 79 start-page: 233 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb1020 article-title: Synthesis of 5-ethoxymethylfurfural from fructose and inulin catalyzed by a magnetically recoverable acid catalyst publication-title: ChemPlusChem doi: 10.1002/cplu.201300301 – volume: 6 start-page: 2103 year: 2013 ident: 10.1016/j.fuproc.2020.106528_bb0925 article-title: Cu/MgAl2O4 as bifunctional catalyst for aldol condensation of 5-hydroxymethylfurfural and selective transfer hydrogenation publication-title: ChemSusChem doi: 10.1002/cssc.201300414 – volume: 7 start-page: 1068 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0845 article-title: Nickel–tungsten carbide catalysts for the production of 2, 5-dimethylfuran from biomass-derived molecules publication-title: ChemSusChem doi: 10.1002/cssc.201301356 – volume: 5 start-page: 11300 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0245 article-title: Highly porous nitrogen- and phosphorus-codoped graphene: an outstanding support for Pd catalysts to oxidize 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid publication-title: ACS Sust. Chem. Eng. doi: 10.1021/acssuschemeng.7b02049 – volume: 18 start-page: 3152 year: 2016 ident: 10.1016/j.fuproc.2020.106528_bb0170 article-title: Direct synthesis of V-containing all-silica beta-zeolite for efficient one-pot, one-step conversion of carbohydrates into 2,5-diformylfuran publication-title: Green Chem. doi: 10.1039/C5GC03051J – volume: 6 start-page: 2236 year: 2013 ident: 10.1016/j.fuproc.2020.106528_bb0940 article-title: Diesel and alkane fuels from biomass by organocatalysis and metal–acid tandem catalysis publication-title: ChemSusChem doi: 10.1002/cssc.201300476 – volume: 7 start-page: 1701 year: 2015 ident: 10.1016/j.fuproc.2020.106528_bb0860 article-title: Carbon nanotubes for the hydrogenation and hydrogenolysis of 5-hydroxymethylfurfural publication-title: ChemCatChem doi: 10.1002/cctc.201500097 – volume: 9 start-page: 660 year: 2019 ident: 10.1016/j.fuproc.2020.106528_bb0335 article-title: A comparative study of nickel, cobalt, and iron oxyhydroxide anodes for the electrochemical oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid publication-title: ACS Catal. doi: 10.1021/acscatal.8b04003 – volume: 18 start-page: 676 year: 2016 ident: 10.1016/j.fuproc.2020.106528_bb0480 article-title: The effect of heterogeneous acid–base catalysis on conversion of 5-hydroxymethylfurfural into a cyclopentanone derivative publication-title: Green Chem. doi: 10.1039/C5GC01723H – volume: 58 start-page: 179 year: 2015 ident: 10.1016/j.fuproc.2020.106528_bb0310 article-title: Selective oxidation of 5-hydroxymethyl-2-furfural to furan-2,5-dicarboxylic acid over spinel mixed metal oxide catalyst publication-title: Catal. Commun. doi: 10.1016/j.catcom.2014.09.017 – year: 2003 ident: 10.1016/j.fuproc.2020.106528_bb0195 – volume: 16 start-page: 4110 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0525 article-title: Combination of Pd/C and Amberlyst-15 in a single reactor for the acid/hydrogenating catalytic conversion of carbohydrates to 5-hydroxy-2,5-hexanedione publication-title: Green Chem. doi: 10.1039/C4GC01158A – volume: 119 start-page: 433 year: 2012 ident: 10.1016/j.fuproc.2020.106528_bb0985 article-title: Catalytic selective etherification of hydroxyl groups in 5-hydroxymethylfurfural over H4SiW12O40/MCM-41 nanospheres for liquid fuel production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.06.001 – volume: 10 start-page: 1460 year: 2017 ident: 10.1016/j.fuproc.2020.106528_rf1100 article-title: Synthesis of furandicarboxylic acid esters from nonfood feedstocks without concomitant levulinic acid formation publication-title: ChemSusChem doi: 10.1002/cssc.201700051 – volume: 8 start-page: 164 year: 2018 ident: 10.1016/j.fuproc.2020.106528_bb0320 article-title: Fe–Zr–O catalyzed base-free aerobic oxidation of 5-HMF to 2,5-FDCA as a biomass-derived polyester monomer publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY01704A – volume: 6 start-page: 383 year: 2013 ident: 10.1016/j.fuproc.2020.106528_bb0965 article-title: Production of hybrid diesel fuel precursors from carbohydrates and petrochemicals using formic acid as a reactive solvent publication-title: ChemSusChem doi: 10.1002/cssc.201200718 – volume: 56 start-page: 5217 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb1070 article-title: Auto-tandem catalysis with frustrated lewis pairs for reductive etherification of aldehydes and ketones publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201700231 – volume: 422 start-page: 13 year: 2016 ident: 10.1016/j.fuproc.2020.106528_bb0095 article-title: Acid-functionalized mesoporous carbons for the continuous production of 5-hydroxymethylfurfural publication-title: J. Mol. Catal. A Chem. doi: 10.1016/j.molcata.2016.01.005 – volume: 66 start-page: 5413 year: 2001 ident: 10.1016/j.fuproc.2020.106528_bb0715 article-title: Efficient Baylis–Hillman reaction using stoichiometric base catalyst and an aqueous medium publication-title: J. Org. Chem. doi: 10.1021/jo015628m – volume: 5 start-page: 2151 year: 2012 ident: 10.1016/j.fuproc.2020.106528_bb0430 article-title: Catalytic oxidative decarboxylation of malic acid into dimethyl malonate in methanol with dioxygen publication-title: ChemSusChem doi: 10.1002/cssc.201200489 – volume: 19 start-page: 5103 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0505 article-title: Conversion of HMF to methyl cyclopentenolone using Pd/Nb2O5 and Ca–Al catalysts via a two-step procedure publication-title: Green Chem. doi: 10.1039/C7GC02310C – volume: 53 start-page: 9755 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0930 article-title: Pd/NbOPO4 multifunctional catalyst for the direct production of liquid alkanes from aldol adducts of furans publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201403440 – volume: 201 start-page: 221 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0905 article-title: Performance of basic mixed oxides for aqueous-phase 5-hydroxymethylfurfural-acetone aldol condensation publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2016.08.013 – volume: 80 start-page: 579 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0655 article-title: B-ring modified aurones as promising allosteric inhibitors of hepatitis C virus RNAdependent RNA polymerase publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2014.04.005 – volume: 66 start-page: 111 year: 2006 ident: 10.1016/j.fuproc.2020.106528_bb0920 article-title: Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2006.03.001 – volume: 36 start-page: 38 year: 2006 ident: 10.1016/j.fuproc.2020.106528_bb1065 article-title: Iron (III) chloride-catalyzed reductive etherification of carbonyl compounds with alcohols publication-title: Chem. Lett. doi: 10.1246/cl.2007.38 – volume: 50 start-page: 7083 year: 2011 ident: 10.1016/j.fuproc.2020.106528_bb0565 article-title: Caprolactam from renewable resources: catalytic conversion of 5-hydroxymethylfurfural into caprolactone publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201102156 – volume: 55 start-page: 612 year: 2012 ident: 10.1016/j.fuproc.2020.106528_bb0570 article-title: From 5-hydroxymethylfurfural (HMF) to polymer precursors: catalyst screening studies on the conversion of 1, 2, 6-hexanetriol to 1, 6-hexanediol publication-title: Top. Catal. doi: 10.1007/s11244-012-9839-6 – volume: 59 start-page: 1257 year: 2016 ident: 10.1016/j.fuproc.2020.106528_bb0645 article-title: Chemicals from biomass: synthesis of biologically active furanochalcones by Claisen–Schmidt condensation of biomass-derived 5-hydroxymethylfurfural (HMF) with acetophenones publication-title: Top. Catal. doi: 10.1007/s11244-016-0646-3 – volume: 16 start-page: 1543 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0765 article-title: Hydrogenation of 5-hydroxymethylfurfural in supercritical carbon dioxide-water: a tunable approach to dimethylfuran selectivity publication-title: Green Chem. doi: 10.1039/c3gc42145g – volume: 4 start-page: 83 year: 2011 ident: 10.1016/j.fuproc.2020.106528_bb0015 article-title: Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels publication-title: Energy Environ. Sci. doi: 10.1039/C0EE00436G – volume: 187 start-page: 15 year: 1989 ident: 10.1016/j.fuproc.2020.106528_bb0595 article-title: Synthèse du 5-bromométhyl-et du 5-chlorométhyl-2-furannecarboxaldéhyde publication-title: Carbohydr. Res. doi: 10.1016/0008-6215(89)80052-7 – volume: 9 start-page: 1209 year: 2016 ident: 10.1016/j.fuproc.2020.106528_bb0530 article-title: Selective conversion of 5-hydroxymethylfuraldehyde using Cp* Ir catalysts in aqueous formate buffer solution publication-title: ChemSusChem doi: 10.1002/cssc.201501625 – volume: 13 start-page: 293 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0810 article-title: Platinum-cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural publication-title: Nat. Mater. doi: 10.1038/nmat3872 – volume: 51 start-page: 5364 year: 2012 ident: 10.1016/j.fuproc.2020.106528_bb1055 article-title: One-pot synthesis of 5-(ethoxymethyl) furfural from glucose using Sn-BEA and Amberlyst catalysts publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie2025536 – volume: 5 start-page: 704 year: 1991 ident: 10.1016/j.fuproc.2020.106528_bb0520 article-title: Catalytic-hydrogenation of 5-hydroxymethylfurfural in aqueous-medium publication-title: Bull. Soc. Chim. Fr. – volume: 7 start-page: 1470 year: 2015 ident: 10.1016/j.fuproc.2020.106528_bb0200 article-title: Polyaniline-grafted VO(acac)2: an effective catalyst for the synthesis of 2,5-diformylfuran from 5-hydroxymethylfurfural and fructose publication-title: ChemCatChem doi: 10.1002/cctc.201500119 – volume: 7 year: 2015 ident: 10.1016/j.fuproc.2020.106528_bb0785 article-title: One-flow syntheses of diverse heterocyclic furan chemicals directly from fructose via tandem transformation platform publication-title: NPG Asia Mater. doi: 10.1038/am.2015.21 – volume: 5 start-page: 284 year: 2013 ident: 10.1016/j.fuproc.2020.106528_bb0155 article-title: Catalytic performance of zeolite-supported vanadia in the aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran publication-title: ChemCatChem doi: 10.1002/cctc.201200482 – volume: 18 start-page: 2302 year: 2016 ident: 10.1016/j.fuproc.2020.106528_bb0215 article-title: Direct synthesis of 2, 5-diformylfuran from fructose with graphene oxide as a bifunctional and metal-free catalyst publication-title: Green Chem. doi: 10.1039/C5GC02794B – volume: 5 start-page: 2035 year: 2015 ident: 10.1016/j.fuproc.2020.106528_bb0450 article-title: Transformation of 5-hydroxymethylfurfural (HMF) to maleic anhydride by aerobic oxidation with heteropolyacid catalysts publication-title: ACS Catal. doi: 10.1021/cs501776n – volume: 118 start-page: 505 year: 2018 ident: 10.1016/j.fuproc.2020.106528_bb0040 article-title: Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00395 – volume: 37 start-page: 2099 year: 1998 ident: 10.1016/j.fuproc.2020.106528_bb0500 article-title: Hydrogenation of diethyl adipate in a catalytic fixed-bed reactor publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie970631a – volume: 12 start-page: 634 year: 2007 ident: 10.1016/j.fuproc.2020.106528_bb0540 article-title: Synthesis of 5-acetoxymethyl-and 5-hydroxymethyl-2-vinyl-furan publication-title: Molecules doi: 10.3390/12030634 – volume: 147 start-page: 293 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0125 article-title: Biomass derived chemicals: environmentally benign process for oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran by using nano-fibrous Ag-OMS-2-catalyst publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2013.09.004 – volume: 9 start-page: 811 issue: 3 year: 2019 ident: 10.1016/j.fuproc.2020.106528_bb0185 article-title: The design and catalytic performance of molybdenum active sites on an MCM-41 framework for the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran publication-title: Catalysis Science & Technology doi: 10.1039/C8CY02291G – volume: 15 start-page: 584 year: 2013 ident: 10.1016/j.fuproc.2020.106528_bb0010 article-title: Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass publication-title: Green Chem. doi: 10.1039/c3gc37065h – volume: 72 start-page: 7638 year: 2016 ident: 10.1016/j.fuproc.2020.106528_bb0755 article-title: Practical synthesis of mumefural, a component of Japanese apricot juice concentrate publication-title: Tetrahedron doi: 10.1016/j.tet.2016.10.026 – volume: 200 start-page: 192 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0850 article-title: Carbon-coated Cu-Co bimetallic nanoparticles as selective and recyclable catalysts for production of biofuel 2,5-dimethylfuran publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2016.07.004 – volume: 6 start-page: 8048 year: 2018 ident: 10.1016/j.fuproc.2020.106528_bb0710 article-title: Al-doping promoted aerobic amidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxamide over cryptomelane publication-title: ACS Sust. Chem.Eng. doi: 10.1021/acssuschemeng.8b01617 – volume: 19 start-page: 1003 year: 1895 ident: 10.1016/j.fuproc.2020.106528_bb0030 article-title: A derivative of furfuraldehyde from laevulose publication-title: Chemiker-Zeitung – volume: 7 start-page: 2089 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0510 article-title: Palladium/carbon dioxide cooperative catalysis for the production of diketone derivatives from carbohydrates publication-title: ChemSusChem doi: 10.1002/cssc.201402221 – volume: 19 start-page: 216 year: 1895 ident: 10.1016/j.fuproc.2020.106528_bb0025 article-title: Action of oxalic acid on inulin publication-title: Chem. Zeit. – year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0300 – volume: 8 start-page: 13686 year: 2018 ident: 10.1016/j.fuproc.2020.106528_bb0670 article-title: Production of renewable long-chained cycloalkanes from biomass-derived furfurals and cyclic ketones publication-title: RSC Adv. doi: 10.1039/C8RA01723A – volume: 43 start-page: 10224 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0375 article-title: Substrate and product role in the Shvo’s catalyzed selective hydrogenation of the platform biobased chemical 5-hydroxymethylfurfural publication-title: Dalton Trans. doi: 10.1039/C4DT00304G – volume: 111 start-page: 397 year: 2011 ident: 10.1016/j.fuproc.2020.106528_bb0070 article-title: Ionic liquid-mediated formation of 5-hydroxymethylfurfural-a promising biomass-derived building block publication-title: Chem. Rev. doi: 10.1021/cr100171a – volume: 19 start-page: 1075 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0345 article-title: Highly selective photocatalytic oxidation of biomass-derived chemicals to carboxyl compounds over Au/TiO2 publication-title: Green Chem. doi: 10.1039/C6GC03022J – volume: 51 start-page: 5331 year: 2012 ident: 10.1016/j.fuproc.2020.106528_bb1035 article-title: Efficient one-pot synthesis of 5-(ethoxymethyl)furfural from fructose catalyzed by a novel solid catalyst publication-title: Ind. Chem. Eng. Res. doi: 10.1021/ie3020445 – volume: 2 start-page: 547 year: 2010 ident: 10.1016/j.fuproc.2020.106528_bb0575 article-title: Chemoselective hydrogenolysis of tetrahydropyran-2-methanol to 1, 6-hexanediol over rhenium-modified carbon-supported rhodium catalysts publication-title: ChemCatChem doi: 10.1002/cctc.201000018 – volume: 117 start-page: 68 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb1005 article-title: Efficient one-pot synthesis of 5-ethoxymethylfurfural from fructose catalyzed by heteropolyacid supported on K-10 clay publication-title: Fuel doi: 10.1016/j.fuel.2013.09.072 – volume: 481 start-page: 49 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0415 article-title: Catalytic synthesis of 2, 5-bismethoxymethylfuran: a promising cetane number improver for diesel publication-title: Appl. Catal. A-Gen. doi: 10.1016/j.apcata.2014.05.003 – volume: 7 start-page: 34776 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0280 article-title: Platinum deposited on cerium coordination polymer for catalytic oxidation of hydroxymethylfurfural producing 2,5-furandicarboxylic acid publication-title: RSC Adv. doi: 10.1039/C7RA05427K – volume: 106 start-page: 4044 year: 2006 ident: 10.1016/j.fuproc.2020.106528_bb0020 article-title: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering publication-title: Chem. Rev. doi: 10.1021/cr068360d – volume: 2000 start-page: 1131 year: 2000 ident: 10.1016/j.fuproc.2020.106528_bb0690 article-title: Racemic synthesis of the new antibiotic tetramic acid reutericyclin publication-title: Synlett doi: 10.1055/s-2000-6734 – volume: 103 start-page: 227 year: 2019 ident: 10.1016/j.fuproc.2020.106528_bb0055 article-title: Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2018.12.010 – volume: 53 start-page: 11751 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0140 article-title: Heterogeneous mesoporous manganese/cobalt oxide catalysts for selective oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran publication-title: Chem. Commun. doi: 10.1039/C7CC06097A – volume: 50 start-page: 5633 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0475 article-title: Conversion of 5-hydroxymethylfurfural to a cyclopentanone derivative by ring rearrangement over supported Au nanoparticles publication-title: Chem. Commun. doi: 10.1039/C3CC49591D – volume: 358 start-page: 326 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0625 article-title: MOF-derived cobalt nanoparticles catalyze a general synthesis of amines publication-title: Science doi: 10.1126/science.aan6245 – volume: 11 start-page: 43 year: 1981 ident: 10.1016/j.fuproc.2020.106528_bb0735 article-title: A direct alcohol for hydrazine interchange: scope and stereochemistry publication-title: Synth.Commun. doi: 10.1080/00397918108064281 – volume: 3 start-page: 2104 year: 2013 ident: 10.1016/j.fuproc.2020.106528_bb1015 article-title: Silica coated magnetic Fe3O4 nanoparticles supported phosphotungstic acid: a novel environmentally friendly catalyst for the synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose publication-title: Catal. Sci. Technol. doi: 10.1039/c3cy00223c – volume: 4 start-page: 2326 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0400 article-title: Combined 1, 4-butanediol lactonization and transfer hydrogenation/hydrogenolysis of furfuralderivatives under continuous flow conditions publication-title: Catal. Sci. Technol. doi: 10.1039/C4CY00213J – volume: 2 start-page: 11062 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0865 article-title: Graphitic carbon nitride (g-C3N4)-derived Fe-N-C catalysts for selective hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran publication-title: ChemistrySelect doi: 10.1002/slct.201701966 – volume: 14 start-page: 2265 year: 2004 ident: 10.1016/j.fuproc.2020.106528_bb0730 article-title: 5-Lipoxygenase inhibitors with histamine H1 receptor antagonist activity publication-title: Med. Chem. Lett. doi: 10.1016/j.bmcl.2004.02.005 – volume: 5 start-page: 6328 year: 2012 ident: 10.1016/j.fuproc.2020.106528_bb0960 article-title: Production of high quality diesel from cellulose and hemicellulose by the Sylvan process: catalysts and process variables publication-title: Energy Environ. Sci. doi: 10.1039/c2ee02778j – ident: 10.1016/j.fuproc.2020.106528_bb1095 – volume: 14 start-page: 1593 year: 2012 ident: 10.1016/j.fuproc.2020.106528_bb1040 article-title: A direct synthesis of 5-alkoxymethylfurfural ethers from fructose via sulfonic acid-functionalized ionic liquids publication-title: Green Chem. doi: 10.1039/c2gc35175g – volume: 123 start-page: 4903 year: 2019 ident: 10.1016/j.fuproc.2020.106528_bb0915 article-title: Synergistic catalytic mechanism of acidic silanol and basic alkylamine bifunctional groups over SBA-15 zeolite toward aldol condensation publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b11941 – volume: 244 start-page: 78 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0105 article-title: Characterization of products from hydrothermal carbonization of pine publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.07.138 – volume: 199 start-page: 439 year: 2016 ident: 10.1016/j.fuproc.2020.106528_bb0805 article-title: Base metal-Pt alloys: a general route to high selectivity and stability in the production of biofuels from HMF publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2016.06.051 – volume: 47 start-page: 1351 year: 2018 ident: 10.1016/j.fuproc.2020.106528_bb0190 article-title: Catalytic oxidation of carbohydrates into organic acids and furan chemicals publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00213K – volume: 19 start-page: 722 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0545 article-title: 5-Hydroxymethyl-2-vinylfuran: a biomass-based solvent-free adhesive publication-title: Green Chem. doi: 10.1039/C6GC02723G – volume: 12 start-page: 2652 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0555 article-title: Alkynylation of bio-based 5-hydroxymethylfurfural to connect biomass processing with conjugated polymers and furanic pharmaceuticals publication-title: Chem.-Asian J. doi: 10.1002/asia.201700940 – volume: 1 start-page: 11 year: 2009 ident: 10.1016/j.fuproc.2020.106528_bb0975 article-title: Furanics: versatile molecules for biofuels and bulk chemicals applications publication-title: Biofuels Techno. – volume: 146 start-page: 244 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0790 article-title: Efficient production of the liquid fuel 2, 5-dimethylfuran from 5-hydroxymethylfurfural over Ru/Co3O4 catalyst publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2013.04.026 – volume: 80 start-page: 1760 year: 2015 ident: 10.1016/j.fuproc.2020.106528_bb0150 article-title: Bicomponent assembly of VO2 and polyaniline-functionalized carbon nanotubes for the selective oxidation of biomass-based 5-hydroxymethylfurfural to 2,5-diformylfuran publication-title: ChemPlusChem doi: 10.1002/cplu.201500292 – volume: 1992 start-page: 541 year: 1992 ident: 10.1016/j.fuproc.2020.106528_bb0600 article-title: The Vilsmeier reaction: a new synthetic method for 5-(chloromethyl)-2-furaldehyde publication-title: Synthesis doi: 10.1055/s-1992-26158 – volume: 316 start-page: 57 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0120 article-title: Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran on manganese oxide catalysts publication-title: J. Catal. doi: 10.1016/j.jcat.2014.05.003 – volume: 4 start-page: 11165 year: 2019 ident: 10.1016/j.fuproc.2020.106528_bb0535 article-title: Highly selective conversion of HMF to 1-hydroxy-2,5-hexanedione on Pd/MIL-101(Cr) publication-title: ChemistrySelect doi: 10.1002/slct.201903535 – volume: 14 start-page: 1626 year: 2012 ident: 10.1016/j.fuproc.2020.106528_bb1090 article-title: Etherification and reductive etherification of 5-(hydroxymethyl) furfural: 5-(alkoxymethyl) furfurals and 2, 5-bis (alkoxymethyl) furans as potential bio-diesel candidates publication-title: Green Chem. doi: 10.1039/c2gc35102a – volume: 8 start-page: 1323 year: 2015 ident: 10.1016/j.fuproc.2020.106528_bb0405 article-title: Copperzinc alloy nanopowder: a robust precious-metal-free catalyst for the conversion of 5-hydroxymethylfurfural publication-title: ChemSusChem doi: 10.1002/cssc.201403453 – volume: 49 start-page: 6797 year: 1993 ident: 10.1016/j.fuproc.2020.106528_bb0695 article-title: Synthesis of (±) tetrahydromyricoidine publication-title: Tetrahedron doi: 10.1016/S0040-4020(01)80423-3 – volume: 53 start-page: 3056 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0780 article-title: Selective transformation of 5-hydroxymethylfurfural into the liquid fuel 2,5-dimethylfuran over carbon-supported ruthenium publication-title: Ind. Eng. Chem.Res. doi: 10.1021/ie404441a – volume: 8 start-page: 1151 year: 2015 ident: 10.1016/j.fuproc.2020.106528_bb0360 article-title: The direct conversion of sugars into 2,5-furandicarboxylic acid in a triphasic system publication-title: ChemSusChem doi: 10.1002/cssc.201500118 – volume: 547 start-page: 230 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0260 article-title: Basic anion-exchange resin (AER)-supported Au-Pd alloy nanoparticles for the oxidation of 5-hydroxymethyl-2-furfural (HMF) into 2,5-furan dicarboxylic acid (FDCA) publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2017.09.012 – volume: 113 start-page: 1499 year: 2013 ident: 10.1016/j.fuproc.2020.106528_bb0045 article-title: Hydroxymethylfurfural, a versatile platform chemical made from renewable resources publication-title: Chem. Rev. doi: 10.1021/cr300182k – volume: 232 start-page: 89 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0770 article-title: Selective hydrogenation of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) under atmospheric hydrogen pressure over carbon supported PdAu bimetallic publication-title: Catalyst. Catal. Today doi: 10.1016/j.cattod.2013.10.012 – volume: 12 start-page: 185 year: 2019 ident: 10.1016/j.fuproc.2020.106528_rf1105 article-title: Towards improved biorefinery technologies: 5-methylfurfural as a versatile C6 platform for biofuels development publication-title: ChemSusChem doi: 10.1002/cssc.201802126 – volume: 431 start-page: 32 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0795 article-title: Ruthenium supported on CoFe layered double oxide for selective hydrogenation of 5-hydroxymethylfurfural publication-title: Mol. Catal. doi: 10.1016/j.mcat.2017.01.011 – volume: 278 start-page: 66 year: 2016 ident: 10.1016/j.fuproc.2020.106528_bb0135 article-title: Oxidation of 5-hydroxymethyl furfural to 2, 5-diformylfuran in aqueous media over heterogeneous manganese based catalysts publication-title: Catal. Today doi: 10.1016/j.cattod.2016.03.031 – year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0285 – volume: 54 start-page: 10703 year: 1998 ident: 10.1016/j.fuproc.2020.106528_bb0610 article-title: Building blocks from sugars. Part 23. Hydrophilic 3-pyridinols from fructose and isomaltulose publication-title: Tetrahedron doi: 10.1016/S0040-4020(98)00634-6 – volume: 20 start-page: 2845 year: 2018 ident: 10.1016/j.fuproc.2020.106528_bb0465 article-title: Improving the production of maleic acid from biomass: TS-1 catalysed aqueous phase oxidation of furfural in the presence of γ-valerolactone publication-title: Green Chem. doi: 10.1039/C8GC00857D – volume: 61 start-page: 10996 year: 2018 ident: 10.1016/j.fuproc.2020.106528_bb0585 article-title: From oxiranes to oligomers: architectures of U.S. FDA approved pharmaceuticals containing oxygen heterocycles publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.8b00876 – volume: 344 start-page: 953 year: 2002 ident: 10.1016/j.fuproc.2020.106528_bb0725 article-title: A practical synthesis of α, β-unsaturated imides, useful substrates for asymmetric conjugate addition reactions publication-title: Adv. Synth. Catal. doi: 10.1002/1615-4169(200210)344:9<953::AID-ADSC953>3.0.CO;2-A – volume: 49 start-page: 3963 year: 2006 ident: 10.1016/j.fuproc.2020.106528_bb0675 article-title: Antitumor agents. 250. Design and synthesis of new curcumin analogues as potential anti-prostate cancer agents publication-title: J. Med. Chem. doi: 10.1021/jm051043z – volume: 19 start-page: 1619 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0275 article-title: MnCo2O4 spinel supported ruthenium catalyst for air-oxidation of HMF to FDCA under aqueous phase and base-free conditions publication-title: Green Chem. doi: 10.1039/C7GC00027H – volume: 14 start-page: 2986 year: 2012 ident: 10.1016/j.fuproc.2020.106528_bb0145 article-title: A one-pot approach for conversion of fructose to 2, 5-diformylfuran by combination of Fe3O4-SBA-SO3H and K-OMS-2 publication-title: Green Chem. doi: 10.1039/c2gc35947b – volume: 11 start-page: 2138 year: 2018 ident: 10.1016/j.fuproc.2020.106528_bb0330 article-title: Electrochemical oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid (FDCA) in acidic media enabling spontaneous FDCA separation publication-title: ChemSusChem doi: 10.1002/cssc.201800532 – volume: 18 start-page: 2976 year: 2016 ident: 10.1016/j.fuproc.2020.106528_bb0440 article-title: Selective aerobic oxidation of furfural to maleic anhydride with heterogeneous Mo–V–O catalysts publication-title: Green Chem. doi: 10.1039/C6GC00508J – volume: 7 start-page: 96 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0580 article-title: Direct synthesis of 1,6-hexanediol from HMF over a heterogeneous Pd/ZrP catalyst using formic acid as hydrogen source publication-title: ChemSusChem doi: 10.1002/cssc.201300832 – volume: 17 start-page: 1038 year: 2015 ident: 10.1016/j.fuproc.2020.106528_bb0495 article-title: Selective conversion of furfural to cyclopentanone or cyclopentanol using different preparation methods of Cu–Co catalysts publication-title: Green Chem. doi: 10.1039/C4GC01601G – volume: 6 start-page: 5766 year: 2018 ident: 10.1016/j.fuproc.2020.106528_bb0250 article-title: Efficient method for synthesis of 2,5-furandicarboxylic acid from 5-hydroxymethylfurfural and fructose using Pd/CC catalyst under aqueous conditions publication-title: ACS Sust. Chem. Eng. doi: 10.1021/acssuschemeng.7b03124 – volume: 43 start-page: 2473 year: 2008 ident: 10.1016/j.fuproc.2020.106528_bb0640 article-title: Chemotherapy of leishmaniasis part-VIII: synthesis and bioevaluation of novel chalcones publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2007.12.014 – volume: 234 start-page: 59 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0425 article-title: Biomass into chemicals: one-pot production of furan-based diols from carbohydrates via tandem reactions publication-title: Catal. Today doi: 10.1016/j.cattod.2014.02.029 – volume: 19 start-page: 2482 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0775 article-title: Direct one-pot conversion of monosaccharides into high-yield 2,5-dimethylfuran over a multifunctional Pd/Zr-based metal-organic framework@sulfonated graphene oxide catalyst publication-title: Green Chem. doi: 10.1039/C7GC00269F – volume: 57 start-page: 64 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0160 article-title: Heterogeneous selective oxidation of 5-hydroxymethyl-2-furfural (HMF) into 2,5-diformylfuran catalyzed by vanadium supported activated carbon in MIBK, extracting solvent for HMF publication-title: Catal. Commun. doi: 10.1016/j.catcom.2014.08.008 – volume: 8 start-page: 317 year: 2015 ident: 10.1016/j.fuproc.2020.106528_bb0970 article-title: Synthesis of high quality alkyl naphthenic kerosene by reacting oil refinery with biomass refinery stream publication-title: Energy Environ. Sci. doi: 10.1039/C4EE03194F – volume: 113 start-page: 625 year: 2013 ident: 10.1016/j.fuproc.2020.106528_bb0980 article-title: Efficient conversion of carbohydrates into 5-ethoxymethylfurfural in ethanol catalyzed by AlCl3 publication-title: Fuel doi: 10.1016/j.fuel.2013.06.015 – volume: 18 start-page: 979 year: 2016 ident: 10.1016/j.fuproc.2020.106528_bb0365 article-title: The direct conversion of sugars into 2, 5-furandicarboxylic acid in a triphasic system publication-title: Green Chem. doi: 10.1039/C5GC01584G – volume: 40 start-page: 1164 year: 2008 ident: 10.1016/j.fuproc.2020.106528_bb0550 article-title: Brand-new biomass-based vinyl polymers from 5-hydroxymethylfurfural publication-title: Polym. J. doi: 10.1295/polymj.PJ2008170 – volume: 135 start-page: 3997 year: 2013 ident: 10.1016/j.fuproc.2020.106528_bb0885 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3122763 – volume: 238 start-page: 716 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0065 article-title: Conversion of biomass to hydroxymethylfurfural: a review of catalytic systems and underlying mechanisms publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.04.026 – volume: 5 start-page: 4208 year: 2015 ident: 10.1016/j.fuproc.2020.106528_bb0410 article-title: Efficient synthesis of 2, 5-dihydroxymethylfuran and 2, 5-dimethylfuran from 5-hydroxymethylfurfural using mineral-derived Cu catalysts as versatile catalysts publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY00700C – volume: 7 start-page: 2266 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0420 article-title: Tunable and selectiveconversion of 5-HMF to 2, 5-furandimethanol and 2, 5-dimethylfuran over copperdopedporous metal oxides publication-title: ChemSusChem doi: 10.1002/cssc.201402095 – volume: 8 start-page: 4022 year: 2015 ident: 10.1016/j.fuproc.2020.106528_bb0945 article-title: Catalytic upgrading of 5-hydroxymethylfurfural to drop-in biofuels by solid base and bifunctional metal–acid catalysts publication-title: ChemSusChem doi: 10.1002/cssc.201501136 – volume: 6 start-page: 25678 year: 2016 ident: 10.1016/j.fuproc.2020.106528_bb0205 article-title: One-pot synthesis of 2, 5-diformylfuran from fructose using a magnetic bi-functional catalyst publication-title: RSC Adv. doi: 10.1039/C6RA01549B – volume: 50 start-page: 4195 year: 2007 ident: 10.1016/j.fuproc.2020.106528_bb0605 article-title: Structure–activity relationships of phenyl-furanyl-rhodanines as inhibitors of RNA polymerase with antibacterial activity on biofilms publication-title: J. Med. Chem. doi: 10.1021/jm0703183 – volume: 3 start-page: 992 year: 2015 ident: 10.1016/j.fuproc.2020.106528_bb1030 article-title: Magnetic material grafted cross-linked imidazolium based polyionic liquids: an efficient acid catalyst for the synthesis of promising liquid fuel 5-ethoxymethylfurfural from carbohydrates publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06135G – volume: 5 start-page: 11280 issue: 12 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0855 article-title: Inclusion of Zn into metallic ni enables selective and effective synthesis of 2,5-dimethylfuran from bioderived 5-hydroxymethylfurfural publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b01813 – volume: 5 start-page: 428 year: 2013 ident: 10.1016/j.fuproc.2020.106528_bb0935 article-title: The hydrodeoxygenation of bioderived furans into alkanes publication-title: Nat. Chem. doi: 10.1038/nchem.1609 – volume: 21 start-page: 1388 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0240 article-title: Aerobic oxidation of diverse primary alcohols to carboxylic acids with a heterogeneous Pd-Bi-Te/C (PBT/C) catalyst publication-title: Org. Process. Res. Dev. doi: 10.1021/acs.oprd.7b00223 – volume: 19 start-page: 3880 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0620 article-title: Versatile CO-assisted direct reductive amination of 5-hydroxymethylfurfural catalyzed by a supported gold catalyst publication-title: Green Chem. doi: 10.1039/C7GC01579H – volume: 18 start-page: 643 year: 2016 ident: 10.1016/j.fuproc.2020.106528_bb0455 article-title: The conversion of 5-hydroxymethyl furfural (HMF) to maleic anhydride with vanadium-based heterogeneous catalysts publication-title: Green Chem. doi: 10.1039/C5GC01794G – volume: 13 start-page: 237 year: 2000 ident: 10.1016/j.fuproc.2020.106528_bb0350 article-title: A new approach for the production of 2, 5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose publication-title: Top. Catal. doi: 10.1023/A:1009017929727 – volume: 6 start-page: 1659 year: 2013 ident: 10.1016/j.fuproc.2020.106528_bb0875 article-title: Electrocatalytic hydrogenation of 5-hydroxymethylfurfural in the absence and presence of glucose publication-title: ChemSusChem doi: 10.1002/cssc.201300443 – volume: 175 start-page: 435 year: 2011 ident: 10.1016/j.fuproc.2020.106528_bb0995 article-title: Etherification of 5-hydroxymethyl-2-furfural (HMF) with ethanol to biodiesel components using mesoporous solid acidic catalysts publication-title: Catal. Today doi: 10.1016/j.cattod.2011.05.008 – volume: 6 start-page: 2925 year: 2013 ident: 10.1016/j.fuproc.2020.106528_bb0880 article-title: Electrochemistry for biofuel generation: production of furans by electrocatalytic hydrogenation of furfurals publication-title: Energy Environ. Sci. doi: 10.1039/c3ee41857j – volume: 252 start-page: 76 year: 2018 ident: 10.1016/j.fuproc.2020.106528_bb0090 article-title: Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.12.098 – volume: 7 start-page: 2131 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0355 article-title: Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2, 5-furandicarboxylic acid publication-title: ChemSusChem doi: 10.1002/cssc.201402105 – volume: 2 start-page: 438 year: 2008 ident: 10.1016/j.fuproc.2020.106528_bb0890 article-title: Furfural: hemicellulose/xylosederived biochemical publication-title: Biofuels Bioprod. Biorefin. doi: 10.1002/bbb.95 – volume: 30 start-page: 139 year: 2012 ident: 10.1016/j.fuproc.2020.106528_bb0705 article-title: β-Alanine-DBU: a highly efficient catalytic system for Knoevenagel-Doebner reaction under mild conditions publication-title: Chin. J. Chem. doi: 10.1002/cjoc.201180455 – year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0235 – volume: 6 start-page: 4095 year: 2016 ident: 10.1016/j.fuproc.2020.106528_bb0800 article-title: Mechanisms for high selectivity in the hydrodeoxygenation of 5-hydroxymethylfurfural over PtCo nanocrystals publication-title: ACS Catal. doi: 10.1021/acscatal.6b00750 – volume: 8 start-page: 1093 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0665 article-title: Synthesis and synergistic antifungal effects of monoketone derivatives of curcumin against fluconazole-resistant Candida spp. publication-title: MedChemComm. doi: 10.1039/C6MD00649C – volume: 267 start-page: 242 year: 2018 ident: 10.1016/j.fuproc.2020.106528_bb0115 article-title: Phosphoric acid-activated wood biochar for catalytic conversion of starch-rich food waste into glucose and 5-hydroxymethylfurfural publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.07.048 – volume: 44 start-page: 3771 year: 1988 ident: 10.1016/j.fuproc.2020.106528_bb1080 article-title: Ionic hydrogenation with organosilanes under acid-free conditions. synthesis of ethers, alkoxysilanes, thioethers, and cyclic ethers via rganosilyl iodide and triflate catalyzed reductions of carbonyl compounds and their derivatives publication-title: Tetrahedron doi: 10.1016/S0040-4020(01)86635-7 – volume: 20 start-page: 3753 issue: 16 year: 2018 ident: 10.1016/j.fuproc.2020.106528_bb0950 article-title: Synthesis of high-density aviation fuels with methyl benzaldehyde and cyclohexanone publication-title: Green Chem. doi: 10.1039/C8GC01628C – volume: 54 start-page: 11825 year: 2015 ident: 10.1016/j.fuproc.2020.106528_bb0895 article-title: Synthesis of jet-fuel range cycloalkanes from the mixtures of cyclopentanone and butanal publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b03379 – volume: 13 start-page: 554 year: 2011 ident: 10.1016/j.fuproc.2020.106528_bb0445 article-title: Oxidation of 5-hydroxymethylfurfural to maleic anhydride with molecular oxygen publication-title: Green Chem. doi: 10.1039/c0gc00837k – volume: 1995 start-page: 303 year: 1995 ident: 10.1016/j.fuproc.2020.106528_bb0745 article-title: Syntheses of γ-oxo acids or γ-oxo esters by photooxygenation of furanic compounds and reduction under ultrasound: application to the synthesis of 5-aminolevulinic acid hydrochloride publication-title: Synthesis doi: 10.1055/s-1995-3897 – volume: 12 start-page: 1253 year: 2010 ident: 10.1016/j.fuproc.2020.106528_bb0815 article-title: A two-step approach for the catalytic conversion of glucose to 2, 5-dimethylfuran in ionic liquids publication-title: Green Chem. doi: 10.1039/c004343e – volume: 1 start-page: 1174 year: 2013 ident: 10.1016/j.fuproc.2020.106528_bb0085 article-title: Biochar based solid acid catalyst hydrolyze biomass publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2013.09.004 – volume: 19 start-page: 3820 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0265 article-title: Hydrophilic mesoporous poly(ionic liquid)-supported Au-Pd alloy nanoparticles towards aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions publication-title: Green Chem. doi: 10.1039/C7GC01116D – volume: 14 start-page: 2457 year: 2012 ident: 10.1016/j.fuproc.2020.106528_bb0835 article-title: One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol publication-title: Green Chem. doi: 10.1039/c2gc35667h – volume: 5 start-page: 5852 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0270 article-title: Highly efficient and stable bimetallic AuPd over La-doped Ca-Mg-Al layered double hydroxide for base-free aerobic oxidation of 5-hydroxymethylfurfural in water publication-title: ACS Sust. Chem. Eng. doi: 10.1021/acssuschemeng.7b00573 – volume: 11 start-page: 612 year: 2018 ident: 10.1016/j.fuproc.2020.106528_bb0470 article-title: Highly efficient gas-phase oxidation of renewable furfural to maleic anhydride over plate vanadium phosphorus oxide catalyst publication-title: ChemSusChem doi: 10.1002/cssc.201701866 – volume: 314 start-page: 52 year: 2018 ident: 10.1016/j.fuproc.2020.106528_bb0110 article-title: Sulfonated biochar as acid catalyst for sugar hydrolysis and dehydration publication-title: Catal. Today doi: 10.1016/j.cattod.2018.02.034 – volume: 5 start-page: 1463 year: 2015 ident: 10.1016/j.fuproc.2020.106528_bb0830 article-title: Renewable fuels from biomass-derived compounds: Ru-containing hydrotalcites as catalysts for conversion of HMF to 2, 5-dimethylfuran publication-title: Catal. Sci. Technol. doi: 10.1039/C4CY01376J – volume: 16 start-page: 4734 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0380 article-title: Selective hydrogenation of 5-hydroxymethylfurfural to 2,5-bis-(hydroxymethyl) furan using Pt/MCM-41 in an aqueous medium: a simple approach publication-title: Green Chem. doi: 10.1039/C4GC01127A – volume: 19 start-page: 1701 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0490 article-title: Selective conversion of 5-hydroxymethylfurfural to cyclopentanone derivatives over Cu–Al2O3 and Co–Al2O3 catalysts in water publication-title: Green Chem. doi: 10.1039/C7GC00315C – volume: 139 start-page: 11493 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0630 article-title: Electronic effect of ruthenium nanoparticles on efficient reductive amination of carbonyl compounds publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04481 – volume: 447 start-page: 982 year: 2007 ident: 10.1016/j.fuproc.2020.106528_bb0760 article-title: Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates publication-title: Nature doi: 10.1038/nature05923 – volume: 53 start-page: 5820 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0210 article-title: Environmentally friendly oxidation of biomass derived 5-hydroxymethylfurfural into 2, 5-diformylfuran catalyzed by magnetic separation of ruthenium catalyst publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie500156d – volume: 123 start-page: 2423 year: 2011 ident: 10.1016/j.fuproc.2020.106528_bb0955 article-title: Production of high-quality diesel from biomass waste products publication-title: Angew. Chem. doi: 10.1002/ange.201007508 – volume: 99 start-page: 80 year: 2012 ident: 10.1016/j.fuproc.2020.106528_bb1045 article-title: Heteropolyacid catalyzed conversion of fructose, sucrose, and inulin to 5-ethoxymethylfurfural, a liquid biofuel candidate publication-title: Appl. Energ. doi: 10.1016/j.apenergy.2012.04.049 – volume: 18 start-page: 2175 year: 2016 ident: 10.1016/j.fuproc.2020.106528_bb0515 article-title: Synthesis of 1, 6-hexanediol from HMF over double-layered catalysts of Pd/SiO2 + Ir–ReOx/SiO2 in a fixed-bed reactor publication-title: Green Chem. doi: 10.1039/C5GC02228B – volume: 5 start-page: 377 year: 2004 ident: 10.1016/j.fuproc.2020.106528_bb0560 article-title: Hydrogenation of dimethyl adipate over bimetallic catalysts publication-title: Catal. Commun. doi: 10.1016/j.catcom.2004.05.002 – volume: 9 start-page: 2760 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0255 article-title: Catalytic, aerial oxidation of biomass-derived furans to furan carboxylic acids in water over bimetallic nickel-palladium alloy nanoparticles publication-title: ChemCatChem doi: 10.1002/cctc.201600942 – volume: 20 start-page: 2283 year: 2010 ident: 10.1016/j.fuproc.2020.106528_bb0650 article-title: Inhibition of eEF2-K by thieno[2,3-b]pyridine analogues publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2010.02.005 – volume: 19 start-page: 914 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0460 article-title: Highly efficient formic acid-mediated oxidation of renewable furfural to maleic acid with H2O2 publication-title: Green Chem. doi: 10.1039/C6GC03020C – volume: 94 start-page: 3659 year: 1972 ident: 10.1016/j.fuproc.2020.106528_bb1075 article-title: Silane reductions in acidic media. I. Reduction of aldehydes and ketones in alcoholic acidic media. General synthesis of ethers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00765a084 – volume: 299 start-page: 316 year: 2013 ident: 10.1016/j.fuproc.2020.106528_bb0305 article-title: Porphyrin-based porous organic polymer-supported iron(III) catalyst for efficient aerobic oxidation of 5-hydroxymethyl-furfural into 2,5-furandicarboxylic acid publication-title: J. Catal. doi: 10.1016/j.jcat.2012.12.024 – volume: 12 start-page: 1201 year: 2010 ident: 10.1016/j.fuproc.2020.106528_bb0615 article-title: Production of biobased HMF derivatives by reductive amination publication-title: Green Chem. doi: 10.1039/c002340j – volume: 14 start-page: 1413 year: 2012 ident: 10.1016/j.fuproc.2020.106528_bb0395 article-title: The selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using heterogeneous catalysts publication-title: Green Chem. doi: 10.1039/c2gc35039d – volume: 128 start-page: 17063 year: 2006 ident: 10.1016/j.fuproc.2020.106528_bb0685 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0623358 – volume: 8 start-page: 1197 year: 2018 ident: 10.1016/j.fuproc.2020.106528_bb0325 article-title: Copper-based catalytic anodes to produce 2,5-furandicarboxylic acid, a biomass-derived alternative to terephthalic acid publication-title: ACS Catal. doi: 10.1021/acscatal.7b03152 – volume: 3 start-page: 1033 year: 2013 ident: 10.1016/j.fuproc.2020.106528_bb0390 article-title: Selective hydrogenation of 2-hydroxymethyl-5-furfural to 2, 5-bis(hydroxymethyl)furan over gold sub-nano clusters publication-title: RSC Adv. doi: 10.1039/C2RA22190J – volume: 36 start-page: 1638 year: 2015 ident: 10.1016/j.fuproc.2020.106528_bb0825 article-title: Tailored one-pot production of furan-based fuels from fructose in an ionic liquid biphasic solvent system publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(15)60927-5 – volume: 55 start-page: 8338 year: 2016 ident: 10.1016/j.fuproc.2020.106528_bb0590 article-title: Critical effect of 5-hydroxymethylfurfural aging and decomposition on the utility of biomass conversion in organic synthesis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201602883 – volume: 18 start-page: 6222 year: 2016 ident: 10.1016/j.fuproc.2020.106528_bb0870 article-title: Efficient hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over a cobalt and copper bimetallic catalyst on N-graphene-modified Al2O3 publication-title: Green Chem. doi: 10.1039/C6GC02630C – volume: 6 start-page: 43152 year: 2016 ident: 10.1016/j.fuproc.2020.106528_bb0100 article-title: Brønsted-Lewis solid acid as a recyclable catalyst for conversion of glucose to 5-hydroxymethylfurfural and its hydrophobicity effect publication-title: RSC Adv. doi: 10.1039/C6RA03565E – volume: 472 start-page: 64 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0130 article-title: Efficient aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran catalyzed by magnetic nanoparticle supported manganese oxide publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2013.12.014 – volume: 288 start-page: 8 year: 2012 ident: 10.1016/j.fuproc.2020.106528_bb0990 article-title: Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts publication-title: J. Catal. doi: 10.1016/j.jcat.2011.12.017 – volume: 375 start-page: 121983 year: 2019 ident: 10.1016/j.fuproc.2020.106528_bb0080 article-title: Value-added chemicals from food supply chain wastes: state-of-the-art review and future prospects publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.121983 – volume: 7 start-page: 6050 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0165 article-title: Direct synthesis of V-containing all-silica beta-zeolite for efficient one-pot, one-step conversion of carbohydrates into 2, 5-diformylfuran publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY01834G – volume: 58 start-page: 4069 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0660 article-title: Concise and efficient synthesis of Estereoisomers of exo-cyclic carbohydrate enones. Aldol condensation of dihydrolevoglucosenone with five-membered aromatic aldehydes Part 1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2017.09.028 – volume: 13 start-page: 754 year: 2011 ident: 10.1016/j.fuproc.2020.106528_bb0050 article-title: 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications publication-title: Green Chem. doi: 10.1039/c0gc00401d – volume: 4 start-page: 83 year: 2003 ident: 10.1016/j.fuproc.2020.106528_bb0370 article-title: Cooperative effect of cobalt acetylacetonate and silica in the catalytic cyclization and oxidation of fructose to 2,5-furandicarboxylic acid publication-title: Catal. Commun. doi: 10.1016/S1566-7367(02)00261-3 – volume: 139 start-page: 10224 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb1085 article-title: Reductive etherification via anion-binding catalysis publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05832 – volume: 57 start-page: 2811 year: 2018 ident: 10.1016/j.fuproc.2020.106528_bb0295 article-title: Atomic layer deposition of a Pt-skin catalyst for base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.7b05101 – volume: 20 start-page: 1095 year: 2018 ident: 10.1016/j.fuproc.2020.106528_bb1100 article-title: A cobalt catalyst for reductive etheriication of 5-hydroxymethyl-furfural to 2,5-bis(methoxymethyl)furan under mild conditions publication-title: Green Chem. doi: 10.1039/C7GC03072J – volume: 5 start-page: 312 year: 1993 ident: 10.1016/j.fuproc.2020.106528_bb0700 article-title: Physicochemical studies on furylacrylic acid publication-title: Asian J. Chem. – volume: 261 start-page: 118235 year: 2020 ident: 10.1016/j.fuproc.2020.106528_bb0340 article-title: NiSe@ NiOx core-shell nanowires as a non-precious electrocatalyst for upgrading 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2019.118235 – volume: 38 start-page: 1009 year: 1985 ident: 10.1016/j.fuproc.2020.106528_bb0740 article-title: Synthesis of some furfural and syringic acid derivatives publication-title: Aust. J. Chem. doi: 10.1071/CH9851009 – volume: 7 start-page: 2947 year: 2017 ident: 10.1016/j.fuproc.2020.106528_bb0485 article-title: Hydrogenative ring-rearrangement of biomass derived 5-(hydroxymethyl) furfural to 3-(hydroxymethyl) cyclopentanol using combination catalyst systems of Pt/SiO2 and lanthanoid oxides publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY00712D – volume: 343 start-page: 102 year: 2001 ident: 10.1016/j.fuproc.2020.106528_bb0225 article-title: Synthesis of 2,5-diformylfuran and furan-2,5-dicarboxylic acid by catalytic air-oxidation of 5-hydroxymethylfurfural. unexpectedly selective aerobic oxidation of benzyl alcohol to benzaldehyde with metal=bromide catalysts publication-title: Adv. Synth. Catal. doi: 10.1002/1615-4169(20010129)343:1<102::AID-ADSC102>3.0.CO;2-Q – volume: 2 start-page: 79 year: 2012 ident: 10.1016/j.fuproc.2020.106528_bb0230 article-title: Aerobic oxidation of 5-hydroxylmethylfurfural with homogeneous and nanoparticulate catalysts publication-title: Catal. Sci. Technol. doi: 10.1039/C1CY00321F – volume: 87 start-page: 1711 year: 2013 ident: 10.1016/j.fuproc.2020.106528_bb0750 article-title: Synthesis of novel coumarin derivatives and in vitro biological evaluation as potential PTP 1B inhibitors publication-title: Heterocycles doi: 10.3987/COM-13-12730 – volume: 508 start-page: 86 year: 2015 ident: 10.1016/j.fuproc.2020.106528_bb0840 article-title: Comparison of HMF hydrodeoxygenation over different metal catalysts in a continuous flow reactor publication-title: Appl. Catal. A-Gen. doi: 10.1016/j.apcata.2015.10.009 – volume: 308 start-page: 1446 year: 2005 ident: 10.1016/j.fuproc.2020.106528_bb0900 article-title: Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates publication-title: Science doi: 10.1126/science.1111166 – volume: 285 start-page: 235 year: 2012 ident: 10.1016/j.fuproc.2020.106528_bb0820 article-title: Active species of copper chromite catalyst in C–O hydrogenolysis of 5-methylfurfuryl alcohol publication-title: J. Catal. doi: 10.1016/j.jcat.2011.09.030 – volume: 3 start-page: 406 year: 2015 ident: 10.1016/j.fuproc.2020.106528_bb0315 article-title: Catalytic conversion of fructose and 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid over a recyclable Fe3O4-CoOx magnetite nanocatalyst publication-title: ACS Sust. Chem. Eng. doi: 10.1021/sc500702q – volume: 15 start-page: 1333 year: 2005 ident: 10.1016/j.fuproc.2020.106528_bb0680 article-title: The discovery and synthesis of novel adenosine receptor (A2A) antagonists publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2005.01.019 – volume: 150 start-page: 236 year: 2015 ident: 10.1016/j.fuproc.2020.106528_bb1025 article-title: Efficient synthesis of promising liquid fuels 5-ethoxymethylfurfural from carbohydrates publication-title: Fuel doi: 10.1016/j.fuel.2015.02.020 – volume: 7 start-page: 3541 year: 2014 ident: 10.1016/j.fuproc.2020.106528_bb0220 article-title: One-pot, one-step synthesis of 2, 5-diformylfuran from carbohydrates over mo-containing keggin heteropolyacids publication-title: ChemSusChem doi: 10.1002/cssc.201402468 – volume: 6 start-page: 284 year: 2018 ident: 10.1016/j.fuproc.2020.106528_bb0180 article-title: CdTe/CdS core/shell quantum dots cocatalyzed by sulfur tolerant [Mo3S13]2− nanoclusters for efficient visible-light-driven hydrogen evolution publication-title: ACS Sust. Chem. Eng. doi: 10.1021/acssuschemeng.7b02408 |
SSID | ssj0005597 |
Score | 2.6229699 |
SecondaryResourceType | review_article |
Snippet | Biomass is the sole renewable organic carbon resource in nature. Conversion of Biomass can produce a series of platform molecules. As an essential... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106528 |
SubjectTerms | 5-Hydroxymethylfurfural Biomass Catalysts catalytic activity Catalytic conversion Catalytic converters Conversion Economic conditions Fossil fuels Furan derivatives Hydrogenation Hydroxymethylfurfural Material monomers Organic carbon Platform chemicals value added |
Title | Conversion of 5-hydroxymethylfurfural to chemicals: A review of catalytic routes and product applications |
URI | https://dx.doi.org/10.1016/j.fuproc.2020.106528 https://www.proquest.com/docview/2450654688 https://www.proquest.com/docview/2985540716 |
Volume | 209 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcq9rI9oME2DQbISHs1rRvbcXirqqECGi8bEm-WP2KtCCVVaR76wt_OnZNUHUJC4jH2XRydfb6Lffc7Qn46pXX0Wck0qAMTShTMOi6Z40UUlnOvUjmg3zdqdiuu7uTdgEz7XBgMq-z2_nZPT7t11zLspDlczOfDP6Ms1xkYsDFCrvACE82FyBE__-xpK8xDpgIrSMyQuk-fSzFesUEzcYbvgCYlsSb76-bpxUadrM_FZ7LbuY100n7ZHhmU1T75tAUm-IXMpxhAnk6_aB2pZP_WAWNUsEb0-iE2y4gIG3RVU9-BBDye0wltc1eQI53krGEAuqwb8ECprQJdtIiwdPui-yu5vfj1dzpjXSEF5jOVY7n5AD-dVnKvfbRSjAOocsjAsbZc5zEop6IsnAZddIGDtdJKe8d1UGGUB6-yb2SnqqvyO6GjXEULPtxYhSg8MFlwqFweyyi9FlodkKyXn_EdyjgWu3gwfTjZvWmlblDqppX6AWEbrkWLsvEGfd5PjflvtRgwBG9wHvUzaTptfTRjIVNVeA3dp5tu0DO8PLFVWTdAU2BAHzhk6vDdg_8gH_GpjYY5IjurZVMeg0-zcidp0Z6QD5PL69nNM1OH9yw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe6cWAcEAzQNgYYiavXurEdZ7eqYiqw7bJN2s3yRyw6VUnVNYde-Nv3npNMHUKaxDX2i6Nnv4_YP78fId-c0jr6rGQazIEJJQpmHZfM8SIKy7lXiQ7o4lLNbsTPW3k7INP-LgzCKjvf3_r05K27J8NOm8PlfD68GmW5ziCAjbHkCi_kDnkhZJbj0j75s4XzkIlhBXsz7N7fn0sgr9hgnDjBl8AjJZGU_d_x6S9PncLP2Rvyussb6aT9tLdkUFb75NVWNcF3ZD5FBHna_qJ1pJL93gQEqSBJ9GYRm1XEEht0XVPfVQm4P6UT2l5eQYm0lbOBAeiqbiAFpbYKdNmWhKXbJ93vyc3Z9-vpjHVMCsxnKke--QB_nVZyr320UowD2HLIILO2XOcxKKeiLJwGY3SBQ7jSSnvHdVBhlAevsg9kt6qr8oDQUa6ihSRurEIUHoQsZFQuj2WUXgutDknW68_4rsw4sl0sTI8nuzOt1g1q3bRaPyTsUWrZltl4pn_eT415slwMRIJnJI_7mTSdud6bsZCJFl5D89fHZjA0PD2xVVk30KdARB9kZOrovwf_Ql7Ori_OzfmPy18fyR62tNCYY7K7XjXlJ0hw1u5zWsAPCzf4wg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conversion+of+5-hydroxymethylfurfural+to+chemicals%3A+A+review+of+catalytic+routes+and+product+applications&rft.jtitle=Fuel+processing+technology&rft.au=Kong%2C+Qing-Shan&rft.au=Li%2C+Xing-Long&rft.au=Xu%2C+Hua-Jian&rft.au=Fu%2C+Yao&rft.date=2020-12-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0378-3820&rft.eissn=1873-7188&rft.volume=209&rft.spage=1&rft_id=info:doi/10.1016%2Fj.fuproc.2020.106528&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3820&client=summon |