Conversion of 5-hydroxymethylfurfural to chemicals: A review of catalytic routes and product applications

Biomass is the sole renewable organic carbon resource in nature. Conversion of Biomass can produce a series of platform molecules. As an essential multi-purpose bioderived furanic platform compound, 5-hydroxymethylfurfural (HMF) can be effectively transformed into a variety of value-added derivative...

Full description

Saved in:
Bibliographic Details
Published inFuel processing technology Vol. 209; p. 106528
Main Authors Kong, Qing-Shan, Li, Xing-Long, Xu, Hua-Jian, Fu, Yao
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.12.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0378-3820
1873-7188
DOI10.1016/j.fuproc.2020.106528

Cover

Loading…
Abstract Biomass is the sole renewable organic carbon resource in nature. Conversion of Biomass can produce a series of platform molecules. As an essential multi-purpose bioderived furanic platform compound, 5-hydroxymethylfurfural (HMF) can be effectively transformed into a variety of value-added derivatives due to its rich chemistry and potential availability, which is an ideal renewable alternative to fossil fuels. This review highlights recent advances in the development of efficient catalytic systems for the conversion of HMF, especially heterogeneous catalysts. Heterogeneous catalysts have advantages in facile separation and recovery, tunable performance by adjusting catalyst structures. Simultaneously, we mainly focus on the application of downstream products in material monomers, pharmaceutical intermediates, and fuels. Furthermore, a few potential research trends are also proposed, in order to provide some useful ideas for the further exploration of the utilization and conversion of HMF in a much simple, efficient, and economical way. •Highly summarized recent advances in the conversion of HMF into monomers, fuels, and pharmaceutical intermediates•Discussion of research priorities and current challenges in the preparation of HMF downstream products•Prospects for potential research directions downstream of HMF
AbstractList Biomass is the sole renewable organic carbon resource in nature. Conversion of Biomass can produce a series of platform molecules. As an essential multi-purpose bioderived furanic platform compound, 5-hydroxymethylfurfural (HMF) can be effectively transformed into a variety of value-added derivatives due to its rich chemistry and potential availability, which is an ideal renewable alternative to fossil fuels. This review highlights recent advances in the development of efficient catalytic systems for the conversion of HMF, especially heterogeneous catalysts. Heterogeneous catalysts have advantages in facile separation and recovery, tunable performance by adjusting catalyst structures. Simultaneously, we mainly focus on the application of downstream products in material monomers, pharmaceutical intermediates, and fuels. Furthermore, a few potential research trends are also proposed, in order to provide some useful ideas for the further exploration of the utilization and conversion of HMF in a much simple, efficient, and economical way.
Biomass is the sole renewable organic carbon resource in nature. Conversion of Biomass can produce a series of platform molecules. As an essential multi-purpose bioderived furanic platform compound, 5-hydroxymethylfurfural (HMF) can be effectively transformed into a variety of value-added derivatives due to its rich chemistry and potential availability, which is an ideal renewable alternative to fossil fuels. This review highlights recent advances in the development of efficient catalytic systems for the conversion of HMF, especially heterogeneous catalysts. Heterogeneous catalysts have advantages in facile separation and recovery, tunable performance by adjusting catalyst structures. Simultaneously, we mainly focus on the application of downstream products in material monomers, pharmaceutical intermediates, and fuels. Furthermore, a few potential research trends are also proposed, in order to provide some useful ideas for the further exploration of the utilization and conversion of HMF in a much simple, efficient, and economical way. •Highly summarized recent advances in the conversion of HMF into monomers, fuels, and pharmaceutical intermediates•Discussion of research priorities and current challenges in the preparation of HMF downstream products•Prospects for potential research directions downstream of HMF
ArticleNumber 106528
Author Xu, Hua-Jian
Fu, Yao
Li, Xing-Long
Kong, Qing-Shan
Author_xml – sequence: 1
  givenname: Qing-Shan
  surname: Kong
  fullname: Kong, Qing-Shan
  organization: Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Institute of Energy, Hefei Comprehensive National Science Center, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
– sequence: 2
  givenname: Xing-Long
  surname: Li
  fullname: Li, Xing-Long
  organization: Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Institute of Energy, Hefei Comprehensive National Science Center, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
– sequence: 3
  givenname: Hua-Jian
  surname: Xu
  fullname: Xu, Hua-Jian
  email: hjxu@hfut.edu.cn
  organization: School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
– sequence: 4
  givenname: Yao
  surname: Fu
  fullname: Fu, Yao
  email: fuyao@ustc.edu.cn
  organization: Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Institute of Energy, Hefei Comprehensive National Science Center, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
BookMark eNqFkUtr3DAUhUVJoZO0_6ALQTfZeKKH9ZgsAmFImkKgm3YtNFcyo8FjTSQ5if995bqrLFIQXBDnO5x7zzk6G-LgEfpKyZoSKq8O6248pQhrRtj8JQXTH9CKasUbRbU-QyvClW64ZuQTOs_5QAgRYqNWKGzj8OxTDnHAscOi2U8uxdfp6Mt-6rsx1Wd7XCKGvT8GsH2-xrc4-efgX2YCbLH9VALgFMfiM7aDwzWMG6Fgezr1lSnVPX9GH7tK-y__5gX6fX_3a_vQPP78_mN7-9gAl6o0lDvKmRUUNHRWtMwRTh1Xitm6T-fkTnZis9OS652j83ZSw45qJx1RDiS_QJeLbw3xNPpczDFk8H1vBx_HbNhGC9ESRWfptzfSQxzTUNMZ1op6xlZqXVXXiwpSzDn5zkAof3cqyYbeUGLmFszBLC2YuQWztFDh9g18SuFo0_Q_7GbBfL1UPXUyGYIfwLuQPBTjYnjf4A95YqaB
CitedBy_id crossref_primary_10_1002_EXP_20220169
crossref_primary_10_1039_D5CC00021A
crossref_primary_10_1007_s13399_024_06484_3
crossref_primary_10_1016_j_fuproc_2022_107635
crossref_primary_10_3390_pr10102095
crossref_primary_10_1134_S002315842460144X
crossref_primary_10_1016_j_mcat_2023_113629
crossref_primary_10_1016_j_seppur_2025_131568
crossref_primary_10_1016_j_cej_2022_140415
crossref_primary_10_1016_j_cej_2022_140536
crossref_primary_10_1002_cctc_202300480
crossref_primary_10_1002_cssc_202401291
crossref_primary_10_1039_D4CY01420K
crossref_primary_10_1177_1934578X241290620
crossref_primary_10_1039_D2CY00110A
crossref_primary_10_1002_cssc_202402421
crossref_primary_10_1007_s10570_022_04623_5
crossref_primary_10_1002_cctc_202300765
crossref_primary_10_1016_j_fuel_2024_132266
crossref_primary_10_1016_j_fuel_2021_121769
crossref_primary_10_1016_j_fuproc_2020_106672
crossref_primary_10_1016_j_fuel_2025_134429
crossref_primary_10_1002_cssc_202200178
crossref_primary_10_1016_j_cej_2020_127827
crossref_primary_10_1021_acs_energyfuels_4c02996
crossref_primary_10_1021_acs_iecr_2c02934
crossref_primary_10_3389_fchem_2022_1006981
crossref_primary_10_1016_j_bej_2023_108835
crossref_primary_10_1016_j_biortech_2021_125977
crossref_primary_10_1021_acsanm_2c01077
crossref_primary_10_1016_j_cej_2025_159604
crossref_primary_10_1051_bioconf_20237003009
crossref_primary_10_1021_acs_langmuir_3c01380
crossref_primary_10_1002_cplu_202300309
crossref_primary_10_1021_acs_energyfuels_1c03346
crossref_primary_10_1039_D1GC01621K
crossref_primary_10_1007_s10311_022_01543_5
crossref_primary_10_1039_D4GC04191G
crossref_primary_10_1007_s11694_023_01978_6
crossref_primary_10_1016_j_jechem_2023_11_023
crossref_primary_10_1016_j_isci_2022_104744
crossref_primary_10_1016_j_fuel_2022_125700
crossref_primary_10_1016_j_apcata_2023_119265
crossref_primary_10_1016_j_ceja_2024_100597
crossref_primary_10_1002_cssc_202201846
crossref_primary_10_1039_D2NJ00142J
crossref_primary_10_1039_D4NJ03028A
crossref_primary_10_3390_molecules28041527
crossref_primary_10_1007_s13738_021_02313_w
crossref_primary_10_1039_D1SE00802A
crossref_primary_10_1002_er_8545
crossref_primary_10_1360_SSV_2023_0067
crossref_primary_10_3390_catal11070861
crossref_primary_10_1515_ncrs_2022_0105
crossref_primary_10_1007_s13399_021_01495_w
crossref_primary_10_1039_D1CY02197D
crossref_primary_10_1080_17518253_2025_2457497
crossref_primary_10_1007_s10562_022_04043_x
crossref_primary_10_1016_j_apsusc_2022_154579
crossref_primary_10_3390_catal13030574
crossref_primary_10_3390_ijms222111856
crossref_primary_10_1021_acssuschemeng_4c05695
crossref_primary_10_1021_acssuschemeng_2c01303
crossref_primary_10_1002_cssc_202400559
crossref_primary_10_1016_j_fuel_2025_134477
crossref_primary_10_1007_s13399_022_03648_x
crossref_primary_10_1021_acs_iecr_2c02322
crossref_primary_10_1016_j_mcat_2024_114354
crossref_primary_10_1016_j_crcon_2023_01_001
crossref_primary_10_1002_cssc_202200421
crossref_primary_10_1016_j_jcis_2024_05_006
crossref_primary_10_1039_D3NJ02786D
crossref_primary_10_3390_catal11091077
crossref_primary_10_1016_j_fuel_2022_126610
crossref_primary_10_2174_2213337208666211129090444
crossref_primary_10_1002_cplu_202200166
crossref_primary_10_3390_catal10080895
crossref_primary_10_1021_acssuschemeng_4c04552
crossref_primary_10_1002_er_6743
crossref_primary_10_1016_j_ccr_2024_216426
crossref_primary_10_1002_jsde_12581
crossref_primary_10_3390_catal14030185
crossref_primary_10_1002_slct_202302075
crossref_primary_10_1016_j_jaap_2024_106706
crossref_primary_10_1021_acsomega_4c03804
crossref_primary_10_1039_D1SE00499A
crossref_primary_10_1007_s11164_023_05100_9
crossref_primary_10_1016_j_mcat_2023_113244
crossref_primary_10_1039_D1GC03278J
crossref_primary_10_1080_17597269_2024_2432148
crossref_primary_10_7454_jessd_v6i2_1158
crossref_primary_10_1021_acscatal_4c01448
crossref_primary_10_3389_fchem_2023_1199921
crossref_primary_10_1016_j_renene_2024_122125
crossref_primary_10_1016_j_apsusc_2024_160677
crossref_primary_10_9767_bcrec_18330
crossref_primary_10_1002_slct_202201255
crossref_primary_10_1007_s10904_021_02062_6
crossref_primary_10_3390_su16020858
crossref_primary_10_1016_j_indcrop_2022_115536
crossref_primary_10_1007_s00107_023_02017_3
crossref_primary_10_3390_catal14120927
crossref_primary_10_3390_molecules29050937
crossref_primary_10_1002_cssc_202402522
crossref_primary_10_1002_open_202000233
crossref_primary_10_1016_j_mcat_2023_112966
crossref_primary_10_1039_D1OB00013F
crossref_primary_10_1039_D3SE01164J
crossref_primary_10_1016_j_scp_2023_101013
crossref_primary_10_1016_j_cej_2024_150482
crossref_primary_10_1021_acssuschemeng_3c05783
crossref_primary_10_1016_j_inoche_2022_110226
crossref_primary_10_1016_j_renene_2024_120748
crossref_primary_10_1007_s12155_022_10453_x
crossref_primary_10_3389_fsufs_2024_1334801
crossref_primary_10_3390_su16020608
Cites_doi 10.1039/C3GC41324A
10.1039/C5GC01043H
10.1002/cssc.201900535
10.1039/C7GC02425H
10.1016/j.cattod.2006.12.006
10.1002/anie.201602883
10.1016/j.jcat.2014.06.023
10.1021/acscatal.6b02853
10.1039/c3ra41043a
10.1016/j.jiec.2013.09.020
10.1002/cctc.201801843
10.1021/jo016004j
10.1002/cplu.201300301
10.1002/cssc.201300414
10.1002/cssc.201301356
10.1021/acssuschemeng.7b02049
10.1039/C5GC03051J
10.1002/cssc.201300476
10.1002/cctc.201500097
10.1021/acscatal.8b04003
10.1039/C5GC01723H
10.1016/j.catcom.2014.09.017
10.1039/C4GC01158A
10.1016/j.biortech.2012.06.001
10.1002/cssc.201700051
10.1039/C7CY01704A
10.1002/cssc.201200718
10.1002/anie.201700231
10.1016/j.molcata.2016.01.005
10.1021/jo015628m
10.1002/cssc.201200489
10.1039/C7GC02310C
10.1002/anie.201403440
10.1016/j.apcatb.2016.08.013
10.1016/j.ejmech.2014.04.005
10.1016/j.apcatb.2006.03.001
10.1246/cl.2007.38
10.1002/anie.201102156
10.1007/s11244-012-9839-6
10.1007/s11244-016-0646-3
10.1039/c3gc42145g
10.1039/C0EE00436G
10.1016/0008-6215(89)80052-7
10.1002/cssc.201501625
10.1038/nmat3872
10.1021/ie2025536
10.1002/cctc.201500119
10.1038/am.2015.21
10.1002/cctc.201200482
10.1039/C5GC02794B
10.1021/cs501776n
10.1021/acs.chemrev.7b00395
10.1021/ie970631a
10.3390/12030634
10.1016/j.apcatb.2013.09.004
10.1039/C8CY02291G
10.1039/c3gc37065h
10.1016/j.tet.2016.10.026
10.1016/j.apcatb.2016.07.004
10.1021/acssuschemeng.8b01617
10.1002/cssc.201402221
10.1039/C8RA01723A
10.1039/C4DT00304G
10.1021/cr100171a
10.1039/C6GC03022J
10.1021/ie3020445
10.1002/cctc.201000018
10.1016/j.fuel.2013.09.072
10.1016/j.apcata.2014.05.003
10.1039/C7RA05427K
10.1021/cr068360d
10.1055/s-2000-6734
10.1016/j.rser.2018.12.010
10.1039/C7CC06097A
10.1039/C3CC49591D
10.1126/science.aan6245
10.1080/00397918108064281
10.1039/c3cy00223c
10.1039/C4CY00213J
10.1002/slct.201701966
10.1016/j.bmcl.2004.02.005
10.1039/c2ee02778j
10.1039/c2gc35175g
10.1021/acs.jpcc.8b11941
10.1016/j.biortech.2017.07.138
10.1016/j.apcatb.2016.06.051
10.1039/C7CS00213K
10.1039/C6GC02723G
10.1002/asia.201700940
10.1016/j.apcatb.2013.04.026
10.1002/cplu.201500292
10.1055/s-1992-26158
10.1016/j.jcat.2014.05.003
10.1002/slct.201903535
10.1039/c2gc35102a
10.1002/cssc.201403453
10.1016/S0040-4020(01)80423-3
10.1021/ie404441a
10.1002/cssc.201500118
10.1016/j.apcata.2017.09.012
10.1021/cr300182k
10.1016/j.cattod.2013.10.012
10.1002/cssc.201802126
10.1016/j.mcat.2017.01.011
10.1016/j.cattod.2016.03.031
10.1016/S0040-4020(98)00634-6
10.1039/C8GC00857D
10.1021/acs.jmedchem.8b00876
10.1002/1615-4169(200210)344:9<953::AID-ADSC953>3.0.CO;2-A
10.1021/jm051043z
10.1039/C7GC00027H
10.1039/c2gc35947b
10.1002/cssc.201800532
10.1039/C6GC00508J
10.1002/cssc.201300832
10.1039/C4GC01601G
10.1021/acssuschemeng.7b03124
10.1016/j.ejmech.2007.12.014
10.1016/j.cattod.2014.02.029
10.1039/C7GC00269F
10.1016/j.catcom.2014.08.008
10.1039/C4EE03194F
10.1016/j.fuel.2013.06.015
10.1039/C5GC01584G
10.1295/polymj.PJ2008170
10.1021/ja3122763
10.1016/j.biortech.2017.04.026
10.1039/C5CY00700C
10.1002/cssc.201402095
10.1002/cssc.201501136
10.1039/C6RA01549B
10.1021/jm0703183
10.1039/C4TA06135G
10.1021/acssuschemeng.7b01813
10.1038/nchem.1609
10.1021/acs.oprd.7b00223
10.1039/C7GC01579H
10.1039/C5GC01794G
10.1023/A:1009017929727
10.1002/cssc.201300443
10.1016/j.cattod.2011.05.008
10.1039/c3ee41857j
10.1016/j.biortech.2017.12.098
10.1002/cssc.201402105
10.1002/bbb.95
10.1002/cjoc.201180455
10.1021/acscatal.6b00750
10.1039/C6MD00649C
10.1016/j.biortech.2018.07.048
10.1016/S0040-4020(01)86635-7
10.1039/C8GC01628C
10.1021/acs.iecr.5b03379
10.1039/c0gc00837k
10.1055/s-1995-3897
10.1039/c004343e
10.1016/j.jece.2013.09.004
10.1039/C7GC01116D
10.1039/c2gc35667h
10.1021/acssuschemeng.7b00573
10.1002/cssc.201701866
10.1016/j.cattod.2018.02.034
10.1039/C4CY01376J
10.1039/C4GC01127A
10.1039/C7GC00315C
10.1021/jacs.7b04481
10.1038/nature05923
10.1021/ie500156d
10.1002/ange.201007508
10.1016/j.apenergy.2012.04.049
10.1039/C5GC02228B
10.1016/j.catcom.2004.05.002
10.1002/cctc.201600942
10.1016/j.bmcl.2010.02.005
10.1039/C6GC03020C
10.1021/ja00765a084
10.1016/j.jcat.2012.12.024
10.1039/c002340j
10.1039/c2gc35039d
10.1021/ja0623358
10.1021/acscatal.7b03152
10.1039/C2RA22190J
10.1016/S1872-2067(15)60927-5
10.1039/C6GC02630C
10.1039/C6RA03565E
10.1016/j.apcata.2013.12.014
10.1016/j.jcat.2011.12.017
10.1016/j.cej.2019.121983
10.1039/C7CY01834G
10.1016/j.tetlet.2017.09.028
10.1039/c0gc00401d
10.1016/S1566-7367(02)00261-3
10.1021/jacs.7b05832
10.1021/acs.iecr.7b05101
10.1039/C7GC03072J
10.1016/j.apcatb.2019.118235
10.1071/CH9851009
10.1039/C7CY00712D
10.1002/1615-4169(20010129)343:1<102::AID-ADSC102>3.0.CO;2-Q
10.1039/C1CY00321F
10.3987/COM-13-12730
10.1016/j.apcata.2015.10.009
10.1126/science.1111166
10.1016/j.jcat.2011.09.030
10.1021/sc500702q
10.1016/j.bmcl.2005.01.019
10.1016/j.fuel.2015.02.020
10.1002/cssc.201402468
10.1021/acssuschemeng.7b02408
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier Science Ltd. Dec 1, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Dec 1, 2020
DBID AAYXX
CITATION
7TB
8FD
FR3
H8D
L7M
7S9
L.6
DOI 10.1016/j.fuproc.2020.106528
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aerospace Database
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-7188
ExternalDocumentID 10_1016_j_fuproc_2020_106528
S0378382020308195
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSG
SSK
SSR
SSZ
T5K
TWZ
~02
~G-
29H
8WZ
A6W
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HVGLF
HZ~
R2-
RIG
SAC
SCB
SEW
SSH
UHS
WUQ
ZY4
7TB
8FD
EFKBS
FR3
H8D
L7M
7S9
L.6
ID FETCH-LOGICAL-c367t-13d132a51c8cfa542d031d3772a187fd6b6f59b8638bd1718868cb18d6d07dc63
IEDL.DBID .~1
ISSN 0378-3820
IngestDate Fri Sep 05 04:45:19 EDT 2025
Fri Jul 25 01:26:02 EDT 2025
Tue Jul 01 03:04:38 EDT 2025
Thu Apr 24 22:56:44 EDT 2025
Fri Feb 23 02:47:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Catalytic conversion
Platform chemicals
5-Hydroxymethylfurfural
Hydrogenation
Material monomers
Furan derivatives
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c367t-13d132a51c8cfa542d031d3772a187fd6b6f59b8638bd1718868cb18d6d07dc63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2450654688
PQPubID 2047467
ParticipantIDs proquest_miscellaneous_2985540716
proquest_journals_2450654688
crossref_citationtrail_10_1016_j_fuproc_2020_106528
crossref_primary_10_1016_j_fuproc_2020_106528
elsevier_sciencedirect_doi_10_1016_j_fuproc_2020_106528
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Fuel processing technology
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Kraus, Guney (bb1040) 2012; 14
Tekautz, Kirschneck, Linhart (bb0300) 2017
Rosatella, Simeonov, Frade, Afonso (bb0050) 2011; 13
Xu, Zhang (bb0200) 2015; 7
Cottier, Descotes, Eymard, Rapp (bb0745) 1995; 1995
Zhao, Dong, Wang, Wang, Yan, Yan, Zhang, Cao, Jin (bb0665) 2017; 8
Bottari, Kumalaputri, Krawczyk, Feringa, Heeres, Barta (bb0405) 2015; 8
bb0035
Wu, Xu, Zhu, Cui, Li, Deng, Fu (bb0530) 2016; 9
Yu, Hu (bb0720) 2002; 67
Ohyama, Ohira, Satsuma (bb0485) 2017; 7
Zhou, Rauchfuss (bb0965) 2013; 6
Huber, Iborra, Corma (bb0020) 2006; 106
Guo, Liu, Zhang, Han, Liu, Jiang, Han, Wu (bb0870) 2016; 18
Mamman, Lee, Kim, Hwang, Park, Hwang, Chang, Hwang (bb0890) 2008; 2
Yang, Deng, Pan, Guo, Fu (bb0145) 2012; 14
Fang, Luque, Li (bb0170) 2016; 18
Cai, Li, Wang, Zhang (bb0425) 2014; 234
Zhao, Sojdak, Myint, Seidel (bb1085) 2017; 139
Chen, Li, Wang, Liang, Wang, Zhang, Zhang (bb0245) 2017; 5
Zhou, Song, Zhang, Jiang, Zhang, Han (bb0345) 2017; 19
Corma, de la Torre, Renz (bb0960) 2012; 5
Wang, Zhang, Liu (bb0315) 2015; 3
Liu, Zhang, Lv, Deng, Duan (bb0130) 2014; 472
Goodman, Jacobsen (bb0725) 2002; 344
Doyle, DeBruyn, Kooistra (bb1075) 1972; 94
Rathod, Jadhav (bb0250) 2018; 6
Pupovac, Palkovits (bb0925) 2013; 6
Dutta, De, Alam, Abu-Omar, Saha (bb0990) 2012; 288
Zhang, Wang, Fang, Liu (bb1020) 2014; 79
Muller, Diehl, Lichtenthaler (bb0610) 1998; 54
Wang, Zhang, Ma, MaBifunctional (bb0100) 2016; 6
Zhang, Hou, Meng, Zhuang, Xie, Zhou, Wang (bb0165) 2017; 7
Xiao, Zheng, Li, Pang, Sun, Wang, Pang, Wang, Wang, Zhang (bb0515) 2016; 18
Huang, Chen, Yan, Guo, Fu (bb0845) 2014; 7
Parsania (bb0700) 1993; 5
Yu, He, Chen, Zheng, Ye, Lin, Yuan (bb0860) 2015; 7
Yoshida, Kasuya, Haga, Fukuda (bb0550) 2008; 40
Nilges, Schroeder (bb0880) 2013; 6
Ohyama, Esaki, Yamamoto, Arai, Satsuma (bb0390) 2013; 3
Yang, Li, Li, Wang, Wang, Zhang, Cong, Wang, Huber (bb0895) 2015; 54
Li, Cai, Zhang, Li, Pei, Dai, Wang, Zhang (bb0825) 2015; 36
Cao, Iris, Tsang, Zhang, Ok, Kwon, Song, Poon (bb0115) 2018; 267
Cukalovic, Stevens (bb0615) 2010; 12
Iwanami, Yano, Oriyama (bb1065) 2006; 36
Matasi, Caldwell, Hao, Neustadt, Arik, Foster, Lachowicz, Tulshian (bb0680) 2005; 15
Rorrer, Bell, Toste (bb0005) 2019; 12
Chatterjee, Ishizakaa, Kawanami (bb0380) 2014; 16
Buntara, Noel, Phua, Melian-Cabrera, dé Vries, Heeres (bb0565) 2011; 50
Yang, Xie, Deng, Li, Zheng, Duan (bb0535) 2019; 4
Buntara, Noel, Phua, Melián-Cabrera, de Vries, Heeres (bb0570) 2012; 55
Wang, Zhang, Liu, Li (bb1015) 2013; 3
Wang, Liu, Xiang, Wang, Lyu, Qi, Si, Yang, Hu (bb0185) 2019; 9
Lanzafame, Temi, Perathoner, Centi, Macario, Aloise, Giordano (bb0995) 2011; 175
Xia, Cuan, Liu, Gong, Lu, Wang (bb0930) 2014; 53
Liu, Zhu, Tang, Liu, Cheng, Hu (bb0220) 2014; 7
Xu, Li, Li, Han, Wang, Cong, Wang, Zhang (bb0950) 2018; 20
Wu, Yu, Hao, Wells, Meng, Li, Pu, Liu, Ragauskas (bb0105) 2017; 244
Barrett, Chheda, Huber, Dumesic (bb0920) 2006; 66
Mika, Csefalvay, Nemeth (bb0040) 2018; 118
Mittal, Nisola, Malihan, Seo, Kim, Lee, Chung (bb0205) 2016; 6
van der Klis, van Haveren, van Es, Bitter, Galkin, Ananikov, Galkin, Krivodaeva, Romashov, Zalesskiy, Kachala, Burykina, Ananikov (bb1105) 2017; 10
Sanda, Rigal, Gaset (bb0595) 1989; 187
Yuan, Zhang, Zheng, Lin (bb1025) 2015; 150
Bing, Zhang, Deng (bb1035) 2012; 51
van Putten, van der Waal, de Jong, Rasrendra, Heeres, de Vries (bb0045) 2013; 113
Li, Ho, Lim, Zhang (bb0460) 2017; 19
Mishra, Lee, Kim, Lee, Cho, Yi, Kim (bb0275) 2017; 19
Jaganathan, Chaudhari, Rode, Chaudhari, Mills (bb0500) 1998; 37
Bohre, Saha, Abu-Omar (bb0945) 2015; 8
G. J. M. Gruter. 5-Substituted 2-(alkoxymethyl) furans: U.S. Patent 8,231,693. 2012-7-31.
Zu, Yang, Wang, Liu, Ren, Lu, Wang (bb0790) 2014; 146
Choudhary, Mushrif, Ho, Anderko, Nikolakis, Marinkovic, Frenkel, Sandler, Vlachos (bb0885) 2013; 135
Liu, Du, Yang, Lu, Lu, Xu (bb0430) 2012; 5
Weissermel, Arpe (bb0435) 2003
Balakrishnan, Sacia, Bell (bb1090) 2012; 14
Yi, Teong, Zhang (bb0360) 2015; 8
Hu, Tang, Xu, Wu, Lin, Liu (bb0780) 2014; 53
Rodenas, Mariscal, Fierro, Martín Alonso, Dumesic, López Granados (bb0465) 2018; 20
Gao, Xie, Fan, Yang, Li (bb0270) 2017; 5
Gao, Liu, Ma, Zhong, Song, Xu, Gan, Han, Niu (bb0340) 2020; 261
Yadav, Sharma (bb0125) 2014; 147
Song, Hesse (bb0695) 1993; 49
Gomez Millan, Hellsten, Llorca, Luque, Sixta, Balu (bb0060) 2019; 11
Tellers, McWilliams, Humphrey, Journet, DiMichele, Hinksmon, McKeown, Rosner, Sun, Tillyer (bb0685) 2006; 128
Iris, Tsang (bb0065) 2017; 238
Zhu, Kong, Zheng, Ding, Zhu, Li (bb0410) 2015; 5
Lew, Rajabbeigi, Tsapatsis (bb1055) 2012; 51
Ahmed, Mannel, Root, Stahl (bb0240) 2017; 21
Du, Ma, Wang, Liu, Xu (bb0445) 2011; 13
Wang, Zhu, Li, Liu, Tan, Wang, Cai, Ma (bb0055) 2019; 103
Taitt, Nam, Choi (bb0335) 2019; 9
Delost, Smith, Anderson, Njardarson (bb0585) 2018; 61
Li, Zhang, Chen, Li, Li, Xu, Fu (bb1100) 2018; 20
Tuteja, Choudhary, Nishimura, Ebitani (bb0580) 2014; 7
Zhang, Huber (bb0190) 2018; 47
Nishimura, Ikeda, Ebitani (bb0770) 2014; 232
Li, Deng, Shi, Pan, Yu, Xu, Fu (bb0495) 2015; 17
Corma, de la Torre, Renz, Villandier (bb0955) 2011; 123
Saha, Gupta, Abu-Omar, Modak, Bhaumik (bb0305) 2013; 299
Ohyama, Kanao, Ohira, Satsuma (bb0480) 2016; 18
Deutsch, Shanks (bb0820) 2012; 285
Wang, Hilgert, Richter, Wang, Bongard, Spliethoff, Weidenthaler, Schüth (bb0810) 2014; 13
Lv, Wang, Yang, Deng, Chen, Zhu, Hou (bb0215) 2016; 18
Kubota, Choi (bb0330) 2018; 11
Che, Lu, Zhang, Huang, Nie, Gao, Xu (bb0985) 2012; 119
Jagadeesh, Murugesan, Alshammari, Neumann, Pohl, Radnik, Beller (bb0625) 2017; 358
Liu, Liu, Wang, Ren, Zhang (bb1005) 2014; 117
Partenheimer, Grushin (bb0225) 2001; 343
Gallo, Alamillo, Dumesic (bb0095) 2016; 422
Yang, Abu-Omar, Hu (bb1045) 2012; 99
Kwon, de Jong, Raoufmoghaddam, Koper (bb0875) 2013; 6
Yan, Xin, Zhao, Gao, Lu, Wang, Zhang (bb0320) 2018; 8
Cao, Iris, Chen, Tsang, Wang, Xiong, Zhang, Ok, Kwon, Song, Poon (bb0090) 2018; 252
Yi, Teong, Zhang (bb0365) 2016; 18
Kumalaputri, Bottari, Erne, Heeres, Barta (bb0420) 2014; 7
Pasini, Solinas, Zanotti, Albonetti, Cavani, Vaccari, Mazzanti, Ranieri, Mazzoni (bb0375) 2014; 43
Bakos, Gyömöre, Domján, Soós (bb1070) 2017; 56
Dow, Kelly, Schletter, Wierenga (bb0735) 1981; 11
Yi, Teong, Li, Zhang (bb0355) 2014; 7
Serrano-Ruiz, Dumesic (bb0015) 2011; 4
Cueto, Faba, Diaz, Ordonez (bb0905) 2017; 201
Saha, Dutta, Abu-Omar (bb0230) 2012; 2
Liu, Audemar, Vigier, Clacens, Campo, Jérôme (bb0510) 2014; 7
Lan, Lin, Chen, Yin (bb0450) 2015; 5
Ribeiro, Schuchardt (bb0370) 2003; 4
Zhang, Wang, Lyu, Xie, Qi, Si, Liu, Yang, Hu (bb0915) 2019; 123
Hansen, Barta, Anastas, Ford, Riisager (bb0835) 2012; 14
Sanda, Rigal, Delmas, Gaset (bb0600) 1992; 1992
Marquardt, Schmid, Jung (bb0690) 2000; 2000
Liu, Chen (bb0940) 2013; 6
Stahl, Powell, Root, Mannel, Ahmed (bb0235) 2017
Kroger, Prusse, Vorlop (bb0350) 2000; 13
Ramos, Grigoropoulos, Perret, Zanella, Katsoulidis, Manning, Claridgea, Rosseinsky (bb0490) 2017; 19
Zhu, Lei, Miao, Sheng, Zhuang, Yao, Zhang (bb0705) 2012; 30
Sokolovskii, Murphy, Boussie, Diamond, Dias, Zhu, Longmire, Herrmann, Torssell, Lavrenko (bb0285) 2017
Zhou, Liu, Sun, Peng, Wang, Wang, Yang (bb0750) 2013; 87
Insyani, Erma, Min, Kim (bb0775) 2017; 19
Nie, Liu (bb0120) 2014; 316
Sassaman, Prakash, Olah, Donald, Loker (bb1080) 1988; 44
Meguellati, Ahmed-Belkacem, Yi, Haudecoeur, Crouillère, Brillet, Pawlotsky, Boumendjel, Peuchmaur (bb0655) 2014; 80
Lin, Shi, Nyarko, Bastow, Wu, Su, Shih, Lee (bb0675) 2006; 49
Liu, Zhang, Shi, Zhang, Wang, Ma (bb0670) 2018; 8
Sutton, Waldie, Wu, Schlaf, Louis, Gordon (bb0935) 2013; 5
Liu, Zhang, Fang, Liu, Huang (bb1000) 2014; 20
Gupta, Rai, Dwivedi, Singh (bb0255) 2017; 9
Jain, Jonnalagadda, Ramanujachary, Mugweru (bb0310) 2015; 58
Yin, Sun, Liu, Zhang (bb1030) 2015; 3
Yu, Liu, Hu (bb0715) 2001; 66
Kong, Zhu, Zheng, Zhu, Fang (bb0855) 2017; 5
Liu, Zhang, Huang, Fang (bb0980) 2013; 113
Li, Saravanamurugan, Yang, Riisager (bb1060) 2016; 18
Chheda, Dumesic (bb0910) 2007; 123
Román-Leshkov, Barrett, Liu, Dumesic (bb0760) 2007; 447
Zhu, Tao, Zhang, Dong, Liu, He, Cao (bb0620) 2017; 19
Cao, Liang, Guan, Wang, Qu, Zhang, Wang, Mu (bb0415) 2014; 481
Neaţu, Petre, Somoghi, Florea, Parvulescu (bb0135) 2016; 278
Wang, Hou, Li, Xie, Li, Zhou, Wang (bb0265) 2017; 19
Komanoya, Kinemura, Kita, Kamata, Hara (bb0630) 2017; 139
Kiermayer (bb0030) 1895; 19
Santos, Silva, Jordao, Fraga (bb0560) 2004; 5
Huber, Chheda, Barrett, Dumesic (bb0900) 2005; 308
Nagpure, Venugopal, Lucas, Manikandan, Thirumalaiswamy, Chilukuri (bb0830) 2015; 5
Jeong, Singh, Sharma, Gyak, Maurya, Kim (bb0785) 2015; 7
Luo, Lee, Yun, Wang, Monai, Murray, Fornasiero, Gorte (bb0805) 2016; 199
Lewis, Bayless, Eckman, Ellis, Grewal, Libertine, Nicolas, Scannell, Wels, Wenberg, Wypij (bb0730) 2004; 14
Zhao, Jayakumar, Hu, Yan, Yang, Lee (bb0180) 2018; 6
Liu, Zhang (bb1010) 2013; 3
Xiong, Iris, Chen, Tsang, Cao, Song, Kwon, Ok, Zhang, Poon (bb0110) 2018; 314
Duan, Zheng, Li, Deng, Ma, Yang (bb0505) 2017; 19
Chatterjee, Ishizaka, Kawanami (bb0765) 2014; 16
Aellig, Jenny, Scholz, Wolf, Giovinazzo, Kollhoffa, Hermans (bb0400) 2014; 4
Li, Ho, Zhang (bb0440) 2016; 18
Galkin, Krivodaeva, Romashov, Zalesskiy, Kachala, Burykina, Ananikov (bb0590) 2016; 55
Li, Gu, Bjornson, Muthukumarappan (bb0085) 2013; 1
Liu, Audemar, Vigier, Clacens, De Campo, Jérôme (bb0525) 2014; 16
Witczak, Bielski, Mencer (bb0660) 2017; 58
Suryawanshi, Chandra, Kumar, Porwal, Gupta (bb0640) 2008; 43
Xiong, Iris, Tsang, Bolan, Ok, Igalavithana, Kirkham, KimL, Vikrant (bb0080) 2019; 375
Pasini, Lolli, Albonetti, Cavani, Mella (bb0385) 2014; 317
Chidambaram, Bell (bb0815) 2010; 12
Mehner, Montero, Martinez, Spange (bb0540) 2007; 12
Chen, Koso, Kubota, Nakagawa, Tomishige (bb0575) 2010; 2
Chen, Li, Huang, Yuan (bb0850) 2017; 200
Alamillo, Tucker, Chia, Pagán-Torresa, Dumesic (bb0395) 2012; 14
Alonso, Wettstein, Dumesic (bb0010) 2013; 15
Jogia, Vakamoce, Weavers (bb0740) 1985; 38
Luo, Arroyo-Ramírez, Wei, Yun, Murray, Gorte (bb0840) 2015; 508
Han, Liu, Zhang, Pang, Xu, Guo, Liu, Zhang, Ji (bb0545) 2017; 19
Ohyama, Kanao, Esaki, Satsuma (bb0475) 2014; 50
Romashov, Ananikov (bb0555) 2017; 12
Tan, Li, Fang, Chen, Luque, Li (bb0175) 2017; 7
Fu, Shen, Chen, Lv, Ouyang (bb0290) 2017
Biswas, Dutta, Kanak
Wu (10.1016/j.fuproc.2020.106528_bb0105) 2017; 244
Gao (10.1016/j.fuproc.2020.106528_bb0340) 2020; 261
Li (10.1016/j.fuproc.2020.106528_bb0495) 2015; 17
Shen (10.1016/j.fuproc.2020.106528_bb0295) 2018; 57
Tellers (10.1016/j.fuproc.2020.106528_bb0685) 2006; 128
Zhu (10.1016/j.fuproc.2020.106528_bb0705) 2012; 30
Liu (10.1016/j.fuproc.2020.106528_bb0670) 2018; 8
Yi (10.1016/j.fuproc.2020.106528_bb0360) 2015; 8
Gupta (10.1016/j.fuproc.2020.106528_bb0255) 2017; 9
Nam (10.1016/j.fuproc.2020.106528_bb0325) 2018; 8
Liu (10.1016/j.fuproc.2020.106528_bb0525) 2014; 16
Yin (10.1016/j.fuproc.2020.106528_bb1030) 2015; 3
Ramos (10.1016/j.fuproc.2020.106528_bb0490) 2017; 19
Weissermel (10.1016/j.fuproc.2020.106528_bb0435) 2003
Rorrer (10.1016/j.fuproc.2020.106528_bb0005) 2019; 12
Bottari (10.1016/j.fuproc.2020.106528_bb0405) 2015; 8
Witczak (10.1016/j.fuproc.2020.106528_bb0660) 2017; 58
Yang (10.1016/j.fuproc.2020.106528_bb0145) 2012; 14
Duan (10.1016/j.fuproc.2020.106528_bb0505) 2017; 19
Hansen (10.1016/j.fuproc.2020.106528_bb0835) 2012; 14
Corma (10.1016/j.fuproc.2020.106528_bb0955) 2011; 123
Cottier (10.1016/j.fuproc.2020.106528_bb0745) 1995; 1995
Tekautz (10.1016/j.fuproc.2020.106528_bb0300) 2017
Yuan (10.1016/j.fuproc.2020.106528_bb1025) 2015; 150
Liu (10.1016/j.fuproc.2020.106528_bb0980) 2013; 113
Li (10.1016/j.fuproc.2020.106528_bb0440) 2016; 18
Luo (10.1016/j.fuproc.2020.106528_bb0840) 2015; 508
Wang (10.1016/j.fuproc.2020.106528_bb1015) 2013; 3
Ohyama (10.1016/j.fuproc.2020.106528_bb0390) 2013; 3
Iris (10.1016/j.fuproc.2020.106528_bb0065) 2017; 238
Biswas (10.1016/j.fuproc.2020.106528_bb0140) 2017; 53
Jain (10.1016/j.fuproc.2020.106528_bb0310) 2015; 58
Zhou (10.1016/j.fuproc.2020.106528_bb0965) 2013; 6
Ohyama (10.1016/j.fuproc.2020.106528_bb0485) 2017; 7
Lewis (10.1016/j.fuproc.2020.106528_bb0730) 2004; 14
Zakrzewska (10.1016/j.fuproc.2020.106528_bb0070) 2011; 111
Han (10.1016/j.fuproc.2020.106528_bb0545) 2017; 19
Mamman (10.1016/j.fuproc.2020.106528_bb0890) 2008; 2
Wang (10.1016/j.fuproc.2020.106528_bb0810) 2014; 13
Kong (10.1016/j.fuproc.2020.106528_bb0855) 2017; 5
Liu (10.1016/j.fuproc.2020.106528_bb0510) 2014; 7
Grushin (10.1016/j.fuproc.2020.106528_bb0195) 2003
Iwanami (10.1016/j.fuproc.2020.106528_bb1065) 2006; 36
Wang (10.1016/j.fuproc.2020.106528_bb0055) 2019; 103
Luo (10.1016/j.fuproc.2020.106528_bb0800) 2016; 6
Yi (10.1016/j.fuproc.2020.106528_bb0355) 2014; 7
Wang (10.1016/j.fuproc.2020.106528_bb0265) 2017; 19
Liu (10.1016/j.fuproc.2020.106528_bb0940) 2013; 6
Li (10.1016/j.fuproc.2020.106528_bb0825) 2015; 36
Fu (10.1016/j.fuproc.2020.106528_bb0290) 2017
Saha (10.1016/j.fuproc.2020.106528_bb0075) 2014; 16
Liu (10.1016/j.fuproc.2020.106528_bb1005) 2014; 117
Wang (10.1016/j.fuproc.2020.106528_bb0315) 2015; 3
Bing (10.1016/j.fuproc.2020.106528_bb1035) 2012; 51
Dutta (10.1016/j.fuproc.2020.106528_bb0990) 2012; 288
Rosatella (10.1016/j.fuproc.2020.106528_bb0050) 2011; 13
Yang (10.1016/j.fuproc.2020.106528_bb0535) 2019; 4
Santos (10.1016/j.fuproc.2020.106528_bb0560) 2004; 5
Gallo (10.1016/j.fuproc.2020.106528_bb0095) 2016; 422
Chen (10.1016/j.fuproc.2020.106528_bb0245) 2017; 5
Rathod (10.1016/j.fuproc.2020.106528_bb0250) 2018; 6
Partenheimer (10.1016/j.fuproc.2020.106528_bb0225) 2001; 343
Cai (10.1016/j.fuproc.2020.106528_bb0425) 2014; 234
Chen (10.1016/j.fuproc.2020.106528_bb0575) 2010; 2
Nagpure (10.1016/j.fuproc.2020.106528_bb0830) 2015; 5
Huang (10.1016/j.fuproc.2020.106528_bb0845) 2014; 7
Chen (10.1016/j.fuproc.2020.106528_bb0850) 2017; 200
Li (10.1016/j.fuproc.2020.106528_bb0710) 2018; 6
Corma (10.1016/j.fuproc.2020.106528_bb0960) 2012; 5
Kraus (10.1016/j.fuproc.2020.106528_bb1040) 2012; 14
Antonyraj (10.1016/j.fuproc.2020.106528_bb0160) 2014; 57
Jagadeesh (10.1016/j.fuproc.2020.106528_bb0625) 2017; 358
Serrano-Ruiz (10.1016/j.fuproc.2020.106528_bb0015) 2011; 4
Nilges (10.1016/j.fuproc.2020.106528_bb0880) 2013; 6
Zhao (10.1016/j.fuproc.2020.106528_bb1085) 2017; 139
Zhang (10.1016/j.fuproc.2020.106528_bb0915) 2019; 123
Mittal (10.1016/j.fuproc.2020.106528_bb0205) 2016; 6
Yang (10.1016/j.fuproc.2020.106528_bb0895) 2015; 54
Sanda (10.1016/j.fuproc.2020.106528_bb0595) 1989; 187
Yu (10.1016/j.fuproc.2020.106528_bb0715) 2001; 66
Yan (10.1016/j.fuproc.2020.106528_bb0320) 2018; 8
Cao (10.1016/j.fuproc.2020.106528_bb0415) 2014; 481
Buntara (10.1016/j.fuproc.2020.106528_bb0565) 2011; 50
Lin (10.1016/j.fuproc.2020.106528_bb0675) 2006; 49
Ribeiro (10.1016/j.fuproc.2020.106528_bb0370) 2003; 4
Bakos (10.1016/j.fuproc.2020.106528_bb1070) 2017; 56
Jeong (10.1016/j.fuproc.2020.106528_bb0785) 2015; 7
Sugimura (10.1016/j.fuproc.2020.106528_bb0755) 2016; 72
Luo (10.1016/j.fuproc.2020.106528_bb0805) 2016; 199
Parsania (10.1016/j.fuproc.2020.106528_bb0700) 1993; 5
Zhu (10.1016/j.fuproc.2020.106528_bb0410) 2015; 5
Sokolovskii (10.1016/j.fuproc.2020.106528_bb0285) 2017
Saha (10.1016/j.fuproc.2020.106528_bb0230) 2012; 2
Mishra (10.1016/j.fuproc.2020.106528_bb0275) 2017; 19
Zhou (10.1016/j.fuproc.2020.106528_bb0750) 2013; 87
Román-Leshkov (10.1016/j.fuproc.2020.106528_bb0760) 2007; 447
Yoshida (10.1016/j.fuproc.2020.106528_bb0550) 2008; 40
Pasini (10.1016/j.fuproc.2020.106528_bb0375) 2014; 43
Liu (10.1016/j.fuproc.2020.106528_bb1010) 2013; 3
Li (10.1016/j.fuproc.2020.106528_bb0470) 2018; 11
Stahl (10.1016/j.fuproc.2020.106528_bb0235) 2017
Li (10.1016/j.fuproc.2020.106528_bb0865) 2017; 2
Sádaba (10.1016/j.fuproc.2020.106528_bb0155) 2013; 5
Taitt (10.1016/j.fuproc.2020.106528_bb0335) 2019; 9
Liu (10.1016/j.fuproc.2020.106528_bb1000) 2014; 20
Nie (10.1016/j.fuproc.2020.106528_bb0120) 2014; 316
Lew (10.1016/j.fuproc.2020.106528_bb1055) 2012; 51
Ohyama (10.1016/j.fuproc.2020.106528_bb0480) 2016; 18
Galkin (10.1016/j.fuproc.2020.106528_rf1110) 2016; 55
Zhang (10.1016/j.fuproc.2020.106528_bb0190) 2018; 47
Du (10.1016/j.fuproc.2020.106528_bb0445) 2011; 13
Song (10.1016/j.fuproc.2020.106528_bb0695) 1993; 49
Li (10.1016/j.fuproc.2020.106528_bb0085) 2013; 1
Mika (10.1016/j.fuproc.2020.106528_bb0040) 2018; 118
Wang (10.1016/j.fuproc.2020.106528_bb0100) 2016; 6
Kiermayer (10.1016/j.fuproc.2020.106528_bb0030) 1895; 19
Lockman (10.1016/j.fuproc.2020.106528_bb0650) 2010; 20
Sutton (10.1016/j.fuproc.2020.106528_bb0935) 2013; 5
Balakrishnan (10.1016/j.fuproc.2020.106528_bb1090) 2012; 14
Liu (10.1016/j.fuproc.2020.106528_bb0130) 2014; 472
Tan (10.1016/j.fuproc.2020.106528_bb0175) 2017; 7
Nishimura (10.1016/j.fuproc.2020.106528_bb0770) 2014; 232
Saha (10.1016/j.fuproc.2020.106528_bb0305) 2013; 299
Hu (10.1016/j.fuproc.2020.106528_bb0780) 2014; 53
Liu (10.1016/j.fuproc.2020.106528_bb0430) 2012; 5
Zhao (10.1016/j.fuproc.2020.106528_bb0665) 2017; 8
Galkin (10.1016/j.fuproc.2020.106528_rf1105) 2019; 12
Yang (10.1016/j.fuproc.2020.106528_bb1045) 2012; 99
Cao (10.1016/j.fuproc.2020.106528_bb0115) 2018; 267
Zu (10.1016/j.fuproc.2020.106528_bb0790) 2014; 146
Gomez Millan (10.1016/j.fuproc.2020.106528_bb0060) 2019; 11
Cueto (10.1016/j.fuproc.2020.106528_bb0905) 2017; 201
Pupovac (10.1016/j.fuproc.2020.106528_bb0925) 2013; 6
Kwon (10.1016/j.fuproc.2020.106528_bb0875) 2013; 6
Li (10.1016/j.fuproc.2020.106528_bb1060) 2016; 18
Arias (10.1016/j.fuproc.2020.106528_bb0970) 2015; 8
Lv (10.1016/j.fuproc.2020.106528_bb0215) 2016; 18
Matasi (10.1016/j.fuproc.2020.106528_bb0680) 2005; 15
Aellig (10.1016/j.fuproc.2020.106528_bb0400) 2014; 4
Zhu (10.1016/j.fuproc.2020.106528_bb0620) 2017; 19
Chidambaram (10.1016/j.fuproc.2020.106528_bb0815) 2010; 12
Guo (10.1016/j.fuproc.2020.106528_bb0150) 2015; 80
Wang (10.1016/j.fuproc.2020.106528_bb0210) 2014; 53
Guo (10.1016/j.fuproc.2020.106528_bb0870) 2016; 18
Gong (10.1016/j.fuproc.2020.106528_bb0280) 2017; 7
Chheda (10.1016/j.fuproc.2020.106528_bb0910) 2007; 123
Muller (10.1016/j.fuproc.2020.106528_bb0610) 1998; 54
Wu (10.1016/j.fuproc.2020.106528_bb0530) 2016; 9
Tuteja (10.1016/j.fuproc.2020.106528_bb0580) 2014; 7
Rodenas (10.1016/j.fuproc.2020.106528_bb0465) 2018; 20
Wang (10.1016/j.fuproc.2020.106528_bb0185) 2019; 9
Li (10.1016/j.fuproc.2020.106528_bb0795) 2017; 431
Xia (10.1016/j.fuproc.2020.106528_bb0930) 2014; 53
Imhof (10.1016/j.fuproc.2020.106528_bb0975) 2009; 1
Choudhary (10.1016/j.fuproc.2020.106528_bb0885) 2013; 135
Buntara (10.1016/j.fuproc.2020.106528_bb0570) 2012; 55
Galkin (10.1016/j.fuproc.2020.106528_bb0590) 2016; 55
Chatterjee (10.1016/j.fuproc.2020.106528_bb0380) 2014; 16
Yu (10.1016/j.fuproc.2020.106528_bb0720) 2002; 67
Neaţu (10.1016/j.fuproc.2020.106528_bb0135) 2016; 278
van der Klis (10.1016/j.fuproc.2020.106528_rf1100) 2017; 10
Marquardt (10.1016/j.fuproc.2020.106528_bb0690) 2000; 2000
Schiavo (10.1016/j.fuproc.2020.106528_bb0520) 1991; 5
10.1016/j.fuproc.2020.106528_bb1095
Chatterjee (10.1016/j.fuproc.2020.106528_bb0765) 2014; 16
Meguellati (10.1016/j.fuproc.2020.106528_bb0655) 2014; 80
Cao (10.1016/j.fuproc.2020.106528_bb0090) 2018; 252
Xiong (10.1016/j.fuproc.2020.106528_bb0110) 2018; 314
Alamillo (10.1016/j.fuproc.2020.106528_bb0395) 2012; 14
Huber (10.1016/j.fuproc.2020.106528_bb0020) 2006; 106
Jogia (10.1016/j.fuproc.2020.106528_bb0740) 1985; 38
Xu (10.1016/j.fuproc.2020.106528_bb0950) 2018; 20
Xiao (10.1016/j.fuproc.2020.106528_bb0515) 2016; 18
Romashov (10.1016/j.fuproc.2020.106528_bb0555) 2017; 12
Dow (10.1016/j.fuproc.2020.106528_bb0735) 1981; 11
Ohyama (10.1016/j.fuproc.2020.106528_bb0475) 2014; 50
Liu (10.1016/j.fuproc.2020.106528_bb0220) 2014; 7
Zhang (10.1016/j.fuproc.2020.106528_bb0165) 2017; 7
van Putten (10.1016/j.fuproc.2020.106528_bb0045) 2013; 113
Yi (10.1016/j.fuproc.2020.106528_bb0365) 2016; 18
Komanoya (10.1016/j.fuproc.2020.106528_bb0630) 2017; 139
Kubota (10.1016/j.fuproc.2020.106528_bb0330) 2018; 11
Jaganathan (10.1016/j.fuproc.2020.106528_bb0500) 1998; 37
Xiong (10.1016/j.fuproc.2020.106528_bb0080) 2019; 375
Zhao (10.1016/j.fuproc.2020.106528_bb0180) 2018; 6
Li (10.1016/j.fuproc.2020.106528_bb0460) 2017; 19
Zhou (10.1016/j.fuproc.2020.106528_bb0345) 2017; 19
Villain-Guillot (10.1016/j.fuproc.2020.106528_bb0605) 2007; 50
Bohre (10.1016/j.fuproc.2020.106528_bb0945) 2015; 8
Alonso (10.1016/j.fuproc.2020.106528_bb0010) 2013; 15
Arias (10.1016/j.fuproc.2020.106528_bb0645) 2016; 59
Delost (10.1016/j.fuproc.2020.106528_bb0585) 2018; 61
Hirapara (10.1016/j.fuproc.2020.106528_bb0
References_xml – volume: 13
  start-page: 237
  year: 2000
  end-page: 242
  ident: bb0350
  article-title: A new approach for the production of 2, 5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose
  publication-title: Top. Catal.
– volume: 288
  start-page: 8
  year: 2012
  end-page: 15
  ident: bb0990
  article-title: Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts
  publication-title: J. Catal.
– volume: 7
  start-page: 6050
  year: 2017
  end-page: 6058
  ident: bb0165
  article-title: Direct synthesis of V-containing all-silica beta-zeolite for efficient one-pot, one-step conversion of carbohydrates into 2, 5-diformylfuran
  publication-title: Catal. Sci. Technol.
– volume: 5
  start-page: 11280
  year: 2017
  end-page: 11289
  ident: bb0855
  article-title: Inclusion of Zn into metallic ni enables selective and effective synthesis of 2,5-dimethylfuran from bioderived 5-hydroxymethylfurfural
  publication-title: ACS Sustain. Chem. Eng.
– volume: 4
  start-page: 2326
  year: 2014
  end-page: 2331
  ident: bb0400
  article-title: Combined 1, 4-butanediol lactonization and transfer hydrogenation/hydrogenolysis of furfuralderivatives under continuous flow conditions
  publication-title: Catal. Sci. Technol.
– volume: 187
  start-page: 15
  year: 1989
  end-page: 23
  ident: bb0595
  article-title: Synthèse du 5-bromométhyl-et du 5-chlorométhyl-2-furannecarboxaldéhyde
  publication-title: Carbohydr. Res.
– volume: 8
  start-page: 1323
  year: 2015
  end-page: 1327
  ident: bb0405
  article-title: Copperzinc alloy nanopowder: a robust precious-metal-free catalyst for the conversion of 5-hydroxymethylfurfural
  publication-title: ChemSusChem
– volume: 19
  start-page: 722
  year: 2017
  end-page: 728
  ident: bb0545
  article-title: 5-Hydroxymethyl-2-vinylfuran: a biomass-based solvent-free adhesive
  publication-title: Green Chem.
– volume: 12
  start-page: 2835
  year: 2019
  end-page: 2858
  ident: bb0005
  article-title: Synthesis of biomass-derived ethers for use as fuels and lubricants
  publication-title: ChemSusChem
– volume: 15
  start-page: 584
  year: 2013
  end-page: 595
  ident: bb0010
  article-title: Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass
  publication-title: Green Chem.
– volume: 50
  start-page: 4195
  year: 2007
  end-page: 4204
  ident: bb0605
  article-title: Structure–activity relationships of phenyl-furanyl-rhodanines as inhibitors of RNA polymerase with antibacterial activity on biofilms
  publication-title: J. Med. Chem.
– volume: 7
  start-page: 1068
  year: 2014
  end-page: 1072
  ident: bb0845
  article-title: Nickel–tungsten carbide catalysts for the production of 2, 5-dimethylfuran from biomass-derived molecules
  publication-title: ChemSusChem
– volume: 238
  start-page: 716
  year: 2017
  end-page: 732
  ident: bb0065
  article-title: Conversion of biomass to hydroxymethylfurfural: a review of catalytic systems and underlying mechanisms
  publication-title: Bioresour. Technol.
– volume: 19
  start-page: 5356
  year: 2017
  end-page: 5360
  ident: bb0635
  article-title: CO
  publication-title: Green Chem.
– volume: 1992
  start-page: 541
  year: 1992
  end-page: 542
  ident: bb0600
  article-title: The Vilsmeier reaction: a new synthetic method for 5-(chloromethyl)-2-furaldehyde
  publication-title: Synthesis
– volume: 7
  start-page: 3541
  year: 2014
  end-page: 3547
  ident: bb0220
  article-title: One-pot, one-step synthesis of 2, 5-diformylfuran from carbohydrates over mo-containing keggin heteropolyacids
  publication-title: ChemSusChem
– volume: 8
  start-page: 1151
  year: 2015
  end-page: 1155
  ident: bb0360
  article-title: The direct conversion of sugars into 2,5-furandicarboxylic acid in a triphasic system
  publication-title: ChemSusChem
– volume: 343
  start-page: 102
  year: 2001
  end-page: 111
  ident: bb0225
  article-title: Synthesis of 2,5-diformylfuran and furan-2,5-dicarboxylic acid by catalytic air-oxidation of 5-hydroxymethylfurfural. unexpectedly selective aerobic oxidation of benzyl alcohol to benzaldehyde with metal=bromide catalysts
  publication-title: Adv. Synth. Catal.
– volume: 7
  start-page: 34776
  year: 2017
  end-page: 34782
  ident: bb0280
  article-title: Platinum deposited on cerium coordination polymer for catalytic oxidation of hydroxymethylfurfural producing 2,5-furandicarboxylic acid
  publication-title: RSC Adv.
– year: 2017
  ident: bb0300
  article-title: Process for the Production of 2,5-Furandicarboxylic Acid (FDCA). WO2017097843A1
– volume: 18
  start-page: 2976
  year: 2016
  end-page: 2980
  ident: bb0440
  article-title: Selective aerobic oxidation of furfural to maleic anhydride with heterogeneous Mo–V–O catalysts
  publication-title: Green Chem.
– volume: 7
  year: 2015
  ident: bb0785
  article-title: One-flow syntheses of diverse heterocyclic furan chemicals directly from fructose via tandem transformation platform
  publication-title: NPG Asia Mater.
– volume: 18
  start-page: 643
  year: 2016
  end-page: 647
  ident: bb0455
  article-title: The conversion of 5-hydroxymethyl furfural (HMF) to maleic anhydride with vanadium-based heterogeneous catalysts
  publication-title: Green Chem.
– volume: 19
  start-page: 2482
  year: 2017
  end-page: 2490
  ident: bb0775
  article-title: Direct one-pot conversion of monosaccharides into high-yield 2,5-dimethylfuran over a multifunctional Pd/Zr-based metal-organic framework@sulfonated graphene oxide catalyst
  publication-title: Green Chem.
– volume: 14
  start-page: 1626
  year: 2012
  end-page: 1634
  ident: bb1090
  article-title: Etherification and reductive etherification of 5-(hydroxymethyl) furfural: 5-(alkoxymethyl) furfurals and 2, 5-bis (alkoxymethyl) furans as potential bio-diesel candidates
  publication-title: Green Chem.
– volume: 9
  start-page: 660
  year: 2019
  end-page: 670
  ident: bb0335
  article-title: A comparative study of nickel, cobalt, and iron oxyhydroxide anodes for the electrochemical oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid
  publication-title: ACS Catal.
– volume: 150
  start-page: 236
  year: 2015
  end-page: 242
  ident: bb1025
  article-title: Efficient synthesis of promising liquid fuels 5-ethoxymethylfurfural from carbohydrates
  publication-title: Fuel
– volume: 117
  start-page: 68
  year: 2014
  end-page: 73
  ident: bb1005
  article-title: Efficient one-pot synthesis of 5-ethoxymethylfurfural from fructose catalyzed by heteropolyacid supported on K-10 clay
  publication-title: Fuel
– volume: 4
  start-page: 11165
  year: 2019
  end-page: 11171
  ident: bb0535
  article-title: Highly selective conversion of HMF to 1-hydroxy-2,5-hexanedione on Pd/MIL-101(Cr)
  publication-title: ChemistrySelect
– volume: 7
  start-page: 1701
  year: 2015
  end-page: 1707
  ident: bb0860
  article-title: Carbon nanotubes for the hydrogenation and hydrogenolysis of 5-hydroxymethylfurfural
  publication-title: ChemCatChem
– volume: 19
  start-page: 3880
  year: 2017
  end-page: 3887
  ident: bb0620
  article-title: Versatile CO-assisted direct reductive amination of 5-hydroxymethylfurfural catalyzed by a supported gold catalyst
  publication-title: Green Chem.
– volume: 43
  start-page: 10224
  year: 2014
  end-page: 10234
  ident: bb0375
  article-title: Substrate and product role in the Shvo’s catalyzed selective hydrogenation of the platform biobased chemical 5-hydroxymethylfurfural
  publication-title: Dalton Trans.
– year: 2017
  ident: bb0285
  article-title: Processes for the Preparation of 2,5-Furandicarboxylic Acid and Intermediates and Derivatives Thereof. US20170197930
– volume: 111
  start-page: 397
  year: 2011
  end-page: 417
  ident: bb0070
  article-title: Ionic liquid-mediated formation of 5-hydroxymethylfurfural-a promising biomass-derived building block
  publication-title: Chem. Rev.
– volume: 54
  start-page: 11825
  year: 2015
  end-page: 11837
  ident: bb0895
  article-title: Synthesis of jet-fuel range cycloalkanes from the mixtures of cyclopentanone and butanal
  publication-title: Ind. Eng. Chem. Res.
– volume: 1995
  start-page: 303
  year: 1995
  end-page: 306
  ident: bb0745
  article-title: Syntheses of γ-oxo acids or γ-oxo esters by photooxygenation of furanic compounds and reduction under ultrasound: application to the synthesis of 5-aminolevulinic acid hydrochloride
  publication-title: Synthesis
– volume: 37
  start-page: 2099
  year: 1998
  end-page: 2106
  ident: bb0500
  article-title: Hydrogenation of diethyl adipate in a catalytic fixed-bed reactor
  publication-title: Ind. Eng. Chem. Res.
– volume: 10
  start-page: 1460
  year: 2017
  end-page: 1468
  ident: bb1105
  article-title: Synthesis of furandicarboxylic acid esters from nonfood feedstocks without concomitant levulinic acid formation
  publication-title: ChemSusChem
– volume: 14
  start-page: 1413
  year: 2012
  end-page: 1419
  ident: bb0395
  article-title: The selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using heterogeneous catalysts
  publication-title: Green Chem.
– volume: 20
  start-page: 1977
  year: 2014
  end-page: 1984
  ident: bb1000
  article-title: Synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose in ethanol catalyzed by MCM-41 supported phosphotungstic acid
  publication-title: J. Ind. Eng. Chem.
– volume: 18
  start-page: 6222
  year: 2016
  end-page: 6228
  ident: bb0870
  article-title: Efficient hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over a cobalt and copper bimetallic catalyst on N-graphene-modified Al
  publication-title: Green Chem.
– volume: 12
  start-page: 634
  year: 2007
  end-page: 640
  ident: bb0540
  article-title: Synthesis of 5-acetoxymethyl-and 5-hydroxymethyl-2-vinyl-furan
  publication-title: Molecules
– volume: 447
  start-page: 982
  year: 2007
  end-page: 985
  ident: bb0760
  article-title: Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates
  publication-title: Nature
– volume: 18
  start-page: 726
  year: 2016
  end-page: 734
  ident: bb1060
  article-title: Direct transformation of carbohydrates to the biofuel 5-ethoxymethylfurfural by solid acid catalysts
  publication-title: Green Chem.
– year: 2003
  ident: bb0195
  article-title: WO2003024947
– volume: 80
  start-page: 579
  year: 2014
  end-page: 592
  ident: bb0655
  article-title: B-ring modified aurones as promising allosteric inhibitors of hepatitis C virus RNAdependent RNA polymerase
  publication-title: Eur. J. Med. Chem.
– volume: 8
  start-page: 317
  year: 2015
  end-page: 331
  ident: bb0970
  article-title: Synthesis of high quality alkyl naphthenic kerosene by reacting oil refinery with biomass refinery stream
  publication-title: Energy Environ. Sci.
– volume: 244
  start-page: 78
  year: 2017
  end-page: 83
  ident: bb0105
  article-title: Characterization of products from hydrothermal carbonization of pine
  publication-title: Bioresour. Technol.
– volume: 1
  start-page: 1174
  year: 2013
  end-page: 1181
  ident: bb0085
  article-title: Biochar based solid acid catalyst hydrolyze biomass
  publication-title: J. Environ. Chem. Eng.
– volume: 7
  start-page: 2131
  year: 2014
  end-page: 2137
  ident: bb0355
  article-title: Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2, 5-furandicarboxylic acid
  publication-title: ChemSusChem
– volume: 5
  start-page: 5852
  year: 2017
  end-page: 5861
  ident: bb0270
  article-title: Highly efficient and stable bimetallic AuPd over La-doped Ca-Mg-Al layered double hydroxide for base-free aerobic oxidation of 5-hydroxymethylfurfural in water
  publication-title: ACS Sust. Chem. Eng.
– volume: 8
  start-page: 4022
  year: 2015
  end-page: 4029
  ident: bb0945
  article-title: Catalytic upgrading of 5-hydroxymethylfurfural to drop-in biofuels by solid base and bifunctional metal–acid catalysts
  publication-title: ChemSusChem
– volume: 118
  start-page: 505
  year: 2018
  end-page: 613
  ident: bb0040
  article-title: Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability
  publication-title: Chem. Rev.
– volume: 201
  start-page: 221
  year: 2017
  end-page: 231
  ident: bb0905
  article-title: Performance of basic mixed oxides for aqueous-phase 5-hydroxymethylfurfural-acetone aldol condensation
  publication-title: Appl. Catal. B-Environ.
– volume: 59
  start-page: 1257
  year: 2016
  end-page: 1265
  ident: bb0645
  article-title: Chemicals from biomass: synthesis of biologically active furanochalcones by Claisen–Schmidt condensation of biomass-derived 5-hydroxymethylfurfural (HMF) with acetophenones
  publication-title: Top. Catal.
– volume: 5
  start-page: 704
  year: 1991
  end-page: 711
  ident: bb0520
  article-title: Catalytic-hydrogenation of 5-hydroxymethylfurfural in aqueous-medium
  publication-title: Bull. Soc. Chim. Fr.
– volume: 472
  start-page: 64
  year: 2014
  end-page: 71
  ident: bb0130
  article-title: Efficient aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran catalyzed by magnetic nanoparticle supported manganese oxide
  publication-title: Appl. Catal. A
– volume: 12
  start-page: 1201
  year: 2010
  end-page: 1206
  ident: bb0615
  article-title: Production of biobased HMF derivatives by reductive amination
  publication-title: Green Chem.
– volume: 50
  start-page: 7083
  year: 2011
  end-page: 7087
  ident: bb0565
  article-title: Caprolactam from renewable resources: catalytic conversion of 5-hydroxymethylfurfural into caprolactone
  publication-title: Angew. Chem., Int. Ed.
– volume: 18
  start-page: 676
  year: 2016
  end-page: 680
  ident: bb0480
  article-title: The effect of heterogeneous acid–base catalysis on conversion of 5-hydroxymethylfurfural into a cyclopentanone derivative
  publication-title: Green Chem.
– volume: 53
  start-page: 3056
  year: 2014
  end-page: 3064
  ident: bb0780
  article-title: Selective transformation of 5-hydroxymethylfurfural into the liquid fuel 2,5-dimethylfuran over carbon-supported ruthenium
  publication-title: Ind. Eng. Chem.Res.
– volume: 175
  start-page: 435
  year: 2011
  end-page: 441
  ident: bb0995
  article-title: Etherification of 5-hydroxymethyl-2-furfural (HMF) with ethanol to biodiesel components using mesoporous solid acidic catalysts
  publication-title: Catal. Today
– volume: 123
  start-page: 2423
  year: 2011
  end-page: 2426
  ident: bb0955
  article-title: Production of high-quality diesel from biomass waste products
  publication-title: Angew. Chem.
– volume: 16
  start-page: 1543
  year: 2014
  end-page: 1551
  ident: bb0765
  article-title: Hydrogenation of 5-hydroxymethylfurfural in supercritical carbon dioxide-water: a tunable approach to dimethylfuran selectivity
  publication-title: Green Chem.
– volume: 316
  start-page: 57
  year: 2014
  end-page: 66
  ident: bb0120
  article-title: Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran on manganese oxide catalysts
  publication-title: J. Catal.
– volume: 12
  start-page: 2652
  year: 2017
  end-page: 2655
  ident: bb0555
  article-title: Alkynylation of bio-based 5-hydroxymethylfurfural to connect biomass processing with conjugated polymers and furanic pharmaceuticals
  publication-title: Chem.-Asian J.
– year: 2017
  ident: bb0235
  article-title: Conversion of Alcohols to Alkyl Esters and Carboxylic Acids Using Heterogeneous Palladium-based Catalysts. US20170137362A1
– volume: 66
  start-page: 5413
  year: 2001
  end-page: 5418
  ident: bb0715
  article-title: Efficient Baylis–Hillman reaction using stoichiometric base catalyst and an aqueous medium
  publication-title: J. Org. Chem.
– volume: 547
  start-page: 230
  year: 2017
  end-page: 236
  ident: bb0260
  article-title: Basic anion-exchange resin (AER)-supported Au-Pd alloy nanoparticles for the oxidation of 5-hydroxymethyl-2-furfural (HMF) into 2,5-furan dicarboxylic acid (FDCA)
  publication-title: Appl. Catal., A
– volume: 252
  start-page: 76
  year: 2018
  end-page: 82
  ident: bb0090
  article-title: Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar
  publication-title: Bioresour. Technol.
– volume: 51
  start-page: 5331
  year: 2012
  end-page: 5336
  ident: bb1035
  article-title: Efficient one-pot synthesis of 5-(ethoxymethyl)furfural from fructose catalyzed by a novel solid catalyst
  publication-title: Ind. Chem. Eng. Res.
– volume: 19
  start-page: 1003
  year: 1895
  end-page: 1006
  ident: bb0030
  article-title: A derivative of furfuraldehyde from laevulose
  publication-title: Chemiker-Zeitung
– volume: 51
  start-page: 5364
  year: 2012
  end-page: 5366
  ident: bb1055
  article-title: One-pot synthesis of 5-(ethoxymethyl) furfural from glucose using Sn-BEA and Amberlyst catalysts
  publication-title: Ind. Eng. Chem. Res.
– volume: 18
  start-page: 2302
  year: 2016
  end-page: 2307
  ident: bb0215
  article-title: Direct synthesis of 2, 5-diformylfuran from fructose with graphene oxide as a bifunctional and metal-free catalyst
  publication-title: Green Chem.
– volume: 72
  start-page: 7638
  year: 2016
  end-page: 7641
  ident: bb0755
  article-title: Practical synthesis of mumefural, a component of Japanese apricot juice concentrate
  publication-title: Tetrahedron
– volume: 317
  start-page: 206
  year: 2014
  end-page: 219
  ident: bb0385
  article-title: Methanol as a clean and efficient H-transfer reactant for carbonyl reduction: scope, limitations, and reaction mechanism
  publication-title: J. Catal.
– volume: 3
  start-page: 12313
  year: 2013
  end-page: 12319
  ident: bb1010
  article-title: One-pot conversion of carbohydrates into 5-ethoxymethylfurfural and ethyl D-glucopyranoside in ethanol catalyzed by a silica supported sulfonic acid catalyst
  publication-title: RSC Adv.
– volume: 2
  start-page: 438
  year: 2008
  end-page: 454
  ident: bb0890
  article-title: Furfural: hemicellulose/xylosederived biochemical
  publication-title: Biofuels Bioprod. Biorefin.
– volume: 106
  start-page: 4044
  year: 2006
  end-page: 4098
  ident: bb0020
  article-title: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering
  publication-title: Chem. Rev.
– volume: 19
  start-page: 216
  year: 1895
  end-page: 217
  ident: bb0025
  article-title: Action of oxalic acid on inulin
  publication-title: Chem. Zeit.
– volume: 344
  start-page: 953
  year: 2002
  end-page: 956
  ident: bb0725
  article-title: A practical synthesis of α, β-unsaturated imides, useful substrates for asymmetric conjugate addition reactions
  publication-title: Adv. Synth. Catal.
– volume: 18
  start-page: 979
  year: 2016
  end-page: 983
  ident: bb0365
  article-title: The direct conversion of sugars into 2, 5-furandicarboxylic acid in a triphasic system
  publication-title: Green Chem.
– volume: 13
  start-page: 293
  year: 2014
  end-page: 300
  ident: bb0810
  article-title: Platinum-cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural
  publication-title: Nat. Mater.
– volume: 3
  start-page: 1033
  year: 2013
  end-page: 1036
  ident: bb0390
  article-title: Selective hydrogenation of 2-hydroxymethyl-5-furfural to 2, 5-bis(hydroxymethyl)furan over gold sub-nano clusters
  publication-title: RSC Adv.
– volume: 13
  start-page: 554
  year: 2011
  end-page: 557
  ident: bb0445
  article-title: Oxidation of 5-hydroxymethylfurfural to maleic anhydride with molecular oxygen
  publication-title: Green Chem.
– volume: 21
  start-page: 1388
  year: 2017
  end-page: 1393
  ident: bb0240
  article-title: Aerobic oxidation of diverse primary alcohols to carboxylic acids with a heterogeneous Pd-Bi-Te/C (PBT/C) catalyst
  publication-title: Org. Process. Res. Dev.
– volume: 6
  start-page: 2103
  year: 2013
  end-page: 2110
  ident: bb0925
  article-title: Cu/MgAl
  publication-title: ChemSusChem
– volume: 55
  start-page: 8338
  year: 2016
  end-page: 8342
  ident: bb0590
  article-title: Critical effect of 5-hydroxymethylfurfural aging and decomposition on the utility of biomass conversion in organic synthesis
  publication-title: Angew. Chem. Int. Ed.
– volume: 147
  start-page: 293
  year: 2014
  end-page: 301
  ident: bb0125
  article-title: Biomass derived chemicals: environmentally benign process for oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran by using nano-fibrous Ag-OMS-2-catalyst
  publication-title: Appl. Catal. B
– volume: 232
  start-page: 89
  year: 2014
  end-page: 98
  ident: bb0770
  article-title: Selective hydrogenation of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) under atmospheric hydrogen pressure over carbon supported PdAu bimetallic
  publication-title: Catalyst. Catal. Today
– volume: 20
  start-page: 3753
  year: 2018
  end-page: 3760
  ident: bb0950
  article-title: Synthesis of high-density aviation fuels with methyl benzaldehyde and cyclohexanone
  publication-title: Green Chem.
– volume: 16
  start-page: 24
  year: 2014
  end-page: 38
  ident: bb0075
  article-title: Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents
  publication-title: Green Chem.
– volume: 11
  start-page: 2138
  year: 2018
  end-page: 2145
  ident: bb0330
  article-title: Electrochemical oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid (FDCA) in acidic media enabling spontaneous FDCA separation
  publication-title: ChemSusChem
– volume: 7
  start-page: 2089
  year: 2014
  end-page: 2093
  ident: bb0510
  article-title: Palladium/carbon dioxide cooperative catalysis for the production of diketone derivatives from carbohydrates
  publication-title: ChemSusChem
– volume: 58
  start-page: 4069
  year: 2017
  end-page: 4072
  ident: bb0660
  article-title: Concise and efficient synthesis of Estereoisomers of exo-cyclic carbohydrate enones. Aldol condensation of dihydrolevoglucosenone with five-membered aromatic aldehydes Part 1
  publication-title: Tetrahedron Lett.
– volume: 5
  start-page: 11300
  year: 2017
  end-page: 11306
  ident: bb0245
  article-title: Highly porous nitrogen- and phosphorus-codoped graphene: an outstanding support for Pd catalysts to oxidize 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid
  publication-title: ACS Sust. Chem. Eng.
– volume: 299
  start-page: 316
  year: 2013
  end-page: 320
  ident: bb0305
  article-title: Porphyrin-based porous organic polymer-supported iron(III) catalyst for efficient aerobic oxidation of 5-hydroxymethyl-furfural into 2,5-furandicarboxylic acid
  publication-title: J. Catal.
– volume: 128
  start-page: 17063
  year: 2006
  end-page: 17073
  ident: bb0685
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 2457
  year: 2012
  end-page: 2461
  ident: bb0835
  article-title: One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol
  publication-title: Green Chem.
– volume: 19
  start-page: 5103
  year: 2017
  end-page: 5113
  ident: bb0505
  article-title: Conversion of HMF to methyl cyclopentenolone using Pd/Nb
  publication-title: Green Chem.
– volume: 123
  start-page: 59
  year: 2007
  end-page: 70
  ident: bb0910
  article-title: An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates
  publication-title: Catal. Today
– volume: 57
  start-page: 2811
  year: 2018
  end-page: 2818
  ident: bb0295
  article-title: Atomic layer deposition of a Pt-skin catalyst for base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
  publication-title: Ind. Eng. Chem. Res.
– volume: 14
  start-page: 2986
  year: 2012
  end-page: 2989
  ident: bb0145
  article-title: A one-pot approach for conversion of fructose to 2, 5-diformylfuran by combination of Fe
  publication-title: Green Chem.
– volume: 19
  start-page: 1701
  year: 2017
  end-page: 1713
  ident: bb0490
  article-title: Selective conversion of 5-hydroxymethylfurfural to cyclopentanone derivatives over Cu–Al
  publication-title: Green Chem.
– volume: 119
  start-page: 433
  year: 2012
  end-page: 436
  ident: bb0985
  article-title: Catalytic selective etherification of hydroxyl groups in 5-hydroxymethylfurfural over H
  publication-title: Bioresour. Technol.
– volume: 5
  start-page: 284
  year: 2013
  end-page: 293
  ident: bb0155
  article-title: Catalytic performance of zeolite-supported vanadia in the aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran
  publication-title: ChemCatChem
– volume: 49
  start-page: 3963
  year: 2006
  end-page: 3972
  ident: bb0675
  article-title: Antitumor agents. 250. Design and synthesis of new curcumin analogues as potential anti-prostate cancer agents
  publication-title: J. Med. Chem.
– volume: 199
  start-page: 439
  year: 2016
  end-page: 446
  ident: bb0805
  article-title: Base metal-Pt alloys: a general route to high selectivity and stability in the production of biofuels from HMF
  publication-title: Appl. Catal. B-Environ.
– volume: 19
  start-page: 3820
  year: 2017
  end-page: 3830
  ident: bb0265
  article-title: Hydrophilic mesoporous poly(ionic liquid)-supported Au-Pd alloy nanoparticles towards aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions
  publication-title: Green Chem.
– volume: 36
  start-page: 38
  year: 2006
  end-page: 39
  ident: bb1065
  article-title: Iron (III) chloride-catalyzed reductive etherification of carbonyl compounds with alcohols
  publication-title: Chem. Lett.
– volume: 20
  start-page: 2283
  year: 2010
  end-page: 2286
  ident: bb0650
  article-title: Inhibition of eEF2-K by thieno[2,3-b]pyridine analogues
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 8
  start-page: 164
  year: 2018
  end-page: 175
  ident: bb0320
  article-title: Fe–Zr–O catalyzed base-free aerobic oxidation of 5-HMF to 2,5-FDCA as a biomass-derived polyester monomer
  publication-title: Catal. Sci. Technol.
– volume: 267
  start-page: 242
  year: 2018
  end-page: 248
  ident: bb0115
  article-title: Phosphoric acid-activated wood biochar for catalytic conversion of starch-rich food waste into glucose and 5-hydroxymethylfurfural
  publication-title: Bioresour. Technol.
– volume: 79
  start-page: 233
  year: 2014
  end-page: 240
  ident: bb1020
  article-title: Synthesis of 5-ethoxymethylfurfural from fructose and inulin catalyzed by a magnetically recoverable acid catalyst
  publication-title: ChemPlusChem
– volume: 49
  start-page: 6797
  year: 1993
  end-page: 6804
  ident: bb0695
  article-title: Synthesis of (±) tetrahydromyricoidine
  publication-title: Tetrahedron
– volume: 53
  start-page: 11751
  year: 2017
  end-page: 11754
  ident: bb0140
  article-title: Heterogeneous mesoporous manganese/cobalt oxide catalysts for selective oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran
  publication-title: Chem. Commun.
– volume: 5
  start-page: 1463
  year: 2015
  end-page: 1472
  ident: bb0830
  article-title: Renewable fuels from biomass-derived compounds: Ru-containing hydrotalcites as catalysts for conversion of HMF to 2, 5-dimethylfuran
  publication-title: Catal. Sci. Technol.
– volume: 375
  start-page: 121983
  year: 2019
  end-page: 122006
  ident: bb0080
  article-title: Value-added chemicals from food supply chain wastes: state-of-the-art review and future prospects
  publication-title: Chem. Eng. J.
– year: 2017
  ident: bb0290
  article-title: Method Using 5-Hydroxymethylfurfural to Prepare 2,5-Furandicarboxylic Acid. CN106749130
– volume: 358
  start-page: 326
  year: 2017
  end-page: 332
  ident: bb0625
  article-title: MOF-derived cobalt nanoparticles catalyze a general synthesis of amines
  publication-title: Science
– volume: 200
  start-page: 192
  year: 2017
  end-page: 199
  ident: bb0850
  article-title: Carbon-coated Cu-Co bimetallic nanoparticles as selective and recyclable catalysts for production of biofuel 2,5-dimethylfuran
  publication-title: Appl. Catal. B-Environ.
– volume: 56
  start-page: 5217
  year: 2017
  end-page: 5221
  ident: bb1070
  article-title: Auto-tandem catalysis with frustrated lewis pairs for reductive etherification of aldehydes and ketones
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 2266
  year: 2014
  end-page: 2275
  ident: bb0420
  article-title: Tunable and selectiveconversion of 5-HMF to 2, 5-furandimethanol and 2, 5-dimethylfuran over copperdopedporous metal oxides
  publication-title: ChemSusChem
– volume: 16
  start-page: 4734
  year: 2014
  end-page: 4739
  ident: bb0380
  article-title: Selective hydrogenation of 5-hydroxymethylfurfural to 2,5-bis-(hydroxymethyl) furan using Pt/MCM-41 in an aqueous medium: a simple approach
  publication-title: Green Chem.
– volume: 53
  start-page: 5820
  year: 2014
  end-page: 5827
  ident: bb0210
  article-title: Environmentally friendly oxidation of biomass derived 5-hydroxymethylfurfural into 2, 5-diformylfuran catalyzed by magnetic separation of ruthenium catalyst
  publication-title: Ind. Eng. Chem. Res.
– volume: 50
  start-page: 5633
  year: 2014
  end-page: 5636
  ident: bb0475
  article-title: Conversion of 5-hydroxymethylfurfural to a cyclopentanone derivative by ring rearrangement over supported Au nanoparticles
  publication-title: Chem. Commun.
– volume: 7
  start-page: 2948
  year: 2017
  end-page: 2955
  ident: bb0175
  article-title: Controlled growth of monodisperse ferrite octahedral nanocrystals for biomass-derived catalytic applications
  publication-title: ACS Catal.
– volume: 6
  start-page: 2925
  year: 2013
  end-page: 2931
  ident: bb0880
  article-title: Electrochemistry for biofuel generation: production of furans by electrocatalytic hydrogenation of furfurals
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 754
  year: 2011
  end-page: 793
  ident: bb0050
  article-title: 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications
  publication-title: Green Chem.
– volume: 481
  start-page: 49
  year: 2014
  end-page: 53
  ident: bb0415
  article-title: Catalytic synthesis of 2, 5-bismethoxymethylfuran: a promising cetane number improver for diesel
  publication-title: Appl. Catal. A-Gen.
– volume: 3
  start-page: 992
  year: 2015
  end-page: 999
  ident: bb1030
  article-title: Magnetic material grafted cross-linked imidazolium based polyionic liquids: an efficient acid catalyst for the synthesis of promising liquid fuel 5-ethoxymethylfurfural from carbohydrates
  publication-title: J. Mater. Chem. A
– volume: 139
  start-page: 11493
  year: 2017
  end-page: 11499
  ident: bb0630
  article-title: Electronic effect of ruthenium nanoparticles on efficient reductive amination of carbonyl compounds
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 312
  year: 1993
  end-page: 315
  ident: bb0700
  article-title: Physicochemical studies on furylacrylic acid
  publication-title: Asian J. Chem.
– volume: 135
  start-page: 3997
  year: 2013
  end-page: 4006
  ident: bb0885
  publication-title: J. Am. Chem. Soc.
– volume: 87
  start-page: 1711
  year: 2013
  end-page: 1726
  ident: bb0750
  article-title: Synthesis of novel coumarin derivatives and
  publication-title: Heterocycles
– volume: 8
  start-page: 13686
  year: 2018
  end-page: 13696
  ident: bb0670
  article-title: Production of renewable long-chained cycloalkanes from biomass-derived furfurals and cyclic ketones
  publication-title: RSC Adv.
– volume: 5
  start-page: 4208
  year: 2015
  end-page: 4217
  ident: bb0410
  article-title: Efficient synthesis of 2, 5-dihydroxymethylfuran and 2, 5-dimethylfuran from 5-hydroxymethylfurfural using mineral-derived Cu catalysts as versatile catalysts
  publication-title: Catal. Sci. Technol.
– volume: 18
  start-page: 2175
  year: 2016
  end-page: 2184
  ident: bb0515
  article-title: Synthesis of 1, 6-hexanediol from HMF over double-layered catalysts of Pd/SiO
  publication-title: Green Chem.
– volume: 1
  start-page: 11
  year: 2009
  end-page: 17
  ident: bb0975
  article-title: Furanics: versatile molecules for biofuels and bulk chemicals applications
  publication-title: Biofuels Techno.
– volume: 11
  start-page: 2022
  year: 2019
  end-page: 2042
  ident: bb0060
  article-title: Recent advances in the catalytic production of platform chemicals from holocellulosic biomass
  publication-title: ChemCatChem
– volume: 431
  start-page: 32
  year: 2017
  end-page: 38
  ident: bb0795
  article-title: Ruthenium supported on CoFe layered double oxide for selective hydrogenation of 5-hydroxymethylfurfural
  publication-title: Mol. Catal.
– volume: 11
  start-page: 43
  year: 1981
  end-page: 53
  ident: bb0735
  article-title: A direct alcohol for hydrazine interchange: scope and stereochemistry
  publication-title: Synth.Commun.
– volume: 314
  start-page: 52
  year: 2018
  end-page: 61
  ident: bb0110
  article-title: Sulfonated biochar as acid catalyst for sugar hydrolysis and dehydration
  publication-title: Catal. Today
– volume: 6
  start-page: 8048
  year: 2018
  end-page: 8054
  ident: bb0710
  article-title: Al-doping promoted aerobic amidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxamide over cryptomelane
  publication-title: ACS Sust. Chem.Eng.
– volume: 285
  start-page: 235
  year: 2012
  end-page: 241
  ident: bb0820
  article-title: Active species of copper chromite catalyst in C–O hydrogenolysis of 5-methylfurfuryl alcohol
  publication-title: J. Catal.
– volume: 3
  start-page: 406
  year: 2015
  end-page: 412
  ident: bb0315
  article-title: Catalytic conversion of fructose and 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid over a recyclable Fe
  publication-title: ACS Sust. Chem. Eng.
– volume: 47
  start-page: 1351
  year: 2018
  end-page: 1390
  ident: bb0190
  article-title: Catalytic oxidation of carbohydrates into organic acids and furan chemicals
  publication-title: Chem. Soc. Rev.
– volume: 103
  start-page: 227
  year: 2019
  end-page: 247
  ident: bb0055
  article-title: Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran
  publication-title: Renew. Sust. Energy Rev.
– volume: 8
  start-page: 1093
  year: 2017
  end-page: 1102
  ident: bb0665
  article-title: Synthesis and synergistic antifungal effects of monoketone derivatives of curcumin against fluconazole-resistant Candida spp.
  publication-title: MedChemComm.
– volume: 44
  start-page: 3771
  year: 1988
  end-page: 3780
  ident: bb1080
  article-title: Ionic hydrogenation with organosilanes under acid-free conditions. synthesis of ethers, alkoxysilanes, thioethers, and cyclic ethers via rganosilyl iodide and triflate catalyzed reductions of carbonyl compounds and their derivatives
  publication-title: Tetrahedron
– volume: 14
  start-page: 1593
  year: 2012
  end-page: 1596
  ident: bb1040
  article-title: A direct synthesis of 5-alkoxymethylfurfural ethers from fructose via sulfonic acid-functionalized ionic liquids
  publication-title: Green Chem.
– volume: 3
  start-page: 2104
  year: 2013
  end-page: 2112
  ident: bb1015
  article-title: Silica coated magnetic Fe
  publication-title: Catal. Sci. Technol.
– volume: 7
  start-page: 2947
  year: 2017
  end-page: 2953
  ident: bb0485
  article-title: Hydrogenative ring-rearrangement of biomass derived 5-(hydroxymethyl) furfural to 3-(hydroxymethyl) cyclopentanol using combination catalyst systems of Pt/SiO
  publication-title: Catal. Sci. Technol.
– volume: 36
  start-page: 1638
  year: 2015
  end-page: 1646
  ident: bb0825
  article-title: Tailored one-pot production of furan-based fuels from fructose in an ionic liquid biphasic solvent system
  publication-title: Chin. J. Catal.
– volume: 7
  start-page: 1470
  year: 2015
  end-page: 1477
  ident: bb0200
  article-title: Polyaniline-grafted VO(acac)2: an effective catalyst for the synthesis of 2,5-diformylfuran from 5-hydroxymethylfurfural and fructose
  publication-title: ChemCatChem
– year: 2003
  ident: bb0435
  article-title: Industrial Organic Chemistry
– volume: 67
  start-page: 219
  year: 2002
  end-page: 223
  ident: bb0720
  article-title: Successful Baylis–Hillman reaction of acrylamide with aromatic aldehydes
  publication-title: J. Org. Chem.
– volume: 18
  start-page: 3152
  year: 2016
  end-page: 3157
  ident: bb0170
  article-title: Direct synthesis of V-containing all-silica beta-zeolite for efficient one-pot, one-step conversion of carbohydrates into 2,5-diformylfuran
  publication-title: Green Chem.
– volume: 234
  start-page: 59
  year: 2014
  end-page: 65
  ident: bb0425
  article-title: Biomass into chemicals: one-pot production of furan-based diols from carbohydrates via tandem reactions
  publication-title: Catal. Today
– volume: 61
  start-page: 10996
  year: 2018
  end-page: 11020
  ident: bb0585
  article-title: From oxiranes to oligomers: architectures of U.S. FDA approved pharmaceuticals containing oxygen heterocycles
  publication-title: J. Med. Chem.
– volume: 146
  start-page: 244
  year: 2014
  end-page: 248
  ident: bb0790
  article-title: Efficient production of the liquid fuel 2, 5-dimethylfuran from 5-hydroxymethylfurfural over Ru/Co
  publication-title: Appl. Catal. B-Environ.
– volume: 19
  start-page: 1619
  year: 2017
  end-page: 1623
  ident: bb0275
  article-title: MnCo
  publication-title: Green Chem.
– volume: 43
  start-page: 2473
  year: 2008
  end-page: 2478
  ident: bb0640
  article-title: Chemotherapy of leishmaniasis part-VIII: synthesis and bioevaluation of novel chalcones
  publication-title: Eur. J. Med. Chem.
– volume: 2
  start-page: 11062
  year: 2017
  end-page: 11070
  ident: bb0865
  article-title: Graphitic carbon nitride (g-C
  publication-title: ChemistrySelect
– volume: 2000
  start-page: 1131
  year: 2000
  end-page: 1132
  ident: bb0690
  article-title: Racemic synthesis of the new antibiotic tetramic acid reutericyclin
  publication-title: Synlett
– volume: 6
  start-page: 43152
  year: 2016
  end-page: 43158
  ident: bb0100
  article-title: Brønsted-Lewis solid acid as a recyclable catalyst for conversion of glucose to 5-hydroxymethylfurfural and its hydrophobicity effect
  publication-title: RSC Adv.
– volume: 123
  start-page: 4903
  year: 2019
  end-page: 4913
  ident: bb0915
  article-title: Synergistic catalytic mechanism of acidic silanol and basic alkylamine bifunctional groups over SBA-15 zeolite toward aldol condensation
  publication-title: J. Phys. Chem. C
– volume: 54
  start-page: 10703
  year: 1998
  end-page: 10712
  ident: bb0610
  article-title: Building blocks from sugars. Part 23. Hydrophilic 3-pyridinols from fructose and isomaltulose
  publication-title: Tetrahedron
– volume: 5
  start-page: 428
  year: 2013
  end-page: 432
  ident: bb0935
  article-title: The hydrodeoxygenation of bioderived furans into alkanes
  publication-title: Nat. Chem.
– volume: 5
  start-page: 377
  year: 2004
  end-page: 381
  ident: bb0560
  article-title: Hydrogenation of dimethyl adipate over bimetallic catalysts
  publication-title: Catal. Commun.
– volume: 94
  start-page: 3659
  year: 1972
  end-page: 3661
  ident: bb1075
  article-title: Silane reductions in acidic media. I. Reduction of aldehydes and ketones in alcoholic acidic media. General synthesis of ethers
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 139
  year: 2012
  end-page: 143
  ident: bb0705
  article-title: β-Alanine-DBU: a highly efficient catalytic system for Knoevenagel-Doebner reaction under mild conditions
  publication-title: Chin. J. Chem.
– volume: 14
  start-page: 2265
  year: 2004
  end-page: 2268
  ident: bb0730
  article-title: 5-Lipoxygenase inhibitors with histamine H1 receptor antagonist activity
  publication-title: Med. Chem. Lett.
– volume: 113
  start-page: 625
  year: 2013
  end-page: 631
  ident: bb0980
  article-title: Efficient conversion of carbohydrates into 5-ethoxymethylfurfural in ethanol catalyzed by AlCl
  publication-title: Fuel
– volume: 53
  start-page: 9755
  year: 2014
  end-page: 9760
  ident: bb0930
  article-title: Pd/NbOPO
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 383
  year: 2013
  end-page: 388
  ident: bb0965
  article-title: Production of hybrid diesel fuel precursors from carbohydrates and petrochemicals using formic acid as a reactive solvent
  publication-title: ChemSusChem
– volume: 308
  start-page: 1446
  year: 2005
  end-page: 1450
  ident: bb0900
  article-title: Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates
  publication-title: Science
– volume: 66
  start-page: 111
  year: 2006
  end-page: 118
  ident: bb0920
  article-title: Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water
  publication-title: Appl. Catal. B-Environ.
– volume: 17
  start-page: 1038
  year: 2015
  end-page: 1046
  ident: bb0495
  article-title: Selective conversion of furfural to cyclopentanone or cyclopentanol using different preparation methods of Cu–Co catalysts
  publication-title: Green Chem.
– volume: 6
  start-page: 1659
  year: 2013
  end-page: 1667
  ident: bb0875
  article-title: Electrocatalytic hydrogenation of 5-hydroxymethylfurfural in the absence and presence of glucose
  publication-title: ChemSusChem
– volume: 55
  start-page: 612
  year: 2012
  end-page: 619
  ident: bb0570
  article-title: From 5-hydroxymethylfurfural (HMF) to polymer precursors: catalyst screening studies on the conversion of 1, 2, 6-hexanetriol to 1, 6-hexanediol
  publication-title: Top. Catal.
– reference: G. J. M. Gruter. 5-Substituted 2-(alkoxymethyl) furans: U.S. Patent 8,231,693. 2012-7-31.
– volume: 261
  start-page: 118235
  year: 2020
  ident: bb0340
  article-title: NiSe@ NiOx core-shell nanowires as a non-precious electrocatalyst for upgrading 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid
  publication-title: Appl. Catal. B Environ.
– volume: 40
  start-page: 1164
  year: 2008
  end-page: 1169
  ident: bb0550
  article-title: Brand-new biomass-based vinyl polymers from 5-hydroxymethylfurfural
  publication-title: Polym. J.
– volume: 15
  start-page: 1333
  year: 2005
  end-page: 1336
  ident: bb0680
  article-title: The discovery and synthesis of novel adenosine receptor (A2A) antagonists
  publication-title: Bioorg. Med. Chem. Lett.
– volume: 12
  start-page: 1253
  year: 2010
  end-page: 1262
  ident: bb0815
  article-title: A two-step approach for the catalytic conversion of glucose to 2, 5-dimethylfuran in ionic liquids
  publication-title: Green Chem.
– volume: 9
  start-page: 2760
  year: 2017
  end-page: 2767
  ident: bb0255
  article-title: Catalytic, aerial oxidation of biomass-derived furans to furan carboxylic acids in water over bimetallic nickel-palladium alloy nanoparticles
  publication-title: ChemCatChem
– volume: 5
  start-page: 2151
  year: 2012
  end-page: 2154
  ident: bb0430
  article-title: Catalytic oxidative decarboxylation of malic acid into dimethyl malonate in methanol with dioxygen
  publication-title: ChemSusChem
– volume: 38
  start-page: 1009
  year: 1985
  end-page: 1016
  ident: bb0740
  article-title: Synthesis of some furfural and syringic acid derivatives
  publication-title: Aust. J. Chem.
– volume: 6
  start-page: 4095
  year: 2016
  end-page: 4104
  ident: bb0800
  article-title: Mechanisms for high selectivity in the hydrodeoxygenation of 5-hydroxymethylfurfural over PtCo nanocrystals
  publication-title: ACS Catal.
– volume: 99
  start-page: 80
  year: 2012
  end-page: 84
  ident: bb1045
  article-title: Heteropolyacid catalyzed conversion of fructose, sucrose, and inulin to 5-ethoxymethylfurfural, a liquid biofuel candidate
  publication-title: Appl. Energ.
– volume: 6
  start-page: 284
  year: 2018
  end-page: 291
  ident: bb0180
  article-title: CdTe/CdS core/shell quantum dots cocatalyzed by sulfur tolerant [Mo
  publication-title: ACS Sust. Chem. Eng.
– volume: 4
  start-page: 83
  year: 2003
  end-page: 86
  ident: bb0370
  article-title: Cooperative effect of cobalt acetylacetonate and silica in the catalytic cyclization and oxidation of fructose to 2,5-furandicarboxylic acid
  publication-title: Catal. Commun.
– volume: 5
  start-page: 6328
  year: 2012
  end-page: 6344
  ident: bb0960
  article-title: Production of high quality diesel from cellulose and hemicellulose by the Sylvan process: catalysts and process variables
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 1209
  year: 2016
  end-page: 1215
  ident: bb0530
  article-title: Selective conversion of 5-hydroxymethylfuraldehyde using Cp* Ir catalysts in aqueous formate buffer solution
  publication-title: ChemSusChem
– volume: 19
  start-page: 914
  year: 2017
  end-page: 918
  ident: bb0460
  article-title: Highly efficient formic acid-mediated oxidation of renewable furfural to maleic acid with H
  publication-title: Green Chem.
– volume: 9
  start-page: 811
  year: 2019
  end-page: 821
  ident: bb0185
  article-title: The design and catalytic performance of molybdenum active sites on an MCM-41 framework for the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran
  publication-title: Catalysis Science & Technology
– volume: 6
  start-page: 2236
  year: 2013
  end-page: 2239
  ident: bb0940
  article-title: Diesel and alkane fuels from biomass by organocatalysis and metal–acid tandem catalysis
  publication-title: ChemSusChem
– volume: 80
  start-page: 1760
  year: 2015
  end-page: 1768
  ident: bb0150
  article-title: Bicomponent assembly of VO2 and polyaniline-functionalized carbon nanotubes for the selective oxidation of biomass-based 5-hydroxymethylfurfural to 2,5-diformylfuran
  publication-title: ChemPlusChem
– volume: 139
  start-page: 10224
  year: 2017
  end-page: 10227
  ident: bb1085
  article-title: Reductive etherification via anion-binding catalysis
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 83
  year: 2011
  end-page: 99
  ident: bb0015
  article-title: Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels
  publication-title: Energy Environ. Sci.
– volume: 508
  start-page: 86
  year: 2015
  end-page: 93
  ident: bb0840
  article-title: Comparison of HMF hydrodeoxygenation over different metal catalysts in a continuous flow reactor
  publication-title: Appl. Catal. A-Gen.
– volume: 2
  start-page: 79
  year: 2012
  end-page: 81
  ident: bb0230
  article-title: Aerobic oxidation of 5-hydroxylmethylfurfural with homogeneous and nanoparticulate catalysts
  publication-title: Catal. Sci. Technol.
– volume: 20
  start-page: 1095
  year: 2018
  end-page: 1105
  ident: bb1100
  article-title: A cobalt catalyst for reductive etheriication of 5-hydroxymethyl-furfural to 2,5-bis(methoxymethyl)furan under mild conditions
  publication-title: Green Chem.
– volume: 20
  start-page: 2845
  year: 2018
  end-page: 2856
  ident: bb0465
  article-title: Improving the production of maleic acid from biomass: TS-1 catalysed aqueous phase oxidation of furfural in the presence of γ-valerolactone
  publication-title: Green Chem.
– volume: 16
  start-page: 4110
  year: 2014
  end-page: 4114
  ident: bb0525
  article-title: Combination of Pd/C and Amberlyst-15 in a single reactor for the acid/hydrogenating catalytic conversion of carbohydrates to 5-hydroxy-2,5-hexanedione
  publication-title: Green Chem.
– volume: 58
  start-page: 179
  year: 2015
  end-page: 182
  ident: bb0310
  article-title: Selective oxidation of 5-hydroxymethyl-2-furfural to furan-2,5-dicarboxylic acid over spinel mixed metal oxide catalyst
  publication-title: Catal. Commun.
– volume: 7
  start-page: 96
  year: 2014
  end-page: 100
  ident: bb0580
  article-title: Direct synthesis of 1,6-hexanediol from HMF over a heterogeneous Pd/ZrP catalyst using formic acid as hydrogen source
  publication-title: ChemSusChem
– volume: 19
  start-page: 1075
  year: 2017
  end-page: 1081
  ident: bb0345
  article-title: Highly selective photocatalytic oxidation of biomass-derived chemicals to carboxyl compounds over Au/TiO
  publication-title: Green Chem.
– volume: 278
  start-page: 66
  year: 2016
  end-page: 73
  ident: bb0135
  article-title: Oxidation of 5-hydroxymethyl furfural to 2, 5-diformylfuran in aqueous media over heterogeneous manganese based catalysts
  publication-title: Catal. Today
– volume: 5
  start-page: 2035
  year: 2015
  end-page: 2041
  ident: bb0450
  article-title: Transformation of 5-hydroxymethylfurfural (HMF) to maleic anhydride by aerobic oxidation with heteropolyacid catalysts
  publication-title: ACS Catal.
– volume: 2
  start-page: 547
  year: 2010
  end-page: 555
  ident: bb0575
  article-title: Chemoselective hydrogenolysis of tetrahydropyran-2-methanol to 1, 6-hexanediol over rhenium-modified carbon-supported rhodium catalysts
  publication-title: ChemCatChem
– volume: 8
  start-page: 1197
  year: 2018
  end-page: 1206
  ident: bb0325
  article-title: Copper-based catalytic anodes to produce 2,5-furandicarboxylic acid, a biomass-derived alternative to terephthalic acid
  publication-title: ACS Catal.
– volume: 11
  start-page: 612
  year: 2018
  end-page: 618
  ident: bb0470
  article-title: Highly efficient gas-phase oxidation of renewable furfural to maleic anhydride over plate vanadium phosphorus oxide catalyst
  publication-title: ChemSusChem
– volume: 57
  start-page: 64
  year: 2014
  end-page: 68
  ident: bb0160
  article-title: Heterogeneous selective oxidation of 5-hydroxymethyl-2-furfural (HMF) into 2,5-diformylfuran catalyzed by vanadium supported activated carbon in MIBK, extracting solvent for HMF
  publication-title: Catal. Commun.
– volume: 6
  start-page: 5766
  year: 2018
  end-page: 5771
  ident: bb0250
  article-title: Efficient method for synthesis of 2,5-furandicarboxylic acid from 5-hydroxymethylfurfural and fructose using Pd/CC catalyst under aqueous conditions
  publication-title: ACS Sust. Chem. Eng.
– ident: bb0035
  article-title: 5-Hydroxymethylfurfural (5-HMF) (CAS 67-47-0) market 2019 to 2024 growth analysis by manufacturers, regions, type and application, revenue, market size, gross margin forecast analysis
– volume: 113
  start-page: 1499
  year: 2013
  end-page: 1597
  ident: bb0045
  article-title: Hydroxymethylfurfural, a versatile platform chemical made from renewable resources
  publication-title: Chem. Rev.
– volume: 6
  start-page: 25678
  year: 2016
  end-page: 25688
  ident: bb0205
  article-title: One-pot synthesis of 2, 5-diformylfuran from fructose using a magnetic bi-functional catalyst
  publication-title: RSC Adv.
– volume: 422
  start-page: 13
  year: 2016
  end-page: 17
  ident: bb0095
  article-title: Acid-functionalized mesoporous carbons for the continuous production of 5-hydroxymethylfurfural
  publication-title: J. Mol. Catal. A Chem.
– volume: 16
  start-page: 24
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0075
  article-title: Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents
  publication-title: Green Chem.
  doi: 10.1039/C3GC41324A
– volume: 18
  start-page: 726
  year: 2016
  ident: 10.1016/j.fuproc.2020.106528_bb1060
  article-title: Direct transformation of carbohydrates to the biofuel 5-ethoxymethylfurfural by solid acid catalysts
  publication-title: Green Chem.
  doi: 10.1039/C5GC01043H
– volume: 12
  start-page: 2835
  year: 2019
  ident: 10.1016/j.fuproc.2020.106528_bb0005
  article-title: Synthesis of biomass-derived ethers for use as fuels and lubricants
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201900535
– year: 2003
  ident: 10.1016/j.fuproc.2020.106528_bb0435
– volume: 19
  start-page: 5356
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0635
  article-title: CO2-assisted synthesis of non-symmetric α-diketones directly from aldehydes via C–C bond formation
  publication-title: Green Chem.
  doi: 10.1039/C7GC02425H
– volume: 123
  start-page: 59
  year: 2007
  ident: 10.1016/j.fuproc.2020.106528_bb0910
  article-title: An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2006.12.006
– volume: 55
  start-page: 8338
  year: 2016
  ident: 10.1016/j.fuproc.2020.106528_rf1110
  article-title: Critical influence of 5-hydroxymethylfurfural aging and decomposition on the utility of biomass conversion in organic synthesis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201602883
– volume: 317
  start-page: 206
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0385
  article-title: Methanol as a clean and efficient H-transfer reactant for carbonyl reduction: scope, limitations, and reaction mechanism
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2014.06.023
– volume: 7
  start-page: 2948
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0175
  article-title: Controlled growth of monodisperse ferrite octahedral nanocrystals for biomass-derived catalytic applications
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02853
– volume: 3
  start-page: 12313
  year: 2013
  ident: 10.1016/j.fuproc.2020.106528_bb1010
  article-title: One-pot conversion of carbohydrates into 5-ethoxymethylfurfural and ethyl D-glucopyranoside in ethanol catalyzed by a silica supported sulfonic acid catalyst
  publication-title: RSC Adv.
  doi: 10.1039/c3ra41043a
– volume: 20
  start-page: 1977
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb1000
  article-title: Synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose in ethanol catalyzed by MCM-41 supported phosphotungstic acid
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2013.09.020
– volume: 11
  start-page: 2022
  year: 2019
  ident: 10.1016/j.fuproc.2020.106528_bb0060
  article-title: Recent advances in the catalytic production of platform chemicals from holocellulosic biomass
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201801843
– year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0290
– volume: 67
  start-page: 219
  year: 2002
  ident: 10.1016/j.fuproc.2020.106528_bb0720
  article-title: Successful Baylis–Hillman reaction of acrylamide with aromatic aldehydes
  publication-title: J. Org. Chem.
  doi: 10.1021/jo016004j
– volume: 79
  start-page: 233
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb1020
  article-title: Synthesis of 5-ethoxymethylfurfural from fructose and inulin catalyzed by a magnetically recoverable acid catalyst
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201300301
– volume: 6
  start-page: 2103
  year: 2013
  ident: 10.1016/j.fuproc.2020.106528_bb0925
  article-title: Cu/MgAl2O4 as bifunctional catalyst for aldol condensation of 5-hydroxymethylfurfural and selective transfer hydrogenation
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201300414
– volume: 7
  start-page: 1068
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0845
  article-title: Nickel–tungsten carbide catalysts for the production of 2, 5-dimethylfuran from biomass-derived molecules
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201301356
– volume: 5
  start-page: 11300
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0245
  article-title: Highly porous nitrogen- and phosphorus-codoped graphene: an outstanding support for Pd catalysts to oxidize 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid
  publication-title: ACS Sust. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02049
– volume: 18
  start-page: 3152
  year: 2016
  ident: 10.1016/j.fuproc.2020.106528_bb0170
  article-title: Direct synthesis of V-containing all-silica beta-zeolite for efficient one-pot, one-step conversion of carbohydrates into 2,5-diformylfuran
  publication-title: Green Chem.
  doi: 10.1039/C5GC03051J
– volume: 6
  start-page: 2236
  year: 2013
  ident: 10.1016/j.fuproc.2020.106528_bb0940
  article-title: Diesel and alkane fuels from biomass by organocatalysis and metal–acid tandem catalysis
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201300476
– volume: 7
  start-page: 1701
  year: 2015
  ident: 10.1016/j.fuproc.2020.106528_bb0860
  article-title: Carbon nanotubes for the hydrogenation and hydrogenolysis of 5-hydroxymethylfurfural
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201500097
– volume: 9
  start-page: 660
  year: 2019
  ident: 10.1016/j.fuproc.2020.106528_bb0335
  article-title: A comparative study of nickel, cobalt, and iron oxyhydroxide anodes for the electrochemical oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b04003
– volume: 18
  start-page: 676
  year: 2016
  ident: 10.1016/j.fuproc.2020.106528_bb0480
  article-title: The effect of heterogeneous acid–base catalysis on conversion of 5-hydroxymethylfurfural into a cyclopentanone derivative
  publication-title: Green Chem.
  doi: 10.1039/C5GC01723H
– volume: 58
  start-page: 179
  year: 2015
  ident: 10.1016/j.fuproc.2020.106528_bb0310
  article-title: Selective oxidation of 5-hydroxymethyl-2-furfural to furan-2,5-dicarboxylic acid over spinel mixed metal oxide catalyst
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2014.09.017
– year: 2003
  ident: 10.1016/j.fuproc.2020.106528_bb0195
– volume: 16
  start-page: 4110
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0525
  article-title: Combination of Pd/C and Amberlyst-15 in a single reactor for the acid/hydrogenating catalytic conversion of carbohydrates to 5-hydroxy-2,5-hexanedione
  publication-title: Green Chem.
  doi: 10.1039/C4GC01158A
– volume: 119
  start-page: 433
  year: 2012
  ident: 10.1016/j.fuproc.2020.106528_bb0985
  article-title: Catalytic selective etherification of hydroxyl groups in 5-hydroxymethylfurfural over H4SiW12O40/MCM-41 nanospheres for liquid fuel production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.06.001
– volume: 10
  start-page: 1460
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_rf1100
  article-title: Synthesis of furandicarboxylic acid esters from nonfood feedstocks without concomitant levulinic acid formation
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201700051
– volume: 8
  start-page: 164
  year: 2018
  ident: 10.1016/j.fuproc.2020.106528_bb0320
  article-title: Fe–Zr–O catalyzed base-free aerobic oxidation of 5-HMF to 2,5-FDCA as a biomass-derived polyester monomer
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C7CY01704A
– volume: 6
  start-page: 383
  year: 2013
  ident: 10.1016/j.fuproc.2020.106528_bb0965
  article-title: Production of hybrid diesel fuel precursors from carbohydrates and petrochemicals using formic acid as a reactive solvent
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201200718
– volume: 56
  start-page: 5217
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb1070
  article-title: Auto-tandem catalysis with frustrated lewis pairs for reductive etherification of aldehydes and ketones
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201700231
– volume: 422
  start-page: 13
  year: 2016
  ident: 10.1016/j.fuproc.2020.106528_bb0095
  article-title: Acid-functionalized mesoporous carbons for the continuous production of 5-hydroxymethylfurfural
  publication-title: J. Mol. Catal. A Chem.
  doi: 10.1016/j.molcata.2016.01.005
– volume: 66
  start-page: 5413
  year: 2001
  ident: 10.1016/j.fuproc.2020.106528_bb0715
  article-title: Efficient Baylis–Hillman reaction using stoichiometric base catalyst and an aqueous medium
  publication-title: J. Org. Chem.
  doi: 10.1021/jo015628m
– volume: 5
  start-page: 2151
  year: 2012
  ident: 10.1016/j.fuproc.2020.106528_bb0430
  article-title: Catalytic oxidative decarboxylation of malic acid into dimethyl malonate in methanol with dioxygen
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201200489
– volume: 19
  start-page: 5103
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0505
  article-title: Conversion of HMF to methyl cyclopentenolone using Pd/Nb2O5 and Ca–Al catalysts via a two-step procedure
  publication-title: Green Chem.
  doi: 10.1039/C7GC02310C
– volume: 53
  start-page: 9755
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0930
  article-title: Pd/NbOPO4 multifunctional catalyst for the direct production of liquid alkanes from aldol adducts of furans
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201403440
– volume: 201
  start-page: 221
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0905
  article-title: Performance of basic mixed oxides for aqueous-phase 5-hydroxymethylfurfural-acetone aldol condensation
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2016.08.013
– volume: 80
  start-page: 579
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0655
  article-title: B-ring modified aurones as promising allosteric inhibitors of hepatitis C virus RNAdependent RNA polymerase
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2014.04.005
– volume: 66
  start-page: 111
  year: 2006
  ident: 10.1016/j.fuproc.2020.106528_bb0920
  article-title: Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2006.03.001
– volume: 36
  start-page: 38
  year: 2006
  ident: 10.1016/j.fuproc.2020.106528_bb1065
  article-title: Iron (III) chloride-catalyzed reductive etherification of carbonyl compounds with alcohols
  publication-title: Chem. Lett.
  doi: 10.1246/cl.2007.38
– volume: 50
  start-page: 7083
  year: 2011
  ident: 10.1016/j.fuproc.2020.106528_bb0565
  article-title: Caprolactam from renewable resources: catalytic conversion of 5-hydroxymethylfurfural into caprolactone
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201102156
– volume: 55
  start-page: 612
  year: 2012
  ident: 10.1016/j.fuproc.2020.106528_bb0570
  article-title: From 5-hydroxymethylfurfural (HMF) to polymer precursors: catalyst screening studies on the conversion of 1, 2, 6-hexanetriol to 1, 6-hexanediol
  publication-title: Top. Catal.
  doi: 10.1007/s11244-012-9839-6
– volume: 59
  start-page: 1257
  year: 2016
  ident: 10.1016/j.fuproc.2020.106528_bb0645
  article-title: Chemicals from biomass: synthesis of biologically active furanochalcones by Claisen–Schmidt condensation of biomass-derived 5-hydroxymethylfurfural (HMF) with acetophenones
  publication-title: Top. Catal.
  doi: 10.1007/s11244-016-0646-3
– volume: 16
  start-page: 1543
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0765
  article-title: Hydrogenation of 5-hydroxymethylfurfural in supercritical carbon dioxide-water: a tunable approach to dimethylfuran selectivity
  publication-title: Green Chem.
  doi: 10.1039/c3gc42145g
– volume: 4
  start-page: 83
  year: 2011
  ident: 10.1016/j.fuproc.2020.106528_bb0015
  article-title: Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C0EE00436G
– volume: 187
  start-page: 15
  year: 1989
  ident: 10.1016/j.fuproc.2020.106528_bb0595
  article-title: Synthèse du 5-bromométhyl-et du 5-chlorométhyl-2-furannecarboxaldéhyde
  publication-title: Carbohydr. Res.
  doi: 10.1016/0008-6215(89)80052-7
– volume: 9
  start-page: 1209
  year: 2016
  ident: 10.1016/j.fuproc.2020.106528_bb0530
  article-title: Selective conversion of 5-hydroxymethylfuraldehyde using Cp* Ir catalysts in aqueous formate buffer solution
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201501625
– volume: 13
  start-page: 293
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0810
  article-title: Platinum-cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3872
– volume: 51
  start-page: 5364
  year: 2012
  ident: 10.1016/j.fuproc.2020.106528_bb1055
  article-title: One-pot synthesis of 5-(ethoxymethyl) furfural from glucose using Sn-BEA and Amberlyst catalysts
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie2025536
– volume: 5
  start-page: 704
  year: 1991
  ident: 10.1016/j.fuproc.2020.106528_bb0520
  article-title: Catalytic-hydrogenation of 5-hydroxymethylfurfural in aqueous-medium
  publication-title: Bull. Soc. Chim. Fr.
– volume: 7
  start-page: 1470
  year: 2015
  ident: 10.1016/j.fuproc.2020.106528_bb0200
  article-title: Polyaniline-grafted VO(acac)2: an effective catalyst for the synthesis of 2,5-diformylfuran from 5-hydroxymethylfurfural and fructose
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201500119
– volume: 7
  year: 2015
  ident: 10.1016/j.fuproc.2020.106528_bb0785
  article-title: One-flow syntheses of diverse heterocyclic furan chemicals directly from fructose via tandem transformation platform
  publication-title: NPG Asia Mater.
  doi: 10.1038/am.2015.21
– volume: 5
  start-page: 284
  year: 2013
  ident: 10.1016/j.fuproc.2020.106528_bb0155
  article-title: Catalytic performance of zeolite-supported vanadia in the aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201200482
– volume: 18
  start-page: 2302
  year: 2016
  ident: 10.1016/j.fuproc.2020.106528_bb0215
  article-title: Direct synthesis of 2, 5-diformylfuran from fructose with graphene oxide as a bifunctional and metal-free catalyst
  publication-title: Green Chem.
  doi: 10.1039/C5GC02794B
– volume: 5
  start-page: 2035
  year: 2015
  ident: 10.1016/j.fuproc.2020.106528_bb0450
  article-title: Transformation of 5-hydroxymethylfurfural (HMF) to maleic anhydride by aerobic oxidation with heteropolyacid catalysts
  publication-title: ACS Catal.
  doi: 10.1021/cs501776n
– volume: 118
  start-page: 505
  year: 2018
  ident: 10.1016/j.fuproc.2020.106528_bb0040
  article-title: Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00395
– volume: 37
  start-page: 2099
  year: 1998
  ident: 10.1016/j.fuproc.2020.106528_bb0500
  article-title: Hydrogenation of diethyl adipate in a catalytic fixed-bed reactor
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie970631a
– volume: 12
  start-page: 634
  year: 2007
  ident: 10.1016/j.fuproc.2020.106528_bb0540
  article-title: Synthesis of 5-acetoxymethyl-and 5-hydroxymethyl-2-vinyl-furan
  publication-title: Molecules
  doi: 10.3390/12030634
– volume: 147
  start-page: 293
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0125
  article-title: Biomass derived chemicals: environmentally benign process for oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran by using nano-fibrous Ag-OMS-2-catalyst
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2013.09.004
– volume: 9
  start-page: 811
  issue: 3
  year: 2019
  ident: 10.1016/j.fuproc.2020.106528_bb0185
  article-title: The design and catalytic performance of molybdenum active sites on an MCM-41 framework for the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran
  publication-title: Catalysis Science & Technology
  doi: 10.1039/C8CY02291G
– volume: 15
  start-page: 584
  year: 2013
  ident: 10.1016/j.fuproc.2020.106528_bb0010
  article-title: Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass
  publication-title: Green Chem.
  doi: 10.1039/c3gc37065h
– volume: 72
  start-page: 7638
  year: 2016
  ident: 10.1016/j.fuproc.2020.106528_bb0755
  article-title: Practical synthesis of mumefural, a component of Japanese apricot juice concentrate
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2016.10.026
– volume: 200
  start-page: 192
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0850
  article-title: Carbon-coated Cu-Co bimetallic nanoparticles as selective and recyclable catalysts for production of biofuel 2,5-dimethylfuran
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2016.07.004
– volume: 6
  start-page: 8048
  year: 2018
  ident: 10.1016/j.fuproc.2020.106528_bb0710
  article-title: Al-doping promoted aerobic amidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxamide over cryptomelane
  publication-title: ACS Sust. Chem.Eng.
  doi: 10.1021/acssuschemeng.8b01617
– volume: 19
  start-page: 1003
  year: 1895
  ident: 10.1016/j.fuproc.2020.106528_bb0030
  article-title: A derivative of furfuraldehyde from laevulose
  publication-title: Chemiker-Zeitung
– volume: 7
  start-page: 2089
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0510
  article-title: Palladium/carbon dioxide cooperative catalysis for the production of diketone derivatives from carbohydrates
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201402221
– volume: 19
  start-page: 216
  year: 1895
  ident: 10.1016/j.fuproc.2020.106528_bb0025
  article-title: Action of oxalic acid on inulin
  publication-title: Chem. Zeit.
– year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0300
– volume: 8
  start-page: 13686
  year: 2018
  ident: 10.1016/j.fuproc.2020.106528_bb0670
  article-title: Production of renewable long-chained cycloalkanes from biomass-derived furfurals and cyclic ketones
  publication-title: RSC Adv.
  doi: 10.1039/C8RA01723A
– volume: 43
  start-page: 10224
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0375
  article-title: Substrate and product role in the Shvo’s catalyzed selective hydrogenation of the platform biobased chemical 5-hydroxymethylfurfural
  publication-title: Dalton Trans.
  doi: 10.1039/C4DT00304G
– volume: 111
  start-page: 397
  year: 2011
  ident: 10.1016/j.fuproc.2020.106528_bb0070
  article-title: Ionic liquid-mediated formation of 5-hydroxymethylfurfural-a promising biomass-derived building block
  publication-title: Chem. Rev.
  doi: 10.1021/cr100171a
– volume: 19
  start-page: 1075
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0345
  article-title: Highly selective photocatalytic oxidation of biomass-derived chemicals to carboxyl compounds over Au/TiO2
  publication-title: Green Chem.
  doi: 10.1039/C6GC03022J
– volume: 51
  start-page: 5331
  year: 2012
  ident: 10.1016/j.fuproc.2020.106528_bb1035
  article-title: Efficient one-pot synthesis of 5-(ethoxymethyl)furfural from fructose catalyzed by a novel solid catalyst
  publication-title: Ind. Chem. Eng. Res.
  doi: 10.1021/ie3020445
– volume: 2
  start-page: 547
  year: 2010
  ident: 10.1016/j.fuproc.2020.106528_bb0575
  article-title: Chemoselective hydrogenolysis of tetrahydropyran-2-methanol to 1, 6-hexanediol over rhenium-modified carbon-supported rhodium catalysts
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201000018
– volume: 117
  start-page: 68
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb1005
  article-title: Efficient one-pot synthesis of 5-ethoxymethylfurfural from fructose catalyzed by heteropolyacid supported on K-10 clay
  publication-title: Fuel
  doi: 10.1016/j.fuel.2013.09.072
– volume: 481
  start-page: 49
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0415
  article-title: Catalytic synthesis of 2, 5-bismethoxymethylfuran: a promising cetane number improver for diesel
  publication-title: Appl. Catal. A-Gen.
  doi: 10.1016/j.apcata.2014.05.003
– volume: 7
  start-page: 34776
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0280
  article-title: Platinum deposited on cerium coordination polymer for catalytic oxidation of hydroxymethylfurfural producing 2,5-furandicarboxylic acid
  publication-title: RSC Adv.
  doi: 10.1039/C7RA05427K
– volume: 106
  start-page: 4044
  year: 2006
  ident: 10.1016/j.fuproc.2020.106528_bb0020
  article-title: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering
  publication-title: Chem. Rev.
  doi: 10.1021/cr068360d
– volume: 2000
  start-page: 1131
  year: 2000
  ident: 10.1016/j.fuproc.2020.106528_bb0690
  article-title: Racemic synthesis of the new antibiotic tetramic acid reutericyclin
  publication-title: Synlett
  doi: 10.1055/s-2000-6734
– volume: 103
  start-page: 227
  year: 2019
  ident: 10.1016/j.fuproc.2020.106528_bb0055
  article-title: Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2018.12.010
– volume: 53
  start-page: 11751
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0140
  article-title: Heterogeneous mesoporous manganese/cobalt oxide catalysts for selective oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC06097A
– volume: 50
  start-page: 5633
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0475
  article-title: Conversion of 5-hydroxymethylfurfural to a cyclopentanone derivative by ring rearrangement over supported Au nanoparticles
  publication-title: Chem. Commun.
  doi: 10.1039/C3CC49591D
– volume: 358
  start-page: 326
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0625
  article-title: MOF-derived cobalt nanoparticles catalyze a general synthesis of amines
  publication-title: Science
  doi: 10.1126/science.aan6245
– volume: 11
  start-page: 43
  year: 1981
  ident: 10.1016/j.fuproc.2020.106528_bb0735
  article-title: A direct alcohol for hydrazine interchange: scope and stereochemistry
  publication-title: Synth.Commun.
  doi: 10.1080/00397918108064281
– volume: 3
  start-page: 2104
  year: 2013
  ident: 10.1016/j.fuproc.2020.106528_bb1015
  article-title: Silica coated magnetic Fe3O4 nanoparticles supported phosphotungstic acid: a novel environmentally friendly catalyst for the synthesis of 5-ethoxymethylfurfural from 5-hydroxymethylfurfural and fructose
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/c3cy00223c
– volume: 4
  start-page: 2326
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0400
  article-title: Combined 1, 4-butanediol lactonization and transfer hydrogenation/hydrogenolysis of furfuralderivatives under continuous flow conditions
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C4CY00213J
– volume: 2
  start-page: 11062
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0865
  article-title: Graphitic carbon nitride (g-C3N4)-derived Fe-N-C catalysts for selective hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201701966
– volume: 14
  start-page: 2265
  year: 2004
  ident: 10.1016/j.fuproc.2020.106528_bb0730
  article-title: 5-Lipoxygenase inhibitors with histamine H1 receptor antagonist activity
  publication-title: Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2004.02.005
– volume: 5
  start-page: 6328
  year: 2012
  ident: 10.1016/j.fuproc.2020.106528_bb0960
  article-title: Production of high quality diesel from cellulose and hemicellulose by the Sylvan process: catalysts and process variables
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee02778j
– ident: 10.1016/j.fuproc.2020.106528_bb1095
– volume: 14
  start-page: 1593
  year: 2012
  ident: 10.1016/j.fuproc.2020.106528_bb1040
  article-title: A direct synthesis of 5-alkoxymethylfurfural ethers from fructose via sulfonic acid-functionalized ionic liquids
  publication-title: Green Chem.
  doi: 10.1039/c2gc35175g
– volume: 123
  start-page: 4903
  year: 2019
  ident: 10.1016/j.fuproc.2020.106528_bb0915
  article-title: Synergistic catalytic mechanism of acidic silanol and basic alkylamine bifunctional groups over SBA-15 zeolite toward aldol condensation
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b11941
– volume: 244
  start-page: 78
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0105
  article-title: Characterization of products from hydrothermal carbonization of pine
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.07.138
– volume: 199
  start-page: 439
  year: 2016
  ident: 10.1016/j.fuproc.2020.106528_bb0805
  article-title: Base metal-Pt alloys: a general route to high selectivity and stability in the production of biofuels from HMF
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2016.06.051
– volume: 47
  start-page: 1351
  year: 2018
  ident: 10.1016/j.fuproc.2020.106528_bb0190
  article-title: Catalytic oxidation of carbohydrates into organic acids and furan chemicals
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00213K
– volume: 19
  start-page: 722
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0545
  article-title: 5-Hydroxymethyl-2-vinylfuran: a biomass-based solvent-free adhesive
  publication-title: Green Chem.
  doi: 10.1039/C6GC02723G
– volume: 12
  start-page: 2652
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0555
  article-title: Alkynylation of bio-based 5-hydroxymethylfurfural to connect biomass processing with conjugated polymers and furanic pharmaceuticals
  publication-title: Chem.-Asian J.
  doi: 10.1002/asia.201700940
– volume: 1
  start-page: 11
  year: 2009
  ident: 10.1016/j.fuproc.2020.106528_bb0975
  article-title: Furanics: versatile molecules for biofuels and bulk chemicals applications
  publication-title: Biofuels Techno.
– volume: 146
  start-page: 244
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0790
  article-title: Efficient production of the liquid fuel 2, 5-dimethylfuran from 5-hydroxymethylfurfural over Ru/Co3O4 catalyst
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2013.04.026
– volume: 80
  start-page: 1760
  year: 2015
  ident: 10.1016/j.fuproc.2020.106528_bb0150
  article-title: Bicomponent assembly of VO2 and polyaniline-functionalized carbon nanotubes for the selective oxidation of biomass-based 5-hydroxymethylfurfural to 2,5-diformylfuran
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201500292
– volume: 1992
  start-page: 541
  year: 1992
  ident: 10.1016/j.fuproc.2020.106528_bb0600
  article-title: The Vilsmeier reaction: a new synthetic method for 5-(chloromethyl)-2-furaldehyde
  publication-title: Synthesis
  doi: 10.1055/s-1992-26158
– volume: 316
  start-page: 57
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0120
  article-title: Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-diformylfuran on manganese oxide catalysts
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2014.05.003
– volume: 4
  start-page: 11165
  year: 2019
  ident: 10.1016/j.fuproc.2020.106528_bb0535
  article-title: Highly selective conversion of HMF to 1-hydroxy-2,5-hexanedione on Pd/MIL-101(Cr)
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201903535
– volume: 14
  start-page: 1626
  year: 2012
  ident: 10.1016/j.fuproc.2020.106528_bb1090
  article-title: Etherification and reductive etherification of 5-(hydroxymethyl) furfural: 5-(alkoxymethyl) furfurals and 2, 5-bis (alkoxymethyl) furans as potential bio-diesel candidates
  publication-title: Green Chem.
  doi: 10.1039/c2gc35102a
– volume: 8
  start-page: 1323
  year: 2015
  ident: 10.1016/j.fuproc.2020.106528_bb0405
  article-title: Copperzinc alloy nanopowder: a robust precious-metal-free catalyst for the conversion of 5-hydroxymethylfurfural
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201403453
– volume: 49
  start-page: 6797
  year: 1993
  ident: 10.1016/j.fuproc.2020.106528_bb0695
  article-title: Synthesis of (±) tetrahydromyricoidine
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(01)80423-3
– volume: 53
  start-page: 3056
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0780
  article-title: Selective transformation of 5-hydroxymethylfurfural into the liquid fuel 2,5-dimethylfuran over carbon-supported ruthenium
  publication-title: Ind. Eng. Chem.Res.
  doi: 10.1021/ie404441a
– volume: 8
  start-page: 1151
  year: 2015
  ident: 10.1016/j.fuproc.2020.106528_bb0360
  article-title: The direct conversion of sugars into 2,5-furandicarboxylic acid in a triphasic system
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201500118
– volume: 547
  start-page: 230
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0260
  article-title: Basic anion-exchange resin (AER)-supported Au-Pd alloy nanoparticles for the oxidation of 5-hydroxymethyl-2-furfural (HMF) into 2,5-furan dicarboxylic acid (FDCA)
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2017.09.012
– volume: 113
  start-page: 1499
  year: 2013
  ident: 10.1016/j.fuproc.2020.106528_bb0045
  article-title: Hydroxymethylfurfural, a versatile platform chemical made from renewable resources
  publication-title: Chem. Rev.
  doi: 10.1021/cr300182k
– volume: 232
  start-page: 89
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0770
  article-title: Selective hydrogenation of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-dimethylfuran (DMF) under atmospheric hydrogen pressure over carbon supported PdAu bimetallic
  publication-title: Catalyst. Catal. Today
  doi: 10.1016/j.cattod.2013.10.012
– volume: 12
  start-page: 185
  year: 2019
  ident: 10.1016/j.fuproc.2020.106528_rf1105
  article-title: Towards improved biorefinery technologies: 5-methylfurfural as a versatile C6 platform for biofuels development
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201802126
– volume: 431
  start-page: 32
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0795
  article-title: Ruthenium supported on CoFe layered double oxide for selective hydrogenation of 5-hydroxymethylfurfural
  publication-title: Mol. Catal.
  doi: 10.1016/j.mcat.2017.01.011
– volume: 278
  start-page: 66
  year: 2016
  ident: 10.1016/j.fuproc.2020.106528_bb0135
  article-title: Oxidation of 5-hydroxymethyl furfural to 2, 5-diformylfuran in aqueous media over heterogeneous manganese based catalysts
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2016.03.031
– year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0285
– volume: 54
  start-page: 10703
  year: 1998
  ident: 10.1016/j.fuproc.2020.106528_bb0610
  article-title: Building blocks from sugars. Part 23. Hydrophilic 3-pyridinols from fructose and isomaltulose
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(98)00634-6
– volume: 20
  start-page: 2845
  year: 2018
  ident: 10.1016/j.fuproc.2020.106528_bb0465
  article-title: Improving the production of maleic acid from biomass: TS-1 catalysed aqueous phase oxidation of furfural in the presence of γ-valerolactone
  publication-title: Green Chem.
  doi: 10.1039/C8GC00857D
– volume: 61
  start-page: 10996
  year: 2018
  ident: 10.1016/j.fuproc.2020.106528_bb0585
  article-title: From oxiranes to oligomers: architectures of U.S. FDA approved pharmaceuticals containing oxygen heterocycles
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.8b00876
– volume: 344
  start-page: 953
  year: 2002
  ident: 10.1016/j.fuproc.2020.106528_bb0725
  article-title: A practical synthesis of α, β-unsaturated imides, useful substrates for asymmetric conjugate addition reactions
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/1615-4169(200210)344:9<953::AID-ADSC953>3.0.CO;2-A
– volume: 49
  start-page: 3963
  year: 2006
  ident: 10.1016/j.fuproc.2020.106528_bb0675
  article-title: Antitumor agents. 250. Design and synthesis of new curcumin analogues as potential anti-prostate cancer agents
  publication-title: J. Med. Chem.
  doi: 10.1021/jm051043z
– volume: 19
  start-page: 1619
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0275
  article-title: MnCo2O4 spinel supported ruthenium catalyst for air-oxidation of HMF to FDCA under aqueous phase and base-free conditions
  publication-title: Green Chem.
  doi: 10.1039/C7GC00027H
– volume: 14
  start-page: 2986
  year: 2012
  ident: 10.1016/j.fuproc.2020.106528_bb0145
  article-title: A one-pot approach for conversion of fructose to 2, 5-diformylfuran by combination of Fe3O4-SBA-SO3H and K-OMS-2
  publication-title: Green Chem.
  doi: 10.1039/c2gc35947b
– volume: 11
  start-page: 2138
  year: 2018
  ident: 10.1016/j.fuproc.2020.106528_bb0330
  article-title: Electrochemical oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid (FDCA) in acidic media enabling spontaneous FDCA separation
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201800532
– volume: 18
  start-page: 2976
  year: 2016
  ident: 10.1016/j.fuproc.2020.106528_bb0440
  article-title: Selective aerobic oxidation of furfural to maleic anhydride with heterogeneous Mo–V–O catalysts
  publication-title: Green Chem.
  doi: 10.1039/C6GC00508J
– volume: 7
  start-page: 96
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0580
  article-title: Direct synthesis of 1,6-hexanediol from HMF over a heterogeneous Pd/ZrP catalyst using formic acid as hydrogen source
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201300832
– volume: 17
  start-page: 1038
  year: 2015
  ident: 10.1016/j.fuproc.2020.106528_bb0495
  article-title: Selective conversion of furfural to cyclopentanone or cyclopentanol using different preparation methods of Cu–Co catalysts
  publication-title: Green Chem.
  doi: 10.1039/C4GC01601G
– volume: 6
  start-page: 5766
  year: 2018
  ident: 10.1016/j.fuproc.2020.106528_bb0250
  article-title: Efficient method for synthesis of 2,5-furandicarboxylic acid from 5-hydroxymethylfurfural and fructose using Pd/CC catalyst under aqueous conditions
  publication-title: ACS Sust. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b03124
– volume: 43
  start-page: 2473
  year: 2008
  ident: 10.1016/j.fuproc.2020.106528_bb0640
  article-title: Chemotherapy of leishmaniasis part-VIII: synthesis and bioevaluation of novel chalcones
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2007.12.014
– volume: 234
  start-page: 59
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0425
  article-title: Biomass into chemicals: one-pot production of furan-based diols from carbohydrates via tandem reactions
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2014.02.029
– volume: 19
  start-page: 2482
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0775
  article-title: Direct one-pot conversion of monosaccharides into high-yield 2,5-dimethylfuran over a multifunctional Pd/Zr-based metal-organic framework@sulfonated graphene oxide catalyst
  publication-title: Green Chem.
  doi: 10.1039/C7GC00269F
– volume: 57
  start-page: 64
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0160
  article-title: Heterogeneous selective oxidation of 5-hydroxymethyl-2-furfural (HMF) into 2,5-diformylfuran catalyzed by vanadium supported activated carbon in MIBK, extracting solvent for HMF
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2014.08.008
– volume: 8
  start-page: 317
  year: 2015
  ident: 10.1016/j.fuproc.2020.106528_bb0970
  article-title: Synthesis of high quality alkyl naphthenic kerosene by reacting oil refinery with biomass refinery stream
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03194F
– volume: 113
  start-page: 625
  year: 2013
  ident: 10.1016/j.fuproc.2020.106528_bb0980
  article-title: Efficient conversion of carbohydrates into 5-ethoxymethylfurfural in ethanol catalyzed by AlCl3
  publication-title: Fuel
  doi: 10.1016/j.fuel.2013.06.015
– volume: 18
  start-page: 979
  year: 2016
  ident: 10.1016/j.fuproc.2020.106528_bb0365
  article-title: The direct conversion of sugars into 2, 5-furandicarboxylic acid in a triphasic system
  publication-title: Green Chem.
  doi: 10.1039/C5GC01584G
– volume: 40
  start-page: 1164
  year: 2008
  ident: 10.1016/j.fuproc.2020.106528_bb0550
  article-title: Brand-new biomass-based vinyl polymers from 5-hydroxymethylfurfural
  publication-title: Polym. J.
  doi: 10.1295/polymj.PJ2008170
– volume: 135
  start-page: 3997
  year: 2013
  ident: 10.1016/j.fuproc.2020.106528_bb0885
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3122763
– volume: 238
  start-page: 716
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0065
  article-title: Conversion of biomass to hydroxymethylfurfural: a review of catalytic systems and underlying mechanisms
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.04.026
– volume: 5
  start-page: 4208
  year: 2015
  ident: 10.1016/j.fuproc.2020.106528_bb0410
  article-title: Efficient synthesis of 2, 5-dihydroxymethylfuran and 2, 5-dimethylfuran from 5-hydroxymethylfurfural using mineral-derived Cu catalysts as versatile catalysts
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C5CY00700C
– volume: 7
  start-page: 2266
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0420
  article-title: Tunable and selectiveconversion of 5-HMF to 2, 5-furandimethanol and 2, 5-dimethylfuran over copperdopedporous metal oxides
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201402095
– volume: 8
  start-page: 4022
  year: 2015
  ident: 10.1016/j.fuproc.2020.106528_bb0945
  article-title: Catalytic upgrading of 5-hydroxymethylfurfural to drop-in biofuels by solid base and bifunctional metal–acid catalysts
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201501136
– volume: 6
  start-page: 25678
  year: 2016
  ident: 10.1016/j.fuproc.2020.106528_bb0205
  article-title: One-pot synthesis of 2, 5-diformylfuran from fructose using a magnetic bi-functional catalyst
  publication-title: RSC Adv.
  doi: 10.1039/C6RA01549B
– volume: 50
  start-page: 4195
  year: 2007
  ident: 10.1016/j.fuproc.2020.106528_bb0605
  article-title: Structure–activity relationships of phenyl-furanyl-rhodanines as inhibitors of RNA polymerase with antibacterial activity on biofilms
  publication-title: J. Med. Chem.
  doi: 10.1021/jm0703183
– volume: 3
  start-page: 992
  year: 2015
  ident: 10.1016/j.fuproc.2020.106528_bb1030
  article-title: Magnetic material grafted cross-linked imidazolium based polyionic liquids: an efficient acid catalyst for the synthesis of promising liquid fuel 5-ethoxymethylfurfural from carbohydrates
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06135G
– volume: 5
  start-page: 11280
  issue: 12
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0855
  article-title: Inclusion of Zn into metallic ni enables selective and effective synthesis of 2,5-dimethylfuran from bioderived 5-hydroxymethylfurfural
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b01813
– volume: 5
  start-page: 428
  year: 2013
  ident: 10.1016/j.fuproc.2020.106528_bb0935
  article-title: The hydrodeoxygenation of bioderived furans into alkanes
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1609
– volume: 21
  start-page: 1388
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0240
  article-title: Aerobic oxidation of diverse primary alcohols to carboxylic acids with a heterogeneous Pd-Bi-Te/C (PBT/C) catalyst
  publication-title: Org. Process. Res. Dev.
  doi: 10.1021/acs.oprd.7b00223
– volume: 19
  start-page: 3880
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0620
  article-title: Versatile CO-assisted direct reductive amination of 5-hydroxymethylfurfural catalyzed by a supported gold catalyst
  publication-title: Green Chem.
  doi: 10.1039/C7GC01579H
– volume: 18
  start-page: 643
  year: 2016
  ident: 10.1016/j.fuproc.2020.106528_bb0455
  article-title: The conversion of 5-hydroxymethyl furfural (HMF) to maleic anhydride with vanadium-based heterogeneous catalysts
  publication-title: Green Chem.
  doi: 10.1039/C5GC01794G
– volume: 13
  start-page: 237
  year: 2000
  ident: 10.1016/j.fuproc.2020.106528_bb0350
  article-title: A new approach for the production of 2, 5-furandicarboxylic acid by in situ oxidation of 5-hydroxymethylfurfural starting from fructose
  publication-title: Top. Catal.
  doi: 10.1023/A:1009017929727
– volume: 6
  start-page: 1659
  year: 2013
  ident: 10.1016/j.fuproc.2020.106528_bb0875
  article-title: Electrocatalytic hydrogenation of 5-hydroxymethylfurfural in the absence and presence of glucose
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201300443
– volume: 175
  start-page: 435
  year: 2011
  ident: 10.1016/j.fuproc.2020.106528_bb0995
  article-title: Etherification of 5-hydroxymethyl-2-furfural (HMF) with ethanol to biodiesel components using mesoporous solid acidic catalysts
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2011.05.008
– volume: 6
  start-page: 2925
  year: 2013
  ident: 10.1016/j.fuproc.2020.106528_bb0880
  article-title: Electrochemistry for biofuel generation: production of furans by electrocatalytic hydrogenation of furfurals
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41857j
– volume: 252
  start-page: 76
  year: 2018
  ident: 10.1016/j.fuproc.2020.106528_bb0090
  article-title: Production of 5-hydroxymethylfurfural from starch-rich food waste catalyzed by sulfonated biochar
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.12.098
– volume: 7
  start-page: 2131
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0355
  article-title: Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2, 5-furandicarboxylic acid
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201402105
– volume: 2
  start-page: 438
  year: 2008
  ident: 10.1016/j.fuproc.2020.106528_bb0890
  article-title: Furfural: hemicellulose/xylosederived biochemical
  publication-title: Biofuels Bioprod. Biorefin.
  doi: 10.1002/bbb.95
– volume: 30
  start-page: 139
  year: 2012
  ident: 10.1016/j.fuproc.2020.106528_bb0705
  article-title: β-Alanine-DBU: a highly efficient catalytic system for Knoevenagel-Doebner reaction under mild conditions
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.201180455
– year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0235
– volume: 6
  start-page: 4095
  year: 2016
  ident: 10.1016/j.fuproc.2020.106528_bb0800
  article-title: Mechanisms for high selectivity in the hydrodeoxygenation of 5-hydroxymethylfurfural over PtCo nanocrystals
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b00750
– volume: 8
  start-page: 1093
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0665
  article-title: Synthesis and synergistic antifungal effects of monoketone derivatives of curcumin against fluconazole-resistant Candida spp.
  publication-title: MedChemComm.
  doi: 10.1039/C6MD00649C
– volume: 267
  start-page: 242
  year: 2018
  ident: 10.1016/j.fuproc.2020.106528_bb0115
  article-title: Phosphoric acid-activated wood biochar for catalytic conversion of starch-rich food waste into glucose and 5-hydroxymethylfurfural
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.07.048
– volume: 44
  start-page: 3771
  year: 1988
  ident: 10.1016/j.fuproc.2020.106528_bb1080
  article-title: Ionic hydrogenation with organosilanes under acid-free conditions. synthesis of ethers, alkoxysilanes, thioethers, and cyclic ethers via rganosilyl iodide and triflate catalyzed reductions of carbonyl compounds and their derivatives
  publication-title: Tetrahedron
  doi: 10.1016/S0040-4020(01)86635-7
– volume: 20
  start-page: 3753
  issue: 16
  year: 2018
  ident: 10.1016/j.fuproc.2020.106528_bb0950
  article-title: Synthesis of high-density aviation fuels with methyl benzaldehyde and cyclohexanone
  publication-title: Green Chem.
  doi: 10.1039/C8GC01628C
– volume: 54
  start-page: 11825
  year: 2015
  ident: 10.1016/j.fuproc.2020.106528_bb0895
  article-title: Synthesis of jet-fuel range cycloalkanes from the mixtures of cyclopentanone and butanal
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b03379
– volume: 13
  start-page: 554
  year: 2011
  ident: 10.1016/j.fuproc.2020.106528_bb0445
  article-title: Oxidation of 5-hydroxymethylfurfural to maleic anhydride with molecular oxygen
  publication-title: Green Chem.
  doi: 10.1039/c0gc00837k
– volume: 1995
  start-page: 303
  year: 1995
  ident: 10.1016/j.fuproc.2020.106528_bb0745
  article-title: Syntheses of γ-oxo acids or γ-oxo esters by photooxygenation of furanic compounds and reduction under ultrasound: application to the synthesis of 5-aminolevulinic acid hydrochloride
  publication-title: Synthesis
  doi: 10.1055/s-1995-3897
– volume: 12
  start-page: 1253
  year: 2010
  ident: 10.1016/j.fuproc.2020.106528_bb0815
  article-title: A two-step approach for the catalytic conversion of glucose to 2, 5-dimethylfuran in ionic liquids
  publication-title: Green Chem.
  doi: 10.1039/c004343e
– volume: 1
  start-page: 1174
  year: 2013
  ident: 10.1016/j.fuproc.2020.106528_bb0085
  article-title: Biochar based solid acid catalyst hydrolyze biomass
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2013.09.004
– volume: 19
  start-page: 3820
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0265
  article-title: Hydrophilic mesoporous poly(ionic liquid)-supported Au-Pd alloy nanoparticles towards aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions
  publication-title: Green Chem.
  doi: 10.1039/C7GC01116D
– volume: 14
  start-page: 2457
  year: 2012
  ident: 10.1016/j.fuproc.2020.106528_bb0835
  article-title: One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol
  publication-title: Green Chem.
  doi: 10.1039/c2gc35667h
– volume: 5
  start-page: 5852
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0270
  article-title: Highly efficient and stable bimetallic AuPd over La-doped Ca-Mg-Al layered double hydroxide for base-free aerobic oxidation of 5-hydroxymethylfurfural in water
  publication-title: ACS Sust. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00573
– volume: 11
  start-page: 612
  year: 2018
  ident: 10.1016/j.fuproc.2020.106528_bb0470
  article-title: Highly efficient gas-phase oxidation of renewable furfural to maleic anhydride over plate vanadium phosphorus oxide catalyst
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201701866
– volume: 314
  start-page: 52
  year: 2018
  ident: 10.1016/j.fuproc.2020.106528_bb0110
  article-title: Sulfonated biochar as acid catalyst for sugar hydrolysis and dehydration
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2018.02.034
– volume: 5
  start-page: 1463
  year: 2015
  ident: 10.1016/j.fuproc.2020.106528_bb0830
  article-title: Renewable fuels from biomass-derived compounds: Ru-containing hydrotalcites as catalysts for conversion of HMF to 2, 5-dimethylfuran
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C4CY01376J
– volume: 16
  start-page: 4734
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0380
  article-title: Selective hydrogenation of 5-hydroxymethylfurfural to 2,5-bis-(hydroxymethyl) furan using Pt/MCM-41 in an aqueous medium: a simple approach
  publication-title: Green Chem.
  doi: 10.1039/C4GC01127A
– volume: 19
  start-page: 1701
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0490
  article-title: Selective conversion of 5-hydroxymethylfurfural to cyclopentanone derivatives over Cu–Al2O3 and Co–Al2O3 catalysts in water
  publication-title: Green Chem.
  doi: 10.1039/C7GC00315C
– volume: 139
  start-page: 11493
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0630
  article-title: Electronic effect of ruthenium nanoparticles on efficient reductive amination of carbonyl compounds
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04481
– volume: 447
  start-page: 982
  year: 2007
  ident: 10.1016/j.fuproc.2020.106528_bb0760
  article-title: Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates
  publication-title: Nature
  doi: 10.1038/nature05923
– volume: 53
  start-page: 5820
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0210
  article-title: Environmentally friendly oxidation of biomass derived 5-hydroxymethylfurfural into 2, 5-diformylfuran catalyzed by magnetic separation of ruthenium catalyst
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie500156d
– volume: 123
  start-page: 2423
  year: 2011
  ident: 10.1016/j.fuproc.2020.106528_bb0955
  article-title: Production of high-quality diesel from biomass waste products
  publication-title: Angew. Chem.
  doi: 10.1002/ange.201007508
– volume: 99
  start-page: 80
  year: 2012
  ident: 10.1016/j.fuproc.2020.106528_bb1045
  article-title: Heteropolyacid catalyzed conversion of fructose, sucrose, and inulin to 5-ethoxymethylfurfural, a liquid biofuel candidate
  publication-title: Appl. Energ.
  doi: 10.1016/j.apenergy.2012.04.049
– volume: 18
  start-page: 2175
  year: 2016
  ident: 10.1016/j.fuproc.2020.106528_bb0515
  article-title: Synthesis of 1, 6-hexanediol from HMF over double-layered catalysts of Pd/SiO2 + Ir–ReOx/SiO2 in a fixed-bed reactor
  publication-title: Green Chem.
  doi: 10.1039/C5GC02228B
– volume: 5
  start-page: 377
  year: 2004
  ident: 10.1016/j.fuproc.2020.106528_bb0560
  article-title: Hydrogenation of dimethyl adipate over bimetallic catalysts
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2004.05.002
– volume: 9
  start-page: 2760
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0255
  article-title: Catalytic, aerial oxidation of biomass-derived furans to furan carboxylic acids in water over bimetallic nickel-palladium alloy nanoparticles
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201600942
– volume: 20
  start-page: 2283
  year: 2010
  ident: 10.1016/j.fuproc.2020.106528_bb0650
  article-title: Inhibition of eEF2-K by thieno[2,3-b]pyridine analogues
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2010.02.005
– volume: 19
  start-page: 914
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0460
  article-title: Highly efficient formic acid-mediated oxidation of renewable furfural to maleic acid with H2O2
  publication-title: Green Chem.
  doi: 10.1039/C6GC03020C
– volume: 94
  start-page: 3659
  year: 1972
  ident: 10.1016/j.fuproc.2020.106528_bb1075
  article-title: Silane reductions in acidic media. I. Reduction of aldehydes and ketones in alcoholic acidic media. General synthesis of ethers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00765a084
– volume: 299
  start-page: 316
  year: 2013
  ident: 10.1016/j.fuproc.2020.106528_bb0305
  article-title: Porphyrin-based porous organic polymer-supported iron(III) catalyst for efficient aerobic oxidation of 5-hydroxymethyl-furfural into 2,5-furandicarboxylic acid
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2012.12.024
– volume: 12
  start-page: 1201
  year: 2010
  ident: 10.1016/j.fuproc.2020.106528_bb0615
  article-title: Production of biobased HMF derivatives by reductive amination
  publication-title: Green Chem.
  doi: 10.1039/c002340j
– volume: 14
  start-page: 1413
  year: 2012
  ident: 10.1016/j.fuproc.2020.106528_bb0395
  article-title: The selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using heterogeneous catalysts
  publication-title: Green Chem.
  doi: 10.1039/c2gc35039d
– volume: 128
  start-page: 17063
  year: 2006
  ident: 10.1016/j.fuproc.2020.106528_bb0685
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0623358
– volume: 8
  start-page: 1197
  year: 2018
  ident: 10.1016/j.fuproc.2020.106528_bb0325
  article-title: Copper-based catalytic anodes to produce 2,5-furandicarboxylic acid, a biomass-derived alternative to terephthalic acid
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03152
– volume: 3
  start-page: 1033
  year: 2013
  ident: 10.1016/j.fuproc.2020.106528_bb0390
  article-title: Selective hydrogenation of 2-hydroxymethyl-5-furfural to 2, 5-bis(hydroxymethyl)furan over gold sub-nano clusters
  publication-title: RSC Adv.
  doi: 10.1039/C2RA22190J
– volume: 36
  start-page: 1638
  year: 2015
  ident: 10.1016/j.fuproc.2020.106528_bb0825
  article-title: Tailored one-pot production of furan-based fuels from fructose in an ionic liquid biphasic solvent system
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(15)60927-5
– volume: 55
  start-page: 8338
  year: 2016
  ident: 10.1016/j.fuproc.2020.106528_bb0590
  article-title: Critical effect of 5-hydroxymethylfurfural aging and decomposition on the utility of biomass conversion in organic synthesis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201602883
– volume: 18
  start-page: 6222
  year: 2016
  ident: 10.1016/j.fuproc.2020.106528_bb0870
  article-title: Efficient hydrogenolysis of 5-hydroxymethylfurfural to 2,5-dimethylfuran over a cobalt and copper bimetallic catalyst on N-graphene-modified Al2O3
  publication-title: Green Chem.
  doi: 10.1039/C6GC02630C
– volume: 6
  start-page: 43152
  year: 2016
  ident: 10.1016/j.fuproc.2020.106528_bb0100
  article-title: Brønsted-Lewis solid acid as a recyclable catalyst for conversion of glucose to 5-hydroxymethylfurfural and its hydrophobicity effect
  publication-title: RSC Adv.
  doi: 10.1039/C6RA03565E
– volume: 472
  start-page: 64
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0130
  article-title: Efficient aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran catalyzed by magnetic nanoparticle supported manganese oxide
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2013.12.014
– volume: 288
  start-page: 8
  year: 2012
  ident: 10.1016/j.fuproc.2020.106528_bb0990
  article-title: Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2011.12.017
– volume: 375
  start-page: 121983
  year: 2019
  ident: 10.1016/j.fuproc.2020.106528_bb0080
  article-title: Value-added chemicals from food supply chain wastes: state-of-the-art review and future prospects
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.121983
– volume: 7
  start-page: 6050
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0165
  article-title: Direct synthesis of V-containing all-silica beta-zeolite for efficient one-pot, one-step conversion of carbohydrates into 2, 5-diformylfuran
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C7CY01834G
– volume: 58
  start-page: 4069
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0660
  article-title: Concise and efficient synthesis of Estereoisomers of exo-cyclic carbohydrate enones. Aldol condensation of dihydrolevoglucosenone with five-membered aromatic aldehydes Part 1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2017.09.028
– volume: 13
  start-page: 754
  year: 2011
  ident: 10.1016/j.fuproc.2020.106528_bb0050
  article-title: 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications
  publication-title: Green Chem.
  doi: 10.1039/c0gc00401d
– volume: 4
  start-page: 83
  year: 2003
  ident: 10.1016/j.fuproc.2020.106528_bb0370
  article-title: Cooperative effect of cobalt acetylacetonate and silica in the catalytic cyclization and oxidation of fructose to 2,5-furandicarboxylic acid
  publication-title: Catal. Commun.
  doi: 10.1016/S1566-7367(02)00261-3
– volume: 139
  start-page: 10224
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb1085
  article-title: Reductive etherification via anion-binding catalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05832
– volume: 57
  start-page: 2811
  year: 2018
  ident: 10.1016/j.fuproc.2020.106528_bb0295
  article-title: Atomic layer deposition of a Pt-skin catalyst for base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.7b05101
– volume: 20
  start-page: 1095
  year: 2018
  ident: 10.1016/j.fuproc.2020.106528_bb1100
  article-title: A cobalt catalyst for reductive etheriication of 5-hydroxymethyl-furfural to 2,5-bis(methoxymethyl)furan under mild conditions
  publication-title: Green Chem.
  doi: 10.1039/C7GC03072J
– volume: 5
  start-page: 312
  year: 1993
  ident: 10.1016/j.fuproc.2020.106528_bb0700
  article-title: Physicochemical studies on furylacrylic acid
  publication-title: Asian J. Chem.
– volume: 261
  start-page: 118235
  year: 2020
  ident: 10.1016/j.fuproc.2020.106528_bb0340
  article-title: NiSe@ NiOx core-shell nanowires as a non-precious electrocatalyst for upgrading 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2019.118235
– volume: 38
  start-page: 1009
  year: 1985
  ident: 10.1016/j.fuproc.2020.106528_bb0740
  article-title: Synthesis of some furfural and syringic acid derivatives
  publication-title: Aust. J. Chem.
  doi: 10.1071/CH9851009
– volume: 7
  start-page: 2947
  year: 2017
  ident: 10.1016/j.fuproc.2020.106528_bb0485
  article-title: Hydrogenative ring-rearrangement of biomass derived 5-(hydroxymethyl) furfural to 3-(hydroxymethyl) cyclopentanol using combination catalyst systems of Pt/SiO2 and lanthanoid oxides
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C7CY00712D
– volume: 343
  start-page: 102
  year: 2001
  ident: 10.1016/j.fuproc.2020.106528_bb0225
  article-title: Synthesis of 2,5-diformylfuran and furan-2,5-dicarboxylic acid by catalytic air-oxidation of 5-hydroxymethylfurfural. unexpectedly selective aerobic oxidation of benzyl alcohol to benzaldehyde with metal=bromide catalysts
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/1615-4169(20010129)343:1<102::AID-ADSC102>3.0.CO;2-Q
– volume: 2
  start-page: 79
  year: 2012
  ident: 10.1016/j.fuproc.2020.106528_bb0230
  article-title: Aerobic oxidation of 5-hydroxylmethylfurfural with homogeneous and nanoparticulate catalysts
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C1CY00321F
– volume: 87
  start-page: 1711
  year: 2013
  ident: 10.1016/j.fuproc.2020.106528_bb0750
  article-title: Synthesis of novel coumarin derivatives and in vitro biological evaluation as potential PTP 1B inhibitors
  publication-title: Heterocycles
  doi: 10.3987/COM-13-12730
– volume: 508
  start-page: 86
  year: 2015
  ident: 10.1016/j.fuproc.2020.106528_bb0840
  article-title: Comparison of HMF hydrodeoxygenation over different metal catalysts in a continuous flow reactor
  publication-title: Appl. Catal. A-Gen.
  doi: 10.1016/j.apcata.2015.10.009
– volume: 308
  start-page: 1446
  year: 2005
  ident: 10.1016/j.fuproc.2020.106528_bb0900
  article-title: Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates
  publication-title: Science
  doi: 10.1126/science.1111166
– volume: 285
  start-page: 235
  year: 2012
  ident: 10.1016/j.fuproc.2020.106528_bb0820
  article-title: Active species of copper chromite catalyst in C–O hydrogenolysis of 5-methylfurfuryl alcohol
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2011.09.030
– volume: 3
  start-page: 406
  year: 2015
  ident: 10.1016/j.fuproc.2020.106528_bb0315
  article-title: Catalytic conversion of fructose and 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid over a recyclable Fe3O4-CoOx magnetite nanocatalyst
  publication-title: ACS Sust. Chem. Eng.
  doi: 10.1021/sc500702q
– volume: 15
  start-page: 1333
  year: 2005
  ident: 10.1016/j.fuproc.2020.106528_bb0680
  article-title: The discovery and synthesis of novel adenosine receptor (A2A) antagonists
  publication-title: Bioorg. Med. Chem. Lett.
  doi: 10.1016/j.bmcl.2005.01.019
– volume: 150
  start-page: 236
  year: 2015
  ident: 10.1016/j.fuproc.2020.106528_bb1025
  article-title: Efficient synthesis of promising liquid fuels 5-ethoxymethylfurfural from carbohydrates
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.02.020
– volume: 7
  start-page: 3541
  year: 2014
  ident: 10.1016/j.fuproc.2020.106528_bb0220
  article-title: One-pot, one-step synthesis of 2, 5-diformylfuran from carbohydrates over mo-containing keggin heteropolyacids
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201402468
– volume: 6
  start-page: 284
  year: 2018
  ident: 10.1016/j.fuproc.2020.106528_bb0180
  article-title: CdTe/CdS core/shell quantum dots cocatalyzed by sulfur tolerant [Mo3S13]2− nanoclusters for efficient visible-light-driven hydrogen evolution
  publication-title: ACS Sust. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b02408
SSID ssj0005597
Score 2.6229699
SecondaryResourceType review_article
Snippet Biomass is the sole renewable organic carbon resource in nature. Conversion of Biomass can produce a series of platform molecules. As an essential...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106528
SubjectTerms 5-Hydroxymethylfurfural
Biomass
Catalysts
catalytic activity
Catalytic conversion
Catalytic converters
Conversion
Economic conditions
Fossil fuels
Furan derivatives
Hydrogenation
Hydroxymethylfurfural
Material monomers
Organic carbon
Platform chemicals
value added
Title Conversion of 5-hydroxymethylfurfural to chemicals: A review of catalytic routes and product applications
URI https://dx.doi.org/10.1016/j.fuproc.2020.106528
https://www.proquest.com/docview/2450654688
https://www.proquest.com/docview/2985540716
Volume 209
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELcq9rI9oME2DQbISHs1rRvbcXirqqECGi8bEm-WP2KtCCVVaR76wt_OnZNUHUJC4jH2XRydfb6Lffc7Qn46pXX0Wck0qAMTShTMOi6Z40UUlnOvUjmg3zdqdiuu7uTdgEz7XBgMq-z2_nZPT7t11zLspDlczOfDP6Ms1xkYsDFCrvACE82FyBE__-xpK8xDpgIrSMyQuk-fSzFesUEzcYbvgCYlsSb76-bpxUadrM_FZ7LbuY100n7ZHhmU1T75tAUm-IXMpxhAnk6_aB2pZP_WAWNUsEb0-iE2y4gIG3RVU9-BBDye0wltc1eQI53krGEAuqwb8ECprQJdtIiwdPui-yu5vfj1dzpjXSEF5jOVY7n5AD-dVnKvfbRSjAOocsjAsbZc5zEop6IsnAZddIGDtdJKe8d1UGGUB6-yb2SnqqvyO6GjXEULPtxYhSg8MFlwqFweyyi9FlodkKyXn_EdyjgWu3gwfTjZvWmlblDqppX6AWEbrkWLsvEGfd5PjflvtRgwBG9wHvUzaTptfTRjIVNVeA3dp5tu0DO8PLFVWTdAU2BAHzhk6vDdg_8gH_GpjYY5IjurZVMeg0-zcidp0Z6QD5PL69nNM1OH9yw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe6cWAcEAzQNgYYiavXurEdZ7eqYiqw7bJN2s3yRyw6VUnVNYde-Nv3npNMHUKaxDX2i6Nnv4_YP78fId-c0jr6rGQazIEJJQpmHZfM8SIKy7lXiQ7o4lLNbsTPW3k7INP-LgzCKjvf3_r05K27J8NOm8PlfD68GmW5ziCAjbHkCi_kDnkhZJbj0j75s4XzkIlhBXsz7N7fn0sgr9hgnDjBl8AjJZGU_d_x6S9PncLP2Rvyussb6aT9tLdkUFb75NVWNcF3ZD5FBHna_qJ1pJL93gQEqSBJ9GYRm1XEEht0XVPfVQm4P6UT2l5eQYm0lbOBAeiqbiAFpbYKdNmWhKXbJ93vyc3Z9-vpjHVMCsxnKke--QB_nVZyr320UowD2HLIILO2XOcxKKeiLJwGY3SBQ7jSSnvHdVBhlAevsg9kt6qr8oDQUa6ihSRurEIUHoQsZFQuj2WUXgutDknW68_4rsw4sl0sTI8nuzOt1g1q3bRaPyTsUWrZltl4pn_eT415slwMRIJnJI_7mTSdud6bsZCJFl5D89fHZjA0PD2xVVk30KdARB9kZOrovwf_Ql7Ori_OzfmPy18fyR62tNCYY7K7XjXlJ0hw1u5zWsAPCzf4wg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conversion+of+5-hydroxymethylfurfural+to+chemicals%3A+A+review+of+catalytic+routes+and+product+applications&rft.jtitle=Fuel+processing+technology&rft.au=Kong%2C+Qing-Shan&rft.au=Li%2C+Xing-Long&rft.au=Xu%2C+Hua-Jian&rft.au=Fu%2C+Yao&rft.date=2020-12-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0378-3820&rft.eissn=1873-7188&rft.volume=209&rft.spage=1&rft_id=info:doi/10.1016%2Fj.fuproc.2020.106528&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3820&client=summon